【参考資料Ⅲ】

津波に対する防波堤の安定性及び粘り強い構造 の検討に係る現状の知見

ш—	1	本資	料の	D位置付け		1
Ⅲ—	2	防波	堤の	の耐津波設計の検討の視点		2
2.	1	防波	堤の	D安定性に係る検討		2
	2.	1.	1	越流時に作用する津波の波力		2
	(1)基	本事	事項		2
	(2)津	波に	こよる水平波力 ・・・・・		2
	(3)津	波に	こよる鉛直力		3
	2.	1.	2	基礎地盤の支持力を低下させる浸透力		4
	(1)基	本事	事項		4
	(2)浸	透流	流によるマウンド支持力の低下		4
	2.	1.	3	直立部を沈下させる先行地震動		4
	(1)基	本事	事項		4
	(2)検	討の	り視点		4
2.	2	防波	堤の	の粘り強い構造の検討		5
	2.	2.	1	直立部の倒壊メカニズムの検証		5
	(1)検	討方	方針		5
	(2)検	討の	り視点		5
	2.	2.	2	直立部の滑動および基礎マウンドと海底地盤の洗掘の対策		5
	(1)基	本事	事項		5
	(2)検	討方			6
	(3)基	本構	構造	•••••	6
	(4)検	討の	り視点		6
Ⅲ—	3	安定	性照	飛査の方法に関する検討		7
З.	1	水理	模型	型実験及び数値解析による防波堤の安定性の検討		7
	З.	1.	1	津波越流時における防波堤の安定性		7
	(1)実	験方	ち法と解析方法		7
	(2)結	果]	10
	З.	1.	2	浸透力作用下における基礎マウンドの安定性]	14
	(1)模	型実	実験と有限要素法解析による再現計算]	14
	(2) —	般的	りな断面における有限要素法解析]	17
	З.	1.	3	地震動作用時における海底地盤の安定性]	19
	(1)実	験の	り方法]	19
	(2)入	.力地	也震動・・・・・		21
	(3)実	験結	吉果		22

	3.1.4	まとめ
	(1)津波起	変流時における防波堤の安定性
	(2)浸透フ	カ作用下における基礎マウンドの安定性23
	(3)先行。	する地震動作用時における海底地盤の安定性23
З.	2 照査方法	± 24
	3.2.1	直立部の安定性照査24
	3.2.2	浸透流を考慮した支持力の安定性照査 24
	3.2.3	先行する地震動による沈下量照査
Ш-	-4 防波堤0	の粘り強い構造の検討 25
4.	1 被覆工の	の水理模型実験25
	4.1.1	実験方法
	4.1.2	被覆材の必要質量に関する計算26
	4. 1. 3	結果
	(1)水理植	莫型実験による被覆材の比較26
	(2)計算約	结果
	(3)被覆林	オの必要重量の算定31
4.	2 腹付工の	の水理模型実験
	4.2.1	実験方法
	4.2.2	実験結果
	(1)堤内タ	みの水位差が小さい場合34
	(2)堤内タ	やの水位差が大きい場合35
	4.2.3	腹付工を行った場合の被災メカニズムについての考察37
Ш-	-5 まとめと	と今後の課題
	5.1 照到	査手法に関するまとめ
	(1)津波起	変流時における防波堤の安定性
	(2)浸透液	流作用下における基礎マウンドの安定性38
	(3)先行。	する地震動作用時における海底地盤の安定性
	5.2 粘	り強さに関する一考察と今後の課題
	(1)粘り引	強い構造の効果
	(2)考察。	と今後の課題
-	ᅌᅗᄨᅇ	
ш-	- 6 平成 20	 平度以降に新たに明らかとなった事項
	(1) たい	双 $ $
	(1) - (2)	/ / に関く仮力に)/ ()42
		イト13の反透弧・反遊力による又村力の低下について43 由目の北日登い構造に反て東西
	O. ∠ Ŋル (1) 地要~	K 延 V 加 V 速 V 博 理 I ~ I * る 尹 現 ··································
		/ ビックの必要員里の昇足体について * 脳のを、いい非後来去。のなたころについて
	(乙) 越流れ	∧ハルワク ̄ノノ自夜小山へワク打 り込みにフレン (49

Ⅲ-1 本資料の位置付け

本参考資料は、2011年東北地方太平洋沖地震の発生以後に、港湾空港技術研究所により実施さ れた防波堤の耐津波安定性に係る水理模型実験の結果を紹介するとともに、数値解析による水理 模型実験の再現解析の結果等も踏まえた上で、越流を伴うような津波に対する防波堤の耐津波設 計を行う際に特に重要であると考えられる「津波波力の設定」及び「防波堤背後の洗掘対策」に ついて、現段階における知見を取りまとめたものである。

各個別の防波堤の耐津波設計で用いる津波波力や防波堤背後の洗掘対策の検討に際しては、本 参考資料を参考としつつも設計時点での最新の知見に基づき適切に検討を行う必要があることに 留意されたい。

<u> 皿-2 防波堤の耐津波設計の検討の視点</u>

2.1 防波堤の安定性に係る検討

2.1.1 越流時に作用する津波の波力

(1) 基本事項

津波が防波堤を越流する際には、ガイドライン本編(3.4.2(1) a) 直立部に作用す る津波の波力の設定)に示すとおり、直立部には、津波(押し波または引き波)が来襲する前 面側および背面側の側壁、底面、天端面、にそれぞれ水圧が作用する(図Ⅲ-2.1)。防波堤の 直立部の安定性照査にあたっては、これらの水圧の大きさと分布特性を適切に評価し、直立部 に作用する津波の波力を設定する必要がある。

図Ⅲ-2.1 直立部の側壁・天端面・底面に作用する津波による水圧(イメージ)

(2) 津波による水平波力

(a) 水平波力

ガイドライン本編(3.4.2(2)【参考②】防波堤(混成堤)に対する津波波力の算定 手順)では、設計実務上、津波越流時に直立部に作用する水平波力は、図Ⅲ-2.1に示すと おり、前面壁に作用する水圧の水平合力から背面壁に作用する水圧の水平合力を差し引くこ とにより算定できるとしている。この際、前面壁及び背面壁に作用する水圧は静水圧分布と 相似形であると仮定し、静水圧に対する変動率(静水圧補正係数)を考慮した水圧として評 価している。

前面壁および背面に作用する水圧の水平合力をそれぞれ下式(1)と(2)として定義すると、これらの差が津波の水平波力となる。

(前面側に作用する水圧の水平合力)

(背面側に作用する水圧の水平合力)

$$\frac{1}{2} \alpha_r \rho_0 g\left\{ \left(h' + \eta_r \right)^2 \right\} \qquad (\eta_r \le h_c)$$

$$\frac{1}{2} \alpha_r \rho_0 g\left\{ \left(h' + \eta_r \right)^2 - \left(\eta_r - h_c \right)^2 \right\} \qquad (\eta_r > h_c) \qquad \right\} \qquad (2)$$

Ш-2

ここで、 ρ_0 は流体の密度、gは重力加速度である。hは津波前における海底面から静水面までの高さで、hは基礎マウンドから静水面までの高さである。 η_f ならびに η_r は直立壁前面及び背面の静水面からの津波高さと定義し、係数 α_f ならび α_r は、前面側及び背面側における静水圧に対する変動率(静水圧補正係数)と定義する。

図Ⅲ-2.2 防波堤の安定性照査において仮定している津波波力と浮力

(b)検討の視点

直立部の安定性照査において、直立部に作用する津波の水平波力の算定精度が照査結果に 大きな影響を及ぼすと考えられる。

本参考資料では、直立部の前面壁及び背面壁に作用する実際の水圧(又は水圧による合力) が静水圧(又は静水圧による合力)からどの程度の幅をもって変動するのかに着目して検討 を行っている。

(3) 津波による鉛直力

津波越流時に直立部に作用する鉛直力は、図Ⅲ-2.1に示すとおり、底面に作用する水圧 の鉛直合力から天端面に作用する水圧の鉛直合力を差し引くことにより算定できる。

ただし、ガイドライン本編(3.4.2(2)【参考②】防波堤(混成堤)に対する津波波 カの算定手順(その5))においては、上述した鉛直力について、防波堤の浮力を防波堤が完 全に水没した状態として算出し(以下、浮力と呼ぶ)、直立部の安定性照査(滑動、転倒、支 持力)を行ってよいこととしている。

本参考資料では詳細説明は割愛するが、今回対象とした実験条件下では、実験から計測さ れた水圧を用いて算定した鉛直力と上述した浮力は、概ね数%程度の相違しか認められなか った。このため、現時点では、今回の実験条件と類似した条件であれば、直立部の安定性照 査(滑動、転倒、支持力)において、上で定義した浮力を用いてもよいこととしている。た だし、天端を流れる流速による天端面での圧力の変動、基礎マウンド内を流れる浸透流によ る圧力の変動、前面側や背面側の動圧による変動など、実際に作用する鉛直力は状況によっ て変化することから、数値計算や実験による確認をすることが望ましい。

2.1.2 基礎地盤の支持力を低下させる浸透力

(1) 基本事項

防波堤により津波の港内側への流入が遮られると、港内外で水位差が生じて基礎マウンド内に 浸透流が発生する可能性がある。

基礎マウンド内に浸透流が発生した場合、海底地盤の洗掘が発生するだけでなく、マウンド法 肩付近の浸透流による上向きの浸透力がマウンドの拘束圧と剛性・強度を低下させるとともに、 法尻方向への外力も発生することにより、マウンドのパイピング・ボイリング、マウンドの支持 力の低下、越流による直立部背後のマウンドの洗掘が助長される可能性がある。

図Ⅲ-2.3 防波堤堤内外で水位差が生じた場合における外力と被災の概念図

(2) 浸透流によるマウンド支持力の低下

現時点では、基礎マウンド内に浸透流が発生した場合における、マウンドの支持力の低下を照 査する方法は確立されておらず、力学的相似則を十分に考慮した上で模型実験等により検討する ことが望ましい。

2.1.3 直立部を沈下させる先行地震動

(1) 基本事項

地震動は、防波堤基礎の海底地盤を液状化させ、これに伴い、直立部は沈下する可能性があり、 一般の防波堤においては港内静穏度が確保されなくなり、津波防波堤においては津波に対する減 災効果が発揮できなくなる恐れがある。また、天端高が低くなることにより、津波来襲時におい ては防波堤背後が洗掘される恐れが高くなることも懸念される。

