Ministry of Land, Infrastructure, Transport and Tourism

平成 26 年 7 月 10 日 総合政策局 公共事業企画調整課

次世代社会インフラ用ロボット(橋梁維持管理)

「現場検証対象技術」が決定しました!

~橋梁維持管理に役立つ技術 57 件・25 者~

平成 26 年 4 月 9 日~5 月 28 日に、維持管理に役立つ技術として、「現場検証・評価」の対象とする「ロボット技術・ロボットシステム」を公募し、民間企業や大学等から 68 件・31 者の応募があり、これらについて「次世代社会インフラ用ロボット現場検証委員会 橋梁維持管理部会」において基本要件の確認等を行い、今般、「現場検証対象技術として決定」しました。

橋梁維持管理

•••57 件•25 者 i

(内訳)

近接目視の代替または支援 ・・・44 件・23 者 ! 打音検査の代替または支援 ・・・13 件・8 者 !

点検者の移動・接近手段

··· 0件· 0者

(決定した技術の詳細は、別添の資料1をご覧ください。)

- ※ ただし、今回決定した技術の開発状況や現場状況等に因って、現場検証及び評価を実施しないことがあります。(10 月までに、状況を踏まえ、適宜協議の上、決定します。)
- ※ なお、本公募と並行して実施している独立行政法人 新エネルギー・産業技術総合開発機構(NEDO)による『インフラ維持管理・更新等の社会課題対応システム開発プロジェクト』の採択に関しては、別途、NEDOの取り扱いとなります。

今後、10月からの現場検証に向けて、検証方法及び検証場所等について、現場説明会(※1) 等を通じ、適宜、応募者と協議を行い、橋梁維持管理部会の審議を経て、具体化を進めます。

【添付資料】

資料1 次世代社会インフラ用ロボット(橋梁維持管理) 「現場検証対象技術」一覧

参考資料1 次世代社会インフラ用ロボット現場検証委員会 橋梁維持管理部会

参考資料2 公募概要 施策概要

参考資料3 検証現場説明会案内 (※1 7月13日:新浅川橋、7月21日:浜名大橋にて開催)

問い合わせ先

次世代社会インフラ用ロボット現場検証委員会 事務局 稲垣、増(内24903、29421) (国土交通省 総合政策局 公共事業企画調整課内)

メールアドレス: robotech@mlit.go.jp 電話(課直通): 03-5253-8286

電話(代表): 03-5253-8111 FAX: 03-5253-1556

資料1

次世代社会インフラ用ロボット 橋梁維持管理 現場検証対象技術一覧

(順不同)

					対象技術						(順不同) (順不同) ロボットを構成する要素技術		
No.	技術名称 (ロボット技術・システム名称)	技術名称 (ロボット技術・システム名称) 副題 応募者 共同開発者		共同開発者		接目視 きまたは		打音材 代替また	検査の ≿は支援	点検者の 接近手段	移動機構	セン	, + -
	([1] [2] [3]		[4]	[5]	[6]	7岁到/7戌7再	外観性状 の把握	打音調査
1	インフラ維持管理用ロボット技術開発	吸着歩行型目視打診検査ロボットの研究開発	株式会社コンステック	株式会社中研コンサルタント		0	0	0	0		吸着歩行	CCDカメラ	ハンマー+ マイク
2	橋梁の近接目視ならびに打音検査を代替する 飛行ロボットシステム	-	国立大学法人東北大学	株式会社千代田コンサルタント 一般財団法人航空宇宙技術振興財団	0						飛行体	CCDカメラ	-
3	複眼式撮像装置を搭載した橋梁近接目視代替ロボットシステム	-	富士フイルム株式会社	株式会社イクシスリサーチ 一般財団法人首都高速道路技術センター	0						懸垂台車	CMOSカメラ	-
4	橋梁における懸垂型稼働式台座による近接目視 代替ロボットシステム【商標:3D-Eye】	懸垂型可動台座式近接目視代替ロボット	ミツイワ株式会社	株式会社イクシスリサーチ アイセイ株式会社 株式会社シーイーシー	0		0				懸垂型台車	CCDカメラ (未定)	-
5	橋梁点検用軽量伸縮ビーム	伸縮ビームと主桁方向可動用レールによる面的な点検技術	株式会社ミライト	-			0				梁+台車	CCDカメラ	-
6	脚ロボットによる橋梁裏狭隘部モニタリングシステム	-	国立大学法人 大阪大学	株式会社大林組 名城大学 大阪市立大学 甲南大学	0		0	0			多脚ロボット	CMOSカメラ	マイク
7	赤外線調査トータルサポートシステム Jシステム	赤外線調査支援システム	西日本高速道路 エンジニアリング四国㈱	-		0	0	0	0		不要	CCDカメラ	赤外線カメラ
8	移動ロボットによる画像情報を用いた構造物の 損傷箇所記録技術	画像情報と位置計測をリンクしたコンクリート構造物のひび 割れ調書作成技術	佐藤鉄工株式会社	国立大学法人富山大学			0				台車等	CCDカメラ	-
9	マルチコプタを利用した橋梁点検システム	高精細画像取得マルチコプタと橋梁脱着型マルチコプタに よる近接目視支援システム	川田テクノロジーズ株式会社	(株)エンルート 大日本コンサルタント(株) (独)産業技術総合研究所	0	0	0				飛行体	CCDカメラ	-
10	小型無人飛行船とメカナムホイール小型検査ロボットの 併用による目視検査システム	高所および狭所を対象とする目視検査	学校法人 足利工業大学	戸田建設(株)		0	0				飛行体+ 走行ロボ	WiFiカメラ	-
11	「橋梁点検カメラシステム視る・診る」による接触調査技術	「橋梁点検カメラシステム視る・診る」によるひび割れ検出・ 打音検査・他	ジビル調査設計株式会社	有限会社インテス	0	0	0	0	0		ロッド系 アーム	CCDカメラ	-
12	音カメラを活用した橋梁点検ロボット	音の可視化による劣化診断	株式会社熊谷組	株式会社移動ロボット研究所 株式会社応用技術試験所 東京エレクトロンデバイス株式会社 国立大学法人名古屋大学				0			ロッド系 アーム	CCDカメラ	-
13	全自動ロボット型空中俯瞰撮影システム	S-AIS(Smart Aerial Inspection and Survey)	東日本高速道路株式会社	株式会社ネクスコ東日本エンジニアリング		0					飛行体	CCDカメラ	-
14	小型無人飛行装置による橋梁点検支援技術	-	株式会社 アスコ	-	0	0	0				飛行体	CCDカメラ	-

