総合政策局 情報管理部情報政策課 施策の概要 本取組みは、東アジアにおけるIC乗車 券の共通化、相互利用を推進し、域内にお いて1枚のIC乗車券で公共交通機関の利 用を可能とすることで、東アジア域内にお ける移動の円滑化、人的交流の促進を図ろ うとするものです。 現在、JR、私鉄、地下鉄、路線バス等 にIC乗車券が相当程度導入されており、 また、首都圏、近畿圏それぞれにおけるIC乗車 要IC乗車券が相当程度導入されており、 また、首都圏、近畿圏それぞれにおける主 要IC乗車券の共通化、相互利用化も各地で進 要ICのCA」との相互利用化も各地で進	相互利用の実現東アジアIC乗車券の共通化、	な取組み	報告										
あります。 同方で、IC乗車券の導入に伴う設備投 資や運用コスト、共通化によるシステム運 用経費といったコストの問題等により中小 交通事業者によるIC乗車券の導入や相互 利用化の点は十分に進んでおらず、IC乗 車券の導入や相互利用を一層進めていくた めには、これらの課題を解決することが必要です。 また、中国、韓国を始めとする東アジア域内による り、東アジア域内の交流が一層活発化して いく現状を踏まえますと、東アジア域内にお	相下数・パス等 京 地下数・パス等 京 地下数・パス等 調 地下数・パス等 加 地下数・パス等 ホール 地下数・パス等 ボール 地下数・パス等 ボール 地下数・パス等 ボール 地下数・パス等 ボール 地下数・パス等 レン パス・LRT・資源	名 特 上海公共交通十 IPhengina Public Transportation Carety 一十通 Yearbring Dants 薬料通 Standard Trans Carety オクトバス/Occeptar Tomoney ハナロカード/Hanam Carety EZ-Lank メトロカード Touch'n Go 出意 国土文書 導入状況	開始年 1999 2003 2004 1997 2004 1997 2002 2004 1997 2002										
化 相互利用を行う 化 相互利用を行う 化 相互利用を行う 化 相互利用を行う 化 相互利用を行う 化 相互利用を推進し、域内において一枚の 本 が期待さ また、 第7ジアにおけるIC乗車券の共通化、相互利用を推進し、域内において一枚の 東アジアにおけるIC乗車券の共通化、相互利用を推進し、域内において一枚の 東アジアにおけるIC乗車券の共通化、相互利用を推進し、域内において一枚の 東アジアにおけるIC乗車券の共通化、相互利用を推進し、域内において一枚の 東アジアにおけるIC乗車券の共通化、相互利用を推進し、域内において一枚の 東京の代本ージ 上、 新聞の	DIC乗 D円滑	券との共通化、相互利用化が進展することとの交流が盛んな中国、韓国等のIC乗車国内のみならず、東アジアにおいて日本今後の展開	めていくことが必要であると考えられます。ける共通化や相互利用化のための取組みを進										
 ご ためには、各ICカードの規格、ICカード ご ためには、各ICカードの規格、ICカード こ カードとの整合・連携の確保等の技術的な問題 こ カードとの整合・連携の確保等に留意し、 													

_

国内外を問わず広範な関係者が導入可能な	防災先進社会の構築
仕組みを検討していくことが必要でありま	防災WG事務局
す。さらに、運賃・料金の国際的な精算の仕	(河川局 防災課災害対策室)
組みについても、検討を行う必要があります。	
これらの課題を検討するための具体的な	が分の根要
工程としては、IC乗車券の共通化に向けた	ICT技術を利活用し、災害の高精度予
関係者(交通事業者、メーカー、 関係事業者	測や常時監視、迅速な対応を可能とすると
等)間の合意形成や、具体的な共通化のため	ともに、防災・災害情報を、分かりやすく
の方策、技術仕様の検討を行うため、早期に	一元的に国民に提供する体制を確立し、災
国内での検討体制を立ち上げるとともに、関	害への備えが万全な防災先進社会を構築し
係国との検討の枠組みの構築に向けた取組	ます。
ールは、次に示すとおりです。みを行う必要があります。具体的なスケジュ	現状と課題
2007年	毎年のように多くの人命や財産を奪う自
・関係国との共通化、相互利用化方針の確	然災害が頻発しており、今後とも防災・減
認、関係国における検討体制の構築	災の取組みは重要度の高い課題となってい
・国内における共通IC乗車券に関する検	ます。
討体制を立上げるとともに、共通化、相	本プロジェクトでは、人的・物的被害を
互利用化に必要な施策の検討、その他仕	飛躍的に減少させるため、ICTを活用し、
組み作りに必要な検討を実施	予測技術や常時監視の技術向上、防災・災
2008年頃~2009年頃	害情報の共有化について高度化を図り、そ
・IC乗車券の共通化、相互利用化のため	れによる早期警戒体制が整備され確実な避
の仕様案の検討、実証実験等を実施	難が容易となることに加え、被災した場合
2011年頃	でも人的・物的被害が限定的となる「災害
・IC乗車券の共通化、相互利用化に関す	時への備えが万全な防災先進社会」を実現
る先駆的導入	するため、以下の取組みを推進します。
2011年以降	
・IC乗車券の共通化、相互利用化の順次	(1)予測技術の向上、国土・施設等の常時
導入	監視
	災害の予測精度のさらなる向上、国土交

