企業間ネットワークと交通インフラ ビックデータを用いた実証分析

経済産業研究所 上席研究員 齊藤有希子

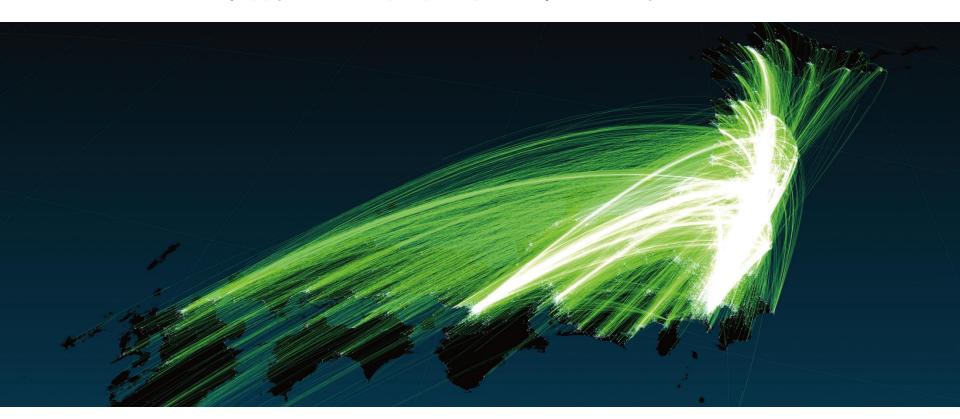
企業間ネットワークについて

「つながり力」
 企業間の強いネットワークは競争力の源泉
 経済産業省の政策における「つながり力」の活用
 サプライチェーン、知識創造に関わるネットワーク

 負のショックの波及 リーマンショックや大規模な自然災害の経験 一部の地域の(個別)ショックが経済全体に波及し、マクロ変動を引き起こすことが認識された。 伝搬のメカニズムの解明

企業間ネットワークと交通インフラ

- •「つながり力」
 - 交通インフラへのインプリケーション
 - ネットワーク構築における地理的なフリクション↓
 - 集積の外部経済効果 (→ クラスター政策)
 - ・取引コスト削減、知識波及、労働者プーリング
 - 仮想的な巨大都市の実現?


- ・ 負のショック(東日本大震災)の波及
 - 地理空間上の企業間ネットワークを把握する。

企業間ネットワークを捉えるデータ

- サプライチェーンのネットワーク
 - 企業間の取引データ(民間信用調査会社のデータ) (東京商エリサーチ(TSR)や帝国データバンク(TDB)のデータ)
- 所有関係のネットワーク
 - 企業間の資本関係データ(TSRやTDBのデータ)
 - 204ヶ国企業の資本関係 (ビューロヴァンダイク(BvD)のデータ)
- 知識創造、知識波及のネットワーク
 - 特許データにみる共同研究、引用関係
 - 組織間ネットワーク、発明者間ネットワーク

企業間ネットワークの例

NHK 震災ビックデータ TDBの取引データを可視化 被災3県(岩手県・宮城県・福島県)から全国(47都道府県) への取引関係(2011年1月時点 約22万本)

企業間ネットワークの例(続き)

被災3県(岩手県・宮城県・福島県)から全国(47都道府県) への取引関係(2011年1月時点に存在していて、2013年3月 までに消滅した取引 約2万本)

エビデンスに基づく政策形成

- 経済産業省 中小企業庁
 - ビッグデータを活用した地域産業政策研究会
 - 実務に蓄積されるデータ、政府統計
 - 地域経済分析システム(RESAS)
- 文部科学省 科学技術政策研究所(NISTEP)
 - 産官学の知識波及に関する研究
 - 特許データの分析
- RIETIの研究プロジェクト
 - ビックデータを用いた実証分析

経済産業省の取り組み

• 地域経済分析システム(RESAS)