次世代社会インフラ用ロボット 橋梁維持管理 現場検証対象技術一覧

							対	象技術			ロボッ	<u>(順不同)</u> 要素技術	
No.	 技術名称 (ロボット技術・システム名称)	副題	応募者	共同開発者	近接目視の 代替または支援			代替または支援 代替または支		打音検査の は替または支援 接近手段		センサー	
	() XIII 2777 — 1177				[1]	[2] [3]		[3] [4] [[6]	移動機構	外観性状 の把握	打音調査
15	橋梁点検ロボットシステムによるコンクリート床版の ひび割れ幅計測	遠隔操作型ロボットアームを用いたコンクリート床版のひび 割れ幅計測	株式会社帝国設計事務所	株式会社カナモト			0				橋梁 点検車	CMOSカメラ	_
16	スマートデバイスと空間情報を利用した点検管理技術	-	マルティスープ株式会社	-	0	0	0				開発中	CCDカメラ等	_
17	橋梁等構造物の点検ロボットカメラ	-	三井住友建設株式会社	株式会社 日立産業制御ソリューションズ	0	0	0				ポール	デジタルカメラ	-
18	橋梁の底面や狭隘部を低コストに点検・診断する為の アプローチツール	ユニックを始めとする汎用的な高所作業車に取り付け可能 なロボットアームの開発	株式会社 amuse oneself	独立行政法人 土木研究所 国立大学法人 岐阜大学 株式会社 アンドー	0						多関節アーム	CCDカメラ レーザー スキャナー	_
19	損傷検知装置	健全部の打音を基準として損傷部を検知する打音検査装置	古河機械金属株式会社	独立行政法人産業技術総合研究所					0		車載 クレーン	_	フォースセンサマイクロフォン
20	インフラ診断ロボットシステム(仮称「ALP」)の研究開発	-	株式会社開発設計コンサルタント	学校法人法政大学 国立大学法人岡山大学 ステラ技研株式会社		0	0	0	0		吸着歩行	CCDカメラ	連続打音装置
21	安全に配慮した飛行ロボット橋梁点検アシスト技術	距離センサーを用いた橋梁周囲環境での飛行ロボットの自動速度制御技術およびセーフティーワイヤーを接続した飛行ロボットによる橋梁下の飛行	綜合警備保障株式会社	株式会社横河ブリッジホールディングス	0						飛行体	距離センサー カメラ	_
22	全自動構造物劣化調査システム	自律飛行型マルチコプター、空中超音波、カメラによる非破 壊調査	三信建材工業 株式会社	(株自律制御システム研究所 ジャパンプローブ(株) アイエムソフト(有)		0	0	0	0		飛行体	CMOSカメラ	空中超音波
23	3DVRと連動する自律飛行型UAVによる構造物調査 システム	3DVRと連動させた遠隔操作可能な自律型UAVで、安全に 橋梁やダムを調査	株式会社フォーラムエイト	-		0	0				飛行体	CCDカメラ	-
24	ミニサーベイヤー飛行ロボットを用いた橋梁点検 システム	高性能電動マルチローターを用いた橋梁近接目視点検システム	株式会社 富士建	株式会社 自律制御システム研究所		0	0				飛行体	デジタルカメラ CCDカメラ	開発中
25	構造物点検ロボットシステム「SPIDER & Giraffe」	小型無人へりまたはポール搭載カメラによる構造物点検お よび点検調書作成支援システム	ルーチェサーチ株式会社	広島工業大学 株式会社建設技術研究所	0	0	0				飛行体	CCDカメラ	_
	25 件		25 者	件数	12	14 44	18		6 3	0			

- 対象技術凡例 [1]鋼橋において、桁の「腐食、亀裂、破断、ゆるみ・脱落、防食機能の劣化」について、点検要領に基づく近接目視の代替または支援ができる技術・システム
 - [2]コンクリート橋において、桁の「ひび割れ、剥離・鉄筋露出、漏水・遊離石灰、うき」、点検要領に基づく近接目視の代替または支援ができる技術・システム
 - [3]鋼橋・コンクリート橋の床版において、「床版ひび割れ、剥離・鉄筋露出、漏水・遊離石灰、抜け落ち、うき」、点検要領に基づく近接目視の代替または支援ができる技術・システム
 - [4]鋼橋においては、桁の添接部のボルトやリベットの「ゆるみ・脱落、破断」、コンクリート橋において、桁の「うき」について、点検要領に基づく打音検査の代替または支援ができる技術・システム
 - [5]鋼橋・コンクリート橋の床版において、「うき」について点検要領に基づく打音検査の代替または支援ができる技術・システム
 - [6]鋼橋・コンクリート橋において、点検者を点検箇所に近づけることができる技術・システム

技 術 概 要(No.1)

技術名称	インフラ維持管理用ロボット技術開発					
副題	吸着歩行型目視打診検査ロボットの研究開発					
技術概要	現在開発中のロボットは、コンクリート面に吸着する軽量小型の歩行ベースに、デジタルカメラと打診装置を搭載し、地上でコンクリート表面の劣化状況と打撃音をモニタできる仕様となっています。 歩行は鉛直面を想定して設計されていますが、天井面にも吸着することが可能であり、足場や高所作業車を設置できない箇所において近接目視に替わり安全に点検することができます。 ロボット本体は現場でのハンドリングを考え 8kg 以内、500×500mm の面積に収まることを目標に開発を行いました。					
適用分野	橋梁維持管理					
■対象 □非対象	(□近接目視(鋼橋) ■近接目視(コンクリート橋) ■近接目視(床版) ■打音検査(鋼・コンクリート橋) ■打音検査(床版) □点検者の接近手段)					
図・写真等	プロステック					
応募者	株式会社コンステック					
共同開発者	株式会社中研コンサルタント					
連絡先	株式会社コンステック 技術研究所 担当:佐藤・山田 〒540-0028 大阪府大阪市中央区常盤町2-3-14 2 F 電話:06-4791-3161 FAX:06-4791-3104					

技 術 概 要 (No.2)

技術名称	橋梁の近接目視ならびに打音検査を代替する飛行ロボットシステム
副題	_
技術概要	けた等が入り組んだ狭あい空間を橋梁ならびに自身を傷つけることなく安全安定に飛行しながら、日照条件にロバストに橋梁表面の接写撮影ができる飛行体. 技術的なポイントは、本体と独立に回転できる球殻によりマルチコプターを保護すること、LED フラッシュ付き小型撮像モジュールにより高解像度の接写画像を撮影することである. 足場を必要とせず、現場への搬入などが容易であるといった利点がある.
適用分野 ■対象 □非対象	橋梁維持管理 (■近接目視(鋼橋) □近接目視(コンクリート橋) □近接目視(床版) □打音検査(鋼・コンクリート橋) □打音検査(床版) □点検者の接近手段)
図・写真等	ジンバルシンバルマルチコプター
応募者	国立大学法人東北大学
共同開発者	株式会社千代田コンサルタント 一般財団法人航空宇宙技術振興財団
連絡先	法人名:国立大学法人東北大学 大学院情報科学研究科 役職・氏名:助教・岡田佳都 住所:〒980-8579 宮城県仙台市青葉区荒巻字青簿6-6-01 電話:022-795-7022 Eメール:okada@rm.is.tohoku.ac.jp

技 術 概 要(No.3)

