浮遊砂が卓越する海域における漂砂特性と 対策の検討について

海津 博行¹·森 信幸²·川村 求³

^{1・3}北海道開発局 留萌開発建設部 留萌港湾事務所 第2工務課 (〒077-0048 北海道留萌市大町1-1-1)
 ²北海道開発局 留萌開発建設部 留萌港湾事務所 所長 (〒077-0048 北海道留萌市大町1-1-1)

苫前漁港は、東西方向の海岸線とほぼ平行に防波堤が配置され、港口は東側に位置している。 苫前漁港周辺海域の底質は岩盤であるが、港口水深が-5.0m以浅と浅く、砕波滞の内側に港口が 位置するため、掃流砂と併せ浮遊砂により航路が埋没する傾向にあり、漁船の船底が海底と接 触する等、利用上の支障が生じている。

この漂砂特性を捉えるため、砂質土分布及び砂層厚の調査とともに港口付近の流れの影響を 勘案した水平流速分布や浮遊砂濃度の観測を実施した。これらの検討結果を踏まえ、苫前漁港 周辺の漂砂特性を考慮した数値モデルを構築し、対策港形を検討したので報告する。

キーワード:浮遊砂,漂砂,航路埋没

1. はじめに

第3種苫前漁港は、水産資源が豊富な武蔵堆近傍の北 海道北西部の日本海沿岸に位置しており(図-1)、いか釣 り外来船、ホタテ種苗生産、エビ桁漁の基地として整備 が進められている。本漁港では、航路埋没(図-2)により 利用漁船の船底が海底地盤と接触する等、利用上の支障 が報告されており、地元から早急な対策が求められてい る。一方、既存の現地調査によると漁港周辺の地質は岩 盤であることが確認されているほか、主な漂砂の供給源 は漁港の南側に位置する古丹別川からの浮遊砂と想定さ れるが航路埋没の発生メカニズムは確認されていない。

そこで、本研究では、西側の沿岸流と東側の離岸流を 勘案した現地調査を行い、漂砂供給源の状況と波浪・流 況等の外力特性、浮遊砂の発生と輸送特性等を明らかに した。確認された漂砂特性に基づき、沿岸流と離岸流が 拮抗する状況は、風波と長周期波による流れを重ね合わ せて再現性を向上した。更に、浮遊砂による航路埋没を 再現する上で重要な浮上・沈降フラックスの非平衡性を 考慮した黒木ら(1988)³の非平衡浮遊砂濃度分布式と、 海底の境界条件を規定する椹木ら(1991a)⁴の平衡基準点 濃度式に基づき、浮遊砂による三次元海浜変形モデルを 構築し、妥当性の検証を行い、対策港形の検討を行った。

図-1 苫前漁港位置図

2. 現地調査

(1) 調査概要

現地調査は、航路に流入する浮遊砂の発生と輸送、沈 降・堆積に至る移動過程を確認するため、2008年及び 2009年の二ヵ年に渡って行った。観測概要を表-1に、観 測位置を図-3に示す。ここで、波浪観測は超音波式及び 水圧式を併用したハイブリッド型の海象計(DL-3)、濁度 は赤外散乱光方式の濁度計(MTB-16K)、流況は電磁流速 計(COMPACT-EM)を用いて、高波浪が発生する11月~12 月の期間に30昼夜観測を行った。特に、2009年の現地 調査は、北防波堤側から流入する浮遊砂濃度及び港口部 の複雑な流れや渦の形成状況を詳細に確認するため、浮 遊砂濃度はレーザー回折の原理を応用した粒径・粒度分 布計(LISST-100X)を、水平流速分布はドップラー流速計 (H-ADCP)を用いた。更に、サイドスキャンソナー及び地 層探査機を用いて本漁港の東側海域及び西側海域の底質 分布と砂層厚を調査し、同時に底質調査を実施した。

		表─l 観測概要	
地点	水深	2008年(11/14~12/14)	2009年(11/12~12/12)
ST-1	-18 m	波高, 波向	波高,波向
ST-2(1)	-5.7 m	流況, 濁度	流況,濁度, 浮遊砂濃度
ST-2(2)	-4.3 m	流況,濁度	—
ST-3	-4.3 m	波高,波向,流況 濁度(中層,下層)	波高,波向
ST-4	-3.1 m	流況,濁度	_
ST-5	-5.0 m	流況, 濁度	
ST-7	-3.0 m	—	水平流速分布

