
i-Construction推進コンソーシアム WGについて

Ministry of Land, Infrastructure, Transport and Tourism

i-Construction推進コンソーシアム 組織体制

目的

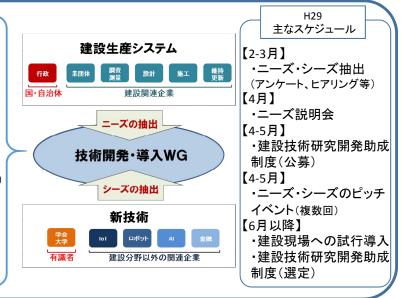
「i-Construction」を推進するため、様々な分野の<u>産学官が連携</u>して、<u>IoT・人工知能(AI)などの革新的な</u> 技術の現場導入や3次元データの活用などを進めることで、生産性が高く魅力的な新しい建設現場を創出

国土交通省: 事務局、助成、基準・制度づくり、企業間連携の場の提供など

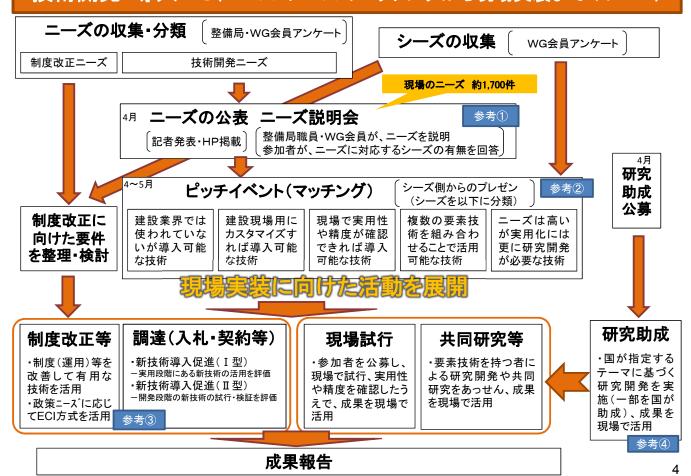
技術開発·導入WG

2

i-Construction推進コンソーシアム 技術開発・導入WG


目的

最新技術の現場導入のための新技 術発掘や企業間連携を促進し、建 設現場の生産性向上を目指す。



活動内容

- ○企業間連携の場の提供
 - 行政ニーズや現場ニーズ、技術シーズの抽出(アンケート、ヒアリング等)
 - ・二一ズとシーズのマッチング (ピッチイベント等の実施)
- 〇技術開発の促進
 - ・国等が指定するテーマに基づく技術 開発 (建設技術研究開発助成制度の活用)
 - ·企業間で技術開発された有用な技術 の普及拡大(現場への試行導入、NETISの 活用等)
- 〇社会実装に向けた制度基準の課題 と対応の整理

技術開発・導入WG(ニーズ・シーズのマッチングから現場実装までのフロー)

i-Construction推進コンソーシアム 技術開発・導入WG

参考(1)

4月20日(木)に実施 ▶ニーズ説明会(イメージ)

最新技術の現場導入を目指し、シーズを有する方々へ行政ニーズや現場ニーズを説明することで、 今後の新技術の提案や開発を促進

困っていること

「施工状況の確認のため現場に行かなけれ ばならないが、なかなか行く時間がなく、 施工者を待たせてしまっている」

現在の方法

監督職員が現場に臨場して出来形を計測

説明者

-ズのある地方整` 備局職員とWG会員

現在の方法の問題点

「施工者が確認した出来形を監督職員が 臨場して再度確認しており、非効率」

期待しているシーズ

「監督職員の目の替わりに映像で確認で きないか?施工者が確認時に撮影すれば 省力化できるはず!」

施工者が出来形を撮影し監督職員へ配信

が必要?

リアルタイムの配 信が必要?

全国に同じニーズ があるの?

試しに現場で撮 影したい!