技術名称	複眼式撮像装置を搭載した橋梁近接目視代替ロボットシステム
副題	_
技術概要	複眼式撮像装置を搭載した鋼桁下フランジ懸垂型ロボットで、鋼桁下を移動しながら鋼桁を撮影し、撮影画像を画像処理し「橋梁点検要領等」における損傷を検出して、近接目視を主体とする点検の代替または支援を行い、さらに点検調書の作成を支援するシステム。
道用分野 適用分野	橋梁維持管理
■対象 □非対象	(■近接目視(鋼橋) □近接目視(コンクリート橋) □近接目視(床版) □打音検査(鋼·コンクリート橋) □打音検査(床版) □点検者の接近手段)
図•写真等	床版 Y: 左右 Y: 左右 X: ロボット 遺伝方向 対法計測 対法計測 (人)
応募者	富士フイルム株式会社
共同開発者	株式会社イクシスリサーチ 一般財団法人首都高速道路技術センター
連絡先	富士フイルム株式会社 R&D 統括本部 技術戦略部 山下 仁 所 在 地 :〒107-0052 東京都港区赤坂九丁目7番3号 電 話 :03-6271-2585 FAX:03-6271-3177 E-Mail:hitoshi.yamashita@fujifilm.com

技 術 概 要(No.4)

技術名称	橋梁における懸垂型稼働式台座による近接目視代替ロボットシステム【商標:3D-Eye】
副題	懸垂型可動台座式近接目視代替ロボット
技術概要	I 型橋梁の主桁フランジまたは路上の地覆を軌道レールとして、両腕懸垂方式による仮設のパイプ式ロボット移動用レールを設営。その仮設レール上を点検ロボットが左右に可動可能とする。軌道レールに沿いながらパイプ式床面が進行(駆動方式は別途)しつつ、点検ロボットの水平稼働及び点検装置部位の上下稼働と合わせた2次元行動にて、鋼橋桁下面における近接目視代替とする。集積されたデータについて、管理・保守の用意性、活用の効率化を図るデータベース構造を構築し、一次解析・分析での報告書の標準化を図る。
適用分野 ■対象 □非対象	橋梁維持管理 (■近接目視(鋼橋) □近接目視(コンクリート橋) ■近接目視(床版) □打音検査(鋼・コンクリート橋) □打音検査(床版) □点検者の接近手段)
図・写真等	撮影
応募者	ミツイワ株式会社
共同開発者	株式会社イクシスリサーチ アイセイ株式会社 株式会社シーイーシー
連絡先	技術要素が多岐にわたりますので、一次窓口として以下に願います ミツイワ株式会社)事業研究室 本多 03-3407-2183 mag00452@mitsuiwa.co.jp

技 術 概 要(No.5)

技術名称	橋梁点検用軽量伸縮ビーム
副題	伸縮ビームと主桁方向可動用レールによる面的な点検技術
技術概要	鋼橋・コンクリート橋の床版の目視点検のために、橋の両サイドから、入れ子構造に組んだ、カーボントラスビームを降ろし、橋梁下面で連結し、安定した梁を作ることにより、梁をレールとして橋梁点検装置を走行させる。 軽量なカーボンロットを使用することで、簡易に橋梁点検業務を実施することができ
	る。 自走装置に搭載する点検機器は交換が可能で、多彩な点検方法に対応できる。 幅員20mまでの中小規模の橋梁を対象とする。
道用分野 適用分野	橋梁維持管理
■対象 □非対象	(□近接目視(鋼橋) □近接目視(コンクリート橋) ■近接目視(床版) □打音検査(鋼・コンクリート橋) □打音検査(床版) □点検者の接近手段)
図•写真等	点検装置 目視用カメラ等 検断方向可動 自動連続機影 目走装置
応募者	株式会社ミライト 取締役常務執行役員 経営企画本部長 小暮 啓史
共同開発者	なし
連絡先	株式会社ミライト ファシリティ&デザイン室 一級建築士事務所 林 吾介 〒135-8112 東京都江東区豊洲5-6-36 電話番号:03-6807-3795 FAX番号:03-5548-1075 E-Mail:hayashi.gosuke@mirait.co.jp

技 術 概 要 (No.6)

技術名称	脚ロボットによる橋梁裏狭隘部モニタリングシステム			
副題	_			
技術概要	橋梁裏側の点検作業におけるデータの収集と点検責任者への有用情報提供を自動で行えるモニタリングロボットシステムは以下の構成要素から成り立つ. 1. 橋梁検査用脚ロボット 2. 橋梁裏面点検のための歩行技術 3. 橋梁点検・情報化のための情報つき3次元マップ 4. ロボット搬送用アームを搭載した橋梁点検車両 これらにより狭隘部等の人が近づきがたい箇所の点検を行うことが可能である.			
適用分野 ■対象 □非対象	橋梁維持管理 (■近接目視(鋼橋) □近接目視(コンクリート橋) ■近接目視(床版) ■打音検査(鋼・コンクリート橋) □打音検査(床版) □点検者の接近手段)			
図•写真等	マイク内臓電磁石脚先 100			
応募者	国立大学法人 大阪大学			
共同開発者	株式会社大林組 名城大学 大阪市立大学 甲南大学			
連絡先	所属:大学院基礎工学研究科システム創成専攻新井研究室 住所:〒560-8531 大阪府豊中市待兼山町 1-3 e-mail: arailab@arai-lab.sys.es.osaka-u.ac.jp			

技 術 概 要 (No.7)

技術名称	赤外線調査トータルサポートシステム Jシステム				
副題	赤外線調査支援システム				
技術概要	橋梁等のコンクリート構造物において、鉄筋腐食に伴い発生するはく離や浮き(コンクリート内部のはく離ひび割れ)を、遠望非接触にて赤外線法により検出する技術である。鉄筋の腐食に伴い発生するコンクリート表面に平行な鉄筋に沿ったはく離ひび割れや、それに連続する斜め方向に進展して表面に達するひび割れを検出できる技術である。				
適用分野 ■対象 □非対象	橋梁維持管理 (□近接目視(鋼橋)■近接目視(コンクリート橋)■近接目視(床版) ■打音検査(鋼・コンクリート橋)■打音検査(床版)□点検者の接近手段)				
図・写真等	Jシステムにおける調査 撮影・解析ソフトウェア 1				
応募者	西日本高速道路エンジニアリング四国株式会社				
共同開発者	なし				
連絡先	技術部技術課 林 詳悟 所 在 地 : 〒760-0072 香川県高松市花園町三丁目1番1号 電 話 : 087-834-2419(ダイヤルイン) FAX: 087-834-1193 E-Mail: shogo. hayashi@w-e-shikoku. co. jp				

技 術 概 要 (No.8)

