第3回下水道における リン資源化検討会

手引き(案)について

平成22年3月11日

財団法人 下水道新技術推進機構

1/20

次 Ħ

総則 第1章

目的 第1節

手引きの構成 第2節

対象とする資源化技術 第3節

用語の定義 第4節

リン資源化の現状と課題

リン資源化の重要性 第1節 第2節 下水中のリン賦存量

リン資源化の検討

リン資源化の視点 第1節

リン資源化検討手順 第2節

資源化可能性の検討 第3節

第4節 事業化の検討

第4章 品質管理

第5章 検討事例

第1節 広域循環型検討例 地産地消型実施例

資料編

- 1. 関連法令等(抜粋)
- 2. 下水中のリン資源化技術の

概要

- 3. 肥料の製造工程と流通
- 4. 費用関数

第1章 第1節 § 1 目 的

本手引きは、下水道に賦存するリンの量や 全国的な分布状況、リン資源化技術の原理と 特徴、資源化技術からみた製品品質と適用範 囲などを整理するとともに、経済性や流通用 で示す。また、地産地消型と広域循環型 それぞれの流通形態におけるリン資源化技術 の適用性や事業化の可能性についてフィーシ ビリティ・スタディを行い、検討手法のあり 方を示すことにより下水道管理者のリン資源 化事業の実施検討を支援するものである。

3/20

第3節 § 3 対象とする資源化技術

下水・下水汚泥からのリン資源化技術から<u>肥料登録</u> の実績のある技術を対象とする。

HAP法(副産りん酸肥料), MAP法(化成肥料), 灰アルカリ抽出法(副産りん酸肥料), 部分還元溶融法(熔成汚泥灰複合肥料)

第4節 § 4 用語の定義

• 地産地消型:下水処理区内で資源化した生産物を

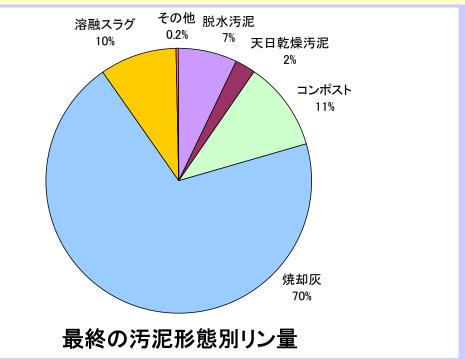
流通 (営農者, 肥料販売店)

広域循環型:下水処理区外で資源化した生産物を

流通(肥料メーカー,商社)

第2章 第1節 リン資源化の重要性

§ 5 国内リン資源の現状


- ・100%輸入に依存 ⇒ 価格変動等の影響
- § 6 リン鉱石採掘量・埋蔵量
 - 60~70年後に約半分まで消費
- § 7 リン鉱石の輸入量と価格変動
 - 平成20年に入り肥料価格が大幅上昇
- § 8 国内におけるリンのフロー
 - 下水道中に輸入リンの約10%が流入
- § 9 今後の動向と課題
 - ・世界的な人口増加、経済発展等と下水道 からのリン除去率・回収率の向上
- §10 下水中のリン資源化への期待
 - ・ 下水処理で適用されるリン資源化関連技術

5/20

第2章 第2節 下水中のリン賦存量

§11 国内リン資源の現状

- ・下水汚泥中に除去・移行したリン;約4万t-P/年
- 汚泥の最終処理形態別のリン量;焼却灰70%

第3章 第1節 §13 リン資源化の視点

主なリン資源化技術

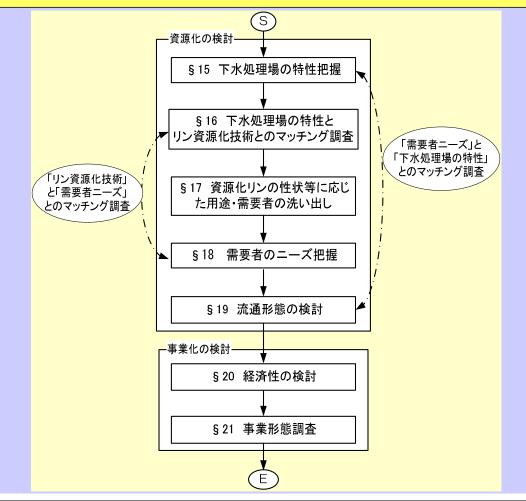
- ・HAP法 返流水等からリン酸カルシウムを回収
- ・MAP法 返流水等からリン酸マグネシウムアンモニウムを回収
- ・灰アルカリ抽出法 汚泥焼却灰からリン酸カルシウムを回収
- ・還元溶融法 汚泥焼却灰からリン含有スラグを回収 等