WG会員等 未登録者には登録を要請

【開催概要】

日時・場所) 平成29年 4月20日 (木) 13時~17時(予) 機械振興会館 B2階 ホール (東京都港区芝公園)

対 象 技術開発·導入WG 会員

内 容 事務所長等・WG会員によるニーズの発表(30件程度)

どの程度の画質

●ニーズ説明会

【ニーズの例】

<調査・測量>

〇地下埋設物の三次元管理に関する技術開発

地中で管理する施設の天端の変化点に「ICチップ(技術開発)」のようなものを取付け、「特殊な機械(技術開発)」で容易に施設の三次元座標を確認する技術

< 設計・施工>

○積算ミスの可能性がある箇所を検出する技術

発注者・受注者において、既発注工事・業務の契約手続き資料よりミスの可能性が高い箇所・部分を機械学習技術等を用いて、自動的に検出することが可能な技術

〇パワーアシストシステムの導入拡大

安全性の向上、省力化による多彩な人材の確保、効率化による休暇の取得を目指し、労働者の作業をアシストするパワーアシストシステムの導入拡大

く検査>

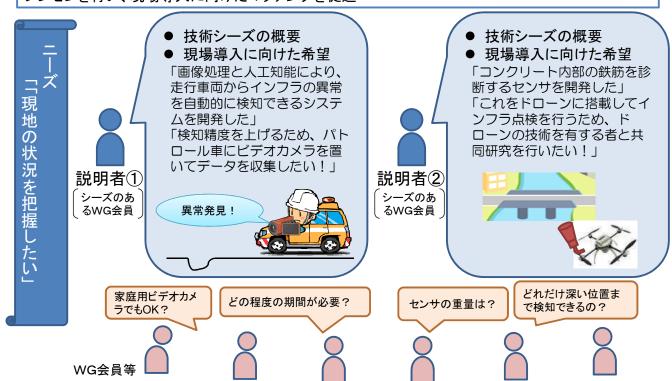
OICT技術活用による工事現場の可視化と遠隔地での確認

3Dデジタルカメラ等による出来形計測を行い、画像毎(計測値を含む)にインターネットでつなぎ、事務所等での段階確認等を実施するとともに、記録として録画し検査に活用する。

く維持管理>

○機械除雪を経験が浅いオペレーターでも実施できるアシスト技術

経験が浅くても、また一人でも、交通状況、道路状況等に応じて機械除雪が的確に実施できるよう、機械側で、車両位置、プラウ等を適切に操作し、オペレータをアシストできる技術


6

i-Construction推進コンソーシアム 技術開発・導入WG

参考②

●ピッチイベント(イメージ) 4月~5月に実施予定

行政ニーズや現場ニーズに対応する技術シーズを有する者が、ニーズを有する者の前で短時間の プレゼンを行い、現場導入に向けたマッチングを促進

●新技術の導入促進を図る総合評価方式等

建設現場におけるイノベーションの推進、生産性の向上及び若手技術者等の確保のため、こ れまでのNETIS活用実績の評価に加え、「新技術導入促進型総合評価方式」を導入

新技術導入促進(|)型

技術提案評価型において、仕様書等にない新技術を活用する提案を求め、当該工事内容の品質向上、工期短 縮等の効率化の実現性、有効性について評価する。【実用段階にある新技術を対象】

新技術導入促進(||)型

技術提案評価型において、上限額(入札価格の数%程度)を示したうえで、主として実用段階に達していない新 技術の活用、または要素技術の検証のための提案を求め、当該工事の品質向上等の他に公共工事に及ぼす 影響等について検証する。【研究開発段階にある新技術を対象】

技術提案·交渉方式(ECI方式)型 の活用

大規模構造物を対象とした工事については、新技術活用分野が多岐にわたることから、設計段階から施工会 社より技術提案を行うことにより、工法、材料等についても新技術の導入を促進

【イメージ】

工法や材料等の選定、施工や維持管理時にも活用できるデータモデルの検討に際し、施工会社から視点・技術・ ノウハウを提案

8

i-Construction推進コンソーシアム 技術開発・導入WG

参考(4)

●建設技術研究開発助成制度について

制度概要

国や地域の諸課題(生産性向上、社会インフラの老朽化、少子高齢化等)の解決に資するための技 術開発テーマを国土交通省が示し、そのテーマに対し民間企業や大学等の先駆的な技術開発提案を 公募し、優れた技術開発を選抜し助成する競争的資金制度

