模型実験を活用した防波堤のコスト縮減に

関する新たな取り組み

河合尚男

名古屋港湾空港技術調査事務所(〒457-0833 愛知県名古屋市南区東又兵ヱ町1丁目57-3)

港湾の物流機能を維持・確保する施設の一つである防波堤について,従来の設計では,所要の安全率 を満たすことが前提であり,波浪などの外力による変位を許容していなかった.しかし,近年,技術 基準の性能規定化が進み,それに伴い,設計の自由度が向上し,多様な設計手法の導入や技術革新に 対する柔軟な対応が可能となってきた.

このような背景において,水理模型実験により防波堤の耐波性能を直接的に把握し,波浪による外 力と変位特性を計測することにより,従来設計と比較し,より経済的な構造断面となることが期待さ れる.今回は,コスト縮減に資する新たな設計手法に関する検討を行い,一定の成果を確認した.

キーワード 性能設計,水理模型実験,コスト縮減,防波堤設計

1.はじめに

「港湾の施設の技術上の基準」(以下,「技術基準」)が, 国際的な基準類の性能規定化の流れ等を背景として,平成 19年4月に大幅に改正された.今回の技術基準改正にお いてキーワードになるのが「性能規定」への移行である. すなわち,従来の技術基準が,構造物の材料,寸法,設計 法など細部までを明示する「仕様規定」となっていたのに 対し,改正された技術基準では,構造物に要求される性能 のみを規定し,結果に至るプロセスを問わない「性能規定」 が導入された.そのなかで,防波堤の変位(特に水平方向 にスライドする現象である滑動)については,これまで, 所要の安全率に対し,変位が発生しないことの検証が主で あり,波浪による外力とケーソン重量の関係がどのように 変位量と相関するかを明らかにした事例はそれほど多く ない.

このような背景において、本報告ではケーソン式防波堤 を想定して各種検討条件を変化させ、実際の海域の波を再 現した不規測波により、数値シミュレーションと比較して 現象の再現性が高いとされている水理模型実験を行い、ケ ーソンの滑動特性、及びその際の波圧特性を把握し、新た な設計手法に資する基礎資料を得た.また、その実験結果 より、任意の波高、ケーソン重量に対し変位量を推定でき る図表の作成を試み、従来の設計手法と比較した.

2. 実験内容

(1) 実験概要

実験は,当所が所有する,長さ30m,幅1m,深さ1.2 mからなるピストン型単一方向不規則波造波装置が設置 された断面二次元水路において実施した.(図-1参照)

防波堤及びマウンド等の模型縮尺は1/40とし,潮位条件は潮位+4.5m及び潮位+2.3mの2種類で実施した.

実験に用いた波の諸元は、想定する防波堤の設計波相当 であるH_{1/3}=4.48m, T_{1/3}=7.8s(以降,代表波)を中心と して,H_{1/3}=2.98~6.28m, T_{1/3}=7.1~8.8sの範囲で変化 させた7種類の不規則波を用いた.(表-1参照)

表-1 実験対象波

潮位	波の種類	波高	周期	
		H1/3	T1/3	備考
		(m)	(s)	
+4.5	不規則波	2.98	7.1	
		3.48	7.3	
		3.98	7.5	
		4.48	7.8	代表波
		4.98	8.1	
		5.48	8.5	
		6.28	8.8	
+2.3	不規則波	2.98	7.1	
		3.48	7.3	
		3.98	7.5	
		4.48	7.8	代表波
		4.98	8.1	
		5.75	8.5	

図-1 実験に用いた水路

なお,各波高ケースはデータを平均的に取得するため,

図-2 実験で対象としたケーソン式防波堤

波群(出現する波のパターン)を3種類変化させ,1波群 当りの波数を250波とした.

実験対象とした防波堤は,図-2 に示すケーソン式防波 堤であり,天端高+5.8m,前面水深h=-11.0m,マウント水深 h =-7.6m である.

