融雪装置を導入した空港アスファルト舗装の耐荷性能

国土技術政策総合研究所 空港研究部 空港施設研究室 研究員 江崎 徹

1.はじめに

積雪寒冷地のみならず全国各地の空港において は、冬期間に滑走路、誘導路、エプロンの航空機走 行区域に5cmを越える程度の積雪があると航空機の 安全運航の支障となることから、除雪作業が行われ るよう規定されている.除雪作業を円滑に実施する ための規定はすでに整備されているところではあ るが、部分的に圧雪・結氷が発生し作業に困難を伴 うことから更なる対応策が求められている.これを 実現するための有効策として融雪装置を導入する

写真-1 除雪作業状況

ことを考えた.そこで,道路舗装で一般的に使用されている融雪装置を用いて,それ を空港アスファルト舗装へ埋設し,航空機荷重を載荷した場合の空港アスファルト舗 装の耐荷性・耐久性ならびに融雪装置の耐荷性について検討を行った.

2.融雪装置

今回試験した融雪装置は, 道路舗装で一般的に用いら れている温水パイプ方式と 電熱線方式の2種類とした. 温水パイプ方式は,外径 17mm,内径13mmの特殊ナイ

写真-3 電熱線

ロン樹脂管で,ヒータにより温度を調節した不凍液を通水・循環させるものである. また,電熱線方式は,導体抵抗が0.522 ある発熱線に通電させるものである.それ らの融雪装置を表層もしくは基層に埋設し,通水・通電を行った.

3. 各種試験

3.1 室内試験

室内試験を実施するために小型供試 体を製作した.供試体の寸法は,縦・横・ 厚さとも300mmである.融雪装置の埋設 位置は,その底面位置が供試体表面から 50mm,100mm,160mmである.これは,

図-1 温水パイプ方式供試体(埋設深さ 160mm)

それぞれ基層(上層),基層(下層),路盤施工後に融雪装置を据え付けることを想定し たものである.融雪装置の通水・通電方法は,供試体表面温度が1 となるように従 来からの経験により設定した.

3.1.1 走行載荷試験(ホイールトラッキング試験)

舗装上を航空機が繰り返し走行する場合を想 定した空港舗装対応型ホイールトラッキング試 験を実施した.載荷車輪の接地圧は1.38MPa,走 行速度は 20cm/s とし, 最大 5,040 回まで繰返し 走行載荷を与えた.試験ケースは表-1のように 設定し,融雪装置は-10の場合で稼動させ,供 試体中央の表面温度が1 に到達した時点で繰り 返し走行を実施した .試験開始から終了までの間 写真-4 ホイールトラッキング試験 に縦断変形状況,また試験開始前ならびに所定の

走行載荷試験終了時の車輪走行位置にお ける最大変形量について,-10の場合につ _ いて図-2にまとめた.融雪装置を導入した場 合のほうが、導入しない場合と比較すると、 最大変形量は同等かもしくは若干小さくなって いることがわかるが、それほど大きな差ではない、 これは、いずれの温度条件の場合でも同様であっ た.図-3には40の場合の動的安定度をまとめ た.この場合も,最大変形量と同様に融雪装置を 導入することによる影響はほとんどみられない が,温水パイプ方式,電熱線方式とも融雪装置の 埋設位置が深いほど動的安定度が小さくなる傾 向はみられる.また,電熱線方式の場合には,こ れを設けない場合に比べて動的安定度が1~2割 程度小さいこともわかる.

3.2 実大規模試験

実大規模のアスファルトコンクリートの試験 舗装を製作し、それに融雪装置を埋設して、航 空機荷重による走行載荷試験,静的載荷試験, FWD 載荷試験を実施した.試験舗装の平面図な らびに断面図を図-4,図-5に示す.

3.2.1 走行載荷試験

当研究所が所有する自走式走行載荷試験装置 を用いて,試験舗装に対して繰返し走行載荷試験

表-1 走行載荷試験条件

走行回数時に横断形状を3測点で計測した。			
走行載荷試験終了時の車輪走行位置にお	融雪方式	融雪装置 埋設深さ(mm)	試験温度()
ける最大変形量について、-10の場合につ	なし	-	-10 , 1 , 20 , 40
	温水パイプ	50	-10 , 1 , 20 , 40
いて図-2にまとのた . 融雪装直を導入した場	電熱線	100 , 160	-10 , 40

を行った.自走式走行載荷試験装置は,B747 型航空機の主脚と同等のもので,荷重は 910kNである.なお,走行速度は5km/hで, 走行回数は10,000回とし,所定の走行回数 まで走行させた後に,静的載荷試験,FWD 載荷試験ならびに路面形状測定を行った.