平成29年度 実施内容(素案) ※検討途中のため今後変更となる場合があります。

【テーマ設定方針】

建設現場の生産性向上のためのi-Constructionの推進に資する技術開発

【対象】

- 大学等の研究機関の研究者
- ・研究を主な事業目的としている特例民法法人、一般社団法人、一般財団法人、公益社団法人 及び公益財団法人等、または当該法人に属する研究者
- ・民間企業等または当該法人に所属する研究者

【交付額・期間】

年度上限 1,000万円程度 1~2年

【スケジュール】

4月中旬 公募内容決定,公募開始

5月末 公募〆切り

6月 審查•選定

3次元データ流通・利活用WG

10

i-Construction推進コンソーシアム 3次元データ流通・利活用WG

目的

3次元データの流通のためのデータ標準やオープンデータ化により、シームレスな3次元データ利活用環境整備、新たなビジネス創出を目指す。

活動内容

- 〇3次元データ集積・利活用に関する 調査
 - ・民間が保有する集積可能なデータの 抽出(アンケート、ヒアリング等)
 - データ利用のニーズの抽出 (アンケート、ヒアリング等)
- 〇利活用方針の意見交換
 - ・データ利活用方針に関する情報共有、 意見交換
- ○3次元データの流通・利活用の促進 に向けた課題と対応の整理

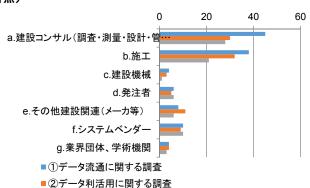
利活用ニーズ3次元データ流通・利活用WG **集積可能なデータ**◆ 集積・利活用ルール構築 ◆ オープンデータ化 ◆ データ共有プラットフォーム構築

H29 主なスケジュール

【2-3月】

- ・集積可能なデータ・利活 用ニーズに関する調査 (アンケート、ヒアリング等)
- 【3月】
- •意見交換会
- 【7月以降】
 - データ利活用方針 (ver.1)の策定

・タ流通・利活用に関するアンケート調査結果(全体)

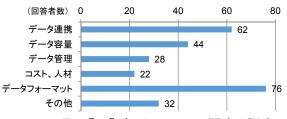

■ 目的

・3次元データ等の流通の実現(オープンデータ化含む)のため、アンケート(以下3項目)を調査することにより、データ利 活用環境の整備検討、推進に役立てる。

■ アンケート項目

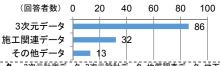
- ・項目①「データ流通に関する調査」
 - →建設分野におけるデータ流通(測量、設計、施工、点検等の各工程内または各工程間でのデータ共有、他関係者と のデータのやりとり等)に関する現状や課題について記載
- ・項目②「データ利活用に関する調査」
 - →建設分野におけるデータ利活用(共有されたデータの具体的な活用シーン)に関する保有データや想定ニーズに ついて記載
- ・項目③「データ流通・利活用の技術やシステムに関する調査」 →データ流通・利活用に資する回答者の保有する技術やシステムついて記載
- 回答受領数(アンケート配布は3次元データ流通・利活用WG登録会員658社(3月22日時点)が対象)
 - ・項目①、②、③合計で132社、283件の回答を受領(3月22日時点)

回答項目	回答者数	内訳(業種別)
項目①データ流通に関する調査	114	8. 建設コンサル(調査・測量・設計・管理): 45 8. 施工 :38 6. 建設機械 : 4 6. 発注者 : 6 6. その他建設関連(メーカ等) : 8 1. システムペンダー : 10 6. 業界団体、学術機関 : 4
項目② データ利活用に 関する調査	94	a. 建設コンサル(調査・測量・設計・管理) :30 b. 施工 :32 c. 建設機械 : 3 d. 発注者 : 5 e. その他建設関連(メーカ等) : 11 f. システムペンダー : 9 g. 業界団体、学術機関 : 4
項目③ 技術やシステムに 関する調査	75	a. 建設コンサル(調査・測量・設計・管理) :28 b. 施工 :21 c. 建設機械 : 1 d. 発注者 : 6 e. その他建設関連(メーカ等) : 6 f. システムペンダー : 10 g. 業界団体、学術機関 : 3


