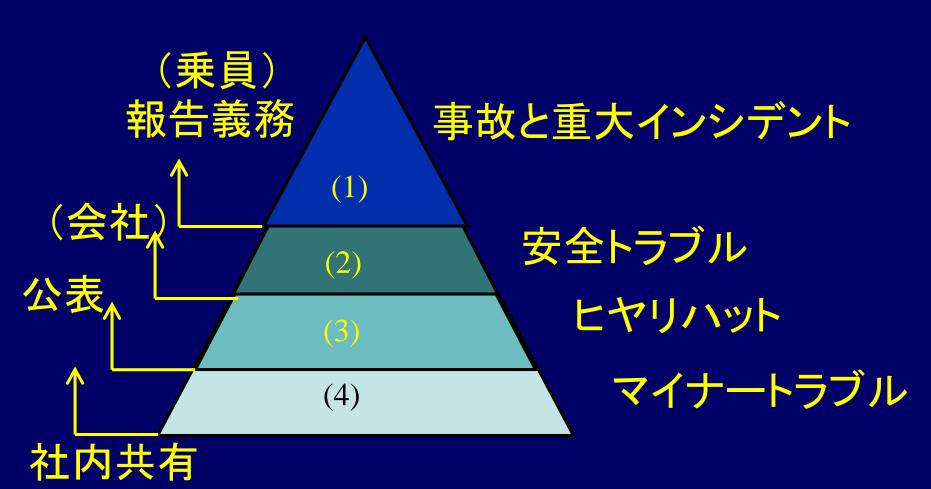
航空安全情報自発報告制度 -VOICESの導入・運用について-


VOluntary **Information Contributory to Enhancement of the Safety**

河内 啓二 2014年12月2日

概 要

- ・日本における航空分野の安全情報報告制度
- VOICESの発足
- · VOICESのデータ処理の流れ
- ・国際的な比較
- ・システムの課題
- 解析法について(私見)
- VOICESの効果

トラブルの階層と報告制度

(1) 事故と重大インシデント

- 運輸安全委員会
- 件数事故 10~20件/年 重大インシデント 約10件/年
- 乗員に報告義務
- 有効に機能しやすい(報道、報告書、関心、緊張感)
- 事例研究
- 事後対策

(2) 安全トラブル

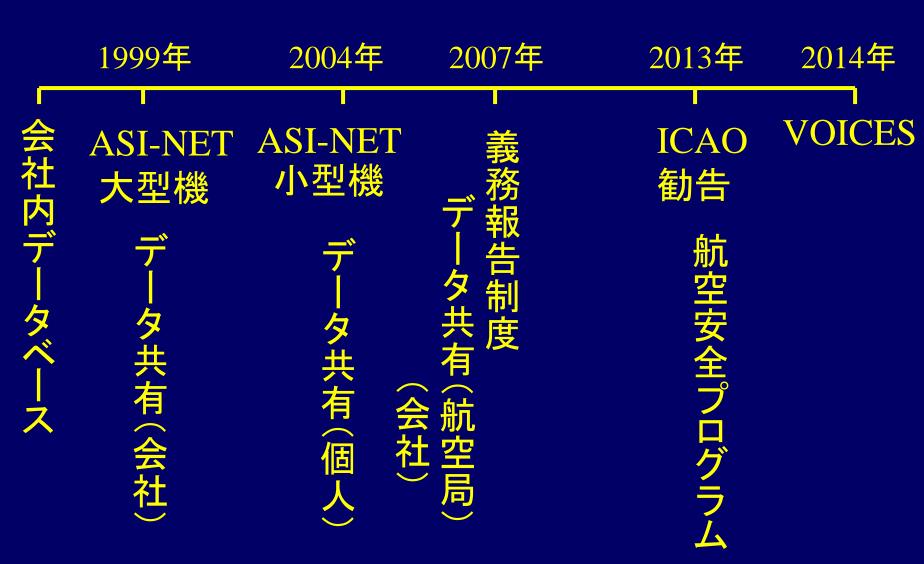
- 航空局 (2007年~)、義務報告制度
- 報告件数 800~900件/年
- 運航会社に報告義務
- 予防的対策に使用
- 航空安全情報分析委員会(6月&12月)
 データ公表(国交省のHP)、現場へのフィードバック

