



**SEA JAPAN 2016** 

### **INDUSTRY 4.0 IN THE MARITIME SECTOR**

**POTENTIALS AND CHALLENGES** 

Karl Hribernik BIBA - Bremer Institut für Produktion und Logistik GmbH Tokyo, 13<sup>th</sup> of April 2016

## Agenda



- 1. Introduction
- 2. Industry 4.0, Digitalisation, and the Shipyard of the Future
- 3. Cyber-physical Systems in Shipbuilding
- 4. Servitization in Manufacturing and Operation
- 5. Human Interaction with Cyber-physical Systems
- 6. Summary and Outlook



- Federal state of Bremen
- 660 000 inhabitants in Bremen and Bremerhaven
- Important location for the automotive, electronic, steel and ship building industry as well as the aviation and aerospace industry







- Federal State of Bremen
  - 660 000 inhabitants in Bremen and Bremerhaven
  - Automotive, electronic, steel and shipbuilding, aviation and aerospace industries
- University of Bremen
  - Founded in 1971
  - Interdisciplinary and practice orientated studies
  - "University of Excellence"
  - 12 faculties, 137 Bachelor and Master courses
  - 20.000 Students and 290 professorships
- BIBA Bremer Institut f
  ür Produktion und Logistik GmbH
  - Founded in 1981 as the first affiliate institute of the University of Bremen
  - Scientific research institute for engineering in production and logistics
  - Two departments: IPS and IKAP
  - 150 employees





- Relevance of maritime industry for Japan
  - Traditional industry of historic importance
  - Today a leading shipbuilding country, 2<sup>nd</sup> only to Korea
  - Strong competition from the global market
- Current trends in Japanese shipbuilding (Source. http://www.seatrade-maritime.com/)
  - Less focus on standard ships
  - Technically advanced and specialised ships (e.g. FPSOs, LNG tankers, seismic vessels)
  - Energy-efficient and "clean" ships
  - Strategic move away from mass production of standard bulk carriers towards short-series and "one-of-akind"



geschütztes Dokument

und

Vertrauliches

BIBA Alle Rechte vorbehalten.



- Relevance of maritime industry for German manufacturing
  - 400.000 employees
  - 54 billion Euro turnover
  - 40% of inland logistics
  - 60% of export logistics
  - Strong competition from the global market
- Current trends in shipbuilding
  - Less standard ships built in the EU
  - Specialised ships (heavy lifting, specialised and chemical transport, research, cruise, etc.)
  - Trend towards "one-of-a-kind"
- Industrie 4.0
  - German strategy for digitization in the manufacturing sector
  - Prepare German industry "for tomorrow's production"
  - Goal: "Keep Germany a manufacturing country"



### What is this "Industrie 4.0"?





Source: Cognizant, Informed Manufacturing: The Next Industrial Revolution

### Integration of IoT and Production





Cyber-physical SystemsSmart FactoryAutomationHuman-Robot InteractionInternet of ServicesBusiness Models/ServicesInternet of ThingsSource: BITKOM

### Industry 4.0, CPS and Digitization



- Industry 4.0
  - "Industrial production will be characterized by strong individualization of products …
  - in a highly flexible mass production environment, ...
  - integrating customers and business partners in value adding processes to a large extent and ...
  - the integration of production and high level services."
  - Cyber-physical systems
    - Merging of physical and virtual worlds
    - Systems of systems with dynamic borders
    - Context-aware, self-governed, real-time control
    - Collaborative systems, distributed control
    - Human-system interaction
  - Digitization in Industry
    - Connected, intelligent products and manufacturing resources
    - New digital business models harnessing collected data for additional value-added services
    - As-a-service products





### Industrie 4.0 in the Maritime Sector?



- Comparability to other products
  - Engineering, construction, operation and maintenance only partially comparable
  - Lifecycles and services very different
- IT challenges
  - Media discontinuity between disciplines
  - Parallelisation of processes (simultaneous development, manufacture and assembly)
  - Collaborative value chains
  - Computer support tends to raise, not lower, barriers between disciplines
- Degree of successful digitization decides a yard's competitiveness (plmportal.org)
- Applicability of Industry 4.0
  - Individualised products are core to maritime industry
  - Shipbuilding relies heavily on cooperative supply networks
  - ? Transfer of concepts from mass production to one-of-a-kind production
  - ? Innovation of concepts for servitization in the maritime industry





