AA2023-7

AIRCRAFT ACCIDENT INVESTIGATION REPORT

Japan Transocean Air Co., Ltd. J A 0 7 R K

October 26, 2023

The objective of the investigation conducted by the Japan Transport Safety Board in accordance with the Act for Establishment of the Japan Transport Safety Board and with Annex 13 to the Convention on International Civil Aviation is to determine the causes of an accident and damage incidental to such an accident, thereby preventing future accidents and reducing damage. It is not the purpose of the investigation to apportion blame or liability.

TAKEDA Nobuo Chairperson Japan Transport Safety Board

Note:

This report is a translation of the Japanese original investigation report. The text in Japanese shall prevail in the interpretation of the report.

《Reference》

The terms used to describe the results of the analysis in "3. ANALYSIS" of this report are as follows.

- i) In case of being able to determine, the term "certain" or "certainly" is used.
- ii) In case of being unable to determine but being almost certain, the term "highly probable" or "most likely" is used.
- iii) In case of higher possibility, the term "probable" or "more likely" is used.
- iv) In a case that there is a possibility, the term "likely" or "possible" is used.

AIRCRAFT ACCIDENT INVESTIGATION REPORT

CABIN CREW MEMBER INJURY BY SHAKING OF THE AIRCRAFT JAPAN TRANSOCEAN AIR CO., LTD. BOEING 737-800, JA07RK AT AROUND 11,300 M (FL 370) ABOUT 56 KM SOUTHEAST OF MIHO AIRPORT AT ABOUT 12:55 JST, OCTOBER 3, 2022

October 6, 2023

Adopted by the Japan Transport Safety Board
ChairpersonTAKEDA NobuoMemberSHIMAMURA AtsushiMemberMARUI YuichiMemberSODA HisakoMemberNAKANISHI MiwaMemberTSUDA Hiroka

1. PROCESS AND PROGRESS OF THE AIRCARFT ACCIDENT INVESTIGATION

1.1 Summary of	On Monday, October 3, 2022, while a Boeing 737-800, JA07RK, operated	
the Accident	by Japan Transocean Air Co., Ltd., was flying from Naha Airport to Komatsu	
	Airport, the aircraft was shaken, causing a cabin crew member to sustain an	
	injury.	
1.2 Outline of the	On October 7, 2022, upon receipt of the notification of the accident	
Accident	occurrence, the Japan Transport Safety Board (JTSB) designated an	
Investigation	investigator-in-charge and two other investigators to investigate this accident.	
	An accredited representative of the United States of America, as the State	
	of Design and Manufacture of the aircraft and engine involved in this accident,	
	participated in the investigation.	
	Comments on the draft Final Report were invited from parties relevant to	
	the cause of the accident and the Relevant State.	

2. FACTUAL INFORMATION

2.1 History of the	According to the statements of the flight crew members and cabin crew	
\mathbf{Flight}	members as well as the records of the Quick Access Recorder (QAR), the history	
	of the flight is summarized as below.	
	On October 3, 2022, at 11:22 Japan Standard Time (JST: UTC + 9hrs,	
	unless otherwise stated all times are indicated in JST on a 24-hour clock), a	
	Boeing 737-800, JA07RK, operated by Japan Transocean Air Co., Ltd., as a	
	scheduled flight 36 of the Company, with 106 people on board, consisting of the	
	Pilot in Charge (PIC), five other crew members, and 100 passengers, took off	
	from Naha Airport (see Figure 1).	
	In the cockpit of the aircraft, the PIC sat in the left seat as PF^{*_1} and the	

*1 "PF" and "PM" is a term for identifying a pilot from role sharing in an Aircraft controlled by two people, PF stands

for Pilot Flying, mainly manipulates the Aircraft and PM stands for Pilot Monitoring, mainly performs monitoring of flight condition of the Aircraft, and makes cross check of operation of PF and operations other than maneuvering.

^{*2 &}quot;FL" is the altitude expressed as a numerical value obtained by dividing the altimeter instruction (unit: ft) when the altimeter setting value is set to 29.92 inHg at the pressure altitude of the standard atmosphere by 100. Flight levels are usually used in flight altitudes above 14,000 ft in Japan. As an example, FL 200 represents altitude 20,000 ft.