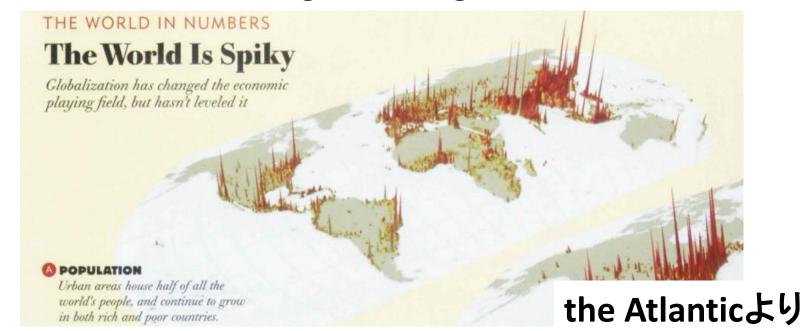
https://www.kantei.go.jp/jp/singi/sousei/resas/

内閣官房(まち・ひと・しごと創生本部事務局)及び経済産業省は、「地域経済分析システム(RESAS(リーサス))」の提供を開始いたしました。

このシステムを通じて、地方公共団体にお願いしている地方版総合戦略の策定を、情報面から支援していきます。

地理空間上のネットワーク

- ・ なぜ経済活動は集積するのか(集積力)
 - 企業間取引、知識波及、労働力確保
 - 集積の外部性(企業間ネットワークの効果)
- クラスター政策
 - 集積のメリット(外部性)を生かす。
 - ネットワーク構築を促進
- ・ 距離の重要性(地理的なフリクション)?


距離の重要性

- ・ 距離の重要性はなくなっている?
 - 輸送技術やICTの発展、交通インフラの整備
 - 技術情報に容易にアクセス、web会議
 - 国境を越えたサプライチェーンの構築 (東アジアの生産ネットワーク)
- ・ 実証的に検証
 - 立地の地理的な偏り
 - 企業間ネットワークの地理的な偏り

立地の地理的な偏り

- World is spiky!
- ・ 知的生産活動はさらに集積

Inoue, Nakajima, and Saito (2014), RIETI DP 14-E-053, "Localization of Knowledge-creating Establishments,"

企業間ネットワークの地理的な偏り

距離の重要性は変わらない!

• 国際貿易

Disdier and Head (2008), "The puzzling persistence of the distance effect on bilateral trade"

• 知識創造

Jaffe, Trajtenberg and Henderson (1993), "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations"

Inoue, Nakajima, and Saito (2014), RIETI DP 13-E-070, "Localization of Collaborations in Knowledge Creation"

企業間取引の地理的広がり

- ・企業間の取引の地理的フリクション
 - 地理的に非常に狭い範囲で行われている。
 - (29km以内で半数の取引が行われている。)
 - 取引数の多い少数のハブ企業が遠くと取引

(国際貿易:少数の生産性の高い企業が輸出)

Saito (2013), RIETI DP 13-E-080, "Role of Hub Firms in Geographical Transaction Network,"

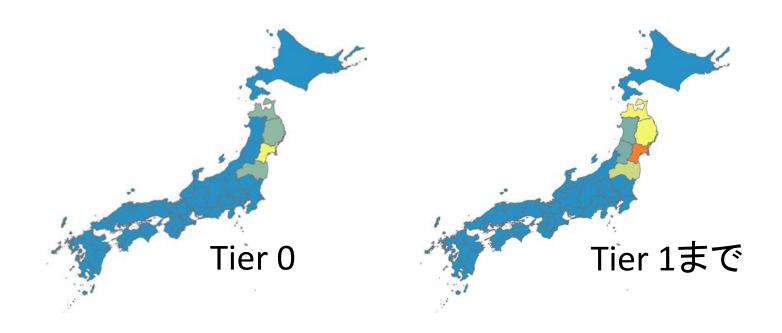
地域のショック(震災)は地理的に広がらない?

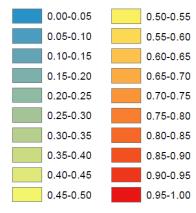
被災地企業の取引先

Tier 0: 1.8%

Tier 1: 3.3%

Tier 0: 被災地企業


(青森、岩手、宮城、福島4県の太平洋沿岸の44市)