### **CPS in Production Logistics**



- Concepts for improving production logistics by CPS
  - Integration of CPS into products, parts and logistics resources
  - Support for demand-oriented production supply (e.g. "Milkrun 4.0")
  - Holistic synchronisation of material and information flows
  - Automated Kanban approach suitable for mass-production environments – 30% better efficiency
- CPS-based optimization of "high and heavy" logistics processes
  - Tracking and tracing heavy load carriers in harbour environments with Auto-ID and positioning technologies
  - Complimentary inventory strategies
    - Carrier request time reduction
    - Optimisation of traffic flow
  - Magnetic traverse for a faster and safer handling of steel-products in seaports
- Potential for the optimisation of one-of-a-kind production logistics in shipyards



### ML for State Driver Identification in Manufacturing Systems



- CPS-enabled machines and real-time KPIs provide monitoring and control of manufacturing processes
  - In complex, dynamic multi-stage manufacturing processes, inter- and intra-relations between states are very important for the quality outcome
  - However, those are often unknown/hard to detect
- Machine learning methods
  - By describing a product's transformation by a series of 'product states' it is possible to create an accumulating state vector
  - Using SVM based feature ranking the main 'state drivers' can be identified incorporating also implicit inter- and intra-relations
  - Successfully applied to three manufacturing areas (Aircraft, Chemical and Semiconductor)
- Applicability to other areas
- Product lifecycle management
- Maintenance and reliability



© BIBA Alle Rechte vorbehalten. Vertrauliches und geschütztes Dokument

### **CPS-based Preactive Maintenance**



- CPS allow for dynamic adjustment of maintenance process to particular needs under cost-/risk considerations
  - Mining task-relevant information from maintenance-related CPS data
  - Support corrective maintenance tasks by early failure prediction/recognition
  - Components which exhibit a linear wearout curve should be evaluated by costrisk and scheduled e.g. together with other tasks
  - Operative executions of tasks by context and based on multi-criteria aspects
  - On mid-term level a continuous improvement of the system will be enabled
- Increased availability and reliability of production assets and products
- New business models for maintenance servitization









### Industry 4.0 in the Maritime Sector

## Internet Information Services for Servitization

- Parts and servicer suppliers in the maritime industry face challenges in ship operation
  - Logistic challenges of scheduling service personnel visits
    - Spare parts
    - Travel costs
  - High costs of sending personnel for unscheduled maintenance
  - Tracking products using information services e.g. Automatic Identification System (AIS)
    - Suppliers can map their install base to ship **IMO** numbers
    - Products Suppliers can track their installed products via IMO numbers
    - Analysis of ship routes (e.g. via "heat maps") can be used to identify e.g. most frequent ports of call
    - Analysed data can help plan service strategies

| List of registered \ | + register new vessel |                |                  |                            |
|----------------------|-----------------------|----------------|------------------|----------------------------|
| IMO Number           | MMSI                  | Vessel Name    | assigned Project |                            |
| 9167215              | 536004584             | Beech 4        | 51477            | SP Reactivate              |
| 9170078              | 257161000             | Awheim         | 51623            | 🕀 innefinite               |
| 9173305              | 536064582             | Beech 3        | 51518            | S daacavata                |
| 9175420              | 412016000             | Le Min         | 51682            | -Concentratio              |
| 9175432              | 412015000             | Le Ye          | 51683            | 👳 deactivate               |
| 9175456              | 538005214             | Panos Creation | 51551            | Q <sup>1</sup> denica vile |
| 9175468              | 477782000             | Great Motion   | 61552            | P descavale                |
| 9177507              | 412061000             | Le Ding        | 61598            | 50 functions               |
| 9177519              | 412011000             | Le Sheng       | 51599            | (C) descrived              |

- Vessel List AIS Lipdates Vessel Infor Vessel Map

AND Conduction







## Internet Information Services for Servitization

Industry 4.0 in the Maritime Sector

- Parts and servicer suppliers in the maritime industry face challenges in ship operation
  - Logistic challenges of scheduling service personnel visits
    - Spare parts
    - Travel costs
  - High costs of sending personnel for unscheduled maintenance
  - Tracking products using information services e.g. Automatic Identification System (AIS)
    - Suppliers can map their install base to ship IMO numbers
    - Products Suppliers can track their installed products via IMO numbers
    - Analysis of ship routes (e.g. via "heat maps") can be used to identify e.g. most frequent ports of call
    - Analysed data can help plan service strategies

| List of registered \ | + register new vessel |                |                  |                  |
|----------------------|-----------------------|----------------|------------------|------------------|
| IMO Number           | MMSI                  | Vessel Name    | assigned Project |                  |
| 9167215              | 536004584             | Beech 4        | 51477            | SP It disclosule |
| 9170078              | 257161000             | AMItem         | 51623            | 59 timetion)u    |
| 9170305              | 536064582             | Beech 3        | 51518            | S) descrives     |
| 9175420              | 412016000             | Le Min         | 51682            | S-reactivite     |
| 9175432              | 412015000             | Le Ye          | 51683            | *P deactivate    |
| 9175456              | 538005214             | Panos Creation | 51551            | Q daacavale      |
| 9175468              | 477782000             | Great Motion   | 61552            | P-descivule      |
| 9177507              | 412061000             | Le Ding        | 51598            | P duoctivale     |
| 9177519              | 412011000             | Le Sheng       | 51599            | (C.deactive)     |