(2)実験及び解析方法

実験では,滑動特性と波圧特性を同時に把握するため, 幅27.5cmのケーソン模型2函について,滑動用,波圧用 として1函ずつ設置し,さらに,両端にダミー模型を設置 した.このうち,滑動用模型は,実際のケーソンと同様に 底面部をモルタル仕上げとし,マウンドとの摩擦係数がお よそ0.6となる条件を再現した.

ケーソンの滑動安全率を変化させた場合の滑動特性を 把握するため、代表波の最高波高Hmax に対する滑動安全 率が0.46、0.55、0.7、0.8、0.9 となるよう、模型の質量 を変化させ、変位量は、図-3 に示すようにケーソン模型 の背後中央下部に設置した変位計で測定した。

波圧用模型は、ケーソン前面及び底面に波圧計を設置して、隣接する滑動用ケーソンの変位と同時に、波圧強度を 測定した.(写真-1参照)

図-3 滑動用ケーソン模型への変位計設置概況

写真-1 滑動波圧測定用ケーソン模型の設置概況

実験は,波高の小さいケースから大きいケースへ向けて 順次行い,基本的に,一番大きな波高のケースが終了する まで,ケーソンの滑動変位は戻さないこととした ただし, 実験途中で,変位計の許容範囲(200m)を超えた場合,ま たは超えそうな場合,あるいは隣接ケーソンに接触し,明 らかに変位が止められていると判断される場合は,一旦, ケ-ソンを元の位置に戻し,当該ケースから再度,やり直 した.

3.実験結果及び考察

(1) 滑動合成波力及び変位の時系列特性

図-4 は,1つの実験ケースについての,滑動合成波力 Ps(=実験水平波力Ph+実験鉛直波力Pv×摩擦係数0.6) と変位量を示したものである.図中には,計算より求めた 滑動限界値(=ケーソンの水中重量W×摩擦係数0.6)も 併記している.これをみると,ケーソンの変位は,滑動合 成波力Psが限界値を越える直前からはじまり,滑動合成 波力Psがピークを過ぎ,限界値を下回ったあとの時間帯 まで継続している.これは,ケーソンには慣性力が作用 しており,限界値を過ぎて以降,摩擦抵抗力によって徐々 に止まるものと推測される.

図-4 滑動合成波力(上図)と変位量(下図)の時系列 (安全率0.7 潮位+2.3 m, H_{1/3}=4.98 m, T_{1/3}=8.1 s)

(2) 滑動安全率と1波毎の変位量との関係

図-5 は各ケースにおける 1 波毎の変位量を任意に抽出 し、そのときの計測波力より安全率を求めて、両者の関係 をプロットしたものである.これをみると、変位量は安全 率の低下に伴い増大する傾向にあるが、詳細にみると、同 じ安全率でも変位量はかなりのバラッキが見られる.これ は潮位を変化させた場合も同様にバラッキが生じた.

図-6 は図-5 の中で,安全率が0.5 程度と同水準である にも関わらず,変位量に明瞭な差がある2つのケース,

(図-5内に示す)に着目し、その時の滑動合成波力 Ps 及び変位量の関係を時系列で示したものである。

図-6 波力の作用時間と変位量の関係 (安全率0.46 H.H.W.L+4.5m, H_{1/3}=4.48m, T_{1/3}=7.8s)

これをみると、滑動合成波力 Ps は 、 ともほぼ同水 準にあるが、滑動合成波力 Ps が限界値を超えている時間 は、 の方が長く、力積(Ps×時間)にすると、1.7倍以 上となる、前述のとおり、ケーソン変位は、滑動合成波力 Ps がピークを過ぎ、限界値を下回った後も、その慣性力 によって継続することが確認されており、限界値を越える 時間帯が長いほど、その後の継続時間も長くなることが予 想される、よって、同じ安全率でも変位量が異なる要因の 一つは、波力の作用時間の違いにあるものと推測される、

また,変位量がバラつくその他の要因としては,後部フーチングのマウンドへのめり込みが考えられる.波圧は,ケーソンの重心より高い位置(=静水面)で最も強く 作用するため,大きな波力が断続的に作用すると,ケーソ ンはロッキングを起こし,マウンドの鉛直方向への力も加 わる.写真-2は,大きな変位が発生した後のマウンドの 状況を示したもので,後部フーチング付近の基礎石が盛り 上がっている(丸囲み部).このことは,変位にブレーキ をかけることになり,結果,安全率の割に変位量が小さく なる要因の一つと考えられる.

