人口減少、少子高齢化
関係資料

【人口減少、少子高齢化の現状】（全国）
平成17年までの人口から推計すると、
・総人口は減少傾向
・人口ピラミッドも高齢の割合が増加し、若年層の割合が減少
【人口減少、少子高齢化の現状】（筑後川水系）
平成17年までの人口から推計すると、
・総人口は減少傾向
・人口ピラミッドも高齢の割合が増加し、若年層の割合が減少

筑後川水系FPエリアにおける総人口の推移
（出生中位（死亡中位）推計）

今後の水資源政策について（参考資料）

【人口減少、少子高齢化の現状】
・1975年までは大都市（東京、名古屋、大阪周辺）への移動割合が多い
・その後はゆるやかな人口移動

地方別人口および割合：1950～2008年

（出典：国立社会保障・人口問題研究所HPより）
情報の水資源政策について（参考資料）
【人口減少、少子高齢化的現状】
世帯数は現在まで増加傾向であり、2020年まで増加すると推計される

日本の世帯数の将来推計（全国推計）

| 年次 | 総数 | 単独世帯数（1,000世帯） | 1,000世帯 | 一般世帯 | 家族世帯 | その他 | 一般世帯（1,000人） | 平均世帯人
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>49,063</td>
<td>14,457</td>
<td>28,394</td>
<td>9,637</td>
<td>14,464</td>
<td>4,112</td>
<td>6,212</td>
<td>125,448</td>
</tr>
<tr>
<td>2010</td>
<td>50,287</td>
<td>15,707</td>
<td>28,629</td>
<td>10,085</td>
<td>14,030</td>
<td>4,514</td>
<td>5,951</td>
<td>124,460</td>
</tr>
<tr>
<td>2015</td>
<td>50,600</td>
<td>16,563</td>
<td>28,266</td>
<td>10,186</td>
<td>13,256</td>
<td>4,824</td>
<td>5,771</td>
<td>122,231</td>
</tr>
<tr>
<td>2020</td>
<td>50,441</td>
<td>17,334</td>
<td>27,452</td>
<td>10,045</td>
<td>12,394</td>
<td>5,013</td>
<td>5,655</td>
<td>119,039</td>
</tr>
<tr>
<td>2025</td>
<td>49,837</td>
<td>17,922</td>
<td>26,358</td>
<td>9,762</td>
<td>11,524</td>
<td>5,072</td>
<td>5,557</td>
<td>115,119</td>
</tr>
<tr>
<td>2030</td>
<td>48,802</td>
<td>18,237</td>
<td>25,122</td>
<td>9,391</td>
<td>10,703</td>
<td>5,027</td>
<td>5,443</td>
<td>110,637</td>
</tr>
</tbody>
</table>

世帯数および世帯の種類別世帯数：1920～2005年

<table>
<thead>
<tr>
<th>年次</th>
<th>総世帯</th>
<th>一般世帯数</th>
<th>家族世帯数</th>
<th>普通世帯数</th>
<th>準世帯数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>20,860</td>
<td>22,539</td>
<td>3,722</td>
<td>28</td>
<td>19,871</td>
</tr>
<tr>
<td>1965</td>
<td>24,290</td>
<td>23,132</td>
<td>4,161</td>
<td>36</td>
<td>23,014</td>
</tr>
<tr>
<td>1970</td>
<td>28,093</td>
<td>27,040</td>
<td>1,053</td>
<td>77</td>
<td>26,963</td>
</tr>
<tr>
<td>1975</td>
<td>32,141</td>
<td>31,089</td>
<td>1,053</td>
<td>99</td>
<td>30,990</td>
</tr>
<tr>
<td>1980</td>
<td>36,015</td>
<td>34,824</td>
<td>7,105</td>
<td>137</td>
<td>34,687</td>
</tr>
<tr>
<td>1985</td>
<td>38,133</td>
<td>37,980</td>
<td>7,895</td>
<td>122</td>
<td>37,658</td>
</tr>
<tr>
<td>1990</td>
<td>41,036</td>
<td>40,670</td>
<td>9,390</td>
<td>104</td>
<td>39,822</td>
</tr>
<tr>
<td>1995</td>
<td>44,108</td>
<td>43,900</td>
<td>11,239</td>
<td>101</td>
<td>42,789</td>
</tr>
<tr>
<td>2000</td>
<td>47,063</td>
<td>46,782</td>
<td>12,911</td>
<td>102</td>
<td>45,512</td>
</tr>
<tr>
<td>2005</td>
<td>49,566</td>
<td>49,063</td>
<td>14,457</td>
<td>100</td>
<td>47,981</td>
</tr>
</tbody>
</table>