Tier 1: 被災地企業 (Tier 0) の取引先

齊藤(2012), RIETI DP 12-J-020

「被災地以外の企業における東日本大震災の影響

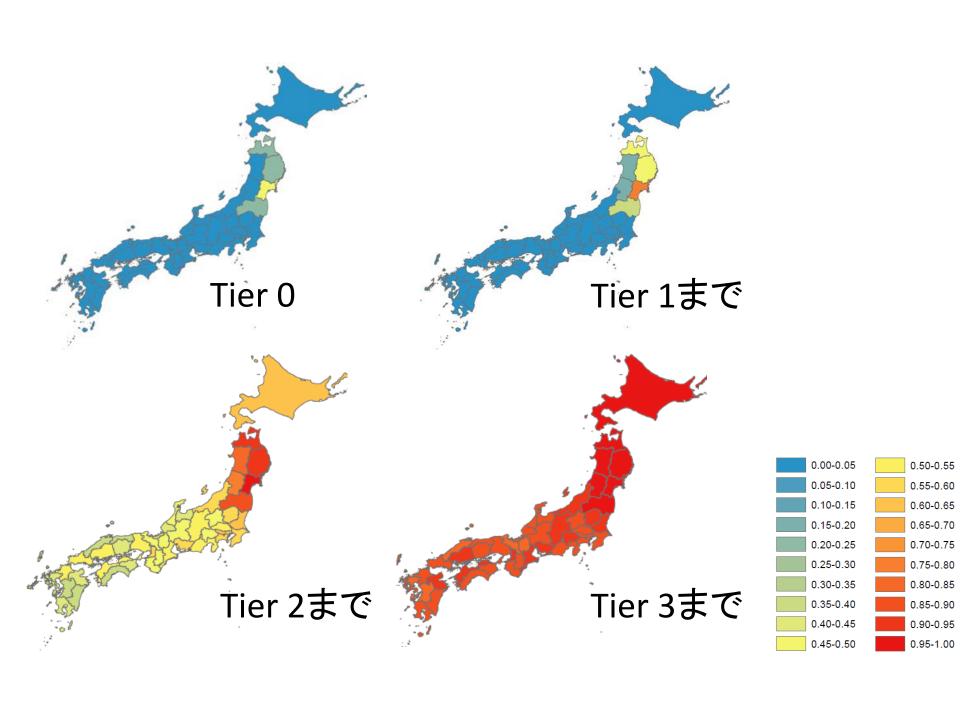
ーサプライチェーンにみる企業間ネットワーク構造とその含意ー」

被災地企業の間接的な取引先

Tier 2まで: 56.7%

Tier 3まで: 90.5%

ネットワークはスモールワールド

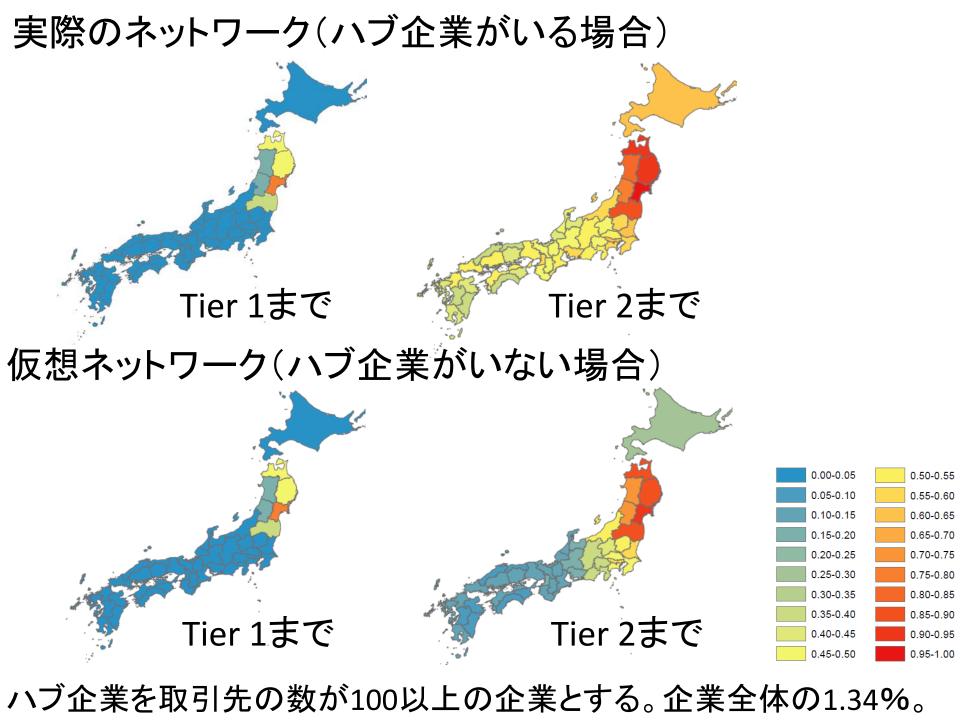

	Tier 0	Tier1	Tier 2	Tier 3
Total	1.8%	5.1%	56.7%	90.5%
Hokkaido	0.0%	2.3%	60.2%	95.8%
Tohoku	16.6%	33.6%	82.0%	96.7%
Kanto	0.0%	2.7%	58.2%	89.5%
Chubu	0.0%	0.8%	51.6%	90.6%
Kinki	0.0%	1.2%	54.2%	88.0%
Chugoku/Shikoku	0.0%	0.5%	47.2%	90.1%
Kyushu	0.0%	0.3%	42.8%	88.3%

Tier 0: 被災地企業

Tier 1: 被災地企業(Tier 0)の取引先

Tier 2:被災地企業の取引先(Tier 1)の取引先

Tier 3:被災地企業の取引先の取引先(Tier 2)の取引先



企業間取引の地理的広がり ハブ企業の役割

- ・ 企業間の取引
 - 取引先の取引先まで(間接取引)の距離は長い。 (半数は255km以内(直接取引では29km))
 - 間接取引の地理的な広がりに、ハブ企業が重要な役割を果たしている。

Saito (2013), RIETI DP 13-E-080, "Role of Hub Firms in Geographical Transaction Network,"

ハブ企業がいなかったら?

企業間取引の地理的広がり

まとめ

- 企業間取引には地理的なフリクションがある。
- 間接的には多くの企業がつながっている。
- ・企業間取引の地理的な広がりには、少数のハブ企業が重要な役割を持つ。

さらに

 このように地理的な広がりをもつ間接的な取引 先まで、負のショックが波及することが有意に示 されています

震災の波及(業績への影響)

				之 中:	説明変数	・ 電巛後	の売上高額	歩 ルーニー
VARIABLES	Ingrowth_after	Ingrowth_after	Ingrowth_after	Indrow				ter
				説	明変数:	被災地企	栗との取ら	関係
deg1_s	-0.0134	被災地企業	が什入先					
	(-1.054)	以入心止 不						
deg1_c		-0.0275***	被災地企	業が販売先				