図 防災先進社会の構築

災・災害情報の共有化の高度化を図るた	予測技術や常時監視の技術向上、防	今後の展開	2010月11日11日11日11日11日11日11日11日11日11日11日11日11日	供を目指します。	盤の実現などの取組みにより確実な情報提	の構築、信頼性・堅牢性の高い情報通信基	た一元的な情報取得を可能とするシステム	ィアとの連携、Web-GーS技術を利用し	や携帯電話などの多種多様な放送通信メデ	報の提供、 デジタル放送 (テレビ・ラジオ)	災害の状況をより実感できる防災・災害情	ップの統合化やリアルタイム化などによる	といった課題に対応するため、ハザードマ	在していてそれらを一元的に入手できない	生前・発生後を問わず膨大な量の情報が散	行動にうまく結びつかない、また、災害発	防災・災害情報を発表してもそれが避難	(2)的確な防災・災害情報の共有化	に努めます。	ムな計測を実施し、迅速な被害状況の把握	常時監視、被災状況・度合いのリアルタイ	ネットワーク的な配置および状況の詳細な	要公共施設にICタグなど各種センサーを	るとともに、堤防、防波堤、下水道等の重	コンピューターによる予測技術を向上させ	どを始めとする最先端の観測技術や高性能	速化といった課題に対応するため、衛星な	通省が管轄する施設の被災状況の確認の迅
た車両の普及が必要となります。	化だけでなく、これらのシステムを搭載し	に発揮するためには、技術の実用化、高度	一方、安全運転支援システムの効果を真	られています。	システム」)の実用化に向けた取組みが進め	全運転支援システム」(以下「安全運転支援	通社会を目指した「インフラ協調による安	間が横断的に連携し、世界一安全な道路交	政府全体の取組みとして、関係省庁や民	打れと記是	見大」果頂	ます。	り、世界一安全な道路交通社会を実現し	促進し、これら技術が協調することによ	全運転支援技術の開発・実用化・普及を	律検知型)、地図情報との連携等による安	路車間通信、車車間通信、車両単独(自	施策の概要	高度道路交通ミンラム推進室	高度首名を通って下 ム圭圭 三道路局 道路交通管理課	道路交通の実現	ITSを活用した世界一安全な		及を目指します。	025年頃までに各種取組みについて普	020年頃までに先駆的導入の開始、2	までに実証実験を行います。続いて、2	めの各種取組みについて、2015年頃
検討を開始し、必要な技術要素、解決すべ	のイメージ、具体的な診断項目等について	の本格導入に向け、2007年度より活用	2015年頃の先駆的導入、2020年頃	(OmD:On board Diagnosis) ⊔へこと、	また、車両の安全に資する自己診断機能	むこととしています	れらの開発・実用化・普及の促進に取り組	導入、2020年頃の全国展開に向け、	行い、2015年頃の先駆的	システムの大規模実証実験を	術の協調による安全運転支援	型)·路車間·車車間通信技	度には車両単独(自律検知	証実験を実施し、2008年	うべく、2007年度から実	ット等の確認、効果評価を行	通信に必要なデータフォーマ	いては、実用化に向け車車間ともに、車車間通信技術につ	なシステムの実用化を図ると	し、順次、事故削減に効果的の	載器を用いた実証実験を実施	速道路等において、ITS車	は、2007年度から首都高	用した安全運転支援について	ゲーションの地図情報等を活	路車間通信技術やカーナビ		今後の展開
→ べ 報プラットフォームの構築に取り組んで参	こて 行政情報を官民が共有・相互利用できる情	1月 等が収集する情報や気象・災害情報などの	H頃 援などの認証機能の利用拡大、運送事業者	て、 進めるとともに、多様な料金決済や物流支	2能 運転支援のために必要なインフラの整備を	このほか、ITS車載器を活用した安全	う組 現のためのロードマップを作成します。	こ き技術課題等を整理し、2008年度に実		アリプオ 一型	ディアの ディアの デークの トーの ・ 二 して 使 に 使 の に して の トーの ・ 二 して の トーの ・ 二 して の トーの ・ 二 して の トーの ・ 二 して の トーの ・ 二 して の トーの ・ 二 の トーの ・ 二 の トーの ・ 二 の トーの ・ 二 の トーの ・ 二 の トーの ・ 二 の トーの ・ 二 の トーの ・ 二 の トーの ・ 二 の トーの ・ 二 の トーの ・ 二 の トーの ・ 二 の トーの ・ 二 の トーの ・ 二 の ・ 、 の ・ 、 の トーの ・ ー 、 の トーの ・ 、 の ・ 、 の ・ 、 の トーの ・ 、 の ・ 、 の ・ の ・ の ・ 、 の ・ の の ・ の ・ の ・ の ・ の の ・ の の ・ の ・ の ・ の ・ の ・ の ・ の ・ の ・ の ・ の ・ の の ・ の の ・ の ・ の ・ の ・ の の ・ の ・ の ・ の ・ の ・ の ・ の ・ の ・ の ・ の ・ の の ・ の ・ の ・ の の ・ ・ の ・ の ・ の ・ の ・ の ・ の ・ の ・ の ・ の ・ の ・ の ・ の ・ の ・ の ・ の ・ の ・ の ・ の の ・ の ・ の ・ の ・ の ・ の ・ の ・ の ・ の ・ つ の の の の ・ の の の の の の の ・ の の の の の の の の の の の の の						IETC R/AA		# [6]	10万 秋川 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」						イノイーションの運用	クルマの流れの円滑化による	