「下水処理場の特性」と 「リン資源化技術」のマッチング

下水処理場の特性

- •処理場規模(処理水量, 汚泥発生量)
- •立地(肥料工場等)
- ・水処理方式(高度処理の有無等)
- ・汚泥処理方式(焼却、消化の有無等)
- ・処理区域内の事業場の多寡(重金属等)

「需要者のニーズ」と 「リン資源化技術」のマッチング


需要者(肥料工場、化学工場等)

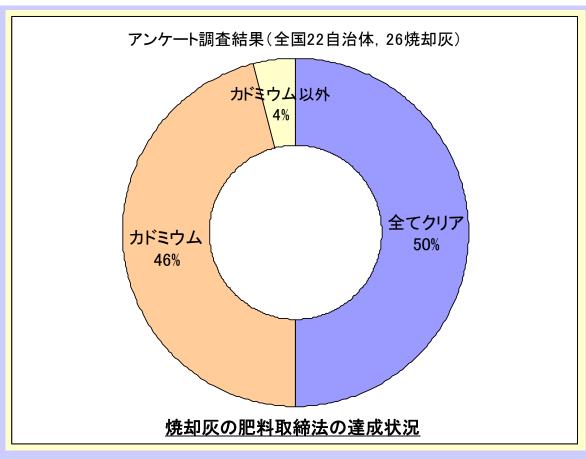
- ・肥料としての直接利用 or 肥料原料
- ・副産物の品質(重金属の多寡等)
- ·固形状 or 液状
- 粒径の大きさ
- 供給量 等

「需要者のニーズ」と 「下水処理場の特性」のマッチング

7/20

第2節 §14 リン資源化の検討手順

8/20


第3節 §15 下水処理場の特性把握

●下記の項目について調査し、下水処理場の特性を把握する。

項 目	内容	備考
水処理	処理方式(系列別),日平均処理水量,流入・放流水質(BOD, SS, T-N, T-P)	全体計画値 事業計画値 現況処理量
汚泥処理	脱水方式(脱水機数,投入汚泥種,投入汚泥量,投入污泥含水率,添加薬剤名,薬剤種,薬剤濃度,注入率,発生汚泥量,発生污泥含水率)	"
焼却灰	焼却灰発生量(湿重, 含水率, 乾燥重量) 焼却灰主成分(P_2O_5 , SiO_2 , AI_2O_3 , CaO , Fe_2O_3 , MgO , K_2O) 有害物質含有量(As, Zn, Cu, Cd, Pb, Cr, Ni, Mn, Fe, Hg等)	"

9/20

【参考】焼却灰の肥料取締法の達成状況

§ 16 下水処理場の特性とリン資源化技術 とのマッチング調査

(1) 資源化技術の適用性の検討

高度処理の必要性や焼却の有無等の下水処理場の特性から**資源化技術の適用性**を調査・検討。

(2) 資源化技術の特徴

資源化技術の原理、設備規模、生産量などの整理。

(3)製品生産量当たりコストの目安

HAP法, MAP法, 灰アルカリ抽出法と部分還元溶融 法の製品生産量当たり年価・維持管理の比較および 特徴の整理。

11/20

§ 17 資源化リンの性状等に応じた用途・需要者の洗い出し

利用用途項目	肥料	肥料原料
生産物	HAP, MAP, 灰抽出リン酸カルシウム,熔成汚泥灰複合肥料	
概要	①肥料製造者として直接販売可能 ②全農や肥料製造会社にOEM供給 ③商社を通して販売	取引先は肥料製造会社や商社
特徴	①肥料登録必要 ②市場価格相当の販売価格に設定 可能	「肥料」としての直接販売より安価
対象 製品	①化成肥料 ②副産りん酸肥料 ③熔成汚泥灰複合肥料	①化成肥料原料 ②配合肥料原料
その他	製品が大量の場合, 地産地消型, 広域循環型ともに要検討	比較的大量の取り扱い可能
肥料 関係団体	日本肥料アンモニア協会,熔成燐肥協会,肥料協会,全国複合肥料協会,全国肥料商業組合連合会	