3.2.2 静的載荷試験

走行載荷試験と同様に自走式走行載荷試 験装置を用いて静的載荷試験を行った.舗装 表面に直径450mmの載荷板を硬質ゴムを介し て置き,試験装置により静的荷重を最大で 282kN加え,舗装のたわみを計測した.

3.2.3 FWD 載荷試験

FWD(落錘式たわみ計測装置)を用いて,最 大で250kNの衝撃荷重を載荷させ,舗装のた わみを計測した.

3.2.4 試験結果

試験結果として,走行回数増加による静的載荷 試験の最大たわみの形状変化について,温水パイ プの場合を例として図-6 にまとめた.融雪装置 を設置することにより,たわみが大きくなる傾向 にあることがわかる.しかし,たわみの大きさと 埋設深さとの間に明確な関連性があるとまでは いえない.また,図-7 に走行回数増加による載 荷板中心のFWD載荷試験結果について,温水パイ プの場合を例としてまとめた.融雪装置を設置し ているほうが普通舗装(融雪装置なし)に比べて 大きな値を示す傾向にあることが明らかになっ ている.しかし,全体的にみれば,融雪装置の違

いは明確にならず,融 雪装置の埋設深さの関 係も明らかにはならな かった.次に,横断方 向の路面形状測定結果 として,温水パイプの 埋設深さ50mmの場合を **図-8**に示した.走行が 進むにつれて,わだち

写真-5 自走式走行載荷試験装置

図-6 静的載荷試験結果

図-7 FWD 載荷試験結果

掘れが増加していく傾向が明らかになって いる.これは,融雪装置の有無,融雪装置の 種類ならびに埋設深さによらずみられ,最終 的な路面の変形量には大きな差はみられな かった.

3.2.5 融雪装置の耐荷性に関する有限要素解析

融雪装置を埋設した舗装に航空機荷重が載荷され た場合に,融雪装置に生じる応力について3次元有 限要素法を用いて解析を行った.条件は,冬季と夏 季を想定した2ケースとし,モデル上にB747-400(満 載時)が載った場合とする.冬季と夏季の場合の舗装 構造の力学特性は表-2に示すとおりである.また, 舗装構成は図-9のとおりした.注目する応力は融雪 装置に見立てた要素部分の応力とした.

解析結果として,夏季の温水パイ プでの場合を図-11に示した.荷重中 心付近では引張の応力を示すことが温水パイブ わかる.季節による違いでは,夏季 のほうが冬季より表・基層の弾性係 数が小さいため,夏季のほうが大き 図-10 モデル詳細断面図 い応力が発生することがわかった.これは電熱線の場合 でも同様であった.しかし,これらの応力は融雪装置自 体の強度と比較すると十分小さい値であるため,融雪装 置が破断するといったことはないようである.

路面高さ(mm) 20 重輪走行位置 走行回数 50回 100回 200回 500回 1000回 -20 2000 3000 5000回 -40 7000 10000回 80 L 0 3 _ 測定距離(m) **図-8**路面形状測定結果

表-2 解析に用いた力学特性値

	弾性係数 (MPa)		
温度	冬季	夏季	ポアソン比
	(0)	(50)	
表・基層	7,400	300	0.3
上層路盤	1,500	1,500	0.3
下層路盤	300	300	0.3
路床	40	40	0.3
温水パイプ	785	785	0.3
電熱線	3.25	3.25	0.3

(単位:mm)

図-9 解析モデルの舗装構成

256 200 150 100 50 -50 -100 -150 表層50 基層100mm 基層160mm -200 -250 2 3 0 -3 -2 -1 横断方向(m)

一連の試験研究の結果からは,融雪装置を導入

4.結論

することによる空港アスファルト舗装への影響は ほとんどみられない.また,融雪装置自体の強度 も十分であると判断されることから,融雪装置導 入に関しては十分可能であると判断される.

5.今後の課題

図-11 解析結果(夏季)

今回の試験において,特に試験舗装に対する載荷試験は気温が比較的高い状況下で 短期間に実施されたことから,実際の使用状況下の場合と比較すると,累積変形の点 では厳しい結果となったことが懸念される.今後は,実際の空港での実施検証といっ たものを経て,本研究成果の実用化を図っていきたい.