(2) 検討の視点

液状化による防波堤天端高の沈下量は、海底地盤の液状化のしやすさに強く影響される。例え ば、神戸港に設置された第7防波堤の海底地盤は、厚さ25mの粘土層が床堀されて、まさ土に置 き換えられ、1995年の兵庫県南部地震においては、数メートルオーダーの沈下が生じたことが知 られている。ここでは、神戸港第7防波堤の断面を参考にして実験用に簡略された断面を用いて、 防波堤の沈下のメカニズムを模型実験によって検討し、地震動の差異が防波堤の沈下量におよぼ す影響を検討する。

2.2 防波堤の粘り強い構造の検討

2. 2. 1 直立部の倒壊メカニズムの検証

(1) 検討方針

釜石港の大水深に設置された防波堤(釜石港湾口防波堤)と比較的水深が浅い場所に設置 された防波堤(防波堤 A)をモデルとし、津波が越流した状態を想定した水理模型実験を行 い、防波堤の倒壊形態を確認し、さらに数値解析により津波越流時における防波堤に作用す る力を明らかにして、これらモデル防波堤の倒壊メカニズムを検証する。

(2) 検討の視点

2つのモデル防波堤について津波来襲を想定した水理模型実験を行い、防波堤(混成堤タ イプ)の倒壊形態を明らかにする。直立部の安定性照査の妥当性を確認するために、計測結 果から算出した津波波力や鉛直力を用いて、滑動・転倒・支持力による照査を行い、照査の 妥当性も確認する。

さらに、直立部目地部の基礎マウンドの洗掘や、越流により直立部直背後の基礎マウンド が洗掘された場合に、直立部の滑動安定性が低下すると考えられる。このため、釜石港湾口 防波堤を対象として、気中における直立部の引張り試験を行い、見かけ上の摩擦係数を指標 として、直立部の安定性が低下する程度を評価する。

2.2.2 直立部の滑動および基礎マウンドと海底地盤の洗掘の対策

(1) 基本事項

津波越流時においては、その津波波力により直立部が滑動したり、防波堤を越流した水塊 により基礎マウンドや海底地盤が洗掘されたりする場合がある。防波堤の背後地盤の洗掘が 進行すると、直立部を支持する基礎マウンドと海底地盤の支持力が低下し、直立部が洗掘さ れた部分に滑落して被災する可能性がある。 越流時における防波堤の不安定化を防ぐためには、防波堤背面に直立部の滑動抵抗力を高 める対策や基礎マウンド及び海底地盤の洗掘を防止するための対策を行うことが必要となる。

(2) 検討方針

本検討における直立部の滑動および基礎マウンドと海底地盤の洗掘の対策は、既設の混成 堤及び消波ブロック被覆堤に対して追加対策を施すことにより、越流時の津波波力による直 立部の滑動および基礎マウンドと海底地盤の洗掘を可能な限り低減させるものである。また、 洗掘の進行を遅らせることにより、越流を伴う津波に対しても可能な限り防波堤が長く倒壊 しないようにするための対策を検討の方針としている。

(3) 基本構造

直立部の滑動および基礎マウンドと海底地盤の洗掘対策の基本的な構造の一つとして、防 波堤背後の基礎マウンドを嵩上げする腹付工が考えられる(図Ⅲ-2.5)。

以下、本実験における断面諸元の基本的な考え方を示す。まず、腹付工の高さについては、 全く知見がないことから、本実験では腹付工の高さを直立部高さの1/3として検討した。ま た、腹付工の材料としては、基礎マウンドに用いられる捨石の利用が考えられるが、捨石の みでは洗掘されてしまう恐れがあることから、被覆工(被覆ブロック等)を腹付工の表面に 設置する構造とした。ただし、越流規模が大きくなると、被覆工が流出し、腹付工の基礎マ ウンドが露出すると、腹付工の洗掘が進展するため、それを少しでも防止するものとして洗 掘防止マットを部分的(主に腹付工の天端面)に敷設した断面とした。

図Ⅲ-2.5 腹付工イメージ図

(4) 検討の視点

ここでは、防波堤Aにおいて、腹付工の有無による実験結果を比較し、津波越流時の防 波堤の安定性に対する効果を検証する。また、腹付工上に設置された被覆材の安定性を確 認するために、腹付工の高さを直立部高さの1/2とした水理模型実験も実施し、津波越流 時の被覆材の飛散状況について確認するとともに、現時点での被覆材の安定性照査に関す る知見について整理する。

<u> 皿-3</u> 安定性照査の方法に関する検討

3.1 模型実験及び数値解析による防波堤の安定性の検討

3.1.1 津波越流時における防波堤の安定性

本節では、防波堤に作用する津波越流時の水平波力について、模型実験と数値計算により 評価する手法を検討する。対象とした防波堤は、防波堤設置位置が大水深である釜石港湾口 防波堤と一般的な断面の防波堤(防波堤 A)とした。

なお、本件等の詳細については、有川ら(2013) 2を参照されたい。

- (1)実験方法と解析方法
- (a) 釜石港湾口防波堤

【気中における直立部の引張試験】

気中において基礎マウンドを作り、水理模型実験で用いた矩形型と台形型の直立部の2ケ ースについて引張試験を行い、直立部と基礎マウンドの間における摩擦係数を明らかにした。 越流時における水平波力の合力の作用高さを考慮して直立部の高さの下から1/3の場所をウ ィンチで引っ張った。

洗掘による摩擦係数の変化を見るため、洗掘を模して基礎マウンドの形状を変化させた(図 Ⅲ-3.1)。洗掘としては、目地洗掘ならびに越流洗掘を考え、これらのケースにおける摩擦 係数を比較した。目地洗掘を想定した実験においては、直立部の両端に円形の穴を掘り、直 立部幅に対する両方の穴の幅の割合(%で表現)により、洗掘状態を評価した。越流洗掘幅 は、引張方向の直立部長さとの比により評価した(表Ⅲ-3.1)。

直立部	目地洗掘幅と直立部幅の比(a/L)	越流洗掘幅と直立部長さの比(b/B)	砕石
	なし	なし	3号,6号
矩形	20%, 30%, 40%	なし	3号
	なし	10%, 20%	3号
台形	なし	なし	3号,6号

表Ⅲ-3.1 引張試験のケース

【水理模型実験】

釜石港湾口防波堤北堤深部には台形と矩形の2断面があり、これらについて、現地の1/20 の縮尺の模型を制作し(図Ⅲ-3.2)、区間70m程度の環流装置を有している幅3.5mの水路 において実験を実施した。防波堤の模型は、図Ⅲ-3.2(b)に示す水路内に設置した。

直立部の高さと質量は、深部の現地断面に合わせて台形が 1.65 m と 4.5 t、矩形が 1.4 m と 4.0 t とし、幅は両方において 1.5 m とした。直立部目地の影響も含めた実験とするため、水 路壁に接する直立部はダミーの直立部とした。ダミーの直立部は、幅を 0.9 m とし、1 m 幅あ たりの質量については、試験用の直立部に比べて倒壊しにくくさせるため単位体積質量を 10%重くした(台形断面と矩形断面の質量をそれぞれ 3.0 t と 2.6 t とした)。直立部の目地幅 は 2.5 cm とした。

(a) 釜石港湾口防波堤北堤深部3区(台形モデル,単位 m)

(b)実験模型全体断面図(矩形モデル,単位 m)

図Ⅲ-3.2 釜石港湾口防波堤の断面図

実験は環流装置の沖側扉(図Ⅲ-3.2(b)の左側)から水を排出し、岸側扉(図Ⅲ-3.2(b)の右側)から吸入することで港内外に水位差を作り、津波による越流状態を擬似的に再現した。ポンプ出力の調整により、可能な限り現地の水位差や水位とあうように設定した。

釜石港湾口防波堤におけるマウンド捨石は、1 個あたり 10 kg から 800 kg 程度で幅広い質量のものを採用しているため、現地の捨石サイズに対応する実験として、砕石3号(現地換算で 600 kg/個程度)を用いた実験と捨石の大きさによる滑動抵抗力の違いや洗掘の違いについて検討するため、砕石6号(現地換算で 10 kg/個程度)を実施した。直立部については、矩形模型と台形模型の2形式を用い、砕石サイズとの組み合わせを考慮し、計3ケースの実験を行った。

それぞれの実験は、水位差を変えて3回ずつ行い、最初の2回は小さい水位でマウンドの 洗掘状態などを調べ、3回目で直立部を滑動させるために大きな水位差をつけた。初期水位 は、全ケースにおいて底面からの水深が3.85mとなるように設定した。防波堤に作用する水 平波力を明らかにするため、直立部の模型の前面・背面・上面に間隙水圧計を設置した。

防波堤の前面および背面に作用する水平波力は、各測点の波圧計によって測定された圧力 を代表面積で積分することで求めた。波圧計から算出した水平波力と水位計で測定し、水位 から静水圧を仮定して求めた水平波力との比率を調べ、静水圧補正係数(*a_f* と *a_r*)として評 価した。

【数値計算】

釜石港湾ロ防波堤における津波越流時の流況および圧力分布を詳細に解析するため、水理 模型実験について CADMAS-SURF/3D(沿岸技術研究センター、2010)を用いた再現計算を 行った。解析サイズは、水理模型実験で用いた水路幅と同じとし、計算格子サイズは、水平 方向及び鉛直方向ともに全領域で5 cm とし、直立部間の目地については 50%の空隙率を有す る格子とした。また、実験結果と整合するよう、基礎マウンドは不透過とした。

直立部は矩形と台形の両方を対象とし、初期水位は実験と同様に 3.85 m とした。流入・流 出境界の流速として 0.025、 0.05、0.075、0.100、0.125、0.150、0.175、0.20 m/s の 8 ケース を設定した。

(b) 防波堤 A の水理模型実験

釜石港湾口防波堤に対して一般的な第一線防波堤の津波来襲時の破壊形態について検討す るため、防波堤A(図Ⅲ-3.3(a))を対象とした実験を行った。モデルは、現地サイズに対 して縮尺1/7.5の大きさとした。試験用の直立部模型の幅は1.5mとし、釜石港湾口防波堤の 実験と同様に、ダミーの直立部模型は、試験用に対して1m幅あたりの質量を10%重くした。 目地は両端に設置し、目地の幅は2.5 cmとした(図Ⅲ-3.3(b))。

防波堤 A の当初設計時における波圧に対する安全率は、滑動が 3.173、転倒が 3.920、支持 力(偏心傾斜荷重)が 2.929 であり、支持力(偏心傾斜荷重)に対する安全性が最も厳しい 断面であった。なお、防波堤 A の基本断面は、地震時における波圧作用時で決まっているた め、これら安全率は余裕のある値となっている。