14.05 5	
技術名称 	移動ロボットによる画像情報を用いた構造物の損傷箇所記録技術
副題	画像情報と位置計測をリンクしたコンクリート構造物のひび割れ調書作成技術
技術概要	主に橋梁などを対象とする構造物の維持点検管理を目的として、画像情報と位置計測データをリンクした新しい計測システム(一部開発途上)です。(下図参照)従来、作業者が行っていた近接目視による点検作業、および撮影による点検記録作業を、自律的に行動する移動ロボットに代替させ、単独の作業者でも迅速かつ正確に点検できるシステムです。3次元的な損傷箇所マップを作成することで、ひび割れや亀裂の位置や大きさを記録でき、点検にかかる時間とコストを低減し、点検記録の精度の向上を図る。
適用分野	橋梁維持管理
■対象 □非対象	(□近接目視(鋼橋) □近接目視(コンクリート橋) ■近接目視(床版) □打音検査(鋼・コンクリート橋) □打音検査(床版) □点検者の接近手段)
図・写真等	移動ロボットによる画像情報を用いた構造物の扱傷箇所記録技術 - 画像情報と位置計測とリンクしたコンクリート構造物のひび割れ調書作成技術 - 佐藤鉄工株式会社 (1)画像による位置計測と亀裂等の識別 ロボットからの撮影画像により、ひび割か・亀製の位置と大きさを得る・抽出されて情報から、構築等の3次元的計画機関所マップを作成 東線に再りいまする。 「現実対象の場合物(概要) 「現実対象の場合物(概要) 「現実対象の場合物(概要) 「現実対象の場合物(概要) 「現実対象の場合物(概要) 「現実対象の場合物(概要) 「現実対象の場合物(概要) 「大変を対する。 「大変を対する。 「大変を対する。 「大変を対する。 「大変を対する。 「大変を対する。 「大変を対する。 「大変を対する。 「大変を対する。 「大変を対する。 「大変を表する。 「大変を表する。 「大変を表する。 「大変を表する。 「大変を表する。 「大変を表する。
応募者 	佐藤鉄工株式会社
共同開発者	国立大学法人 富山大学
連絡先	- 佐藤鉄工株式会社 技術部 落合正利 〒930-0293 富山県中新川郡立山町鉾木 220 TEL:076-462-9213 E-mail:ochiai@satotekko.co.jp

技 術 概 要(No.9)

技術名称	マルチコプタを利用した橋梁点検システム
副題	高精細画像取得マルチコプタと橋梁脱着型マルチコプタによる
即吃	橋梁近接目視支援システム
	本システムは2種類の画像取得用マルチコプタにより、橋梁下面(床版下面、桁外
	面、下部工外面、支承部)の近接目視を支援することで、点検業務を省力化するシス
	テムである。
	まず、高精細画像取得マルチコプタを用いて、橋梁下面の高精細で網羅的且つ均質
技術概要	的な画像を取得し、損傷状況を把握する。次に、点検対象が鋼橋の場合には、橋梁脱
	 着型マルチコプタを用いて細部点検を実施する。
	両システムとも飛行時間と安全性の確保を目的として、落下防止兼用の有線給電ケ
	一ブルを備える。
海中公野	橋梁維持管理
適用分野 ■対象	「個米性は自任 (■近接目視(鋼橋) ■近接目視(コンクリート橋) ■近接目視(床版)
■刈家 □非対象	□打音検査(鋼・コンクリート橋) □打音検査(床版) □点検者の接近手段)
図•写真等	有線給電及び操作装置 高精細画像取得用機体 高精細カメラによる撮影 高精細画像取得用マルチコブタの運用イメージ マルチコプタが 桁を把持する。 アーム式カメラ (カメラの他に各種センサの搭載が可能) 橋梁脱着型マルチコブタの運用イメージ
	川田ニケノロジーブ性子会社
応募者 ————————————————————————————————————	川田テクノロジーズ株式会社
₩₽₽₽₽₩±	(株)エンルート
共同開発者	大日本コンサルタント (株) (独)産業技術総合研究所
連絡先	川田テクノロジーズ株式会社技術研究所 情報機械研究室 金平 徳之 電話: 028-687-2217

技 術 概 要 (No.10)

技術名称	小型無人飛行船とメカナムホイール小型検査ロボットの 併用による目視検査システム
副題	高所および狭所を対象とする目視検査
技術概要	開発中のシステムは、スマートフォンなどで操作可能な、WiFi カメラを搭載した小型無人飛行船とメカナムホイール小型車輌ロボットを併用することで、桁内部より桁及び床板の画像および動画を撮影して、近接目視検査を行うものである。また、小型無人飛行船については、外周から桁および床板の目視検査を行うことも可能である。小型無人飛行船は動力を備えており、前後左右、上下方向に自由に操縦可能である。また総重量が 300g 弱であるため、落下時の衝撃が小さいうえ、飛行船であることから、急な落下を生じることがなく、安全性の高いシステムと成り得ると考えている。
適用分野 ■対象 □非対象	橋梁維持管理 (□近接目視(鋼橋) ■近接目視(コンクリート橋) ■近接目視(床版) □打音検査(鋼・コンクリート橋) □打音検査(床版) □点検者の接近手段)
図・写真等	関力装置 国視検査用小型無人飛行船 小型無人飛行船が撮影した近接画像の例 メカナムホイール小型車輌検査ロボット
応募者	学校法人 足利工業大学
共同開発者	戸田建設株式会社 価値創造推進室・開発センター・技術創造ユニット
連絡先	学校法人 足利工業大学 総合研究センター 室長 君島良信 建築社会基盤学系 准教授 仁田佳宏 〒326-8558 栃木県足利市大前町 268-1 電話: 0284-62-0782 FAX: 0284-62-9985 E-mail: soken@ashitech.ac.jp, ynitta@ashitech.ac.jp

技 術 概 要 (No.11)

	1
技術名称	「橋梁点検カメラシステム視る・診る」による接触調査技術
副題	「橋梁点検カメラシステム視る・診る」によるひび割れ検出・打音検査・他
技術概要	本技術は、橋梁点検の際、橋梁点検車が利用できない橋梁の近接目視代替え技術として開発したものである。本システムは幅 1.0m 長さ 2.7mとコンパクトで路肩の一部又は歩道端部に設置して橋面上から点検用のアームを橋梁下面に侵入させそのアームに搭載したビデオカメラで橋梁下面を撮影し、その映像を橋面上のモニターで確認するシステムである。現在は、ひび割れ幅検出装置及び、打撃診断装置等、接触機能を追加して進化している技術である。
適用分野 ■対象 □非対象	橋梁維持管理 (■近接目視(鋼橋) ■近接目視(コンクリート橋) ■近接目視(床版) ■打音検査(鋼・コンクリート橋) ■打音検査(床版) □点検者の接近手段)
図・写真等	##
応募者	ジビル調査設計株式会社
共同開発者	有限会社インテス
連絡先	ジビル調査設計株式会社 担当 南出 Email: minamide@zivil. co. jp 〒910-0001 福井県福井市大願寺 2 丁目 5 番 18 号 TEL: 0776-23-7155 ✓FAX: 0776-27-7323

技 術 概 要 (No.12)

技術名称 	音カメラを活用した橋梁点検ロボット
副題	音の可視化による劣化診断
技術概要	「音カメラ」は、音に関する各種情報(音源の方向、周波数、音圧等)を視覚的に表示する装置である。既にインフラの維持管理に活用されている「音カメラ」を小型化し、リモート操作の雲台に搭載することで、検査員による目視検査や打音検査の機能を代替することが可能になる。この小型音カメラの活用により、従来は維持管理の専門技術者により実施していた橋梁の構成材である桁、ブレースならびにフィンガージョイント等の橋梁付属構造物の損傷箇所特定を省力化するだけでなく、異音発生源の損傷程度を可視化することで、点検の効率化と個人による判断のバラツキのない簡易で高精度かつ客観的な検査が可能になる。
適用分野	橋梁維持管理
■対象	(□近接目視(鋼橋) □近接目視(コンクリート橋) □近接目視(床版)
□非対象 	■打音検査(鋼·コンクリート橋) □打音検査(床版) □点検者の接近手段)
図•写真	【橋梁下部における計測イメージ】
	株式会社熊谷組
	株式会社移動ロボット研究所
共同開発者	株式会社応用技術試験所
	東京エレクトロンデバイス株式会社
	国立大学法人名古屋大学
連絡先	株式会社熊谷組 技術研究所 技術部長 永田 尚人 〒162-8557 東京都新宿区津久戸町2-1
	〒102-8007 東京都新伯区洋久戸町2-1 電話:03-3235-8617 FAX:03-3235-9215
	1 ·

