シップ・オブ・ザ・イヤー2016

船名: DRIVE GREEN HIGHWAY

建造会社: ジャパン マリンユナイテッド 株式会社

特集

世界と戦う船造り

~海事生産性革命 (i-Shipping) の推進~

海上を行き交うさまざまな船……港の近くに行った際に目にすることも多いでしょう。 国土の四方を海に囲まれたわが国において、輸出入貨物輸送の99%以上が海運です。 わが国は世界第2位の海運大国、そして世界第3位の造船大国です。海事産業は、私 たちの生活・経済を支える重要な産業であり、今後もさらなる成長が見込まれています。

国土交通省では、平成28年より「海事生産性革命 (i-Shipping)」として、船の開発・設計、建造から運航に至るまでの全ての段階で ICT (情報通信技術) を活用し、海事産業の生産性向上を強力に推進しています。

i-Shipping の詳細、そして海事産業を支える人材育成など、現在進行中の施策について紹介します。

シップ・オブ・ザ・イヤー2015

小型貨物船部門賞

船名:なとり

建造会社: 旭洋造船株式会社

論 総

開くi-Shipping

●造船業は日本経済を支える重要産業 の一つ。

- を向上させる [i-Shipping] を強力に CTを取り入れ、海事産業の生産性 建造から運航に至る全ての段階で「 「海事生産性革命」では、船舶の開発
- 自動運航船の実現や造船業を担う人 材確保・育成も推進

発・建造から運航に至る全ての段階にICT では、IOT (あらゆる物がインターネットを 力強化や品質・サービスの向上などを目指し を取り入れ、 などの最新テクノロジーを活用し、船舶の開 サービス) やビッグデータ、AI (人工知能) 通じてつながることによって実現する新たな 産性革命 (i-Shipping) J です。 [i-Shipping. 策として、平成28年に発表されたのが「海事牛 国際競争力を飛躍的に高めるための新たな政 激しい国際競争の中で戦う日本の造船業の 船舶の開発・建造のコスト競争

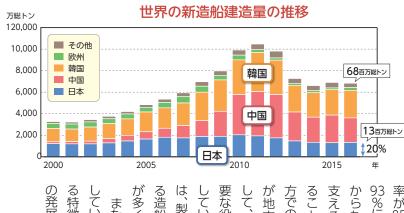
平成28年6月に発表された交

目指すi-Shipping 日本の造船業の競争力向上を

では韓国、 を続けてきた造船業。現在も新造船の建造量 明治以来、わが国の主力産業として発展 中国に次いで世界第3位の規模を

CTの活用で、革新的な船舶建 争力向上を図っています。 化を促し、わが国の造船業の競 造技術の開発やシステムの実用 最重要課題です。そうした中で 代の要請に応える技術革新が 際競争力を強化するため、 を続ける世界の造船市場におい 誇っています。 中長期的に拡大 [i-Shipping] では、最先端のT 将来にわたってわが国の国

> 育成」を重要課題として挙げています 国内立地の産業として


ける造船のイノベーション(技術革新)」と「人材

わが国を支える造船業

93%に達しています。この数字 る造船の生産高シェアの高い町 は、製造業全体の生産高に対す 要な役割を担っていることを示 が地方に根ざした地場産業と 方での生産比率の高さは、造船 支える重要な産業の一つであ からも、造船は日本の経済を 率が85%、地方での生産比率が しています。とりわけ西日本に ることが分かります。特に地 して、地域経済や雇用の面で重

の発展を背景に、2000年代 る特徴があり、グローバル経済 しているときは船の需要も増え また、一般に世界経済が成長

いて」では、「一般商船分野にお 生のために推進すべき取組につ による造船の輸出拡大と地方創 産業の生産性革命 (i-Shipping) 通政策審議会による答申、「海事