防波堤Aに関する実験は3ケース行った。

(a) 実断面図

(b) 実験断面図 図Ⅲ-3.3 防波堤 A の断面図

(2) 結果

(a) 釜石港湾口防波堤

【気中における直立部の引張試験の結果】

気中における引張試験を行った結果を図Ⅲ-3.4に示す。直立部が数 cm 程度安定して動き 出したときの摩擦係数として整理した。摩擦係数は、直立部が移動しているときの引張力を 単純に直立部の自重で除した値として評価した。基礎マウンドの状態によって、厳密な摩擦 係数の評価は難しくなるものの、ここでは「見かけ上の摩擦係数」として、単純にこの様な 方法で摩擦係数を求めている。なお、直立部はゆっくりと動いているため、動摩擦係数では ないと考えられる。引張試験は3回又は4回行い、黒点はそれぞれの回のものであり、白抜 きはその平均である。

見かけ上の摩擦係数は目地洗掘幅にも影響を受けるが、越流洗掘幅が大きく影響し、越流洗掘幅/法線直角方向直立部長さが10%程度でも、見かけ上の摩擦係数が25%程度減少した。

図Ⅲ-3.4 見かけ上の摩擦係数と洗掘幅との関係。横軸は洗掘幅と直立部の幅もしくは長さを示している(図Ⅲ-3.1参照)。

【水理模型実験】

実験後の一例を図Ⅲ-3.5に示す。釜石港湾口防波堤の被災後の現地測量結果では、直立 部は基礎マウンド下部まで滑落したものがあったものの、実験では、直立部はマウンドの下 部まで滑落しなかった。また実験中の観察から、越流水塊によって直立部後趾まで到達する ような洗掘は認められなかった。

図Ⅲ-3.6は、全ケースのすべての回における防波堤背面における静水圧補正係数について、0.5 sの移動平均の後に得られた最小値をプロットしたものである(静水圧はWG10で測定した水位を用いて静水圧を求めた)。これより、越流量が増加していくのに従い、背面波圧が静水圧に比べて最大で6%程度減少していた。

図Ⅲ-3.5 実験後の様子(ケース1の3回目)

図Ⅲ-3.6 越流水位(η_f-h_c)と背面における静水圧補正係数との関係

【数値計算】

図皿-3.7は、背面における静水圧補正係数(a,)が防波堤前後の水位差の変化に伴いどの 程度変化するかについて、実験及び解析の結果をプロットしたものである。図中の横軸は、 防波堤前後の水位差(η_f-η_b)を防波背後の基礎マウンドから津波高さまでの水位(背面水位 h_b)で除したものであり(以下、「水位差・背面水位比」という。)、背面水位に対して越流規 模を無次元化した指標である。なお、図中のプロットは、各ケースにおける背面波圧減少率 と水位差・背面水位比の時系列データから、背面波圧減少率が最小になる時刻における水位 差・背面水位比と背面静水圧補正係数(a,)との関係をプロットしたものである。黒が模型 実験、白が数値計算を示している。

全体的には模型実験と数値計算の結果が概ね一致しているものの、水位差・背面水位比が 大きくなると数値計算の方が模型実験よりも ar は小さくなっている(図Ⅲ-3.7)。数値計算 の方が直立部背後壁面における圧力変動が大きく乱れ、越流水塊の着水位置が模型実験より も直立部背面に近かったことから(詳細については有川ら(2013)³⁾参照)、数値計算結果 における波力が実験結果よりも小さくなり、このような結果になったものと推測される。

また、背面静水圧補正係数(α)は89%程度が最小であった。また、必ずしも水位差・背 面水位比が大きくなるに従って低下するとは限っていない。これは、水位差・背面水位比が 大きくなると、越流速度が大きくなり、着水場所が直立部背面から遠ざかることから、背面 水圧に対する影響が小さくなっていくためによるものと推測される。

図Ⅲ-3.7 背面波圧の減少率(静水圧補正係数)と水位差・背面水位比との関係

(b) 防波堤 A の水理模型実験結果

防波堤Aの実験においては、中央の試験用直立部と東側のダミーの直立部が倒壊した。また、基礎マウンドの洗掘は見られなかった。すべてのケースにおいて、直立部倒壊時に支持力の安全率が1.0付近となっていた(**表Ⅲ-3.2**)。

ケース 1 2 3 1.59 1.56 1.50 滑動安全率 転倒安全率 3.98 2.07 1.94 0.95 支持力 (偏心傾斜荷重) 1.10 0.95

表Ⅲ-3.2 実験結果

前面波圧については、全ての実験ケースで、波圧計よりほぼ静水圧から変化がなく、数% に満たないことが確認された。

背面波圧について、直立部背面における波圧と直立部前面および背面の水位差との関係を 検討した。図 Π -3.8に水位と波圧計の位置の定義を示す。前面水位を η_f 、背面水位を η_b 、 背面水位から波圧計までの位置を d_1 とする。 η_f 、 η_b は図 Π -2.2と定義が異なるように見える が、実験では初期水位を擬似的に与えているため、底面からの高さとした。ただし、 $d'=\eta_f - \eta_b$ で考えた場合、物理的には同じとなる。

図Ⅲ-3.9は、d'/d₁と静水圧補正係数の関係を示したものである。そこに釜石港湾口防波 堤の実験ケース3をプロットすると、黒丸のようになり、防波堤Aにおける結果とほぼ同じ 関係を示している。本実験のケースも青丸の程度であった。

今後、様々なケースで調べ、下端線の妥当性、汎用性、メカニズムなどを調べる必要があるが、直立部の背面水深が浅く、かつ、直立部前後の水位差が大きい場合には、0.9を下回る可能性もあることを念頭にいれておく必要がある。一方でそのような場合には、滑動安全率も相当に小さくなることから、現段階においては、減少率を0.9とする。

図Ⅲ-3.8 水位と波圧計の位置の定義図

図Ⅲ-3.9 d'/d1と減少率との関係(拡大図に作図)

3. 1. 2 浸透力作用下における基礎マウンドの安定性

本節では、仮想の防波堤を対象として、遠心模型実験により防波堤堤内外で水位差が作用 した場合における浸透流および動水勾配の挙動を把握して、実験結果に基づいた数値解析に よる再現性を評価し、浸透流がもたらす基礎マウンド支持力の低下の数値解析による評価手 法について検討する。なお、本検討の詳細については、高橋ら(2013)³を参照されたい。

(1) 模型実験と有限要素法解析による再現計算

(a) 実験方法

本研究では、港湾空港技術研究所が所有する大型のビーム型遠心模型実験装置 Mark II⁴⁾ を利用して、防波堤マウンドにおける浸透実験を実施した。遠心模型実験では、遠心加速度 と模型サイズを調整することで、地盤挙動においては、実物と模型の間での力学的相似則を 合わせることができるものの、流体運動においては、層流場と乱流場で相似則が異なること から(**表** Π -3.3)、対象とする現象に合わせた模型を設計する必要がある。本研究では、マ ウンド内が乱流状態にある現象を想定しているため、**表** Π -3.3における灰色部分の相似則 を適用した。ここで、レイノルズ数は 1/N となるが、実物スケールの地盤での動水勾配 *i* す なわち間隙水圧 Δu の分布の再現に主眼を置き、レイノルズ数が再現できないことは許容す ることとした。

		模型 (遠心力場)			
想定する条件	重力(遠心)加速度 g	N	N	N	N
	全体寸法 H	1/N	1/N	1/N	1/N
	土粒子の粒径 D	1/N	1/N	1	1
	間隙水の動粘性係数レ	1	N	1	N
水圧・地盤応力	水圧 u , 地盤応力 σ	1	1	1	1
	動水勾配 i	1	1	1	1
層流	係数 a	N	N^{2}	1/N	1
	平均流速 v	1/N	$1/N^2$	N	1
	浸透の時間 t	1	N	$1/N^2$	1/N
	レイノルズ数 <i>R</i> e	$1/N^2$	$1/N^4$	N	1/N
乱流	係数 b	1	1	1/N	1/N
	平均流速 v	1	1	\sqrt{N}	\sqrt{N}
	浸透の時間 t	1/N	1/N	$1/\ N^{3/2}$	$1/\ N^{3/2}$
	レイノルズ数 R e	1/ N	$1/N^2$	\sqrt{N}	$1/\sqrt{N}$

表Ⅲ-3.3 浸透現象の相似比

※灰色部が本研究で適用した相似比

数値解析の再現性を評価するため、仮想の防波堤を設定して実験を行った(図Ⅲ-3.10)。 実験は、ビーム型遠心模型実験装置 Mark II において行い、遠心加速度は 50g とし、約 115 kN/m²の水圧が生じるよう水位差をつけた。マウンドには 0.011g から 0.58g(実物寸法換算 で 13.75kg~72.5kg)の砕石を用いた。なお、防波堤前後で水位差を発生させて浸透を行う と、直立部側面の水圧と下面に揚圧力が作用してマウンドの支持力を変化させるため、止水 壁を設けて下部から浸透させるよう工夫している。

この浸透実験システムでは、浸透の時間が短く浸透中に水平載荷を行うことが難しかった ため、あらかじめ直立部に水平荷重を作用させることで津波波力に相当する荷重を与えた状 態で浸透を行った。水平荷重は、319、433、548、663 kN/m の 4 段階で作用させた。また、 直立部の背後に押え盛土を設置し、その効果を明らかにした。

なお、基礎マウンド内が乱流状態であることが予備実験で確認されており、**表Ⅲ-3.3**に おける力学的相似関係が満たされていることは保証されている。

図Ⅲ-3.10 マウンド内の過剰間隙水圧

(b) 有限要素法解析による再現解析の方法

上記実験を再現するため、有限要素法解析(以下、FEM 解析)を実施した。FEM 解析に は、小林(1984)⁵⁾を中心にした港湾空港技術研究所のグループが開発したコード GeoFem を 用いた。一般的には、FEM 解析は破壊に至らない地盤の変形問題を解く場合に用いられるこ とが多く、破壊条件に達した有限要素において計算が収束せずに発散してしまうことが多い。 これに対して、GeoFem では仮想的な弾・粘塑性アルゴリズムに基づく計算法(仮想粘性法) ⁶⁾を導入することで、破壊状態に近い条件での計算を可能にし、支持力問題や斜面の安定問題 にも適用範囲を広げている。