技 術 概 要 (No.13)

技術名称	全自動ロボット型空中俯瞰撮影システム
副題	S-AIS (Smart Aerial Inspection and Survey)
技術概要	『全自動ロボット型空中俯瞰撮影システム』の機体は、カナダのエリヨン・ラボ社製で、①完全自律飛行、②自己診断機能搭載、③容易なデータ収集、④コンパクト設計による高い機動性、以上4つの特徴をもったシステムである。
適用分野 ■対象 □非対象	橋梁維持管理 (□近接目視(鋼橋) ■近接目視(コンクリート橋) □近接目視(床版) □打音検査(鋼・コンクリート橋) □打音検査(床版) □点検者の接近手段)
図・写真等	エアビークル ・
 応募者	東日本高速道路株式会社
共同開発者	株式会社ネクスコ東日本エンジニアリング
連絡先	東京都千代田区霞が関 3-3-2 新霞が関ビルディング 15 階 電話 : 03-3506-0095、FAX : 03-3506-0343

技 術 概 要 (No.14)

技術名称	小型無人飛行装置による橋梁点検支援技術
副題	
技術概要	UAV (無人小型飛行体) にカメラを設置し、遠隔操作により橋梁本体に近接し、ライブモニタにより損傷の状況を確認するとともに、写真撮影を行い点検の結果を記録するものである。
適用分野 ■対象 □非対象	橋梁維持管理 (■近接目視(鋼橋) ■近接目視(コンクリート橋) ■近接目視(床版) □打音検査(鋼・コンクリート橋) □打音検査(床版) □点検者の接近手段)
図•写真等	UAVカメラ映像 橋 脚 地上カメラ映像 UAVカメラ静康 UAVカメラ静止画像
応募者	株式会社 アスコ
共同開発者	_
連絡先	調査診断部 木下 渉 (きのした わたる) TEL:06-6444-1688 携帯:080-3827-1705

技 術 概 要 (No.15)

技術名称	橋梁点検ロボットシステムによるコンクリート床版のひび割れ幅計測
副題	遠隔操作型ロボットアームを用いたコンクリート床版のひび割れ幅計測
技術概要	橋梁点検ロボットシステムを用いて、橋梁下面のコンクリート床版等のひび割れをアーム先端部カメラと赤色の可視光レーザーを用いて撮影する。ひび割れ解析では可視光レーザーのスケールの基準点を含むひび割れ部の画像を撮影し、この電子化された画像を基に事務所等で市販の専用ソフトによりひび割れ解析を実施する。これにより、本システムではひび割れ幅と長さを求めることが可能である。
適用分野	橋梁維持管理
■対象 □非対象	(□近接目視(鋼橋) □近接目視(コンクリート橋) ■近接目視(床版) □打音検査(鋼·コンクリート橋) □打音検査(床版) □点検者の接近手段)
図・写真等	(技術の特徴が把握できる図・写真等を貼付願います。)
	ひび割れ画像データを基に市販のひび割れ解析ソフトでひび割れ幅を計測する。
応募者	株式会社帝国設計事務所
共同開発者	株式会社カナモト
連絡先	法 人 名 : 株式会社帝国設計事務所 役職・氏名 : 技術開発部長 若山昌信 所 在 地 : 〒065-0025札幌市東区北25条東12丁目1-12 電 話 : 011-753-4768 FAX: 011-702-2428 E-Mail: wakayama@kk-teikoku.jp

技 術 概 要 (No.16)

技術名称	スマートデバイスと空間情報を利用した点検管理技術
副題	_
技術概要	アプローチツールや UAV 等を利用して撮影された狭隘部等の損傷個所の写真を、有線または無線にてスマートデバイスに取り込み、地図情報を利用して空間的座標を付与する。また、橋梁点検要領等に則った調査情報を付加し、サーバへ送信しデータベース化を行う。サーバ上のデータベースで一元管理することにより、各種点検調書の出力や次回点検時の履歴参照を容易にし、損傷程度の経年変化の可視化も可能とする。
適用分野	橋梁維持管理
■対象 □非対象	(■近接目視(鋼橋) ■近接目視(コンクリート橋) ■近接目視(床版) □打音検査(鋼·コンクリート橋) □打音検査(床版) □点検者の接近手段)
図・写真等	(技術の特徴が把握できる図・写真等を貼付願います。) 特定損傷側所の経年変化の把握などのが表示テータ、健康情報等を参照 カーバトのテータベースより、 本本データ、健康情報等を参照 は後にても記述 ・ ススに登録 ・ スないに対するとい ・ ス
応募者	マルティスープ株式会社
共同開発者	_
連絡先	セールス Gr. 林 克範 TEL:03-5302-1357 Email:hayashi@multisoup.co.jp

技 術 概 要 (No.17)

技術名称 	橋梁等構造物の点検ロボットカメラ
副題	_
技術概要	橋梁等構造物の近接目視が困難な部位に高機能なカメラを視準可能な位置に近づけ、タブレット端末から無線 LAN で遠隔操作し、タブレット端末に表示される映像から損傷状況の確認やひび割れ幅の計測を行い記録できる装置の技術である。点検結果を動画および静止画としてタブレット端末に記録できる。カメラおよび架台は軽量で可搬性に優れる。 点検ロボットカメラの架台は2タイプがあり、高所点検ロボットカメラはポールが最大 11.5m 上方へ伸長する地上設置型、橋梁点検ロボットカメラはポールが最大 4.5m 下方へ伸長する高欄取付型である。
適用分野	橋梁維持管理
■対象 □非対象	(■近接目視(鋼橋) ■近接目視(コンクリート橋) ■近接目視(床版)
	□打音検査(鋼·コンクリート橋) □打音検査(床版) □点検者の接近手段) 高所点検ロボットカメラ 橋梁点検ロボットカメラ
図・写真等	高川 派(東ロボッドカック) (高来派(東ロボッドカック) (高来派(東ロボットル) (高来派) (高来派(東ロボットル) (高来派(東ロボットル) (高来派) (高来派) (高来派(東ロボットル) (高来派) (高来
	三井住友建設株式会社
	株式会社 日立産業制御ソリューションズ
連絡先	三井住友建設株式会社 土木本部 土木リニューアル推進室 藤原 保久 TEL. : 050-3137-3225 E-mail: y. fujiwara@smcon. co. jp

技 術 概 要 (No.18)