Figure 2: Location of Cabin Crew Members at the Time of the Accident

At about 12:55, when Cabin Crew A came to the aisle, the aircraft encountered significant shaking, being shaken from left to right (lateral tremor) again (hereinafter "the 2nd Shaking"). Due to this shaking, after hitting the wall on the left side of the aisle, Cabin Crew A was about to be thrown to the right side. Cabin Crew A grabbed the headrest of a passenger seat on the left side so as not to fall down to the right side, stood the ground with the right foot, and avoided falling down (see Figure 3).

Figure 3: Cabin Crew A's Situation at the Time of the Accident (Image Based on the Statement)

Immediately after the 2nd Shaking occurred, again the seat belt sign was turned on, therefore, Cabin Crew A returned to the aft galley and took the attendant seat. When having stood the ground with the right foot, Cabin Crew A felt something wrong with the right foot, but judged that it would not have any problem to respond to an emergency and continued the duties. The aircraft continued the flight, and landed at Komatsu Airport at 13:28.

After the aircraft arrived at Komatsu Airport, the chief cabin crew and Cabin Crew A confirmed that Cabin Crew A was still able to fly. Then all the pilots and cabin crew of Flight 36 continued their work, and the aircraft departed for Naha Airport as Flight 37.

Feeling continuously discomfort in the right foot on duty in Flight 37, Cabin Crew A reported to the PIC before the aircraft's arrival at Naha Airport that Cabin Crew A felt something wrong when having stood the ground with the right foot at the time of encountering shaking on the previous flight, and continued to

	feel it.	
	Cabin Crew A was examined at a medical facilit	y the next day, on October
	4, 2022 to be diagnosed with a "suspected right polles	x pedis sesamoid fracture."
	On October 7, 2022, Cabin Crew A received a medica	al examination again to be
	diagnosed with a "right pollex pedis sesamoid fracture	e."
	This accident occurred at about 12:55 on Octobe	er 3, 2022, at an altitude of
	about 11,300 m (FL 370) about 56 km southeast o	of Miho Airport (Latitude
	35°10'30"N, Longitude 133°41'58"E).	
2.2 Injuries to	Cabin Crew A was seriously injured (a rig	ht pollex pedis sesamoid
Persons	fracture).	
2.3 Damage to the	None	
Aircraft		
2.4 Personnel	(1) Pilot in command: Age 54	
Information	Airline transport pilot certificate (Airplane)	July 17, 2007
	Type rating for Boeing 737	June 27, 1997
	Class 1 aviation medical certificate	
	Validity	July 10, 2023
	Total flight time	19,217 hours 14 minutes
	Total flight time on the type of the aircraft	3,746 hours 36 minutes
	(2) First officer: Age 27	
	Commercial pilot certificate (Airplane)	August 9, 2019
	Type rating for Boeing 737	March 4, 2022
	Instrument Flight Certificate (Airplane)	June 18, 2020
	Class 1 aviation medical certificate	
	Validity	November 7, 2022
	Total flight time	525 hours 26 minutes
	Total flight time on the type of the aircraft	283 hours 25 minutes
2.5 Aircraft	Aircraft type:	Boeing 737-800
Information	Serial number:	61485
	Date of manufacture:	March 6, 2018
	Certificate of airworthiness:	No.2018-006
	Validity: Period during which the M	laintenance Management
	Manuals (Japan Transocean	Air Co., Ltd.) approved
	pursuant to permissions un	der Article 113-2, Civil
	Aeronautics Act are applied.	
	Total flight time:	10,139 hours 50 minutes
2.6 Meteorological	(1) Weather Data the Flight Crew Members Confirm	ed before the Flight
Information	① Domestic Significant Weather Prognostic Char	rt
	According to the forecasts at 09:00 and	15:00 on October 3, 2022
	confirmed by the flight crew members befor	e the flight, no weather
	phenomena that would cause the aircraft to be s	shaken such as turbulence
	greater than moderate one, were forecasted a	round the planned flight
	route including near the accident occurrence po	int (see Figure 4).

Figure 4: Domestic Significant Weather Prognostic Chart on October 3, 2022 (FBJP) (Partially added to the weather data provided by the JMA)

2 Flight Route Forecast Cross Section Chart

According to the flight route forecast cross section chart at 12:00 on the day of the accident, neither the occurrence of vertical wind shear nor clouds that might cause the aircraft to be shaken were forecasted (see Figure 5).