FEM 解析による再現結果より、浸透流がマウンドの支持力に与える影響を詳細に調べる。

(c) 実験結果と解析結果

水平荷重が 319 kN/m のケースにおける水圧差が定常となった状態を図Ⅲ-3.11 (a) に示 す。このケースに限らず、マウンドに 0.011g から 0.58g の砕石を用いた実験のすべてのケー スを通して、過剰間隙水圧が止水壁下部でほぼ与えた過剰間隙水圧となっており、マウンド 内では大きく低下していた。これは、マウンド内を浸透する水量が十分にあり、マウンド内 で浸透力が作用することを想定した実験が行えていることを示している。基礎マウンド法肩 付近における *i* は 0.4 程度であった。

解析結果においては、マウンド内の過剰間隙水圧が実験結果と同様の分布を示しており、 さらに、法肩付近の *i* は約 0.4 であった(図Ⅲ-3.11 (b))。この結果より、FEM 解析は実 験を再現できていたものと判断できる。

また、模型実験において壊滅的な支持力破壊が発生したケースについて見ると、直立部の 堤後側下部に堤後側下方に変位する領域が発生し、その領域が法肩付近を堤後側に変位させ た (図Ⅲ-3.12 (a))。数値計算の結果は、模型実験の結果と一致し、実験での支持力破壊モ ードを再現できていた (図Ⅲ-3.12 (b))。

次に、浸透流が作用している場合としていない場合における直立部に水平荷重を作用させた結果の比較を図Ⅲ-3.13(a)に示す。この結果を見ると、基礎マウンド内に浸透流が生じると直立部の水平変位量は大きくなり、23~36%程度の支持力低下が見られた。数値解析においては、実験結果と同様の水平荷重と水平変位量の関係が見られた(図Ⅲ-3.13(b))。支持力は、見かけの粘着力を見込む場合と見込まない場合で異なり、見込む場合においては16%、見込まない場合においては33%であった。模型実験の結果は、数値解析における見かけの粘着力を見込まないケースと整合性が取れていた。

図Ⅲ-3.11 マウンド内の過剰間隙水圧

図Ⅲ-3.12 支持力破壊が生じたケースの挙動

(a) 実験結果

(b) 解析結果

(2) 一般的な断面における有限要素法解析

(a) 計算条件

上記の検討においては、止水壁を設けることで、浸透流が直立部下部から流入するような モデルとしていたが、ここでは、より現実的な断面におけるモデルについて FEM 解析し、 浸透流による支持力低減効果を確認した(図皿-3.14)。さらに、直立部背後側(港内側)に 厚さ2mの押え盛土の設置を設定し、支持力を増すモデルについて解析した。図面左側の直 立部前面側(港外側)の地表面から種々の水圧差で浸透流を発生させて、その状態で直立部 中央部の1節点に水平荷重を作用させ、マウンドが破壊状態に至るまで水平荷重と浸透力を 増加させた。

検討には、GeoFemを用いた。モデルとして、マウンドのみに弾・完全塑性体を適用し、 平均流速 v と導水勾配 i には線形関係を仮定した。前出の実験結果と解析結果の比較より、 解析では、見かけの粘着力を見込まないことで実験の再現性がよくなることから、マウンド のせん断強度に対しては、見かけの粘着力を見込まず、c=0 kN/m²、 $\phi=45^{\circ}$ として計算を 行った。また、浮力を考慮して、直立部の単位体積重量を 14.7 kN/m³とした。

図Ⅲ-3.14 有限要素メッシュ(一般モデル)

(b) 計算結果

図Ⅲ-3.15 は、水位差を 10m とした場合の過剰間隙水圧分布を示している。基礎マウンドの法肩付近の動水勾配 *i* は、押え盛土が無いケースで約 0.33(図Ⅲ-3.15 (a))、押え盛土が 有るケースで約 0.30(図Ⅲ-3.15 (b))であった。このことから、2 m の厚さを行う程度で は、*i* は 1 割程度しか低減できないことが分かる。

支持力破壊を生じさせた後の変形図については、直立部の背後側下部に背後側下方に変位 する領域が発生し(図Ⅲ-3.16 (a)),その領域が法肩付近を堤後側に変位させている。押え 盛土を設置したケースにおいても(図Ⅲ-3.16 (b))、ほぼ同様の変位傾向を示した。

押え盛土が無い場合の結果に注目すると、支持力は水圧差が大きいほど低下して、98 kN/m²の水圧差で26%の支持力低下が見られた(図皿-3.17)。浸透力を作用させることで 低下した。例えば、98 kN/m²の水圧差で、17%の支持力低下が生じた。これは、設計にお いてマウンドの支持力を評価する上で浸透力を考慮することの重要性を示している。押え盛 土がある場合のプロットを見ると、わずか2mの押え盛土であっても、浸透力の有無にかか わらず、支持力が大きく増加していた。押え盛土を設置しても*i*はそれほど小さくならない ことも併せて考えると、押え盛土による上載荷重が支持力の増加に大きく寄与するものと考 えられる。

図Ⅲ-3.17 防波堤前後の水圧差と支持力の関係

3. 1. 3 地震動作用時における海底地盤の安定性

本節では、兵庫県南部地震の際に被災した第7防波堤の断面を参考とした模型を対象に、 当時の観測地震動と南海トラフの地震(Mw9.0)を想定したシナリオ地震動を用いて防波堤 の沈下挙動に関する実験を行った。

なお、本研究の詳細については、大矢ら(2013)7を参照されたい。

(1)実験の方法

本研究では、港湾空港技術研究所が所有する三次元水中振動台を利用して、混成式防波堤 を対象とした模型振動実験を実施した。振動台に高さ 1.5m,幅 4.0m,奥行き 1.5mの鋼製 剛土槽を設置し、土層内に液状化の発生が想定される緩詰め砂地盤を基礎とする防波堤の模 型を製作し、地震力を作用させて実験を行った。

模型の縮尺比 λ (実物スケール/模型スケール) は、20 とした。相似則は地盤を2 層系飽 和材料(間隙水と土粒子骨格)と仮定した時の支配方程式に基づいて導き出された 1g 場にお ける相似則⁸を適用した(表面-3.4)。実験は同じ模型断面において、兵庫県南部地震の際に 記録された地震波形と南海トラフ地震(Mw9.0)を想定したシナリオ地震動の2 ケースにつ いて実施した(表面-3.5)。模型寸法と計測センサー位置については、図面-3.18 に示すと おりである。

パラメータ	実物/モデル	縮尺比
長さ	λ	20.00
密度	1	1.00
時間	$\lambda^{0.75}$	9.46
応力,水圧	λ	20.00
変位	$\lambda^{1.5}$	89.44
加速度	1	1.00
ひずみ	$\lambda^{0.5}$	4.47

表Ⅲ-3.4 各種縮尺比

実験ケース	地震波
Casal	1995年兵庫県南部地震
Case1	ポートアイランド鉛直アレー記録
Caral	南海トラフ地震(Mw9.0)
Case2	シナリオ地震動

表Ⅲ-3.5 実験ケース

液状化層は、水中落下法で飯豊珪砂 6 号を土槽内に投入し、層厚 200mm 毎に締め固めて 相対密度約 50%になるよう作製した(**表Ⅲ**−3.6)。基礎捨石については砕石 5 号を使用し、 気中落下法で作製した。防波堤直立部模型の殻として厚さ 9mm の鉄板で箱形模型を製作し、 気中落下法により土槽内に飯豊珪砂 6 号を投入して中詰を締め固めた。そして、中詰の上に 鉄板を設置して、直立部の重量調整を行った。

図皿-3.18 模型寸法と計測センサーの配置(単位は mm)

項目	材料	作成方法	備考
液状化層	飯豊珪砂6号	水中落下法	相対密度 D ₁ =50%目標
基礎捨石	砕石5号	気中落下法	粒径 20~13mm
直立部鋼殼	鉄板	工場製作	板厚 9mm
直立部中詰	飯豊珪砂 6 号 鉄板	気中落下法	

表Ⅲ-3.6 使用材料一覧表

模型地盤の作製時、液状化層として投入した飯豊珪砂6号、基礎捨石として投入した砕石 5号の重量および投入体積を把握し、密度管理を行った。密度管理から求めた模型の相対密 度を表Ⅲ-3.7に示す。液状化層の作製は相対密度50%を目標に行ったが、実測した相対密 度は49.4% (Case1),50.9% (Case2)となり、概ね目標値に近い模型地盤を作製すること ができた。

実験ケース	項目	相対密度 Dr(%)	飽和密度 ρ_w (tf/m ³)
Cara 1	液状化層(珪砂6号)	49.4	1.959
Case1	基礎捨石(砕石5号)	—	1.967
Case	液状化層(珪砂6号)	50.9	1.962
Case2	基礎捨石(砕石5号)	—	1.963

表Ⅲ-3.7 模型の相対密度

(2)入力地震動

本実験では、Case1 に兵庫県南部地震の観測波形を用いた。ただし、当該防波堤の基礎地 盤であった沖積粘土層は床堀され、まさ土に置き換えられたことから、沖積粘土層下部に位 置する G.L.-32m の NS 成分の観測波形を入力加速度として用いた。

また、Case2の入力地震動については、SPGA モデルを用い南海トラフの地震(Mw9.0) に対する強震動評価した地震動 9のうち、神戸港の地震基盤における PSI 値を近似的に計算 して 50%非超過となる順位付けを行ったものを用いた。ただし、シナリオ波は工学基盤にお ける波形であることから、Case1 同様に G.L.-32m 位置相当の波形を有効応力解析(解析コ ード FLIP)より求めた波形を用いた。さらに、Case1 との沈下量の差異が明瞭になるよう、 加速度振幅を大きくさせ、PSI 値が Case1 よりも 2 倍程度大きくした波形を用いた。

(3) 実験結果

Case1の場合、台加速度(A-01)が最大になる(赤線)と同時に直立部直下から離れたと ころ(P-24)は過剰間隙水圧比が瞬時に1.0となり液状化した。この時、直立部直下の過剰 間隙水圧比は0.5程度であったものの(P-08)、直立部天端は、P-24において液状化が発生 するとともに、急激に大きく沈下した。地震波の主要動が終わるまで直立部は沈下するが、 主要動の後の微小な振動の時も、緩やかではあるが沈下量は増加した。地震動が完全に終了 する頃(青線)、直立部の沈下も止まり、しばらくしてから過剰間隙水圧の消散が始まった。 すなわち、加振終了後の過剰間隙水圧の消散によって、直立部はほとんど沈下しなかった。