安全トラブルデータ例

日付	報告会社名	航空機型式	登録記号	出発地	目的地	事態の概要	備考
2010/4/1	全日本空輸	ボーーイング式767-300型	JA8670	那覇空港	広島空港	降下中、航空機衝突防止装置の回避指示に従って回避操作を 行った。	
2010/4/2	2 日本航空インターナショナル	ダグラス式MD−90−30型	JA002D	三沢空港	大阪国際空港	降下中、航空機衝突防止装置の回避指示に従って回避操作を 行った。	
2010/4/2	2 スカイマーク	ホーイング式 737-800型	JA737M	東京国際空港	旭川空港	離陸時に機体尾部を滑走路に接触したため引き返した。	イレギュラー 運航
2010/4/2	2 スターフライヤー	ェアハ*ス式A320-214型	JA03MC	北九州空港	東京国際空港	巡航中、対地接近警報装置が機能喪失となった。	
2010/4/2	2 エアージャパン	ボーーイング式767-300型	JA8664	成田国際空港	台北	進入中、高揚力装置展開時の運用限界速度を一時的に超過した。	
2010/4/3	3 日本航空インターナショナル	ボーーイング式767-300型	JA8299	新千歳空港	神戸空港	離陸後、鳥の群れに衝突し右翼前縁高揚力装置等を損傷した。	
2010/4/4	スカイマーク	ボーーイング式737-800型	JA737H	福岡空港	東京国際空港	進入中、高揚力装置展開時の運用限界速度を一時的に超過した。	
2010/4/4	I 朝日航洋	MDへリコプタース*式MD900型	JA6914	埼 玉 医科大学 場外離着陸場	蓮田方面	離陸時、誤った離陸操作を実施したため第1エンジン出力が上昇 してエンジントルクの運用限界を超過したため離陸を中止した。	

データベースによる安全対策

- 予防的対策が可能
- 計算機利用のメリット 言語的取り扱い 整理、検索、組織化の技術 データマイニング技術の進展 データの自動収集(ドライブレコーダ、フライトレコーダ)

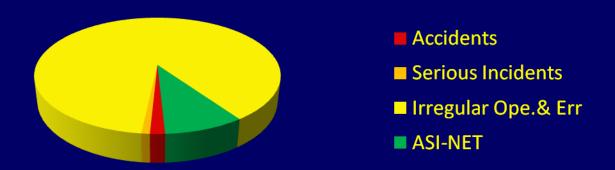

(3) 自発報告制度

- VOICES 2014年7月 運用開始 航空安全プログラム(航空局)の一部 委託先 ATEC(公益法人) 単年度契約
- 報告者: 航空関係者
- 体験したヒヤリ・ハット情報を自発的に報告
- 非懲罰(航空局技術部長通達)ーー報告 制度の存続

(4) マイナートラブル

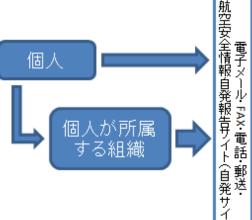
- 各社の安全担当組織が担当 データベースがまだ未整備のところもある。
- パイロット、整備士、客室乗務員
- 社内データベースにとどまる。
- フライトレコーダーのデータ

日本の自発報告制度の変遷



航空安全プログラム(SSP)

- ICAOの勧告
 民間航空の安全のために講ずべき対策・手順 背景 事故率の下げ止まり、航空交通量は増加 一>危機感
- 非懲罰の自発報告制度を含む。
 Voluntary, Non-Punitive, Confidential, Independent
- 意図的、薬物、アルコール


報告 件数

	2007	2008	2009	2010	2011	2012	2013
-Accidents	23	17	19	12	14	18	11
Serious Incidents	12	5	11	12	6	10	8
Irregular Ope. & Error	730	856	884	865	976	991	850

Total percentage (2007-2013)