技術名称	橋梁の底面や狭隘部を低コストに点検・診断する為のアプローチツール
副題	ユニックを始めとする汎用的な高所作業車に取り付け可能なロボットアームの開発
技術概要	現在の橋梁点検においては、主に点検者の目視と写真撮影等によって得られた画像をもとに異常個所の有無を把握するとともに、各種変状の程度(ひび割れの幅や長さ)を計測するのが一般的である。しかしながら橋梁には人の立ち入り困難な狭窄部や輻輳箇所が多く、また手前の支障物や屈曲部の陰に位置するため、視線や照明が届かない。本ツールは胃カメラのように自由に進入できる多関節アームであり、特別な技能を必要としない自動制御・衝突回避アルゴリズムの開発と、2回目以降の点検の多くを自動化できるような仕組みを開発する。
適用分野 ■対象 □非対象	橋梁維持管理 (■近接目視(鋼橋) □近接目視(コンクリート橋) □近接目視(床版) □打音検査(鋼・コンクリート橋) □打音検査(床版) □点検者の接近手段)
図・写真等	
応募者	株式会社 amuse oneself
共同開発者	独立行政法人 土木研究所 国立大学法人 岐阜大学 株式会社アンドー
連絡先	株式会社 amuse oneself 技術部 担当 冨井 隆春 〒542-0082 大阪市中央区島之内 1 丁目 19 番 21 号 大和中堀ビル 5 階 電話:06-6210-3345 FAX:06-6210-3345 E-Mail:t@amuse-oneself.com

技 術 概 要 (No.19)

技術名称	損傷検知装置
副題	健全部の打音を基準として損傷部を検知する打音検査装置
技術概要	本技術は、荷役作業で使われる車載型クレーン「UNIC」と打音検査装置で構成される。 打音検査装置は、被験部への打撃力を計測し適正な入力を監視、集音は環境ノイズを抑えるカバー構造により高 S/N 比で打音を採り込む。さらに打音の評価に使う音響 HLAC は健全部の打音を基準とした損傷部の打音変化度合を判定できる。
適用分野 ■対象 □非対象	橋梁維持管理 (□近接目視(鋼橋) □近接目視(コンクリート橋) □近接目視(床版) □打音検査(鋼・コンクリート橋) ■打音検査(床版) □点検者の接近手段)
図・写真等	打音装置 731-スセンサ マイクロフォン ロッド ビストン 車載型クレーンと打音装置 打音装置 詳細図
応募者	古河機械金属株式会社
共同開発者	独立行政法人産業技術総合研究所
連絡先	古河機械金属株式会社 研究開発本部 技術研究所 湯浅 TEL(029) 839-5105 FAX (029) 838-2432

技 術 概 要 (No.20)

	<u></u>
技術名称	インフラ診断ロボットシステム(仮称「ALP」)の研究開発
副題	_
技術概要	「インフラ診断ロボットシステム(仮称「ALP」)」は、真空吸着式パッドを用いて、基本的に橋梁形式や材料を問わずに壁面を自走し、近接目視・打音検査・非破壊検査とその評価が出来るロボットシステムである。検査データは、位置座標を含め客観的定量データであり、熟練技術者でなくとも現地で容易に評価ができるリアルタイム診断結果表示システムとレポート作成のための検査結果自動図化システムを備える。
適用分野 ■対象 □非対象	橋梁維持管理 (□近接目視(鋼橋) ■近接目視(コンクリート橋) ■近接目視(床版) ■打音検査(鋼・コンクリート橋) ■打音検査(床版) □点検者の接近手段)
図•写真	東空吸着式パッド 東空吸着式パッド 東空吸着式パット 東京で吸着式パット 東京で表現しています。 東京で表現で表現しています。 東京で表現で表現しています。 東京で表現で表現で表現で表現できます。 東京で表現で表現でます。 東京で表現で表現ではなりまする
応募者	株式会社開発設計コンサルタント
共同開発者	学校法人法政大学 国立大学法人岡山大学 ステラ技研株式会社
連絡先	株式会社開発設計コンサルタント 土木事業本部 設備保全技術開発センター 野嶋 潤一郎 (nojima@jpde.co.jp)

技 術 概 要 (No.21)

14.15 PT	
技術名称	安全に配慮した飛行ロボット橋梁点検アシスト技術
副題	距離センサーを用いた橋梁周囲環境での飛行ロボットの自動速度制御技術およびセー フティーワイヤーを接続した飛行ロボットによる橋梁下の飛行
技術概要	飛行ロボットに距離センサーを搭載し、橋梁との距離を計測することで、橋梁と衝突しないよう飛行ロボットの速度を自動制御する。この飛行ロボットの操縦アシスト機能により、熟練した操縦技術を有することなく飛行ロボットによる橋梁の近接目視点検を実現する。 飛行ロボット上面のジンバル上にはカメラを搭載し、地上の点検者は送信された映像および録画映像から橋梁の損傷箇所を確認する。 また、橋梁と飛行ロボットをセーフティーワイヤーで接続して飛行することで、故障、誤動作による作業区域外への落下を防ぎ、安全を確保する。
適用分野	橋梁維持管理
■対象 □非対象	(■近接目視(鋼橋) □近接目視(コンクリート橋) □近接目視(床版) □打音検査(鋼·コンクリート橋) □打音検査(床版) □点検者の接近手段)
図•写真等	(技術の特徴が把握できる図・写真等を貼付願います。) 標業 和との 距離地とサー (上方向) 提影 「機大面では、対象の 機能として、対象の 機能を表表して、対象の 機能を表表して、対象の 機能を表表して、対象の 機能を表表して、対象の 一般を表示して、対象を表現である。 「機能を表表して、対象を表現である。」 「機能を表表して、対象を表現である。」 「機能を表表して、対象を表現である。」 「現象を表現である。」 「またませんである。」 「はなれている。」 「なれている。」 「はなれている。」 「はなれている。」 「なれている。」 「なれ
応募者	綜合警備保障株式会社
共同開発者	株式会社横河ブリッジホールディングス
連絡先	綜合警備保障株式会社 セキュリティ科学研究所 菅原 美智子 03-5606-7541

技 術 概 要 (No.22)

技術名称	全自動構造物劣化調査システム
副題 	自律飛行型マルチコプター、空中超音波、カメラによる非破壊調査
技術概要	GPS 及び自己位置推定・マッピング技術(SLAM)を用い、完全自律飛行するマルチコプターを利用した調査技術。本機にはデジタルカメラ及び光源、空中超音波送受信機を搭載し、作業車でしか行えなかった目視点検、打音点検の代替として、非接触での調査を行うことができる。また、調査した異常部データを、位置データと共に保存することができ、超音波等のデータ保存の難しかった情報の保存・経過監査を可能とする。
適用分野	橋梁維持管理
■対象 □非対象	(□近接目視(鋼橋) ■近接目視(コンクリート橋) ■近接目視(床版) ■打音検査(鋼·コンクリート橋) ■打音検査(床版) □点検者の接近手段)
図・写真等	自律飛行型マルチコブター 飛行方法 右: GPS 地点指定 右下: SLAM による障害物検知 下: 橋梁及びマルチコプター 電中超音波 検査方法 右: モルタル浮きの非接触検査
応募者	三信建材工業 株式会社
共同開発者	株式会社自律制御システム研究所 ジャパンプローブ株式会社 アイエムソフト有限会社
連絡先	三信建材工業株式会社 開発室 担当:主任・石田晃啓 愛知県豊橋市神野新田町字二ノ割 35-1 TEL:0532-34-6066 FAX:0532-33-7155