Case2は Case1と比べて最大加速度が小さいため、加振後しばらくの間、過剰間隙水圧や 直立部の沈下量は増加しなかった。加振後5秒経った時(緑線)、加速度振幅がやや大きい波 となったとき、直立部直下から離れたところ(P-24)では過剰間隙水圧比が0.5程度上昇し、 直立部は沈下し始めた。加振から7秒すぎた時(赤線)、直立部から離れたところ(P-24)で 過剰間隙水圧比が1.0となり、液状化が発生した。Case1と同様に、直立部直下から離れた ところで液状化する頃、直立部直下において過剰間隙水圧は0.5近くまで上昇した。液状化 が発生した時から、直立部の沈下量は急激に増加した。主要動の後も直立部の沈下量は増え 続けるが、沈下量の増加傾向は主要動の時よりも緩やかとなる。地震動が完全に終了する頃 (青線)、沈下量も停止した。過剰間隙水圧は、加振終了前より消散し始めるが、Case1と同 様に過剰間隙水圧の消散による直立部の沈下量はほとんど見られなかった。

図Ⅲ-3.20 時刻歴応答

基礎捨石の直立部からマウンド法肩までは、海底面と同じ高さまで沈下した。マウンド法 尻から海底面(液状化層地表面)はやや隆起した。地盤のせん断変形により、直立部直下か ら押し出された砂がマウンド法尻から離れたところで、盛り上がりに転じたものと考えられ る。

図Ⅲ-3.21 Case2の残留変形(加振を4回行った後に排水した状況)

3.1.4 まとめ

(1) 津波越流時における防波堤の安定性

気中における直立部の引張試験においては、直立部背後の基礎マウンド洗掘がなければ、 水理模型実験結果と同様に直立部と基礎マウンドとの間における摩擦係数は0.6 程度であっ た。しかし、直立部後趾の下部基礎マウンドが洗掘されると、見かけ上の摩擦係数が大きく 低下し、滑動抵抗が大幅に低下する可能性がある。すなわち、津波が防波堤を越流した場合 に直立部背後の基礎マウンドが洗掘して直立部の滑動抵抗が低下することがないよう、基礎 マウンドの洗掘を防止することは重要である。

さらに、津波が防波堤を越流する規模が大きくなると、防波堤背面の水圧が低下する可能 性が水理模型実験と数値計算により示された。津波による水平力を求める場合には、この影 響を見込むことを検討する必要がある。

(2) 浸透力作用下における基礎マウンドの安定性

防波堤の基礎マウンドに浸透力が作用した場合、基礎マウンドの支持力は低下し、防波堤 前後の水位差が10m程度であるとその低下は2割となる。この影響は、設計において浸透 力を考慮する必要があると考えられる。これに対し、押え盛土は、基礎マウンドの支持力を 増加する効果を有していることが示され、浸透力が作用する基礎マウンドにおいては、効果 的な対策工である可能性がある。

(3) 先行する地震動作用時における海底地盤の安定性

基礎マウンド下の海底地盤が置換層である場合や自然堆積地盤であっても軟弱な砂質土層 の場合には、津波に先行する地震動によるせん断変形や過剰間隙水圧上昇によって置換層は 軟化し、直立部が大きく沈下する可能性がある。

3. 2 照査方法

3.2.1 直立部の安定性照査

直立部の安定性照査については、本編3.4「設計津波」に対する耐津波設計を参照されたい。

3. 2. 2 浸透流を考慮した支持力の安定性照査

津波作用時に防波堤前後で水位差が生じることが考えられる場合、基礎マウンドの支持力 については、基礎マウンド内で浸透流によって低下することが見込まれることを踏まえて、 照査することが望ましい。

しかし、基礎マウンド内の浸透流による支持力低下を評価する方法は、現時点では確立されておらず、この影響を考慮した支持力照査を行う場合は、当面の間、浸透流と弾塑性変形 を考慮した FEM 解析により対応することになる。

将来的に浸透流に伴う支持力低下に関するデータの蓄積が進んだ場合、円弧すべり計算に おいて有効単位体積重量 y 'を低減し、浸透力によるマウンド内の拘束圧低下を仮想的に見 積もる計算方法による照査が可能になることが期待される。また、浸透流解析によって空間 的に分布する浸透力を算定し、その浸透力を外力として円弧すべり計算に入力する計算方法 の開発も期待される。

3.2.3 先行する地震動による沈下量照査

防波堤の海底地盤は、地震動による繰返しせん断によって沈下や隆起等の複雑な変形を生 じる。このような地盤変状を予測するには有効応力を考慮した解析が必要となる。しかし、 有効応力解析は難易度が高いことから、チャート式耐震診断システムを用いて、照査する断 面をスクリーニングし、高度な照査が必要な断面を厳選して、2次元有効応力解析を実施す ることが望ましい。

<u> 皿-4 防波堤の粘り強い構造の検討</u>

4.1 被覆工の水理模型実験

4.1.1 実験方法

防波堤Aについて、被覆材の安定性を確認する実験を行った。腹付高さを直立部高さの1/2、 直立部上部構造は上部パラペット工、とした断面において、越流水塊の着水場所ならびに速 度を制御しながら、被覆材種類の違いによる安定性の違いを確認した。

越流水位を調整し、被覆材上の流速を変えて、数ケースの実験を行った。なお、被覆材に ついては、直立部の目地部には目地からの流水による影響を防ぐため、ほぼ完全に被覆する 方塊ブロックを配置し、それ以外の場所において、越流水に対する被覆材の効果を見るため、 現地換算で2トン程度の4種類のブロックを配置した。ただし、そのうちの1種類(蛇篭) については、重量調整に時間がかかり実験までに製作が間に合わなかったため、1.6トン型と した。

流速計については、直立部背後1m程度が最も流速が強くなることが後で示す数値計算結 果より予測されたことから、ここに設置した。また、設置高さについては、被覆工天端面か ら5、10、20 cm の位置とした。

被覆材の必要質量(*M*、t)については、10 cmの位置での流速を代表流速(*U*、m/s)とし、 これを用いてイスバッシュ式(下式)によって算定した。

$$M = \frac{\pi \rho_r U^6}{48g^3 y^6 (S_r - 1)^3 (\cos \theta - \sin \theta)^3}$$

ここで、ρrは被覆材の密度(t/m³)、gは重力加速度(m/s²)で9.8、yはイスバッシュ定数で 1.08、Srは被覆材の水に対する比重で2.6、θは水路床の軸方向の斜面勾配で0.0である。

図Ⅲ-4.1 被覆材の安定性実験の断面

流速計(被覆天端面からの高さ 5 cm、10 cm、20 cm)
 たあきブロック
 石材の小さい袋詰め

石材の大きい袋詰め

蛇篭(1.6トン型)

方塊ブロック(2トン).目地部を対象

図Ⅲ-4.2 実験断面及び実験方法

4. 1. 2 被覆材の必要質量に関する計算

計算格子を5cmに区切り、水理模型実験水路と同じ大きさにして数値計算を行った。水路 幅も水理模型実験水路と同じ長さとし、目地については50%の空隙率を有する格子として与 えた。基礎マウンドには空隙率を与え、被覆材の部分は不透過にした。ただし、法面につい ては流れを透過させるために、透過性構造物とした。

直立部模型は、「本参考資料Ⅲ-3 3.1.1(1)b)防波堤Aの水理模型実験」と同様とした。初期水位を2.36mとして、水位差を模型実験と同程度となるように調整した。

4.1.3 結果

- (1) 水理模型実験による被覆材の比較
 - (a) 被覆工天端面 10 cm の流速が 1.5 m/s 程度の結果

被覆材は無被害であった。必要質量をイスバッシュ式により算定した結果、模型における被覆材の必要質量は 0.6 kg(現地換算で 0.25 t)となった(図Ⅲ-4.3)。実験で用いた被 覆材の質量は 2 t のため、必要質量と用いた被覆材の質量の比は 0.12 倍程度であり、実験 結果と整合していた。

(b) 被覆工天端面 10 cm の流速が 2.0 m/s 程度の結果

被覆材は無被害であった。必要質量をイスバッシュ式により算定した結果、模型における被覆材の必要質量は 3.4 kg(現地換算で 1.45 t)となった(図Ⅲ-4.4)。必要質量と用いた被覆材の質量の比は 0.7 倍程度であり、実験結果と整合していた。

(c) 被覆工天端面 10 cm の流速が 3.0 m/s 弱の結果

袋詰め材の砕石の軽い被覆材が流されたが、その他の被覆材は安定していた(図皿-4.5)。 必要質量をイスバッシュ式により算定した結果、模型における被覆材の必要質量は25 kg (現地換算で10.9 t)となった。必要質量と用いた被覆材の質量の比は5.3 倍程度であり、 実験結果と整合していた。

(d) 被覆工天端面 10 cm の流速が 3.0 m/s の結果

被覆材は、直立部側から2列を残し、すべて流された(図Ⅲ-4.6)。必要質量をイスバ ッシュ式により算定した結果、模型における被覆材の必要質量は39kg(現地換算で16.4t) となった。必要質量と用いた被覆材の質量の比は8.3倍程度であり、実験結果と整合して いた。

(e) 被覆工天端面 10 cm の流速が 3.0 m/s の結果、継続時間 1 分 30 秒

必要質量をイスバッシュ式により算定した結果、模型における被覆材の必要質量は 39 kg(現地換算で 16.4 t)となった。必要質量と用いた被覆材の質量の比は 8.3 倍程度であっ たものの、越流の継続時間は他の実験より短く、被覆材は流されることはなかった(図Ⅲ -4.7)。

(f) 被覆工天端面 10 cm の流速が 3.0 m/s の結果、継続時間 2 分 30 秒

必要質量をイスバッシュ式により算定した結果、模型における被覆材の必要質量は39 kg(現地換算で16.4t)となった。必要質量と用いた被覆材の質量の比は8.3 倍程度であっ た。(e)の実験より継続時間が長く、結果を比較すると、被覆材の被災状況が異なる(図 Ⅲ-4.8)。なお、蛇篭は他の被覆材よりも安定性が高かった。これは隣の方塊ブロックが 流されなかったことにより、横からの拘束力が強かったためである可能性があるが、詳細 については、更なる検証が必要である。

図Ⅲ-4.3 流速の時系列と実験後の被覆工の様子(上図において、赤線が V7 における水平流速)

図Ⅲ-4.4 流速の時系列と実験後の被覆工の様子(上図において、赤線が V7 における水平流速)