According to the domestic significant weather analysis charts at 12:00 and 15:00 on October 3, 2022, no weather phenomena that would cause the aircraft to be shaken were analyzed around the accident occurrence point (see Figure 6).

Figure 6: Domestic Significant Weather Analysis Chart on October 3, 2022 (ABJP) (Partially added to the weather data provided by the JMA)

 2 Hourly Atmospheric Analysis Chart Horizontal Cross Section (FL 370) According to the hourly analysis chart vertical cross section for FL 370 at 13:00 on the day of the accident, around the accident occurrence point, vertical wind shear (the area enclosed by the light brown line in the figure) that might produce moderate turbulence was not analyzed (see Figure 7).

	③ Others
	Before the time of the accident, there was no report about
	encountering turbulence from other aircraft to the air traffic control
	facility which had been in charge of the accident aircraft. In addition,
	according to the statement of the PIC, when the accident occurred, the
	aircraft was flying outside clouds, there were no clouds that could produce
	turbulence around the flight route, and in the cockpit of the aircraft,
	neither the flight instrument display nor clouds area on the airborne
	weather radar that would be a sign of turbulence were observed.
2.7 Additional	(1) QAR Records
Information	According to the QAR records of the aircraft, the wind velocity before the
	accident was approximately 65 kt, from $12:55:15$ to $12:55:17$, it decreased from
	56 kt to 46 kt, and then at 12:55:18, then, it increased to 65 kt (Figure 8 $$).
	During this period, the wind direction was stable with a true bearing of about
	330°.
	The bank angle remained roughly at 0°, but it changed to 2.8° to the left
	at 12:55:13, to 0.7° to the left at 12:55:14, to 1.1° to the left at 12:55:15, to 5.3° $$
	to the left at $12:55:16$, to 4.6° to the left at $12:55:17$, to 3.5° to the right at
	12:55:18, to 5.1° to the right at 12:55:19, and to 1.6° to the right at 12:55:20,
	then it remained generally between 1° to the left and 1° to the right (Figure 8
	②).
	As to the nose heading, a magnetic bearing of 055° had been maintained
	until 12:55:15, it temporarily became a magnetic bearing of 057° between
	$12:55:16$ and $12:55:17$, then at $12:55:18$, it became a magnetic bearing of 055°
	(Figure 8(3)).
	Repeated were small changes in vertical acceleration within the range of
	0.9 to 1.1 G, the vertical acceleration changed within the range of 1.0 to 1.2 G
	from 12:55:15 to 12:55:16, and it changed from 0.6 G \rightarrow 1.0 G \rightarrow 0.6 G \rightarrow
	$1.1G \rightarrow 1.0 \text{ G}$ between 12.55.16 and 12.55.18 (See Figure 8(4)).
	The lateral acceleration relative to the aircraft was maintained nearly 0
	G until 12.55.13. After that, at 12.55.14, it changed to 0.04 G to the right, at $12.55.15$ to 0.07 G to the left between $12.55.16$ and $12.55.17$ to almost 0 G
	12.55.15, to 0.07 G to the left, between $12.55.16$ and $12.55.17$, to almost 0 G,
	and at $12.55.18$, to 0.02 G to the right (Figure 8.5).
	The outside air temperature (SAT) gradually increased while the aircrait
	The flight altitude was maintained at FL 410 until 12:51:11, then the
	aircraft started the descent. After maintaining FL 390 for 20 seconds from
	12:52:35 the aircraft descended again reached FL 370 at 12:54:06 maintaining
	FL 370 until 12:57:19
	11 010 unun 12.01.10.

Shaking by the Company The Company regularly carries out a campaign to prevent from injuries due to unexpected aircraft's shaking in cooperation with the flight crew members, cabin crew members and Airport operation department. The campaign, which was carried out in June 2022, it was encouraged to have a mutual conversation among crew members to confirm the aircraft shaking by use of risk prediction, and preventive measures against injuries due to shaking were disseminated. Besides, in the cabin crew member initial training about the responses to an unexpected shaking, the Company provided them with the knowledge regarding how to hold their bodies by holding onto seats and handrails, etc., at the time of encountering an unexpected shaking. Furthermore, in the regular training (once a year) in which all cabin crew members were mandated to participate, the Company provided them with the opportunity to reconfirm the knowledge about responses to an unexpected shaking as well as made known appropriately about how to prevent injuries so as to keep their bodies from floating in the mid-air by holding onto passenger seats, etc., at the time of encountering shaking.