Vessel List AIS Updates Vessel Info Vessel Ma







## Sensor Data for Hydrodynamic Simulation



- Boat manufacturers face resource problems dealing with hydrodynamic simulations
  - Fact based boat design is hindered by this
  - High Performance Computing Centres can improve the efficiency of the simulations
- Genuine boat operating data is rarely used in the development phase
  - Design is often based on experience and assumptions, not real data
  - Simulations cannot be validated efficiently
- Fortissimo-HighSea combines high velocity data gathering and HPC based simulations
  - Boat usage can be analysed
  - Simulations can be defined and verified
  - Simulations can be run efficiently and quick





## Intelligent, Flexible Robot Control



- The introduction of robotics into shipbuilding processes is hindered by a number of factors
  - Many non-standard parts
  - Heavy parts/complex geometries
  - Non-standard, one-of-a-kind processes and tasks
  - Difficult environments, enclosed spaces
- Requirements for robotics in shipbuilding
  - More intelligent and flexible control
  - Capable of interaction with workers
- Intelligent, flexible robot control
  - Advances in computer vision allow flexible picking and handling of non-standard parts
  - Real-time object-detection algorithms with data e.g. from stereoscopic cameras and laser scanners allow reliable and precise robot control
  - Advanced methods for dynamic camera positioning
- Potential applications: Picking, handling, welding, …





# Symbiotic Safe Human-Robot Interaction



Source: kranendonk.com

- CPS can increase the potential for the use of robots in shipyards
  - Conventionally, robots helpful for repetitive tasks e.g. on production lines
  - Potential for an increase in productivity by enabling robot to work in close proximity or together with workers
- Solutions for safe human-robot interaction
  - Advanced sensor technology and computer vision provide a first layer of safety
  - CPS integrated into work clothes help monitor and predict body and limb movement
  - Intelligent algorithms connected to robot control
  - Touch-sensitive robots can be guided intuitively by workers for precision control of heavy parts in complex processes
- Robots will be true partners of the worker in the shipyard
- More flexible application of robots



,



Conventional safety solution



Symbiotic safety solution



## Hybrid Worlds – Augmented Reality

- Hybrid worlds in production processes
  - Customers can be directly involved with manufacturers and designers in planning and change processes
  - Assistance for workers in production processes
  - Comparison as-is vs. as-built
  - Hybrid worlds for qualification and training
    - AR simulation of difficult, dangerous or costly tasks
    - Faster, more cost effective and realistic training
- Addressing demographic and inter-cultural challenges
  - Intelligent, visual assistance systems are readily understandable by everyone



### Summary and Outlook



- Industry 4.0 has a strong focus on increasing manufacturing flexibility in mass-production sectors
- Despite the unique characteristics of the ship building sector, Industry 4.0 has the potential to transform conventional processes
- It will lead to significant changes for employees, production processes and organizations all areas of manufacturing
- Intelligent assistance systems give employees new scope in the workflow, improve qualification measures and address the future's demographic and inter-cultural challenges (in contrast to CIM)
- Significant advantages can be identified with regards to process efficiency and flexibility
- New services and business models can be built on the use of CPS in the maritime industry
- However, the application of Industry 4.0 needs to be tailored to the specific demands of the industry and its processes – "there is no silver bullet"





### Contact

### Karl Hribernik

Head of Department Intelligent ICT for Cooperative Production

**BIBA** - Bremer Institut für Produktion und Logistik GmbH at the University of Bremen

hri@biba.uni-bremen.de

Industry 4.0 at BIBA:

http://www.biba.uni-bremen.de/industrie4.html

BIBA - Bremer Institut für Produktion und Logistik GmbH an der Universität Bremen

Postanschrift: Postfach P.O.B. 33 05 60 · D-28335 Bremen / Germany Geschäftssitz: Hochschulring 20 · D-28359 Bremen / Germany USt-ID: DE814890109 · Amtsgericht Bremen HRB 24505 HB Tel: +49 (0) 421/218-02 · Fax: +49 (0) 421/218-50031 E-Mail: info@biba.uni-bremen.de Internet: www.biba.uni-bremen.de Geschäftsführer: Prof. Dr.-Ing. K.-D. Thoben