図Ⅲ-4.5 流速の時系列と実験後の被覆工の様子(上図において、赤線が V7 における水平流速)

図Ⅲ-4.6 流速の時系列と実験後の被覆工の様子(上図において、赤線が V7 における水平流速)

図Ⅲ-4.7 流速の時系列と実験後の被覆工の様子(上図において、赤線が V7 における水平流速)

図Ⅲ-4.8 流速の時系列と実験後の被覆工の様子(上図において、赤線が V7 における水平流速)

(2) 計算結果

図Ⅲ-4.9に背後に越流している時の計算状況と流速を可視化したものを示す。越流水塊 がパラペットに沿うように流れていくのがわかる。

図Ⅲ-4.9 計算状況のスナップショット(左:水面形状,右:越流流速)

図Ⅲ-4.10に実験結果と数値計算の水位の比較を示す。図Ⅲ-4.10では数値計算の方が前 面側で水位がやや高く、背面側では数値計算結果の方が、実験結果より水位の変化がやや小 さくなっており、背後の水深が実験よりもやや深くなっている。

図Ⅲ-4.10 模型実験と数値計算の水位の比較

(3) 被覆材の必要重量の算定

被覆材の必要重量の算定方法は、流速からイスバッシュ式を用いるか、被覆層の上下の圧 力差を用いるかが考えられる。図Ⅲ-4.11 に図Ⅲ-4.10 のケースでの、直立部背面における 流速分布のスナップショットを示す。ここで、図面左端(x858)が直立部背面であり、1 格 子のサイズは 5 cm となっている。

越流水塊は直立部背後では大きな渦を伴う乱流となり、安定した流況ではないことがわかる。底面では、x870付近から x880付近(直立部背面からの距離で 0.6 m 付近から 1.1 m 付近) まで、1.5 m/s を越える程度の強い流速が作用していることがわかる。

図Ⅲ-4.12は、実験で得られた各高さにおける流速の時系列との比較である。実験においては、被覆工の天端面から10 cm の場所において速い流れが生じており、高さ5 cm、20 cm ではその半分程度の流速となっている。数値計算では、計算格子サイズが5 cm であることから、被覆工からの高さ2.5 cm、7.5 cm、12.5 cm、17.5 cm、22.5 cm での比較を行ったところ、高さ5 cm では数値計算結果のほうが若干大きく、高さ20 cm では数値計算結果はピークでは等しくなっている。一方で、高さ10 cm では、ピークで比較すると半分以下であり、これは鉛直方向の流速分布の変化の激しさの割に格子サイズが大きいことが主たる要因のひとつではないかと考えられる。また、図Ⅲ-4.13 は方塊ブロックを用いた場合の被覆工が飛散した状況である。被覆工が大きく動かされている場所は数値計算座標で x885~890 付近(直立部背面からの距離で 1.35 m~1.6 m 付近)であり、数値計算結果のほうが直立部背面に近い場所で、最大となっていることがわかる。

このように格子サイズの影響なども踏まえ、現段階においては、シミュレーションの結果 の評価を行うための基礎的な水理模型実験を行っておくことを推奨する。その後、格子サイ ズの特性も踏まえて、様々な断面においてシミュレーションを行い、それぞれの被覆材の重 量を検討するのがよいと考えられる。

実験の被災状況は、2トン型方塊ブロックは、80枚中7枚飛散し、3トン型方塊ブロック は、56枚中7枚飛散し、それぞれ、天端面だけを検査面として考えた場合、被災率は8.75% と12.5%となり、大きくは変化していないことがわかる。また、この程度の被災であれば、 下にある捨石も洗掘されていなかった。このことから、今回の実験断面においては、被災率 を10%程度では、下の捨石が洗掘を受けないことから、天端面の面積に対して局所的に速い 流速が10%程度のものは、周辺の流速を用いても腹付工全体の安定性に影響を及ぼさないと 考え、被覆工の重量を決定するということが考えられる。

最後に、数値計算結果を用いて、被覆工の重量を算定する際に留意する点をまとめる。

- ・越流時における背後流速は、計算格子サイズなど計算パラメタに依存するため、現段階においては、その流速の特性を評価するための基準となる実験を行い、比較検討する。
- ・代表流速としては、天端面付近における最大流速を用いることとして、イスバッシュ式 を適用することで必要重量を算定できると考えられる。
- ・局所的に大きな流速がでた場合、被覆工の下部にある捨石が洗掘されるかどうかで判断 する。本実験においては天端面の面積の10%程度の被災であれば洗掘されなかった。

図 II-4.11 直立部背面における xz 断面流速分布のスナップショット (左上から 80 s 後, 90 s 後, 100 s 後)

図Ⅲ-4.12 各高さの流速計で得られた流速の時系列の比較

図Ⅲ-4.13 方塊ブロック(2トン型,および3トン型)を用いた実験結果

4.2 腹付エの水理模型実験

4.2.1 実験方法

防波堤Aについて、直立部高さの1/3とした腹付工を設け、津波越流時における腹付工の 基礎マウンドおよび海底地盤の洗掘対策効果を検証した。腹付工の高さについては、既往の 知見がないことから、試験的にこの高さとした。被覆材については、4.1で検討した結果か ら、3トンブロックを用いた(図Ⅲ-4.15)。

実験は、港内外の水位差が小さい場合と大きい場合の2ケースを実施し、水位差が小さい 場合は腹付工なしの実験(Ⅲ-3)と同じ条件とした。

図Ⅲ-4.14 実験断面

図Ⅲ-4.15 腹付工及び被覆工配置状況

4.2.2 実験結果

(1) 堤内外の水位差が小さい場合

本実験条件における水位差はおよそ 0.6 m であった (図Ⅲ-4.16)。

同じ水理条件下における腹付工と被覆工が無い断面では、偏心傾斜荷重に対する支持力不 足により、直立部は大きく変位したが(3.1参照)、本実験断面では腹付工の法肩部の被覆 材が流されたものの、直立部本体に全く変位が生じなかった(図Ⅲ-4.17)。

図Ⅲ-4.16 直立部前面(港外側:赤)及び背面(港内側:黒)の水位

図Ⅲ-4.17 実験後の状況

- (2) 堤内外の水位差が大きい場合
- (a) 洗掘防止工の効果について

港内外の水位差が大きい実験条件として、水位差が1.16mとなる実験を行った(図皿-4.18)。この場合、背後の腹付工が洗掘されて断面がやせていき、最終的に一気に直立部が飛 散した(図皿-4.19)。

図Ⅲ-4.18 直立部前面(港外側:赤)及び背面(港内側:黒)の水位

図Ⅲ-4.19 実験後の状況

(b)洗掘防止工の効果について

洗掘防止工の効果を見るため、直立部前面と背面における水位の洗掘防止工の有無による 違いを図Ⅲ-4.20に示す。併せて、直立部前後の水位差と腹付工の水路方向長さの関係も示 す。図Ⅲ-4.20(a)は洗掘防止マットを腹付工の天端面に敷設していないケースで、図Ⅲ-4.20(b)は洗掘防止マットを腹付工の天端面に敷設したケースである。図中の一点鎖線bは腹 付工の天端長さを示している。

実験の結果、両方のケースとも、腹付工の天端長さが徐々に小さく(洗掘量が大きく)なっている時間帯があるが、洗掘防止工を設置していないケースでは、250s付近で急激に小さくなった(洗掘された)(図Ⅲ-4.20(a))。観察によると、直立部は、この時に一気に倒壊した。一方、洗掘防止工を設置しているケースにおいては、徐々に腹付工が消失し(図Ⅲ-4.20(b))、防波堤の倒壊を遅らせることができた。

図Ⅲ-4.20 直立部前後の水位差と腹付工の長さの時系列

4.2.3 腹付工を行った場合の被災メカニズムについての考察

被覆材が流されると捨石部が露出し、徐々に洗掘を受け始める。洗掘防止工が無い場合 では、洗掘し始めると急激に洗掘される可能性が高く、その場合、一気に滑動限界に達し、 勢いよく直立部が飛散する可能性がある(図皿-4.21)。その際、水位差が大きくなること により、直立部の滑動量が何も対策しなかった場合に比較すると大きくなる可能性がある ことには注意を要する。よって、できるだけゆるやかに洗掘される工夫を施し、直立部が 基礎マウンドにじわじわとめり込むようにしていくような構造を作ることが大事である。

図Ⅲ-4.21 最終的な破壊形態

<u> エー5 まとめと今後</u>の課題

5.1 照査手法に関するまとめ

水理模型実験および数値計算によって得られた知見を以下にまとめる。

(1) 津波越流時における防波堤の安定性

釜石港湾ロ防波堤における水理模型実験および数値解析による被災メカニズムの検討から、防波堤前面の静水圧力に対する変動率 (α_f) は 1.05、背面の静水圧力に対する変動率 (α_r) は 0.9 と考えれば、概ね津波越流時における防波堤に作用する水平波力を評価できることが明ら かとなった。

また、天端面において、天端を流れる越流の流速により、圧力の減圧が発生して浮力が上 昇することも考えられるが、今回の実験においては数%として無視することができる程度で あった。直立部下面においても、基礎マウンド内を流れる浸透流や、前面側や背面側の静水 圧の変動により、浮力が変化することも考えられるが、その影響は小さいと考えられた。 (2) 浸透流作用下における基礎マウンドの安定性

津波の来襲により防波堤の港内外に水位差が生じた場合、基礎マウンドに浸透力が作用し て基礎マウンドの支持力は低下し、水位差の程度によっては、基礎マウンドの支持力低下を 設計に見込む必要がある。

押え盛土は、浸透力による基礎マウンドの支持力低下に対して支持力を増加させる効果を 有しており、効果的な対策工である可能性がある。

(3) 先行する地震動作用時における海底地盤の安定性

防波堤の海底地盤が厚い置換層である場合、置換層は、地震動によってせん断変形や過剰 間隙水圧上昇が生じて軟化し、直立部が大きく沈下する可能性がある。津波に先行する地震 動がこのような影響を起こす規模である場合においては、その影響を十分に照査して、津波 作用時の安定性を検討する必要がある。

5.2 粘り強さに関する一考察と今後の課題

- (1) 粘り強い構造の効果
- (a) 腹付工

津波波力に対して直立部が倒壊しにくくするためと、基礎マウンドや海底地盤が洗掘され にくくするために、腹付工は有効である可能性がある。ただし、腹付工の天端は、直立部背 後で越流水の影響を受け易くなることから、腹付工自身を洗掘防止工や被覆工によって防護 する必要がある。