3. ANALYSIS

(1) Injury to Cabin Crew Member

The JTSB concludes that it is probable that while the seat belt sign was turned off and Cabin Crew A was walking in the aisle to attend to passengers, the 2nd Shaking was encountered, when Cabin Crew A, who was about to be thrown to the right. Cabin Crew A stepped hard on her right leg to keep from falling down to the right, but a heavy load added with the vertical acceleration and lateral acceleration caused by the aircraft shaking was momentarily placed on the sole of the right foot, resulting in the injury to Cabin Crew A. From the QAR records, this shaking was caused by a combination of changes in bank angle of the aircraft and nose heading (yaw (heading) movements of the aircraft), and the aft cabin section, where Cabin Crew A had been, was the place that would be significantly affected by lateral inertia caused due to yaw movements of the aircraft as being far from the rotation center of the yaw movements of the aircraft. Therefore, lateral acceleration larger than the recorded acceleration on QAR had probably occurred around the place where Cabin Crew A was.

Cabin Crew A was able to avoid falling down or hitting passenger seats, etc. by grabbing the headrest of a passenger seat quickly was because disseminating information on how to respond to shaking in the regular campaigns and trainings in the Company more likely made a difference to it. It is desirable for the Company to continue to implement the ongoing preventive measures against the injuries due to shaking.

(2) Occurrence of the 2nd Shaking

The JTSB concludes that according to the QAR records, when the 2nd Shaking occurred, the wind velocity temporarily decreased, and at the same time, changes in bank angle and nose heading occurred, therefore, the aircraft shaking at this time was probably caused due to fluctuations in wind velocity.

(3) Predictability about Encountering Turbulence

The JTSB concludes that the flight crew members highly probable failed to predict the 2^{nd} Shaking for the following reasons.

- According to the weather data confirmed before the flight, no weather phenomena that might cause the aircraft to be shaken were forecast around the 2nd Shaking occurrence point.
- Before the accident occurred, there was no report about encountering turbulence from other aircraft flying nearby around the aircraft.
- There were no clouds that could produce turbulence around the 2nd Shaking occurrence point, and no changes in wind direction and velocity, etc. that would be a sign of turbulence were confirmed on the flight instrument in the cockpit.
- In the significant weather analysis and hourly atmospheric analysis charts indicating the weather conditions when the accident occurred, there were no analysis data of weather phenomena that would cause the aircraft to be shaken around the 2nd Shaking occurrence point. Therefore, the temporary decrease in wind velocity at the time of the 2nd Shaking was probably a local weather change that would not be shown in the weather data

4. PROBABLE CAUSES

The JTSB concludes that the probable cause of this accident was most likely that as the aircraft was shaken violently in lateral direction during cruising, a heavy load was applied on the sole of the right foot of Cabin Crew A who was standing in the aisle in the aft cabin section, resulting in the serious injury to Cabin Crew A.

The reason why the aircraft was shaken laterally was probably because the aircraft flew through the airspace where the wind velocity changed locally, which was not forecast according to the weather data the flight crew members confirmed in advance.

5.1 Safety Actions	As described in ANALYSIS, it is desirable for the Company to continue	
Required	to implement their ongoing preventive measures against similar accidents.	
5.2 Safety Actions	The Company took following safety actions after the accident.	
Taken after the	(1) Issuing alerts to the Company's cabin crew members and thoroughly	
Accident	reimplementing the measures	
	The Company issued the cabin safety information that described the	
	following contents (dated on October 21, 2022) to all cabin crew members,	
	as well as issued alerts and implemented again the measures thoroughly	
	in the "Injury Prevention Campaign for Passengers and Cabin Crew	
	Members" (from November 1 to 30 in 2022), in which the flight crew	
	members, cabin crew members, and Airport operation department	
	collaborated.	
	① Overview of this accident	
	2 Points to protect yourself at the time of encountering unexpected	
	shaking in the cabin	
	③ Judgement about the suspension / discontinuation of in-flight	
	services under unstable condition.	
	④Importance about the specific communication and conversation of	
	confirmation to recognize the situation properly	
	(2) All cabin crew members shall be mandatorily required to receive the	
	practical training about how to hold their bodies at the time of	
	encountering unexpected shaking in the cabin crew member initial	

5. SAFETY ACTIONS

training and regular training.