		(-2.594)	从人心正	*** **********************************				
deg1_s_exit			-0.201**	-0.204***	-0.210	被災地の仕	入先が退出	
			(-2.560)	(-2.596)	(-2.685)			
deg2_s_exit				-0.0149***	-0.0181***	被災地の仕	入先の仕入	先が退出
				(-3,491)	(-4.049)		/ / / - / エノ / /	7077 XE PH
deg3_s_exit					-0.00556			
					(-2.682))		
deg1_c_exit				被災地の則	5 声牛が退	H 0.0610***	-0.0575***	-0.0417
				が文化して	メンじっていり込	(2,835)	(-2.683)	(-1.9 61)
deg2_c_exit				被災地の間	万売先の販	売先が退出	0.0129***	0.0211***
							(2.793)	(4.347)
dea3 c exit								0.0145***

比較的小さなショックは川上企業に波及する。

大きなショック(取引先の退出)は川下企業の方がより波及し、

取引先の取引先まで影響がある。

Carvalho, Nirei, and Saito (2014), RIETI DP 14-E-035,

"Supply Chain Disruptions: Evidence from the Great East Japan Earthquake

震災の波及(リスクへの対応)

VARIABLES	d_link_s_new	d_link_c_new	d_link_s_new	<u> </u> 被説明 <u> </u> 説明変	月変数 : ▷数 · 対	新規取引 g災地企業		• • • • • • • • • • • • • • • • • • • •
deg1_s	0.051**	被災地企業	業が仕入先		之 	メグ・心圧オ	ここりれて	
deg1_c		0.120 (4.623)	被災地企	≧業が販売先	<u> </u>			
deg1_s_exit			0.0074 (0.0765)	0.0124 (0.128)	0.030 -0.292	被災地の仕	入先が退出	4
deg2_s_exit				0.044*** (5.719)	0.057*** (7.027)	被災地の仕	入先の仕2	先が退出
deg3_s_exit					0.018***			
deg1_c_exit			被災	 災地の販売タ	もが退出	0.032 (0.299)	0.042 (0.389)	0.060 (0.536)
deg2_c_exit				災地の販売を		先が退出(0.048*** (6.896)	(8,100)
deg3_c_exit		<u></u>	一 14:		11	T佐 共 1 —		0.017