腹付工無しの断面と比較をすると耐力は大きくなるものの、腹付工が一気に洗掘されると 防波堤の滑動に対する耐力が一気に落ちるため、そのような場合、対策無しの断面に比べて 直立部が大きく飛散する可能性がある。従って、洗掘をゆるやかに施す工夫(たとえば、洗 掘防止マット)を施すことで、一気に洗掘されることを防ぐことで、直立部が大きく飛散す ることを防ぐことができると考えられる。そうすることで、腹付工は、洗掘される「時間を 稼ぐ」リダンタンシー効果を有する粘り強さを持つ構造と考えることができる。

(b) 被覆工(腹付工部)

水理模型実験及び数値解析の結果から、被覆工の下面と上面との水圧差が被覆工の安定性 に大きく影響していることが明らかになった。また、被覆工の重量は、CADMAS-SURF等の 数値波動水槽や水理模型実験を用いて腹付工の天端面から斜面部にわたって流速分布を求め、 天端面付近における最大流速を用いて、イスバッシュ式から算定される所要重量と想定され る洗掘形態や当該防波堤に求められる性能を考慮した上で、決定することができる。ただし、 局所的に大きな流速がでた場合、被覆工の下部にある捨石が洗掘されるかどうかで判断する。 本実験においては、天端面の面積の10%程度の被覆工の被災であれば、下部の捨石は洗掘さ れなかった。 (c) 根固工、被覆工(法尻部)、洗掘防止工(腹付工部、海底地盤部)

根固工、被覆工(法尻部)、洗掘防止工(腹付工部、海底地盤部)については、まだ詳細な 検討はなされていない。そのため、それぞれの考え得る留意事項を記載する。根固工につい ては、越流において大きく被災することは無いと考えられるが、目地部に設置されるものに ついては、水位差に比例した流速が発生する恐れがあり、それに対応した重量が必要となる。 被覆工(法尻部)については、法面における被覆工がずれるのを防止する役割を期待できる 可能性があり、4.1に従って越流時における流速に耐えうる重量を設置する。

洗掘防止工(海底地盤部)は、越流水塊が基礎マウンドを越えて海底地盤に到達するよう な場合において必要となる。これに対して必要な長さは、最終的に直立部下部まで到達する 程度の洗掘が生じないための長さを確保するものとする。

(2) 考察と今後の課題

今次津波において、防波堤や防潮堤などの防護施設の多くは、施設を越流後に破堤したも のが多いと考えられており、本ガイドラインで示す水理模型実験においても、その様子は見 て取れる。そのため、越流するまでは、防護施設の機能をほぼ満足し、越流後に急速にその 機能を失ったと推測される。よって、防護施設の粘り強さとは、想定される外力を超えた場 合においても、ある一定程度の防護機能を有するような構造(多重防護を含む)と考えられる。

構造物単体として考えた場合、防護施設のもつ防護機能は、主として変形量に大きく影響 する。たとえば、防波堤は基礎マウンドより滑落するに至れば、その防護機能はほとんどゼ ロに等しくなるため、図Ⅲ-5.1のような防護機能と変形量の関係となると考えられる。

その変形量を引き起こす外力の関係であるが、これは構造によって異なり、腹付工の対策 を施した場合を例にとり、外力と防護機能の関係について考察する。外力として、津波波力 を考えた場合、実験結果から、図Ⅲ-5.2のような3つのタイプの防波堤の外力と変形量の 特性を考えた。①は洗掘防止対策無しの腹付工を施した防波堤、②は腹付工無しの防波堤、 ③は洗掘防止工有りの腹付工を施した防波堤である。③は、今回の実験では結果を得ること ができなかったため、概念的なものとなる。①は、腹付工があっても急激に洗掘が進むこと で、一気に滑動モードの破壊になった事例であり、②は、顕著な洗掘が生じないものの、滑 動安全率が支配的な断面の事例であり、③は支持力破壊が徐々に進むことで、直立部が基礎 マウンドにめり込むものの、腹付工により直立部は、その後ある程度の外力に対しても変形 しないと想定した。いずれのケースも最終的に地盤まで直立部が転倒すると、同等の動きを すると考え、最終的には外力と変形量の特性は同じになっている。なお、実験結果から、① では、耐力は強いものの、②よりも大きく直立部が飛散したことを示している。このように、 外力と変形量の特性をそれぞれの構造ごとに考えることができる。

次に、機能と変形量との関係を重ね合わせると、図Ⅲ-5.3のようになり、そこから図Ⅲ -5.4のような外力と機能の関係が導き出せる。①、②は、機能損失を急激に失うことにな るが、③は、徐々に防護機能が失われていくことがわかる。急激な防護機能損失は、背後地 域における被害を拡大する恐れもあることから避けるべきであり、特にこのような場合では ①よりも②のほうが背後にとって危険となることも考えられる。そのため、③のように徐々 に防護機能が失われるものの、最終的には、相当量の外力に対してもある程度の防護機能を 有するような構造を目指さねばならず、このような特性を明らかにすることで、より粘り強い構造が構築することが今後の課題である。

一方で、構造単体としてではなく、平面的に防護施設の粘りを持たせるようなことも考え られる。これは、重点的に守るべき所を決めることで、「平面的な弱点を作る構造」を作り、 津波のエネルギーをその点に集中させる方法である。現時点の技術においては、たとえば「腹 付工法」を用いた断面と、「腹付工法」を用いていない断面を組み合わせることにより、弱 点をコントロールすることが考えられる。そうすると、釜石港湾口防波堤のように歯抜け被 災となるが、そのようにすることで、想定を越える津波に対してもある程度の防護機能を残 した面的な防護構造を作ることが可能であると考えられる。

図Ⅲ-5.2 外力と変形量の関係の例

図Ⅲ-5.3 外力と変形量と機能を重ねた図

図Ⅲ-5.4 外力と機能の関係の例

参考文献

- 1) 稲富隆昌,善功企,外山進一,上部達生,井合進,菅野高弘,寺内潔,横田弘,藤本健幸, 田中祐人,山崎浩之,小泉哲也,長尾毅,野津厚,宮田正史,一井康二,森田年一,南兼一 郎,及川研,松永康男,石井正樹,杉山盛行,高崎伸彦,小林延行,岡部勝彦:1995年兵庫 県南部地震による港湾施設等被害報告,港湾空港技術研究所資料,No.857, pp.1208-1223, 1997.
- 2) 有川太郎, 佐藤昌治, 下迫健一郎, 富田孝史, 廉慶善, 丹羽竜也: 津波越流時における混成 堤の被災メカニズムと腹付工の効果, 港湾空港技術研究所資料, No.1269, 2013.
- 3) 高橋英紀, 佐々真志, 森川嘉之, 高野大樹:津波による浸透作用下の防波堤基礎地盤の安定 性に関する研究, 港湾空港技術研究所報告, Vol.52, No.2, 2013.
- 4) 北詰昌樹:新遠心模型実験装置の開発と研究への適用,港湾空港技術研究所資料, No.812, 1995.
- 5) 小林正樹:有限要素法による地盤の安定解析,港湾技術研究所報告, Vol. 23, No. 1, pp.83-101, 1984.

- Zienkiewicz, O.C. and Cormeau, I.C.: Visco-Plasticity and creep in elastic solids, a unified numerical solution approach. International Journal of Numerical Methods in Engineering, Vol. 8, pp.821-845, 1974.
- 7) 大矢陽介,小濱英司,野津厚,菅野高弘:海溝型長継続時間地震動に対する砂質地盤上の防 波堤沈下挙動に関する模型実験,港湾空港技術研究所資料,No.1275, 2013.
- 8) Iai, S.: Similitude for Shaking Table Tests on Soil-Structure-Fluid Model in 1g Gravitational Field, Report of P.A.R.I, Vol.27, No.3, pp.3-24, 1988.
- 9) 野津厚:南海トラフの地震(Mw9.0)を対象とした SPGA モデルによる強震動評価事例,地 震工学研究発表会講演論文集,第32巻,pp.872-888,2012.

<u> 皿-6 平成 25 年度以降に新たに明らかとなった事項</u>

6.1 防波堤の安定性に係る事項

- (1) ケーソンに働く波力について
 - (a) 越流時の津波波力(背面波圧係数)について

平成 25 年時点では、実験による検討が不十分であり、特に防波堤の背面水深が浅く、直立 部前後の水位差が大きい場合の背面波圧係数 *a*, がどのような挙動を示すかが不明だった。そ こで、宮田ら(2014)¹⁰は複数の水理模型実験を実施し、背面波圧係数 *a*, が 0.9 より大きく 下がることを示した。

図Ⅲ-6.1 背面波圧係数 *a*rの変化(宮田ら,2014) ここで,*d* はケーソン前面と背面の水位差

(b) 非越流時の消波ブロック被覆堤に作用する波力について

これまでの津波波力に関する検討は直立堤に関するものがほとんどであり、その他の形式 の防波堤に関しては検討が不十分である。丸山ら(2015)¹¹⁰はこのうち、消波ブロック被覆 堤に関する実験を行った。ソリトン分裂波が消波ブロックを被覆していない直立防波堤に作 用すると衝撃波力が発生する場合があり、設計では修正谷本式が使用される。丸山ら(2015) ¹¹⁰は消波ブロックで直立壁を被覆するとこの衝撃力が緩和されることを実験で明らかにし、 消波ブロックを被覆した場合の修正谷本式の波力低減率を以下の式で示した。

図Ⅲ-6.2 谷本式における各変数の定義

 $\eta^* = 3.0a_I$ $P_1 = \alpha \lambda \rho g a_I$ $P_u = 2.2\lambda \rho g a_I$ $h_c/H_D = 0.6$ D場合、 $\lambda = \begin{cases}
1.0
 (a_I/h < 0.15)
 (0.15 \le a_I/h)
 (0.15 \le a_I/h)
 (0.2 = a_I/h)
 (0.2 = a_I/h)
 (0.2 = a_I/h)$

ここに、**n**^{*}は静水面上の波圧作用高さ、arは入射津波の静水面上の高さ、pgは海水の単位体積重量、p1は静水面における波圧強度、puは直立壁前面下端における揚圧力、HDは風波時の設計波高である。

(2) マウンド内の浸透流・浸透力による支持力の低下について

(a) 腹付工を含むマウンドの安定性評価方法と浸透力による支持力の低下について

高橋ら(2015)¹²は、現行基準では腹付工を含むマウンドの安定性評価方法は記述されて いないことから、円弧すべり計算による腹付工の安定性評価手法を提案した。また,10mの 水位差でマウンドの支持力が1~2割程度低下することが分かっており、マウンドが高く、法 肩までの距離が短いなどして支持力の耐力作用比が小さい場合には、浸透力を考慮した安定 性評価を行う。具体的には、当面はGeoFemなどのFEM解析によって、安定性評価を行うこ とを提案した。