*気候変動関係資料

（国立社会保障・人口問題研究所HPより）
今後の水資源政策について(参考資料)

1. 時間雨量50mm以上の降雨の発生回数

- 1時間に50mmや100mmを超える集中豪雨が増加
- 時間雨量50mm以上の降雨の発生回数

2. 時間雨量100mm以上の降雨の発生回数

- 平成17年9月 妙正寺川(東京都中野区)

資料: 気象庁のデータを基に河川局作成
(出典: 河川局HPより) 7

今後の水資源政策について(参考資料)

気温の上昇と海面の上昇

- 今後20年間に10年あたり約0.2℃の割合で気温が上昇することが予測されている
- 100年後には、地球の平均気温は1.8〜4.0℃の上昇が予測される
- 100年後には、地球の平均海面水位は18〜59cmの上昇が予測される
- 温室効果ガスの排出が抑制されたとしても、温暖化や海面上昇は数世紀にわたって続く

2. IPCC第4次報告書の概要

- 21世紀末の平均気温上昇と平均海面水位上昇

(出典: 河川局HPより) 8
今後の水資源政策について（参考資料）

渴水の頻発・深刻化：降水量の変動幅の増大

- 降水量の増加とともに変動幅が増大、無降雨日数も増加
- 大洪水の可能性が増加する一方、渴水の可能性が増大

日本の夏（6～8月）の平均降水量の推移予測

（出典：水資源学シンポジウム「国連水の日—気候変動がもたらす水問題」発表資料、木村昌秀
（出典：河川局HPより）

今後の水資源政策について（参考資料）

渴水の頻発・深刻化：渴水に対する安全度の低下

- ダム等が計画された昭和20～40年代に比べて、近年は少雨傾向で年間降水量の変動幅も大きい
- これにより、ダムからの安定供給可能性は低下
 - 【木曽川水系の例】
 - 近年（昭和54年～平成10年）：計画当時に比べて約4割低下
 - 近年最大渴水（平成6年）：計画当時に比べて約7割低下

（出典：河川局HPより）
老朽化対策、維持管理関係資料

今後の水資源政策について（参考資料）

【ダム、農業水利施設の現状】

●ダムは、高度経済成長期の水需要の増加に対応すべく、その多くが1950年代から1970年代に整備されており、修繕や更新が必要な施設が今後急速に増加。
●農業水利施設の老朽化が進んでおり、近年は標準的な耐用年数を経過した施設の割合が増加傾向。

完成ダム数の累計
（出典：日本の水資源より）

農業水利施設数
（出典：農林水産省HPより）
今後の水資源政策について（参考資料）

【増大する下水道ストック及び道路陥没状況】

● 下水道整備の進展にともない、管路延長は約42万km。
 処理場数は約2,100箇所など下水道ストックが増大
● 管路施設の老朽化等に起因した道路陥没の発生件数は、平成21年度には、約3,800箇所
● 日常生活や社会活動に重大な影響を及ぼす事故発生や機能停止を未然に防止するため、ライフサイクルコストの最小化、予算の最適化の観点も踏まえ、予防保全型管理を行うとともに、長寿命化対策を含めた計画的な改修を推進（下水道長寿命化支援制度）

今後の水資源政策について（参考資料）

【水道施設の投資額及び更新需要額の試算】

・ 平成32～37年頃には、水道施設の更新需要が投資額を上回ると試算されている
・ 今後、施設の老朽化等に起因する断水・漏水事故の発生リスクを低減するとともに、公共サービスを低下させることなく、安定的な水供給を進めていく必要がある
今後の水資源政策について（参考資料）

施設の改築事例＜両筑平野用水二期事業＞

両筑平野用水施設は、昭和50年の管理開始以来、施設の点検・補修を行い安定的な用水供給を行ってきたが、管理移行から30余年が経過し、施設の老朽化による機能の低下が進行し、安定的な用水供給の確保や施設の安全確保への危惧が生じた。