注)観測層は海底上1.0 m

図-3 観測位置図

(2) 調査結果及び考察

a)砂質土の分布と砂層厚及び土砂性状

図-4 は、砂質土の平面分布と砂層厚及び底質の土砂 性状である。これによると、東側海域は人工リーフから 港口部と港内、西側海域では汀線近傍に砂質土が分布し、 沖合は岩盤である。砂層厚は人工リーフから港口部に掛 けて 1.4 m 程度、北防波堤先端の浅瀬で最大 2.6 m であ った。底質は人工リーフ上部が細砂(d50=0.19 mm)、港 口部が細砂・中砂(d50=0.25 mm)、港内はシルト以下 (d50=0.029 mm)、西側海域の汀線近傍は中砂・粗砂以上 (d50=0.49 mm)の占める割合が多く、場所によって土砂 性状が大きく異なる。これは、本漁港の西側海域と東側 海域で波浪条件が異なる事が要因と考えられる。

図-4 砂質土の分布と砂層厚及び土砂性状

b)高波高時における海浜流の形成

図-5 は波向W、波高2mクラスの時化における海浜流

ベクトル、図-6 は港口部における水平流速分布である。 これによると、本漁港の周辺海域では、北防波堤に沿う 東向きの沿岸流、及び東外防波堤に沿う北西向きの離岸 流が形成されている。更に港口部において、流向の異な るこれらの流れが拮抗し、北防波堤の遮蔽域内から遮蔽 域外に掛けて流向及び流速が大きく変化している。北防 波堤先端における浅瀬及び航路埋没は、この様な複雑な 流れの作用によって形成されたものと考えられる。

図-6 港口部における水平流速分布(観測値, 2009年)

c) 浮游砂の輸送

図-7 は波向W、波高4mクラス、6日間の時化におけ る浮遊砂の SS フラックスである。これによると、北防 波堤側では約8 ton/m²の浮遊砂が港口部に流入している。 一方、東外防波堤側では、ST-4→ST-5→ST-3 の順に SS フラックスは減少しているものの、ST-3(中層)から航路 上に 4.3 ton/m²の浮遊砂が流入している。これらの結果 から、高波高時には、北防波堤側及び東外防波堤側の両 方から航路に浮遊砂が流入していることを把握した。

図-7 SS フラックス(観測値, 細砂以上の粒径)

d) 浮遊砂の濃度及び土砂性状

図-8 は、ST-2(1)における濁度計と LISST-100X による

浮遊砂濃度の相関分析(2009 年観測)である。ここで、 濁度は観測地点の海底の土砂を用いてキャリブレーショ ンを行い浮遊砂濃度に換算した。一方、LISST-100X は観 測値(µℓ/ℓ)に土粒子の密度(g/cm³)を考慮して浮遊砂 濃度に換算した。この結果、濁度計による浮遊砂濃度は 高濃度で LISST-100X の約 7 倍の値を示した。このため、 本研究では、浮遊砂濃度の観測精度の向上を図るため、 図-8 の相関関係に基づき、2008 年の観測値を見直し、 その実態を再評価した。

図-9 は、ST-2(1)における浮遊砂の土砂性状であり、 上段より浮遊砂の粒径スペクトル、浮遊砂濃度、中央粒 径を示している。これによると、中央粒径の平均値は d50=0.108 mm、粒度組成の平均値はシルト以下が 43 %、 細砂が 35 %、中砂は 22 %であった。この様な浮遊砂の 土砂性状と港口部における底質の特徴(図-4)から、航路 埋没に影響を与えるのは浮遊砂に平均 57 %含まれる細 砂粒径以上の土粒子と考えられる。

3. 予測モデルの構築

(1) 概 要

苫前漁港においては、図-10 航路埋没メカニズムに示 すとおり、北防波堤及び東外防波堤の両方から流入する 細砂・中砂等の浮遊砂によって航路埋没が生じている。 このため、予測手法として「細砂・中砂を対象とする浮 遊砂の発生・移流拡散・沈降」を基本とした、「外力 (波浪・流れ)の時間変化」を考慮した数値モデルを構築 する。数値モデルの構成図を図-11に、概ね3日間を基本 とした2パターンの外力モデルを図-12に示す。

年間の地形変化量は、波向別・海象モデル別の予測結 果及び対象期間に来襲した波浪のエネルギー流束に基づ いて線形合成を仮定した。

(2) 波浪変形·海浜流計算

風波及び長周期波の波浪変形計算では、平山(2002)¹⁰
 の研究による「ブシネスク方程式(NOWT-PARI Ver4.6c5a)」を用いた。また、風波の海浜流計算では、
 本間・堀川(1985)²⁰に基づきRadiation Stress項を用いた
 「海浜流方程式」及びブシネスク方程式を用い、長周期
 波の海浜流計算ではブシネスク方程式を用いた。