図Ⅲ-6.3 腹付工を含むマウンドの安定性評価法

※Slip-Bの照査を行った後に、Slip-Aの照査を行い、両者を満足させる。 ※円弧すべり計算法については、現行設計基準で利用されている簡易ビショップ法を用いる。

図Ⅲ-6.4 FEM による浸透力に対するマウンドの安定性評価の一例

(b)マウンド内の浸透流によるパイピング・ボイリングおよび洗掘

佐々ら(2014)¹³は津波による浸透が越流洗掘を助長すること、及びその効果が特にマウンドの法肩に集中し、ケーソンの不安定化に直接影響することを示した。一方、腹付工は浸透による洗掘を抑制し、ケーソンの安定化に有効にきくことを示した。

図Ⅲ-6.5 浸透流と越流の連成作用によるマウンドの洗掘とボイリング

(c)洗掘直立部を沈下させる先行地震動

大矢ら(2014)¹⁴⁾は、置換砂層を基礎とする防波堤の沈下量が大きくなる可能性がある地 震動指標 PSI 値が大きな海溝型地震動(図-6.6の Case2 波形(大矢ら,2013)¹⁵⁾)を対象に、 沈下抑制工法を検討した。沈下抑制工法として既設防波堤を想定したケーソン直下地盤を改 良しない矢板工法および固結工法に加えて、津波越流に対する洗掘対策として適用される腹 付工について、沈下抑制効果を比較した(図-6.7参照)。地盤改良しない腹付工であっても地 盤の有効上載圧の増加による液状化抵抗の増加により、過剰間隙水圧が上昇する時刻の遅延、 過剰間隙水圧が高い状態の継続時間の短縮により、無対策と比べて沈下量を抑制できること を示した(図皿-6.8参照)。

図Ⅲ-6.6 入力加速度波形(Case1:直下型, Case2:海溝型, 実物スケール)

図Ⅲ-6.8 各断面の鉛直変位と水平変位(実物スケール)

6.2 防波堤の粘り強い構造に係る事項

(1) 被覆ブロックの必要質量の算定法について

防波堤の粘り強い構造に資する工法の1つとして、ペルメックスなどの被覆ブロックによる腹付けマウンド被覆工法が考えられる。三井ら(2013)¹⁶は、有孔型の被覆ブロックであるペルメックスを用いて、津波越流時の被覆ブロックの安定性に関する検討を行った。津波 越流による被災パターンは「めくれ」と「滑り」の2種類が存在するため、両被災パターン について、水理模型実験に基づく安定数算定図を作成した。安定数 N_sを用いることにより、 被覆ブロックの必要質量を算定することが可能である。なお、安定数 N_sはブロックの形状な どの特性の影響を受けるため、ブロック毎に変化するものである。

図Ⅲ-6.9 ペルメックスによる腹付けマウンド被覆工法

【被覆ブロックの必要質量算定式を用いた性能照査の手順】 ※式中の変数の定義は図Ⅲ-6.10を参照。

(a) 水脈打ち込み位置 L の算定

越流水深 h₁、港内側水位からケーソン天端高までの高さ d₁、被覆ブロック天端上水深 d₂ を用いて、水脈打ち込み位置 L を算定する。

$$q = 0.35h_1\sqrt{2gh_2}$$

$$h_2 = 0.45h_1$$

$$u_2 = q / h_2$$

$$x_3 = u_2\sqrt{2(d_1 + h_2 / 2)/g}$$

$$u_{3x} = u_2$$

$$u_{3z} = \sqrt{2g(d_1 + h_2 / 2)}$$

$$L = x_3 + (u_{3x} / u_{3z})d_2$$

(b) 「めくれ」に対する被覆ブロックの必要質量の算定

水理模型実験に基づいて作成した、「めくれ」に対する安定数算定図(図Ⅲ−6.11)を用いて、「めくれ」に対する安定数 *N*_{s1}を算定する。安定数 *N*_{s1}は、*B*/*L* 及び *d*₂/*d*₁の関数となっており、次式で定義される。

$$\frac{h_1}{\left(\rho_r / \rho_w - 1\right)D_n} = N_{s1}$$

ここに、*p*wと*p*rはそれぞれ海水の密度とコンクリートの密度、*D*nはブロック基本長である。 *D*nの3乗が被覆ブロックの体積となるので、被覆ブロックの必要質量は、*D*nの3乗にコンク リートの密度を乗じることによって算定される。

(c) 「滑り」に対する必要斜面長の算定

マウンド法面に越流水脈が打ち込む場合($B/L \leq 1.1$ の場合)は、水理模型実験に基づいて 作成した、「滑り」に対する安定数算定図($\square - 6.12$)を用いて、「滑り」に対する安定数 N_{s2} を算定する。安定数 N_{s2} は、 d_2/d_1 の関数となっており、次式で定義される。安定数 N_{s2} を 用いることにより、必要斜面長 S が算定される。

$$\frac{h_1}{(\rho_r / \rho_w - 1)S} = N_{s2}$$

図Ⅲ-6.10 被覆ブロックの必要質量算定式の変数の定義

 d_2/d_1

図Ⅲ-6.11 「めくれ」に対する安定数 N_{s1} 算定図(ペルメックス)

 d_2/d_1

図Ⅲ-6.12 「滑り」に対する安定数 N_{s2}算定図(ペルメックス)

(d) ペルメックス以外の被覆ブロックの必要質量の算定

被覆ブロックの必要質量を算定するために必要となる安定数 N_sは、ブロックの形状などの 特性の影響を受けるため、ブロック毎に変化するものである。"津波越流に対する防波堤腹付 マウンド被覆ブロックの所要質量算定マニュアル"(漁港漁場新技術研究会,2014)¹⁷⁾では、 統一した実験条件のもと、10社13種類の平型ブロック及び9社12種類の立体型ブロックに ついて、被覆ブロックの必要質量算定式(三井ら、2013)¹⁶に基づき、ブロック毎の安定数 を検討している。なお、安定数の検討においては、安定限界を定義する被災度を 0.3 未満と している。

(2) 越流水脈のケーソン背後水面への打ち込みについて

越流水脈のケーソン背後水面への打ち込み状況は、水脈の自由落下を前提に置くと、ケー ソン天端からの射出速度(水平方向速度)と落下時における重力の影響による鉛直方向速度 から推定が可能である。各成分の速度は、ケーソンの天端港内側越流水位 h₂と水面までの垂 直落下距離からそれぞれ算出される。後者については実験の境界条件として既知の値である が、前者のケーソン天端の港内側越流水位については、その算出方法がケーソン幅 B_cと港外 側水位 h₁の条件により変わるため注意を要する。三井ら(2013)¹⁶は、本間(1940)¹⁸の越 流公式を参考に、以下の式を用いて越流時のケーソン天端からの射出速度を導いている。

$$v_h = q/h_2 = 0.35 \frac{h_1}{h_2} \sqrt{2gh_1}; \qquad h_2 = rh_1$$

ここに、qは越流流量、rは水脈厚比 $r = h_2/h_1$ であり、上式の適用条件は $h_1/B_c < 0.5$ である。 水脈厚比rは、ベルヌーイの定理を用いて $r = 0.42 \sim 0.44$ と求められるが、三井ら(2013)¹⁶⁾は、実験値への適合性からr = 0.45を用いている。

図Ⅲ-6.13 打ち込み位置Lの算出方法模式図

一方、宮田ら(2014)¹⁰は、r<0.5の条件下における以下の水脈厚比の算定式

 $r = 0.43 + 0.324 \times (h_1 / B_c) - 0.5$

を水理実験より経験的に導いている。さらに、宮田ら(2014)¹⁰はパラペットが導入された 場合の条件において、越流水脈の背後水面への打ち込み状況の推定を試みており、検討数の 制限から実施された検討実験の条件下に限定されるものの、一定精度で打ち込み距離や角度、 流速を簡易に推定できる手法を提案している。

参考文献

- 宮田正史,小竹康夫,竹信正寛,中村友昭,水谷法美,浅井茂樹:防波堤を越流する津波の 水理特性に関する実験的研究,土木学会論文集B3(海洋開発),Vol.70, No.2, pp.I_504~I_509, 2014.
- 11) 丸山草平, 髙山知司, 下迫健一郎, 八尋明彦, 鈴木高二朗, 青田徹, 田中真史, 松本朗, 半 沢稔:ソリトン分裂津波に対する消波ブロック被覆堤の津波波力算定法に関する研究, 土木 学会論文集 B2(海岸工学), Vol. 71, No. 2, 2015.
- 12) 高橋 英紀, 佐々 真志, 森川 嘉之, 渡部 要一, 高野 大樹: 津波に対するケーソン式防波堤マ ウンドと腹付工の安定性, 港湾空港技術研究所報告, Vol. 54, No.2, pp.21-50, 2015.
- 13) 佐々真志,高橋英紀,森川嘉之,高野大樹,丸山憲治:津波越流―浸透連成作用による防波 堤の不安定化機構と腹付け効果の検証,土木学会論文集 B3, Vol.70, No.2, 522-527, 2014.
- 14) 大矢陽介,小濱英司,菅野高弘,瀬戸口修造:海溝型地震動に対する防波堤の沈下抑制に関する実験的研究,土木学会論文集 B3(海洋開発), Vol.70, No.2, pp.930-935, 2014.
- 15) 大矢陽介,小濱英司,野津厚,菅野高弘:海溝型長継続時間地震動に対する砂質地盤上の防 波堤沈下挙動に関する模型実験,港湾空港技術研究所資料,No.1275, 18pp, 2013.
- 16) 三井順,松本朗,半沢稔,灘岡和夫:防波堤港内側マウンド被覆材の津波越流に対する安定 性照査方法の提案,土木学会論文集 B2(海岸工学),Vol.69,No.2, pp.I 956-I 960, 2013.
- 17) 一般財団法人漁港漁場新技術研究会自然との共生研究部会異形ブロック専門部会:津波越流 に対する防波堤腹付マウンド被覆ブロックの所要質量算定マニュアル,45 p.,2014.
- 18) 本間 仁:低溢流堰堤の流量係数(第二編),土木学会誌, Vol.26, No.9, pp.849-862(完全 越流時の越流公式), 1940.