このため、平成17年度に両筑平野用水二期事業として改築事業に着手し、今後の水の安定供給と施設の安全性の確保を図るものである。

老朽化施設の改築

合理的な水利用

施設の安全性の回復

水資源の有効活用

配水対応の安定化・迅速化

危機管理対策
関係資料
今後の水資源政策について（参考資料）

水危機意識調査によると、様々な水危機について、そのリスク認識を質問したところ、渇水及び地震による水危機の認識の割合が高かった。

<table>
<thead>
<tr>
<th>様々な水危機に関する認識</th>
<th>知っていた</th>
<th>ある程度知っていた</th>
<th>あまり知らない</th>
<th>知らない</th>
<th>無回答</th>
</tr>
</thead>
<tbody>
<tr>
<td>渇水による水危機</td>
<td>34.3%</td>
<td>38.0%</td>
<td>20.8%</td>
<td>0.5%</td>
<td>1.4%</td>
</tr>
<tr>
<td>地震による水危機</td>
<td>22.3%</td>
<td>35.3%</td>
<td>30.5%</td>
<td>0.8%</td>
<td>0.8%</td>
</tr>
<tr>
<td>洪水による水危機</td>
<td>14.4%</td>
<td>33.9%</td>
<td>39.3%</td>
<td>0.7%</td>
<td>1.1%</td>
</tr>
<tr>
<td>施設老朽化による水危機</td>
<td>12.6%</td>
<td>30.2%</td>
<td>38.0%</td>
<td>0.1%</td>
<td>1.9%</td>
</tr>
<tr>
<td>水質事故による水危機</td>
<td>12.1%</td>
<td>30.3%</td>
<td>40.6%</td>
<td>0.9%</td>
<td>1.6%</td>
</tr>
<tr>
<td>塩水障害による水危機</td>
<td>8.7%</td>
<td>15.1%</td>
<td>38.9%</td>
<td>0.5%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

（出典）国土交通行政インターネットモニター調査「国内における水危機に関する意識調査」（平成21年）
・対象者: 平成21年度国土交通行政インターネットモニター 1,199名
・回答率: 87.9%(1,054名)
・実施期間: 平成21年7月9日～平成21年7月23日

今後の水資源政策について（参考資料）

水路ストックの老朽化状況
【開水路系】
アルカリ骨材反応によるクラックの発生
【管水路系】
PC管: カバーコートモルタルの欠損とPP鋼線の破断

被害状況
周辺への冠水状況

水資源機構施設における漏水事故発生件数の推移

（出典: 国土交通省HPより）
今後の水資源政策について（参考資料）

【事例（上下水道施設の事故）】

水道施設の事故

- 埋設管の漏水
- 継ぎ手の破損

出典：厚生労働省（新潟県中越沖地震水道施設被害等調査報告書H20.3）より抜粋

下水道施設の事故

- 路面の陥没
- マンホールの突出
- 汚泥濃縮タンクの傾き

出典：国土交通省（下水道地震対策技術検討委員会報告書H17.8）より

水供給システムが有するリスク（施設破損による被害）

日時：06年08月25日、送水トンネル内で岩盤崩落が発生
（広島県・呉市・江田島市との共同施設、約30万m³/日供給）

被害：翌日以降、2市（呉市・江田島市）の一部地域で断水が発生
26日昼には約2万6千世帯、27日には約3万2千世帯に拡大
県営工業用水を受水している4社は18日間にわたり断水

復旧：（呉市）9月1日午後に24時間給水を全面再開、（江田島市）9月6日に24時間給水を全面再開

県営水道用水給供給事業

県営水道用水給供給事業

約11mにわたり岩盤が崩れた現場＝広島県企業局提供

プラスチックのタンクを持って給水車に水を取りに来る住民＝江田島市江田島町の鷲部公民館で

事故地点＝広島県企業局／事業概要
水供給システムが有するリスク（施設破損による被害）

日付: 09年01月01日、馬淵川の川中島ポンプ場から白山浄水場に水道原水を導水する導水管が破損
被害: 翌日以降、1市6町(八戸市、三戸町、五戸町、南部町、階上町、六戸町、おいらせ町)の全域で断水が発生
91,223戸(231,136人)に最大6日間の断水被害
陸上自衛隊、岩手県、青森県、民間等から応援を受け、約100台の給水ポンプ車により応急給水を実施