(3) 浮遊砂による地形変化計算

黒木ら(1988)³及び椹木ら(1991a)⁴の研究によれば、 浮遊砂による地形変化は、浮上・沈降フラックスのバラ ンスが崩れる非平衡状態の浮遊砂濃度が現れる領域で生 じると考えられている。この様な非平衡状態の浮遊漂砂 を簡易に取り込むため、「二次元移流拡散方程式と浮遊 砂濃度の鉛直分布関数及び平衡基準点濃度の近似式を組 み合わせた浮遊砂モデル」を用いる。

計算に用いた二次元移流拡散方程式を式(1)に示す。

$$\frac{\partial \overline{C}}{\partial t} + U \frac{\partial \overline{C}}{\partial x} + V \frac{\partial \overline{C}}{\partial y} = \frac{\partial}{\partial x} \left(K_x \frac{\partial \overline{C}}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_y \frac{\partial \overline{C}}{\partial y} \right) + W_d \left(C_{be} - C_b \right) (1)$$

ここで、 K_x , K_y : x, y方向の拡散係数、U, V: x, y方向の流速(風波と長周期波による海浜流ベクトル)、 W_d : 粒径dの土粒子沈降速度、 \overline{C} : 浮遊砂の平均濃度、 C_{be} : 平衡基準点濃度、 C_b :非平衡底面濃度である。

浮遊砂の平均濃度は式(1)を基に求め、浮遊砂の浮上 フラックス($W_d \cdot C_{bc}$)と沈降フラックス($W_d \cdot C_b$)の差が 地形変化量(Δ)に対応する。

$$\Delta = W_d \left(C_{be} - C_b \right) \tag{2}$$

式(1)に含まれる底面近傍の非平衡底面濃度は、黒木 ら(1988)³⁰の研究に基づき式(3)で評価するとともに、式 (3)に含まれる平衡基準点濃度は椹木ら(1991a)⁴に基づ いて式(4)から求める。

$$C(\zeta) = C_b \cdot \exp(-R\zeta) + R(C_b - C_{be})\zeta \cdot \exp\{-(R+1)\zeta\} \quad (3)$$

$$\Box \subseteq \overline{C}, \quad \zeta = (h+z)/(h+\eta)$$

$$R = \frac{W_d \cdot (h+\eta)}{2}$$

Kz K_z: 鉛直拡散係数、*h*: 水深, η: 潮位である。

$$C_{be} = \alpha_{co} \left[\frac{0.688u_{w}^{2}}{1.13 \left(\frac{\rho_{s}}{\rho} - 1 \right) g w_{f} T} \right]^{1.77}$$
(4)

ここで、 a_{∞} : 平衡状態の底面濃度を規定するフィッティング係数、 u_{w} : 底面波動流速振幅、 ρ_{s} : 土粒子の密度、 ρ : 海水の密度、 w_{f} : 土粒子の沈降速度、T: 波周期、g: 重力加速度である。

図-13 は、平衡状態の浮遊砂濃度が出現すると想定される ST-4 を対象に、式(3)を用い平衡状態を仮定して算

出した平衡基準点濃度と式(4)による近似値の比較である。ここで、浮遊砂に含まれる細砂以上を対象に、底質の粒径は d=0.25 mm、浮遊砂は d=0.14 mm とし、波・流れ共存場の摩擦速度は椹木ら(1984)⁷によった。

図-13によると、式(4)に含まれる係数a_wは0.00069の 設定で平衡基準点濃度を概ね近似できる。

(4) 計算条件

数値モデルは、実際に出現した時化を対象に波浪変形、 海浜流の形成及び浮遊砂濃度の各項目について、計算条 件の妥当性を検証した上で、代表波浪(図-12)を外力と して概ね一年間を対象とする航路埋没の再現性を検討し た。再現性を検証した主な計算条件を表-2~表-5 に示 す。

表-2 風波の計算条件

項目	設定値
方向スペクトル	Brestschneider_光易型スペクトル×光易 型方向関数,成分波数 n=512
計算の時間間隔	$\Delta t = 0.01 \text{ sec}$
格子サイズ	$\Delta x = \Delta y = 10 m$

表-3 長周期波の計算条件

項目	設定値
方向スペクトル	30~300 sec の周期帯,成分波数 n=270, 代表周期 90 sec,単一方向不規則波,入 射成分を考慮
計算の時間間隔	$\Delta t = 0.2 \text{ sec}$
格子サイズ	$\Delta x = \Delta y = 10 m$