(3)不規則波全体としての累計変位量

本項では、台風等擾乱のピーク時間を想定し1波群(250 波)の不規則波全体を対象に、「1波毎の変位量が積み重 なった累計変位量」について、その特性を述べる、図-7 は、1波群(250波)の不規則波全体を対象に、各潮位に おける相対波高H_{1/3}/Hcと累計変位量の関係を示したもの である、

本図をみると,累計変位量は,潮位+4.5mと比 ベ潮位+2.3mで大きい傾向にある.これは,潮位+2.3m の場合,波力の作用点が下がって重心に近づくことで, ケーソンがロッキングから滑動へ転じやすくなること等 によるものと考えられる.前項までの検討のとおり,1波 毎の変位は,同じ安全率でもバラつくため,その積み重ね である累計変位量についても,バラツキが発生しているも のの,相対波高が大きくなると,両朝位とも,急激に,累 計変位量が増加する傾向にあることがわかる.

また,本図より,今回の実験条件の範囲内(対象とした 形状のケーソン式防波堤,波形勾配Ho /Lo=0.05 程度の 波浪)で,任意のケーソン重量,任意の波高に対する1 擾乱(ある台風等を想定)での概算累計変位量を想定する ことができる.

図-7 相対波高と累計変位量の関係 上図:(潮位+4.5m),下図:(潮位+2.3m)

Hc:実験で使用した各ケーソン重量 に対し安全率が1.0となる限界波高

図-8 供用期間(50年間)の異常波浪の出現事例

図-9 供用期間(50年間)の累積変形量

実際に,防波堤の一般的な供用期間 50 年を想定した総 滑動量を試算した(潮位+2.3m のケース).手順としては 図-7 のデータに推定曲線を引き,図-8 に示すとおり1年 に1回台風等の擾乱が襲来することを想定した 50 年間の 発生例から,1年毎の滑動変形量を図-7から読み取り, 累積したものが図-9である.これによると,従来の防波 堤の9割程度の重量とした場合,供用期間中40m程度の 滑動による水平変位が生じる結果となり,この変位を許容 する場合に,防波堤製作費だけでも1割程度のコスト縮減 が期待できる.このように,変形を的確に把握し,設計へ 反映することができれば,経済的な構造を提案することが 可能となる.

4. 結論

既往の知見と比較し,実験から得られたポイントは以下 のとおりである.

・ケーソンの変位は, 滑動合成波力 Ps が限界値を越える 直前からはじまり, 滑動合成波力 Ps が限界値を下回った あとの時間帯まで継続することがわかった.

・同じ安全率でも変位量はかなりバラつく.これは,1波 毎の波力作用時間,マウンドとケーソン底面の接触状況等 によるものと推測され,不規則中の1波1波の変位量は変 動性が強いことがわかった.

・実験結果を基に、(実験条件の範囲内において)任意の 波高、ケーソン重量に対する1擾乱(ある台風等を想定) での概算累計変位量推定図を作成することができた.

これらを含め、性能短計を実施するための基礎的な資料が 得られたと考えられる.併せて、経済的な設計法として従 来用いられている、数値シミュレーションを実施する場合 と比較すると、計算上では再現されにくい点についても実 験を通じて把握できた.更に、ある供用期間に発生する 個々の高波を設定することで、数値シミュレーションを実 施しなくても、概算の累計変位量(期待滑動量)を試算す ることが可能となり、断面を検討する上での経済比較がス ムーズに行える.これらにより、今後、防波堤の設計に高 度な性能設計を適用する場合において、より現実的かつ経 済性を追求した評価を行うことが期待できる.

参考文献

合田良実(1973):防波堤の設計波圧に関する研究,港湾技研報告, 第12巻 第3号,pp31-69.

下迫健一郎・高橋重雄(1998):期待滑動量を用いた混成防波堤直 立部の信頼性短計法,港湾技研報告,第37巻第3号,pp3-30.