比較的小さなショックに対しては、新規取引先の確立により、 リスクを回避できている可能性がある。

大きなショック(取引先の退出)に対しては、対応できていない。

Carvalho, Nirei, and Saito (2014), RIETI DP 14-E-035,

"Supply Chain Disruptions: Evidence from the Great East Japan Earthquake

- ・ 国土交通省の問題意識(本講演依頼の背景) フロー効果(公共事業の需要創出効果)だけでなく、 ストック効果(インフラ整備による利便性の向上)を評価 したい。
- ・ 地域経済への影響 既存研究では、地域レベルの分析が多い。 短期的には、需要創出効果も含まれてしまう。 長期的には、マクロ効果とインフラ整備効果の識別困難。
- → 企業レベルの分析により識別問題を解決。 (交通インフラの効果は企業により異なるはず。)

「つながり力」の測定

- 「つながり力」を測定
 - 企業間ネットワークと企業パフォーマンスの関係
 - 地理的なフリクションとの関係(Bernard, Moxnes, and Saito (2014))
- ・ 地理的なフリクション(取引コスト)の削減効果
 - 「つながり力」による効果。
 - 交通インフラへのインプリケーション

Bernard, Moxnes, and Saito (2014), RIETI DP 14-E-034, "Geography and Firm Performance in the Japanese Production Network"

「つながり力」の測定

企業間の強いネットワークは競争力の源泉 仕入ネットワークを考える。

被説明変数:企業のパフォーマンス

説明変数: 仕入ネットワーク

仕入ネットワークの効果: (因果関係は見ていない) 仕入先の数(+)、仕入先のパフォーマンス(+)、 仕入先までの距離(-)(仕入先は近い方が良い)、 仕入先の販売先数(-)、仕入先の仕入先数(+)

Bernard, Moxnes, and Saito (2014)

- 「つながり力」の測定
 - 因果関係を取引コストの変化により識別したい。
- ・ 地理的なフリクション(取引コスト)の削減効果
 - 国際貿易の研究分野で議論されてきた。
 - 貿易コスト削減による企業パフォーマンス、雇用、 地域厚生への影響。格差拡大を議論。
 - 企業の異質性を考慮する新新貿易理論。
 - 交通インフラへのインプリケーション

- 交通インフラ整備の効果
 交通量の増加、企業のパフォーマンス、イノベーション活動への影響、 賃金への影響、地域経済への影響、企業及び労働者の移転
- 交通インフラの種類 高速道路、高速鉄道、航空線の新設 地理的フリクションを下げる (人の移動、モノの移動、時間コスト、金銭コスト)

- ・交通インフラの種類により、異なる形で地理的なフリクションを下げる。異なる集積効果を享受。
- 高速鉄道: 人の移動の時間コストを下げる。 金銭コストは大きく上がる。生産性の高い人のみ利用可能。格差拡大 イノベーション活動への影響。
- 高速道路: 人およびモノの移動の時間コストを 下げる。金銭コストは、高速鉄道より低い傾向。

移動手段(シェア)の国際比較 (Clever et al 2008)

鉄道:日本28%,米国1%,フランス8%

車: 日本 50%, 米国 85%, フランス85%

日本の鉄道利用は、海外よりも非常に多い。

- 高速道路→交通量、企業パフォーマンス、労働者の 居住地の変化(米国)
- 航空路線新設→企業パフォーマンス(米国)
- 鉄道ネットワーク→地域間交易、所得レベル(途上国)
- ・ 高速鉄道→企業パフォーマンス、知識波及(日本)

- Duranton and Turner (2011)
- ・米国のデータに基づく推定。道路ストックが増加すると、 経済主体の移動距離も同様に増加。道路を新たに整備 しても交通渋滞は減らせないという政策的含意がある。
- Hsu and Zhang (2012)が日本データを用いて検証。
- Duranton, Morrow, and Turner (2014)
- 高速道路の整備により、米国の都市間交易を分析。都市間交易の重量は大きく増加、金額はほとんど増えていない。高速道路は、重い物の輸送特化している。