技 術 概 要 (No.23)

技術名称	3 DVR と連動する自律飛行型 UAV による構造物調査システム	
副題	3DVR と連動させた遠隔操作可能な自律型 UAV で、安全に橋梁やダムを調査	
技術概要	橋梁やダムの点検を安全で迅速に行うために、複数の小型 HD カメラ、IR カメラ、温度・湿度センサを備えた自律型マルチコプター UAV。大規模な構造物でも、安全な場所から迅速に遠隔調査可能。調査者は PC 制御による自律飛行のおかげで点検に集中でき、飛行中に写真・動画撮影、各種センシングが可能。3DVR による飛行計画立案、自動飛行経路設定、飛行中の VR との連動、無人機周辺の構造物のリアルタイム 3D モデル化が可能。予め作成したフライトパスにしたがって、UAV を対象物近辺まで自動飛行させ、対象物の写真撮影を行ってリアルタイムに3Dモデル化、調査者は3Dモデルを見ながら測定箇所を UAV に指示し、詳細な撮影、センシングを行う。	
適用分野 ■対象 □非対象	橋梁維持管理 (□近接目視(鋼橋) ■近接目視(コンクリート橋) ■近接目視(床版) □打音検査(鋼・コンクリート橋) □打音検査(床版) □点検者の接近手段)	
図・写真等	AND STATE OF THE PARTY OF THE P	
応募者	株式会社フォーラムエイト	
共同開発者		
連絡先	ニニス ハフィド TEL: 0985-58-1888 FAX: 0985-55-3027 niniss@forum8.co.jp	

技 術 概 要 (No.24)

	T		
技術名称	ミニサーベイヤー飛行ロボットを用いた橋梁点検システム		
副題	高性能電動マルチローターを用いた橋梁近接目視点検システム		
技術概要	マルチローターで実績のある千葉大学開発のミニサーベイヤ飛行ロボットを使用した橋梁点検システムである。最大の特徴は橋梁下部等の GPS 信号が補足できない場所での位置制御に TS (トータルステーション) とレーザー測域センサによる SLAM を使った飛行で安全に点検作業を行えることにある。同時に有線給電へりも考慮している。精細なカメラ画像と撮影位置データにより桁や床版のひび割れ等の損傷を近接目視の代替可能としたものである。点検作業は飛行ロボットを見通せる安全な場所から行い、操縦位置より200m範囲で可能である。高精細写真を解析することにより小さなひび割れや鉄筋露出等の損傷を計測することができ CAD 図面及び点検調書に反映可能である。		
適用分野	橋梁維持	寺管理	
■対象 □非対象	信末福行官項 (□近接目視(鋼橋) ■近接目視(コンクリート橋) ■近接目視(床版) □打音検査(鋼・コンクリート橋) □打音検査(床版) □点検者の接近手段)		
図・写真等	まニサーベイヤ飛行ロボット飛行状況	橋梁点検作業状況 B=0.5m ひび割れ計測	
応募者	株式会社 富士建		
共同開発者	株式会社 自律制御	ョシステム研究所	
連絡先	株式会社 富士建 担当 角 和樹 佐賀県佐賀市富士町下熊川 159-68 電話: 0952-64-2331 FAX: 0952-64-2340 Email: mits22@fujiken-co.jp		

技 術 概 要(No.25)

技術名称	構造物点検ロボットシステム「SPIDER & Giraffe」		
副題	 小型無人へリまたはポール搭載カメラによる構造物点検および点検調書作成支援システム 		
技術概要	本技術は、人が近接することなく、デジタルカメラを搭載したロボット(無線ヘリコプター型、ポール型)により撮影した写真の画像処理を行い、橋梁全体の3次元および2次元画像を作成したうえで橋梁に発生していている損傷箇所・損傷程度を正確に把握し、橋梁点検調書の作成支援を行うシステムである。		
· 英田八田	棒沙維 持管理		
適用分野 ■対象 □非対象	橋梁維持管理 (■近接目視(鋼橋) ■近接目視(コンクリート橋) ■近接目視(床版) □打音検査(鋼・コンクリート橋) □打音検査(床版) □点検者の接近手段)		
図・写真等	SPIDER 外観 Giraffe 外観 「ANALYSE SEADS ANALYSE SEADS ANALY		
応募者	ルーチェサーチ株式会社		
	学校法人 広島工業大学		
共同開発者	株式会社建設技術研究所		
連絡先	広島県広島市安佐南区毘沙門台 4-16-21 電話: 082-209-0230 Email: info@luce-s. jp		

次世代社会インフラ用ロボット現場検証委員会 橋梁維持管理部会

部会長 藤野 陽三 横浜国立大学 特任教授

委員 油田 信一 芝浦工業大学 特任教授

淺間 一 東京大学大学院 教授

河西 龍彦 (一社)日本橋梁建設協会 保全委員会幹事長

徳光 卓 (一社)プレストレスト・コンクリート建設業協会 保全補修部会副部会長

田中 樹由 (一社)建設コンサルタンツ協会 道路構造物専門委員

岩見 吉輝 国土交通省総合政策局公共事業企画調整課 施工安全企画室長

福田 敬大 国土交通省道路局国道・防災課 道路保全企画室長

玉越 隆史 国土交通省国土技術政策総合研究所道路構造物研究部

橋梁研究室長

石田 雅博 (独)土木研究所 構造物メンテナンス研究センター 上席研究員

藤野 健一 (独)土木研究所 技術推進本部 主席研究員

岡本 健太郎 経済産業省製造産業局産業機械課 課長補佐

加藤 晋 (独)産業技術総合研究所 知能システム部門 グループ長

真野 敦史 (独)新エネルギー・産業技術総合開発機構 ロボット・機械システム部 主任研究員

(敬称略)

次世代社会インフラ用ロボット技術・ロボットシステムの公募 (概要)

参考資料2

国土交通省

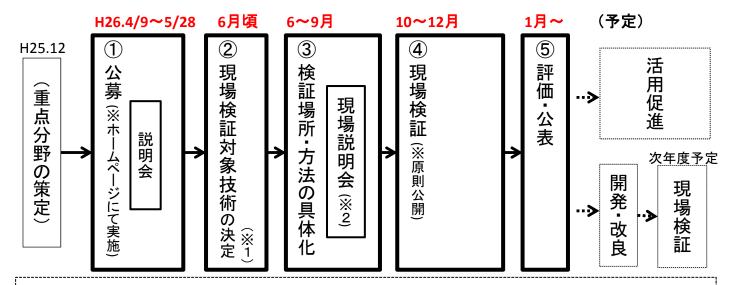
- 維持管理(橋梁、トンネル、水中)及び災害対応(調査、応急復旧)に役立つ技術として、 「現場検証・評価」の対象とする「ロボット技術・ロボットシステム」を募集
- 国土交通省の直轄現場等において、現場検証を行い、その技術の実用性等を評価し、その 結果を踏まえ、活用、開発・改良を促進
- 〇 「次世代社会インフラ用ロボット現場検証委員会」において、現場検証及び評価を実施