■③データ流通・利活用の技術やシステムに関する調査

12

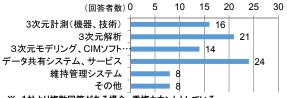
データ流通・利活用に関するアンケート調査結果(アンケート項目別)


アンケート項目①「データ流通に関する調査」

・データ流通を実現するための課題要素に分類し整理

アンケート項目②「データ利活用に関する調査」

・利活用データ種類別に分類し整理



- 3次元データ・・・3次元計測データ、3次元設計データ、地質調査データ、地下埋設物データ、地形

データ、山来形データ、CAD等に用いる3次元部品データ 等 施工関連データ・・・・loT関連(重機稼働データ、作業員稼働データ、地盤監視データ)、機械、作業員 の施工履歴伝票、帳票類(生コン等)、カタログデータ(コンクリート、機器諸元等)

アンケート項目③「技術やシステムに関する調査」

・技術・ソリューション分野別に分類し整理

※ 1社より複数回答がある場合、重複カウントとしている。

課題要素	主な意見
データ連携	・データ共有におけるルール、取決め策定が重要
	・データ共有における環境、リテラシー等の差異の解消が必要
	・データ共有推進におけるセキュリティ等障壁への対応
データ容量	- 容量が大きいため共有の手間、時間がかかり、またツール制約がある
	・端末に高スペックが要求される(共有元、共有先双方)
データ管理	- 情報の精度、粒度が統一されていない
	・データに持たせる管理、検索項目の整理、制定、真正性の担保が必要
	・データの加工履歴(追跡性)、最新データの判別ができる仕組みづくりが重要
コスト、人材	・ハードウェア、ソフトウェアが高額 ・データ作成に手間と費用がかかる
	・3次元データを扱えるよう現場人材の育成が必要
データ フォーマット	・各種データのフォーマット統一が重要
	-LandXMLを用いる際のデータ交換の再現性に懸念あり
	・データ変換に伴う手間が発生している。・中間ファイルの整備(IFC等)が重要
	- CIMの部品ライブラリ共用の仕組みづくりが重要

データ種類	主な活用シーン
3次元データ	・測量、設計、施工におけるデータ共有による前工程の確認 ・見積、積算の迅速化、正確性向上・3次元部品共用によるデータ作成効率化 ・現状データからの復元設計や解析への活用 ・点群データ比較による構造物損傷レベルの数値化 ・施工管理記録、施工後の品質、出来形情報の追跡 ・地下理説物(水道、ガス管)情報、股備設計図の電子化・地盤モデルの公開 ・工事範囲の周辺を含めたデータ確認による仮設計画立案の効率化 ・可視化把握による建設関係者外への活用(住民など)
施工関連 データ	- 過去の調査済情報の共有、現地、現物確認の削減 ・定型業務(受発注者間紙確認)の簡略化・機器重機と作業員の接触事故防止 ・計測データの地すべい整視等、防災活用・ロボット化による安全性向上 ・人工知能の活用による作業確度向上、効率化
その他データ	·UAV等の静止画、動画の災害発生時の活用 ·防災計画の立案

技術分野	主な内容
3次元計測(機器、技	・UAV、レーザスキャナによる地形データ取得
術)	・移動体計測による3次元計測、環境シミュレーション
3次元解析	・マシンコントロール ・地盤、地質解析ソフト
	・出来形、出来高等算出支援ソフト・可視化、3Dプリンタによる物理立体化
3次元モデリング、	統合型シミュレーション、モデリングソフト
CIMソフト	・2次元データからの3次元データ作成、データ変換
データ共有システム、	・建設分野特化型サービス(出来形管理、帳票共有等)
サービス	・大容量ファイル共有サービス・3次元データビューワ
維持管理システム	・一元管理ソフトウェア(構造物経年変化、面的構造物(道路等)、台帳など)・
	劣化予測、修繕支援ソフトウェア
その他	・IoTを利用した安全管理、健康衛生管理・セキュリティ確保、改版管理技術・
	3次元モデリングの人材育成、アウトソース