現在わが国の造船業は、国内での部品調達 が多く存在します。

目標

航

i-Shipping(Operation) 顧客(海運) にとって 高付加価値化

燃料のムダ使い撲滅

船の不稼働をゼロに

i-Shipping(Production) IoTを活用、

ト・シップヤードへ進化

現場生産性50%増 1989年: 68 億トン/人 2014年:170 億トン/人 2025年:250 億トン/人 (1人あたり建造量)

開発•設計 i-Shipping (Design)

新船型投入を最速で

船の省エネ性能 20%優位を維持 開発期間を半減

や生産管理能力を有しており、 の生産性を誇っています。

比較すると、日本は韓国の1・2倍、中国の6

倍を誇り、日本造船業は高い技術力

世界

造船業の生産性 (一人あたりの生産量)を

現在は約2%(世界第3位)となっています。 50%を占めていましたが、韓国や中国の台頭で

日本の国際競争力を高める

次の3つの具体的な取り組みが設定 されています。 答申に示されたi-Shippingには

開発・設計の効率化で 新しい船の開発をスピードアップ i-Shipping (Design

能評価の国際基準化を進める また、数値シミュレーションによる性 アップして、開発期間を半減させる。 新型船舶の開発・設計スピードを

生産性の向上を支援 建造設備のスマート化や i-Shipping (Production

や効率化を促進する。 造船ドックなどの設備のスマート化 革新的生産技術の開発支援を行う。 IOTや自動化技術を活用した

2025年の

シェア3割を獲得

3つの分野の展開を通じて

技術開発を支援 目動運航船の

99・6%を占め、

海上輸送は、

貿易量の 日本の経

要な輸送インフラです。 高いサービスの両立が求め 国際競争の中で低迷してお が船で運ばれています。 る産業基礎物資も、約8% セメント、機械を始めとす 済基盤を支えるもっとも重 た国内貨物のうち、鉄鋼や 省コストと付加価値の 方、海上運賃は激しい ま

© i-Shipping (Operation) 海運会社にとって付加価値の高い 運航システムの実現

長期的に今後も着実に伸びていく産業といえ に世界の船舶建造量は拡大しました。造船業は

日本の造船業の世界シェアはピーク時には

的で安全な運航体制を実現する ドバンドの導入で、陸とのリアルタイム交信 船の不稼働をゼロにする。 全」を実現し、燃料の無駄使いや故障による IOTを活用して、 航行データの共有・分析による、 「故障する前の予防保 また海上ブロー

※各分野の事例は6ページ以降で紹介します。 獲得することを目指しています ることで、2025年には世界シェアの3割を 現し、わが国の造船・海運の国際競争力を高め 航に至る全ての段階の高品質化・高効率化を実 これらの施策により船舶の開発・建造から運

> 円、平成29年度は1億3000万円の補助金を 用した技術開発に取り組む民間企業に対する られる中で、画期的な取り組みが自動運航船の 交付しました。 支援を実施しており、平成28年度は7000万 技術開発です。 国土交通省では、情報通信を活

ダーシップの獲得を目指しています。 舶工業が一体となった日本の優位性を生かし ます。 世界トップレベルの海運業、造船業、船 最先端研究や制度対応を積極的に推進してい 主導での国際基準の策定など、将来を見据えた また自動運航船のための技術開発、 自動運航船の分野における国際的なリー わが国

次の世代を担う 八材の確保•育成を推進

が高まり、造船業が集まる地域の工業 であり、造船系学科の創設を求める声 校にまで減少しました。優秀な若手人 いた造船教育を行う高校は、 の作成などを進めています 養成プログラム、造船学科向け新教材 また、造船の専門教育を行える教員の 高校で造船コースが新設されています。 材の確保は造船業界でも重要な課題 昭和40年代に全国に20校存在して

える人材育成に取り組んでいます。 るみで人材育成を可能にする産学ネッ トワークを構築し、造船業の発展を支 によるインターンシップなど、 地域ぐ さらに、地域の中小造船会社の連携