【公募技術】

- ー対象技術の分野ー
 - I 『橋梁・トンネル・水中(ダム、河川)の点検』用 のロボット技術・ロボットシステム
 - Ⅱ 『災害調査・災害応急復旧』 用のロボット技術・ロボットシステム
- -対象技術の実用化状況
 - a) 現場検証を通じ実用性の確認やその更なる向上が期待される実用化技術
 - b) 短期(概ね3年以内)に実用化が見込まれる技術

【応募者】

•「個人」、「民間企業」、「大学等」


(ただし、「個人」及び「大学等」については、3年以内の実用化を目指し、民間企業と共同開発している場合に限る)

【現場検証・評価】

- **直轄現場等において現場検証を実施** (※現場検証は、原則公開)
- ・公募要領に示す「基本要件」及び「公募技術に期待する項目」の達成度、現場で把握された課題・効果、今後の発展性を評価

【その他】

・本公募と並行して、開発途上の新技術の支援策としてNEDOによる『インフラ維持管理・更新等の社会課題対応システム開発プロジェクト』を実施。(詳細は、NEDOホームページにて)

- ※1 現場検証対象技術の決定後、開発状況や現場状況等に因っては、現場検証・評価を、部分的に実施する、または、実施しないことがあります。
- ※2 現場説明会は、6月末頃予定の「現場検証対象者の決定」後に、連絡・調整を予定してます。

次世代社会インフラ用ロボット開発・導入 施策概要

社会インフラの現場ニーズ及びロボットの技術シーズに基づき、ロボット開発・導入すべき重点分野 を明確化し、民間企業や大学等に対して公募し、現場検証通じて、評価を行い、活用・開発を促進

> ※本公募と並行して、開発途上の新技術の支援策として、 NEDOによる『インフラ維持管理・更新等の社会課題 対応システム開発プロジェクト』を実施しております。 詳しくは、NEDOホームページをご覧ください。

次世代社会インフラ用ロボット開発・導入の推進体制

〇日本の高度な水準の工学技術を活用し、 インフラ維持管理や災害現場の具体的 なニーズを踏まえた機器の開発支援 【経産省中心】

の依頼等人

・試作機器の 評価等

インフラ・災害現場

現場での実証等

〇開発の早い段階から、現場のニーズの 伝達や試作機器についてインフラ・災 害現場での実証(ニーズ調査・評価)

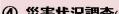
【国交省中心】

ロボットの開発~検証~評価までの -体化した道筋をつくる

次世代社会インフラ用ロボットとして、「現場検証・評価」及び「開発支援」を行う5つの重点分野とその対象技術

I 維持管理

- ① 梧梁
- ・近接目視を代替・支援する技術
- 打音検査を代替・支援する技術
- ・点検者を点検箇所に近づける技術


- ・近接目視を代替・支援する技術
- 打音検査を代替・支援する技術
- ・点検者を点検筒所に近づける技術

- ・近接目視を代替・支援する技術
- ・堆積物の状況を把握する技術

Ⅱ 災害対応

- ④ 災害状況調査(土砂崩落、火山災害、トンネル崩落)
- ・災害現場の被害状況を把握する技術
- ・災害現場の土砂等の状況を計測する技術
- ・トンネル崩落現場の引火性ガス等の情報を 取得する技術
- ・トンネル崩落現場の崩落状態や規模を把握 する技術

- ・災害現場の応急復旧する技術
- ・災害現場(河道閉塞)の排水作業の応急対応 する技術
- ・遠隔または自律制御にかかる情報伝達する 技術

次世代社会インフラ用ロボット開発・導入の推進(橋梁維持管理技術) 現場説明会(新浅川橋:八王子市)を開催します

次世代社会インフラ用ロボット開発・導入の推進(橋梁維持管理技術)について、検証候補地A:新 浅川橋の現場説明会を下記のとおり実施いたします。

記

1. 実施概要

現	場	日時	場所
,	А	平成26年7月13日(日)	新浅川橋
		13:30~14:30	(一般国道 16号 東京都八王子市北野町)

2. 集合場所·解散場所

当日は現地集合、現地解散とします。集合場所、交通手段については別紙-1を参照下さい。

3. 参加申込方法

- ・現場検証対象者には、別途参加申込の案内をしておりますので、そちらに従って下さい。
- ・報道関係者の方で参加を希望される場合は、下記問い合わせ先宛てに前日までに参加登録下さい。

4. その他

- ・現場周辺には駐車場はありませんので、ご注意願います。
- ・河川敷での開催となり足元の悪い箇所もありますので、滑りにくい靴などの着用をお願いします。

なお、天候不良等で開催が困難な場合は、当日 9:00 までに(一財)橋梁調査会ホームページ http://www.jbec.or.jp/ のお知らせ NEWS RELEASE に掲載します。

5. 問合せ先

本件についてのお問い合わせは、下記担当者までお願いいたします。

一般社団法人 橋梁調査会 企画部 担当 吉田・藤原 TEL: 03-5940-7788 また、当日のお問い合せは、携帯電話 吉田 080-1081-1239、藤原 090-2937-0470 へお願いします。

次世代社会インフラ用ロボット開発・導入の推進(橋梁維持管理技術) 現場説明会(浜名大橋:静岡県浜松市・湖西市)を開催します

次世代社会インフラ用ロボット開発・導入の推進(橋梁維持管理技術)について、検証候補地 B の浜 名大橋の現場説明会を下記のとおり実施いたします。

記

1. 実施概要

現場	日時	場所
В	平成26年7月21日(祝)	浜名大橋
	14:30~15:50	(一般国道 1 号線 静岡県浜松市·湖西市)

2. 集合·解散場所

浜名大橋西側(名古屋方面)の新居弁天公園(海釣りパーク)での集合・解散とします。 お車でご来場の場合は、同公園および隣接する海浜公園の駐車場をご利用下さい。 集合場所の詳細は別紙2を参照下さい。

3. 参加申込方法

- ・現場検証対象者には、別途参加申込の案内をしておりますので、そちらに従って下さい。
- ・報道関係者の方で参加を希望される場合は、下記問い合わせ先宛てに前日までに参加登録下さい。

4. その他

・海岸沿いで陽光下での開催が想定されますので、熱中症等への対策は各自でお願いします。

なお、天候不良等で開催が困難な場合は、前日 18:00 までに(一財)橋梁調査会ホームページ http://www.jbec.or.jp/ のお知らせ NEWS RELEASE に掲載します。

5. 問合せ先

本件についてのお問い合わせは、下記担当者までお願いいたします。

一般社団法人 橋梁調査会 企画部 担当 吉田・藤原 TEL: 03-5940-7788 また、当日のお問い合せは、携帯電話 吉田 080-1081-1239、藤原 090-2937-0470 へお願いします。

集合場所と集合時間

〇新居弁天公園(海釣パーク)駐車場

集合場所:駐車場奥の公園内 (下図参照)

集合時間: 14:30