ロ対策に資する新技術の活用の検討、港湾	が果頃とはつています。このため、佚首テ	動や利便性およびコスト削減とのバランス	確保と、物流効率性向上、乗客の円滑な流	テロの未然防止にあたり、安全・安心の		見大」課題	ロを未然に防止します。	用することにより、保安体制を強化し、テ	空港などそれぞれの施設環境に合わせて活	Cタグやセンサーなどを、鉄道駅、港湾、	高度な認証技術や自動検知システム、I	が守り根要	と同じつ死史	순核管理 室	₽	港湾局総務課危機管理室		テロ対策技術の高度化による安		解決への貢献を進めて参ります。	力の強化、アジア地域等における交通問題	積極的に図ることにより、日本の国際競争	際標準化や関連システムの海外での導入を	さらには、ITS車載器機能に関する国	共通基盤の構築を目指します。	車と沿道施設をICTネットワークで結ぶ	リーの通信機能を付加することで、車と車、	準装備化を図ることにより車にメディアフ	ります。さらに、ITS車載器の普及・標
用の検討(1)金違ラロ文質に資する亲打休の浣	(1)鉄道テコ対策に弩する新支桁の舌	今後の展開	> とう そ 目	握を実現します。	より、空港においてリアルタイムの動静把	組み合わせによるID可視化技術の開発に	アクティブなICタグと画像認識技術の	(3)空港におけるID可視化の技術開発		保安の強化を図ります。	により、省力化、効率化を進めるとともに、	的にチェックするシステムを構築すること	人や貨物、および制限区域内の状況を自動	を活用し、港湾施設の制限区域に進入する	生体認証、ICカード、IDタグ、X線	(2)港湾施設のテロ対策の技術の高度化		討を行います。	道駅における実証実験を含めた調査・検	する新しい技術の活用可能性について、鉄	追跡するシステム等、鉄道テロ対策に資	確保するため、不審者や放置物を検知・	ことなく、安全・安心な輸送サービスを	乗客の円滑な流動や利便性を阻害する	の検討	(1)鉄道テロ対策に資する新技術の活用		けるID可視化の技術開発を行います。	施設のテロ対策の技術の高度化、空港にお
「「「「」」」、「「」」、「」」、「」」、「」」、「」」、「」、「」、「」、「」	・甚弯布殳の下E曼へ皆自动	順次導入	・港湾施設における貨物の自動検査装置を	2015年頃~	を 開 始	動検知について実証実験	・港湾施設の不正侵入者自	験を開始	自動検査について実証実	・港湾施設における貨物の	2010年頃~	導入	入管理システムを順次	いる人の出	2008年頃~	の技術の高度化	(2)港湾施設のテロ対策	満な	て調査・検討を実施	実証実験等の実施を含め	性にいて、鉄道駅における	る新しい技術の活用の可能	ム等、鉄道テロ対策に資す	や化学剤を検知するシステ	される可能性のある生物剤	跡するシステムやテロに使用	・不審者や放置物を検知・追	8年度	2007年度~200
梈 知 装 置	剣口 長置		検査装置			2				時の湯		:向);	ナたお	は討ち	行う	(実)	証実	験等!		5活用	同前	目生の	の検索	1)				15.0	
-						加切り	発物 影走り	180 180	木富和	向在計 複数の	1回し りネッ	た者	や立) -ク	い相応カメラ	NC.J	へのに	夏入; 追踪	目在モ	ニター	ー上つ	に検知	010 K	0	ED).	. (XI)	. =	越不	霸古	
体認証に関する具体的仕様の検討を開始・空港制限区域内立入証のICナード化及び生	に参判良を或り立て正りしていて、とをべき	2007年	(3)空港におけるID可視化の技術開発			0					x属 在 * 主 リ ・ う う 新技							2		18.10		>[7 67	-			

図 鉄道テロ対策に資する新技術の活用の検討

义 自律援助支援プロジェクトの推進

25 国土交通 2007.7

テムでつくることを目指しています。 に応用できる汎用性の高いオー プンなシス わず様々な主体がさまざまなサービス提供