表-4 海浜流の計算条件

項目	設定値				
外 力	ブシネスク方程式で計算された波高,波 向を基に Radiation Stress を設定				
海底摩擦係数	C _f :砂地盤0.01,岩盤0.05				
渦動粘性係数	Al=Nx √gh:Longuet Higginsの式 N=0.016, x は海岸からの距離. x を砕波 帯まで増加させ,その沖側は一定				

表-5 漂砂シミュレーションの計算条件

項目	設定値						
底質分布	砂質土の分布と砂層厚(図-4)を設定						
	細砂・中砂を対象に底質は d=0.25 mm,						
代表粒径,	浮遊砂は d=0.10 mm, 0.14 mm, 0.18 mmの						
空隙,密度	代表3粒径・単一粒径を仮定,						
	空隙 ε =0.4,土粒子の密度 ρ _s =2.7g/cm ³						
浮遊砂の発生限界	土屋らの移動限界式,椹木(1991b) ⁵						
土粒子の沈降速度	Rubey の式, 河村(1982) ⁶⁾						
	椹木ら(1984 ^ヵ , 1991a ⁴) 及び運輸省第四						
2八古井井井/衣米/	港湾建設局(1982) ®に基づいて設定						
如回知的权际效	港口部において Kz=0.02~0.05 m²/sec						
	Kz の下限値は 0.02 m²/sec を設定						
	椹木(1991b) ⁵ 及び運輸省第四港湾建設局						
水平拡散係数	(1982) ®に基づいて設定						
	港口部において Kx=Ky=2~5 m²/sec						

(5) 計算結果と考察

a)海浜流ベクトル

高波高時における流れは、風波と長周期波による流速 ベクトルが合成されたものと仮定して、再現性を検証し た。図-14 は実際に出現した時化(波高 2.02 m,波向 277.3°,周期 6.2 s)の海浜流ベクトル、図-15 は代表波 浪(波向 W,波高 2 m,周期 8 s)における海浜流ベクトルの 一例であり、風波は海浜流方程式、長周期波はブシネス ク方程式による流速ベクトルが合成して描かれている。

図-14 によると、北防波堤の遮蔽域内から遮蔽域外に 掛けて、沿岸流と離岸流が拮抗し、流向及び流速が大き く変化する特徴が概ね再現されている。また、図-15 に よると、北防波堤の沿岸流、東外防波堤から航路に向か う離岸流の流向は観測値と近似している。流速について は、ST-2(1)の計算値がやや低めではあるものの、その 他の地点では観測値に近似している。

図-14 海浜流ベクトル図(2009'11/23 23:40)

b)浮遊砂濃度

図-16 に代表粒径 d=0.14mm の浮遊砂濃度の平面分布を、 図-17 に鉛直分布の一例を示す。これによると、ST-2(1) 北防波堤及び ST-4 東外防波堤から航路に流入する浮遊 砂濃度の平面分布・鉛直分布が概ね再現されている。

c)地形変化

地形変化計算は、代表粒径別に単一粒径で行った。 図-18 に水深変化量の一例(d=0.14mm)を、図-19 に地形変 化量の観測値(図-2)と計算値の比較を示す。これによる と、東側海域の水深変化の平面分布は、観測値(図-2)の 特徴を良く再現している。また、航路に設定した評価区 域 1~5 において侵食・堆積の特徴が再現され、その地 形変化量は、観測値に対して粒径別に d=0.10mm は 73.7 %, d=0.14mm は 66.9 %、d=0.18mm は 61.2 %であった。

4. 対策港形の検討

(1) 航路埋没対策

図-20に航路埋没対策を示す。北防波堤先端は、西側 から流入する浮遊砂対策として、-6.0m以深の底質粒径 が大きく岩盤が露出している岩礁域までの延長50mに設 定した。東外防波堤側は、激浪時の主波向きWWb方向を 考慮し、北防波堤先端と東防砂堤先端を同一線上とし、 方向は航路に平行として位置と延長の異なる3案(A案、B 案、C案)を設定した。更に、北防波堤先端と東防砂堤先 端を結ぶ沖側は、砂層厚が0.5m程度と僅かであることか ら、A案、C案については、対策工の完成後、比較的早い 段階に平衡地形が形成されるものと仮定したA'案、C' 案として地形変化量の算出を行った。