今後の水資源政策について(参考資料)

【事例(水質事故)】

【出典】(独)水資源機構平成21年水質年報より

平成19年度

【事例】(独)水資源機構平成21年水質年報より
【水道施設の耐震化について】

最近の主な地震と水道の被害状況

<table>
<thead>
<tr>
<th>地震名</th>
<th>発生日</th>
<th>最大震度</th>
<th>地震の規模</th>
<th>震水戸数</th>
<th>最大耐水戸数</th>
</tr>
</thead>
<tbody>
<tr>
<td>新潟県中越地震</td>
<td>平成16年10月23日</td>
<td>7</td>
<td>6.8</td>
<td>地域10,000戸</td>
<td>13,000戸</td>
</tr>
<tr>
<td>陸島地震</td>
<td>平成19年9月5日</td>
<td>6.8</td>
<td>6.8</td>
<td>震水戸数不明</td>
<td>不明</td>
</tr>
<tr>
<td>新潟県中越沖地震</td>
<td>平成19年9月16日</td>
<td>6.8</td>
<td>6.8</td>
<td>震水戸数不明</td>
<td>不明</td>
</tr>
<tr>
<td>矢部・宮城内陸地震</td>
<td>平成20年1月21日</td>
<td>6</td>
<td>6.5</td>
<td>震水戸数10,000戸</td>
<td>未決定</td>
</tr>
</tbody>
</table>

※駿河湾の断水戸数は緊急遮断弁の作動が多数あったことによる

水道管の被害の例

水道施設の耐震化の現状（平成21年度末現在）

全国の上水道事業（給水人口5千人以上の水道事業）の集計

【下水道施設の耐震化について】

最近の主な地震と下水道の被害状況

平成9年指針策定以前に工事発注された施設の耐震化状況（平成21年度末）
地下水、雨水・再生水利用等
関係資料

今後の水資源政策について（参考資料）

【我が国の淡水化プラントの設置状況】

●海水淡水化プラントは、全国で215,836m3/日の造水能力となっている。
（平成22年3月末時点）
●水道用水の水源とされている海水淡水化プラントは、一日当たりの施設能力が数十m3の小さいものから、5万m3の大規模なものまである。
●国土交通省水資源部が行った調査によると水道事業等における海水淡水化プラントの平成20年度の稼働実績は約2,186m3/年となっている。

（出典：日本の水資源より）
今後の水資源政策について（参考資料）

下水処理水を再利用する方法・事例について

下水処理水の用途別再利用状況の推移（2003～2007年度）

<table>
<thead>
<tr>
<th>再利用用途</th>
<th>再利用量（万m³／年）</th>
<th>再利用量割合（2007年度）</th>
<th>処理場数（2007年度）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 水洗トイレ用水（下水道用水道等）</td>
<td>545 626 659 676 704</td>
<td>3.5%</td>
<td>52</td>
</tr>
<tr>
<td>2. 環境用水</td>
<td>4,567 4,483 4,834 5,215 5,896</td>
<td>29.1%</td>
<td>105</td>
</tr>
<tr>
<td>1）修景用水</td>
<td>389 552 330 520 603</td>
<td>3.0%</td>
<td>20</td>
</tr>
<tr>
<td>2）親水用水</td>
<td>5,366 6,005 6,380 6,295 5,827</td>
<td>28.7%</td>
<td>9</td>
</tr>
<tr>
<td>3）河川維持用水</td>
<td>3,814 4,456 4,260 3,480 3,863</td>
<td>19.0%</td>
<td>33</td>
</tr>
<tr>
<td>4. 植樹帯・道路・街路・工事現場の清掃・散水</td>
<td>13,487 11,143 11,163 1,143 1,398</td>
<td>6.9%</td>
<td>29</td>
</tr>
<tr>
<td>5. 農業用水</td>
<td>1,487 1,143 1,163 1,143 1,398</td>
<td>6.9%</td>
<td>29</td>
</tr>
<tr>
<td>6. 工業用水道へ供給</td>
<td>344 251 281 279 302</td>
<td>1.5%</td>
<td>6</td>
</tr>
<tr>
<td>7. 事業所・工場へ供給</td>
<td>2,089 1,812 1,524 1,694 1,612</td>
<td>7.9%</td>
<td>49</td>
</tr>
<tr>
<td>計</td>
<td>18,646 19,369 19,592 19,351 20,284</td>
<td>290</td>
<td></td>
</tr>
</tbody>
</table>