- Giroud (2013)
- ・米国の航空路線の新設により、本社と事業所の間の移動時間が減少し、事業所の設備投資が増加(8%から9%)、生産性も上昇(1.3%から1.4%)。
- Bernard, Moxnes and Saito (2015)
- 九州新幹線の開通の効果を測定。新設駅近く企業 の売上、生産性は上昇して、中間投入比率の高い 産業ほど、効果が顕著である。また、新設駅近くの 地域間の取引量も増加している。

- Baum-Snow (2007)
- 米国のデータに基づく推定。高速道路が整備されると、郊外に住むことの効用が相対的に高まるので、中心部の人口を減少させる力が働く。高速道路の開通は1件につき都市中心部で約18%の人口減少をもたらす。
- Donaldson (2012)
- インドの植民地において、鉄道ネットワークの整備により、輸送コストが減少、地域間の価格差が減少。 地域間交易が増え、所得レベルが上昇した。

- Nirei and Tamura (2016)
- 長野新幹線の開通の効果を測定。特許の引用距離が長くなったことを確認。知識波及のフリクションの減少。
- Inoue, Nakajima and Saito (2016)
- 長野新幹線の開通の効果を測定。特許出願の生産性 は新設駅近くの地域で上昇。共同研究の増加を確認。
- 既存研究では、経済主体への好影響が確認されたが、 費用対効果の分析も重要。
- 高速鉄道の可能性調査に約10億ドル(米国)

取引関係から見た新幹線開通の効果

「つながり力」の因果関係。 ショック後の変化をみる。 九州新幹線の効果 仕入先までの移動時間短縮 130 135 Longitude 140 145

移動時間が短縮した地域間で取引が増えている。 取引先構築のコストの減少。

Bernard, Moxnes, and Saito (2014), Vox EU (CEPR), "Fast trains, supply networks, and firm performance"

→ パフォーマンスに正の効果

新幹線開通効果の分析手法

Triple difference approachを用いる。
 (Difference in differenceは政策効果分析に用いる。)

$$\ln y_{fkrt} = \alpha_f^1 + \alpha_{rt}^2 + \beta_1 * Treat_f * H_k * Post2004_t + \gamma X_{fkrt} + \varepsilon_{fkrt},$$
 α_f^1 : 企業の固定効果, α_{rt}^2 : 都道府県、年の固定効果。

Triple differences:

- Pre to post shock (1st diff)
- Firms near stations relative to those not near stations (2nd diff).
- High H_k relative low H_k firms (3rd diff).

 β_1 が正に有意なら、理論モデル(仕入先のサーチコスト削減)をサポート。

More controls (X_{fkrt}) : other interactions $(Treat_f * H_k, etc.)$ も含む 2000年から2008年のパネル(企業活動基本調査)

新幹線開通効果の分析結果

	(l) Sales	(2) Sales/employee	(3) TFPR
Station, $ imes H_j imes Post 2004_t$	0.47**	0.42*	0.29**
	(2.12)	(1.76)	(2.44)
Firm and municipality controls	Yes	Yes	Yes
Prefecture-year FE	Yes	Yes	Yes
Firm FE	Yes	Yes	Yes
# obs	148,264	146,466	145,058
# firms	18,068	18,068	18,018
R-5q	0.97	0.92	0.94

Note: Robust t-statistics in parentheses. Dependent variables are in logs and are measured relative to industry-year means. ''' significant at the 0.01 level, '' significant at the 0.05 level, ' significant at the 0.1 level.