VOICESデータ処理の流れ

<u>安全情報受付・</u> ヒアリングの実施 <u>情報の秘匿化・自発サイト</u> への登録・連絡先等の抹消

初期分析

航空活動関係者向け

VOICES HPを通じ て、注意喚起、関 係情報等を広く共 有

<u>自発報告者への</u> フィードバック

分析状況や分析 結果を自発サイト を通じて確認可能

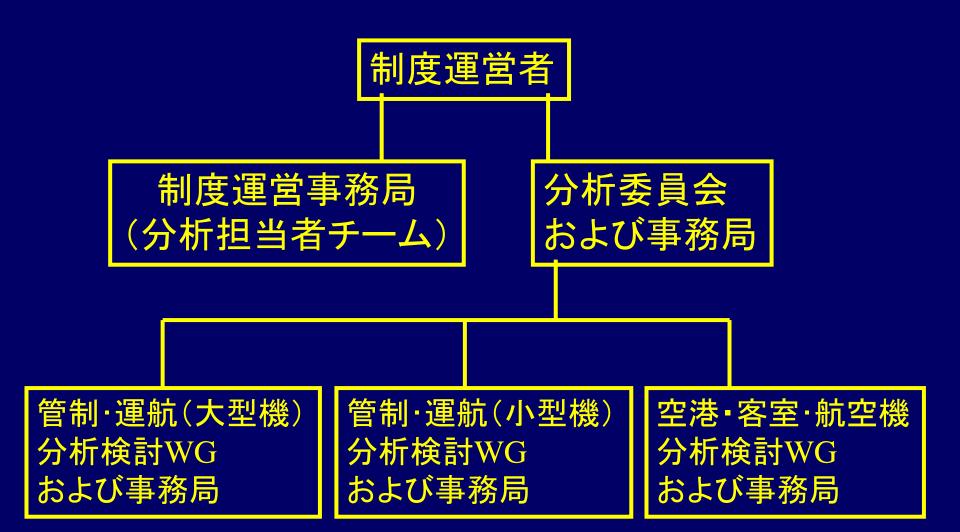
自発報告制度 分析委員会

<u>分析検討</u> ワーキング・グループ

航空局へ報告

- ·分析結果
- ・改善策の提言
- ·制度の実施、運 営状況
- 業務上の課題

: ATEC内担当者を示す。


:分析担当者による報告者への通知およびフィードバックを示す。

:分析状況情報の更新を示す。

報告者は自発サイトにて確認することが可能。

VOICES組織図

自発報告制度の国際的比較

国	米国	英国	スペイン	カナダ	オーストラリア
名称	ASRS	CHIRP	SRS	SECURITUS	REPCON
設立年	1976	1982	2005	1995	2007
運営組織	研究機関	公益法人	航空当局	事故調	事故調
報告者	航空関係者	航空関係者	航空関係者	航空関係者	航空関係者
秘匿プロセス	有り	有り	有り	有り	有り

ブラジル	中国	韓国	日本
RCSV	SCASS	KAIRS	ASI-NET
1997	2004	2000	1999
事故調	大学	公団	公益法人
航空関係者	航空関係者	航空関係者	パイロット
有り	有り	有り	有り

国際的な状況

- アングロサクソン系の社会とマッチングが良い。司法取引一非懲罰。刑事罰にも対応
- ・ 欧州大陸系の社会は苦戦。特にドイツ
- 日本は中間か

システムの課題

- ・ 報告件数の確保 VOICESの認知
- 報告者との信頼感
- データのSNの悪さ 補うモデルが必要(専門知識、工学)
- データの正確さと報告のしやすさ
- ・ 単年度契約(競争入札) データの継続性

VOICESの認知

HP、説明会、ポスター、カードメール 各社の安全部門 操縦士協会等

解析法の学問的課題

- 結果が属人的
- 解析者により同じデータから異なる結論
- 解析法の標準化•定量化
- 計算機の利用
- データの自動収集

解析法の提案

- 5 W's 1 H
- ・時空間への分解(When & Where)
 Critical 11 minutes
- 所属別(機体、会社)(Who)
- 飛行の類似性(How) CFIT
- トラブル箇所(What)、原因(Why)

・ 格付け(深刻度、確率)

データマイニングの手法

- NASA Perilog
- キーワードの抽出・組織化 第一次選抜
- データを整理・分類してから人間によるチェック
- 日本ではデータ数が少ないため、しばらくはデータ選抜不要だろう。

予防的対策は可能か?

可能なもの 先例あり。突風、滑走路誤侵入、鳥衝突、落雷・・・

難しいもの 先例少ない。ダイアルの誤認

解析法のヒント

- 専用データベースと汎用データベース 汎用データベース 分野横断的データ ビッグデータ、一般的な安全知識 例 決まった手順が乱されるとき ワークロードが増えたとき
- ・専用データベース ある特定分野のデータ 専門知識の必要性 専門用語、飛行場や機体の特質 データベースと専門知識の結合(解析技術)

解析法のまとめ

- 解析結果は現状は属人的
- ・専門知識とデータベースの結合 専門知識の計算機化 事故の統計的取り扱い
- ちょうど良い領域範囲の専用データベース を意識して作る
- 5W1H、格付け、計算機向きのデータベース構築の勧め

自発的報告制度における安全データベースの使い方

現場へのフィードバックHP、ニュース(紙)、報告書、提言

・解析による予防的推定

・安全への緊張感