（注）国土交通省下水道部調べ
（出典：日本の水資源より）

今後の水資源政策について（参考資料）

用途別雨水・再生水利用施設数

<table>
<thead>
<tr>
<th>項目</th>
<th>施設数（件）</th>
<th>利用用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>水洗トイレ</td>
<td>7,246</td>
<td>雨水利用</td>
</tr>
<tr>
<td>消防</td>
<td>3,424</td>
<td>中水利用</td>
</tr>
<tr>
<td>修景</td>
<td>300</td>
<td>規則利用</td>
</tr>
<tr>
<td>冷房</td>
<td>299</td>
<td>規則利用</td>
</tr>
<tr>
<td>冷却</td>
<td>299</td>
<td>規則利用</td>
</tr>
<tr>
<td>清掃</td>
<td>264</td>
<td>中水利用</td>
</tr>
<tr>
<td>洗車</td>
<td>255</td>
<td>規則利用</td>
</tr>
<tr>
<td>その他</td>
<td>175</td>
<td>規則利用</td>
</tr>
</tbody>
</table>

（注）1. 土地交通省水資源部調べ（2008年度末現在）。
2. 全施設は2005年度の内数（複数回答）。

（出典：日本の水資源より）

雨水利用の事例

<table>
<thead>
<tr>
<th>名称</th>
<th>利用用途</th>
<th>集水面積（㎡）</th>
<th>貯留槽容量（㎥）</th>
<th>利用水量（㎥／年）</th>
<th>利用開始時期</th>
</tr>
</thead>
<tbody>
<tr>
<td>漆器市街社</td>
<td>水洗トイレ用水</td>
<td>4,181</td>
<td>420</td>
<td>7,773</td>
<td>1996年11月</td>
</tr>
<tr>
<td>大麦大学高等学校</td>
<td>水洗トイレ用水</td>
<td>1,443</td>
<td>90</td>
<td>2,735</td>
<td>2003年12月</td>
</tr>
<tr>
<td>政策研究大学院大学</td>
<td>水洗トイレ用水</td>
<td>4,220</td>
<td>62</td>
<td>2,144</td>
<td>2005年4月</td>
</tr>
<tr>
<td>中央区もみじ山文化センターセンター</td>
<td>水洗トイレ用水</td>
<td>6,693</td>
<td>1,454</td>
<td>9,915</td>
<td>1993年7月</td>
</tr>
<tr>
<td>野田市総合公園陸上競技場</td>
<td>水洗トイレ用水</td>
<td>339</td>
<td>21</td>
<td>240</td>
<td>2006年7月</td>
</tr>
<tr>
<td>明星大学高等学校</td>
<td>水洗トイレ用水</td>
<td>4,405</td>
<td>201.2</td>
<td>3,306</td>
<td>2004年8月</td>
</tr>
</tbody>
</table>

（注）国土交通省水資源部調べ（2007年2月時点、水量は2005年実績値）

（出典：日本の水資源より）

今後の水資源政策について（参考資料）

下水処理水年間139.9億m³のうち、再利用量は約2.0億m³（再利用率1.5%）（2007年度）
そのうち用途別再利用状況は環境用水、融雪用水で約8割を占める。
生活排水、産業排水等の再生利用

1. 福岡市節水推進条例
 - 福岡市内に延床面積5,000m²以上（再生水の供給区域内では3,000m²以上）の建物を新築・増築する場合はトイレに雑用水（水道水と比較して低水質のもの）を使用すること。

2. 福岡市中心部に広がる給水エリア
 - 1,376haの供給区域にある360箇所以上の施設へ再生水を供給しており、都市の貴重な水源となっている。

3. 下水再生水の利用状況
 - 福岡市では、安定した水資源である下水処理水をトイレの洗浄用水や樹木の散水用水として再利用しています。国際会議場では、トイレ洗浄用水に100%下水処理水を使用している。

4. 節水の意識啓発
 - 昭和53年と平成6年の大渇水の経験を風化させず、水事情を理解してもらうことにより“限りある水をたいせつに使う”節水意識の維持を図るため、毎年6月1日を「節水の日」と定め、特に水を多く使う6月から8月まで「水をたいせつにキャンペーン」を展開。