(2) 対策効果の検討・評価

対策効果の予測計算は、代表粒径は0.14mmで行った。 予測結果のうち、A案の水深変化図を図-21に、航路に設 定した評価区域の地形変化量の比較を表-6に示す。表-6 によると、航路の堆積量はC案が最も少なく、次いでA 案、B案の順で増加した。また、平衡地形の形成後は、 航路埋没量が更に減少すると予測された。A'案の航路

表-6 対策効果の比較表(地形変化量、年間、d=0.14mm)

		現港形		A案		A'案		B案		C案		C'案	
扇蚊	面積	蜥液	旅渡	蜥蔆	核酸	蜥箥	旅滚	蜥皴	椒酸	蜥箥	旅渡	蜥液	漱薇
NULDER		化量	化量	化量	化量	化量	化量	化量	化量	化量	化量	化量	化量
	(m^2)	(m ³)	(m)	(m^3)	(m)	(m^3)	(m)	(m ³)	(m)	(m ³)	(m)	(m ³)	(m)
1	2, 928	836	0.29	789	0.27	370	0.13	971	0.33	706	0.24	290	0.10
2	3, 267	1,087	0.33	535	0.16	427	0.13	700	0.21	318	0.10	216	0.07
3	3,627	379	0.10	192	0.05	179	0.05	218	0.06	117	0.03	104	0.03
4	3,084	115	0.04	69	0.02	68	0.02	72	0.02	46	0.01	45	0.01
5	3,084	65	0.02	-43	0.01	42	0.01	-43	0.01		0.01	30	0.01
計	15,990	2, 482	0.16	1,627	0.10	1,085	0.07	2,005	0.13	1,218	0.08	685	0.04

の水深は、航路の評価区域1及び2において年間13cmの堆 積が想定され、対象船舶の航行に影響を与える水深ま で、概ね5年間確保されるものと予測された。これらの 対策効果と、荒天時における入港操船の安全性を勘案し て、航路幅員の広いA案を対策港形として決定した。

5. まとめ

現地調査により、航路埋没は、高波浪時に本漁港の東 側に位置する人工リーフ周辺の土砂が舞い上がり、北西 向きの離岸流によって航路に輸送されるとともに、西側 海域の汀線近傍の土砂も東向きの沿岸流によって航路に 輸送され、両者が航路に沈降・堆積することによって生 じることを確認した。

風波及び長周期波に起因する流速ベクトルを重ね合わ せた結果、広域・狭域での海浜流の再現性が向上した。 また、二次元移流拡散方程式と浮遊砂濃度の鉛直分布関 数、及び平衡基準点濃度の近似式を基に浮遊砂モデルを 構築して高い再現性を検証し、対策効果を検討した。

今後、対策工の整備を進めていく中で、同様に詳細な 調査を実施し、数値モデルの再現性や対策効果の検証を 行っていく必要がある。また、浮遊砂による漂砂問題を 抱える港では、本報告のような調査が有効である。

最後に本研究成果が、漂砂による航路や泊地埋没の問 題を抱える港の一助になれば幸いである。

謝辞: 苫前漁港における漂砂対策工を検討するにあた り、ご指導ご協力頂いた検討委員会委員の北海道大学大 学院山下俊彦教授、(独)港湾空港研究所 栗山善昭海 洋・水工部長、(独)水産総合研究センター 中山哲嚴グ ループ長、(独)寒地土木研究所山本泰司上席研究員を はじめとする関係各位に、深く感謝を申し上げます。

参考文献

- 平山克也(2002):非線形不規則波を用いた数値計算の港湾 設計への活用に関する研究,港湾空港技術研究所資料, No. 1036
- 2) 本間仁・堀川清司(1985):海岸環境工学,東京大学出版会, pp. 249-271.1)
- 3) 黒木幹男・史亜傑・岸力(1988):非平衡浮遊砂理論とその 応用,第32回水理講演会論文集,pp.407-412.
- 4) 椹木亨・出ロー郎・小野正順・襄基成(1991a):浮遊漂砂の 非平衡性に着目した航路埋没の数値計算法について,海洋 開発論文集 Vol. 7, pp. 295-300.
- 5) 椹木亨(1991b): 波と漂砂と構造物, 技報堂出版, p. 176, p. 179.
- 6) 河村三郎(1982): 土砂水理学 1, 森北出版株式会社, p.23.
- 7) 椹木亨・李宗燮・出口一郎(1984):河口周辺の海浜流及び 地形変動モデルに関する研究,第31回海講論文集,pp.411-415.
- 8) 運輸省第四港湾建設局(1982):しゅんせつ埋立による濁り 等の影響の事前予測マニュアル, pp. 143-146.