§18 需要者のニーズの把握

(1) リン資源化生産物に関する情報開示

資源化リンの性状、品質、生産体制や量の開示。

(2)ヒアリング内容

地産地消型・広域循環型の需要者のニーズ(肥料成分,必要な量・時期など)の調査。

⇒ (1)と(2)から資源化リンのマッチング確認

13/20

§19 流通形態の検討

(1)流通の概要

1流通形態

生産量と需要量の関係

⇒ 地産地消型又は広域循環型の流通

- ②流通経路
 - ・肥料として営農者に直接販売
 - 肥料原料として肥料会社などへの販売 など

(2)流通形態の検討

- 地産地消型
- 地産地消型と広域循環型の併用型
- 広域循環型が主流となる型

(3)需要者との協議

処理域内の需要者と流通、取引き条件を協議

第4節 §20 経済性の検討

項目	内 容
1)建設費	土木・機械・電気設備,その他付帯設備
2)維持管理費	
副資材費・消耗材	薬剤,交換部品など
投入エネルギー	電力,都市ガス,重油,灯油
人件費	施設の管理・運転に必要な人数
3)製品生産量・副産物量	肥料,廃棄物など
4) その他	原料等の収集経費,流通・販売経費

- (1)建設費と維持管理費;費用関数
- (2) 販売価格の設定;市場動向の把握, パリティ方式
- (3)経済性の評価方法

製品の売上等 > 支出(建設費,維持管理費等)

(4) 高度処理の留意点; HAP法, MAP法 高度処理は、下水処理の一環のため、リン資源化 とは異なる。建設費・維持管理費の考え方に留意。

15/20

§ 21 事業形態の検討

リン資源化事業には、①肥料として下水道管理者が自ら事業化する場合、②肥料原料としてPFI事業またはDBO事業により肥料メーカー等と事業化する場合がある。

- (1) 資金を民が準備して事業化するPFIの方式 BOT, BOO, BTOなど
- (2) 資金を公が準備して事業化するDBOの方式 DBO, DBMなど

【参考】PFI事業の特徴,事業方式や事業類型 を整理

第5章 第1節 §23 広域循環型検討例

近畿圏の下水汚泥焼却灰が搬入されている大阪湾 広域臨海環境整備センター(通称:大阪湾フェニックス計画)を対象に検討。

① リン資源化検討フロー(§14)の従い事業化可能 性調査

現状把握、資源化技術や事業採算性などの検討

② 収入・支出に係るコストから採算可能な販売価格の検討

費用関数より収入・支出を求め、販売価格検討

③ 大阪湾フェニックス計画における事業形態調査 センター業務,地方公共団体との委託契約,公 有水面埋立法および都市計画法の観点から検討 が必要。

17/20

第2節 §24 地產地消型実施事例

岐阜市で事業化が進んでいる灰アルカリ抽出法の実施事例を紹介。

- ① 生産物について
 - ・回収リン酸カルシウム(副産りん酸肥料)
 - ・処理灰(土壌環境・含有量基準を満足)
- ② 製品生産量,処理灰の利用,流通ルートや販売価格などの検討

生産物の品質把握、市内の市場価格調査や施肥の面から販売価格の検討。

③ 事業の社会性の検討

事業の社会性として埋立処分より経済的な販売 価格の試算。

資 料 編(1)

(1) 関連法令等(抜粋)

- ① 肥料取締法;肥料の区分,公定規格など
- ② 農用地土壌の保全のための管理基準
 - ・農用地における土壌中の重金属等の蓄積防止に係る管理基準
 - ・農用地の土壌汚損防止等に関する法律
 - 土壌汚染対策法に係る諸基準
- ③ 有機質肥料に係るJA全中の推奨基準
- (2)下水中のリン資源化技術の概要
 - ① HAP法, MAP法, 灰アルカリ抽出法および部分還元溶融法の原理, 特徴の整理
- (3)肥料の製造工程と流通
 - ① 肥料の流通ルート,リン酸質肥料の生産量・輸入量肥料製造工場や製造工程など

19/20

資 料 編(2)

(4) 費用関数(参考)

- ① 建設費・維持管理費;適用技術と適用範囲
 - HAP法, MAP法;下水処理量10~500千m³/日
 - ・灰アルカリ抽出法;焼却灰量400~10,000 t -Ash/年
 - · 部分還元溶融法; 焼却灰量1,000~50,000 t -Ash/年
- **1) 維持管理費**; HAP法, MAP法および灰アルカリ抽出法には**人件費**が含まれていない。
- **建設費**; 灰アルカリ抽出法は**建屋**等が含まれていない。
- ② 用地面積;適用技術と適用範囲
 - 灰アルカリ抽出法;焼却灰量1.5~39 t -Ash/日
 - 部分還元溶融法:焼却灰量3.3~167 t -Ash/日