新幹線開通効果の分析結果

• 移動時間が短縮した地域間で取引が増えているか?

$$\Delta \ln C_{ij} = \xi_i^1 + \xi_i^1 + \beta_1 Both_{ij} + \beta_2 One_{ij} + \gamma X_{ij} + \varepsilon_{ij}$$

日本を 500 × 500 のグリッドに分ける(5.62 km²). C_{ij} : Number of connections from i to j at time t, t = (2005,2010) ξ_i^1 : source i の固定効果, ξ_i^1 : destination j の固定効果 $Both_{ij} = 1$ if both locations i and j get a new station, $One_{ij} = 1$ if one of them gets a new station

 β_1 や β_2 が有意に正なら、取引が増えていると言える。 地域間の距離をコントロールすれば、有意な正が観測。

新幹線開通効果の分析結果

	(1)	(2)	(3)	(4)
D :/	0.07***	0.10+++	0.00+++	0.40***
Both _{ij}	0.07***	0.12***	0.39***	0.42***
	(5.91)	(7.91)	(20.12)	(7.93)
One _{ij}	-0.02***	-0.01	0.19***	0.15***
1.5:	(3.56)	(0.74)	(19.87)	(6.42)
In <i>Dist_{ij}</i>			-0.06***	-0.06***
			(71.32)	(81.98)
$Both_{ij} imes In Dist_{ij}$				-0.01
				(0.86)
$One_{ij} imes In Dist_{ij}$				0.01*
				(1.87)
Destination FE	No	Yes	Yes	Yes
Source FE	No	Yes	Yes	Yes
# obs	386,294	386,294	386,294	386,294
# sources		7,613	7,613	7,613
# destinations		8,054	8,054	8,054
R-sq	0.00	0.17	0.18	0.18

Note: Bootstrapped t-statistics in parentheses with 200 replications. Dependent variable is $\Delta \ln C_{ij} = \ln C_{ij2010} \cdot \ln C_{ij2005}$. *** significant at the 0.01 level, ** significant at the 0.05 level, *significant at the 0.1 level.

交通インフラ整備のさらなる分析

- ・ 企業の立地を所与とした時の効果
 - → 短期的な効果
 - → 企業や人の移転も考慮。長期の効果?
- 「ストロー効果」東海道新幹線は本社機能の東京集中をもたらしたと言われている。
- 輸送コストの削減 → 集積? 発散?
 規模の効果と混雑効果(地代の上昇)のトレードオフ(空間経済学)
 交通インフラに関する詳細な分析はない。
- 生産性の高い企業や人のみが新幹線を使える。格差拡大。 仲介者の役割(卸売業など)
 Okubo, Ono, and Saito RIETI DP 14-E-059,(2014)

交通インフラ整備のさらなる分析

- 一極集中の是非。
- 移動できない要素は何なのか。
- 何を残すべきなのか。ネットワークから考える。

ローカルな密なネットワーク vs グローバルなネットワーク

- 知識生産活動(ローカルな密なネットワークの重要性) インパクトある特許は集積地で生まれやすい。 Inoue, Nakajima, and Saito (2014), RIETI DP 14-E-053,
- 知識のバラエティ(分断された地域)の重要性(藤田所長) 異なる組織、異なる地域で異なる知識の蓄積 Berliant and Fujita (2010), RIETI DP 10-E-024,
- 異なる知の結合によりインパクトのある特許が生まれる。
 Inoue, Nakajima, and Saito (2015), RIETI DP 15-E-049,

交通インフラ整備のさらなる分析

- 中央リニア新幹線により仮想的な巨大都市が実現される? 金銭的なコストは残る。格差拡大、トータルの厚生の上昇 移動できないのは何なのか。集積 vs 発散。 域内ネットワークの変化(イノベーションへの影響)
- ・ 交通インフラ整備は、企業により異なる効果を持つ。 トータルの厚生変化は地域特性、産業構成に依存。 企業の異質性を考慮した分析が重要である。
- 交通インフラに関わるデータ(移動時間)
 現分析では、非常に狭い範囲の企業のみの変化に注目。
 すべての地域に対して、移動時間(人およびモノ)が分かれば、より多くの異質性を評価することが出来る。

RIETI シンポジウム

- ・ 企業間ネットワーク分析の最前線
- ~地理的な障壁を超える「つながり力」~
- 2016年3月8日14時~18時(同時通訳付き)
- 国際貿易、空間経済分野の第一人者を海外から招聘 し、最新の研究成果を講演して頂く。
- パネルディスカッションでは、ネットワーク構築の地理的な障壁(取引コスト)削減効果として、交通インフラ整備の効果を例にあげ、海外の動向も踏まえつつ、多面的に(企業業績、雇用、立地選択の観点から)、政策的なインプリケーションを議論する。
- 是非、来てください。