水災害分野における 地球温暖化に伴う気候変化への 適応策のあり方について (答申)

平成20年6月

社会資本整備審議会

目 次

は	じ	めに				• • •			• • •					٠.	• •		1
Ι		基本的	勺認識														3
Π		外力0							_								8
	II	-1 .	ΙP	C C 3	第 4 %	欠評	価報	告	書に	おけ	ける						
			気候	変化し	こ関う	する	記过	<u> </u>						٠.	٠.		8
	Π	-2 .	各種	レポ-	- 1-1	こお	ける)									
			日本	の気値	く 変く かんりょう かいかい かいかい かいし かいし かいし しょう かいし しょう かいし しょう かいし しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅ	とに	関す	る	記述					٠.	٠.	• •	13
	Π	- 3.	外力	の増え	大									٠.	٠.		17
		1. 階	锋水量	の変化	上												
		2. 浅	性水の	増大													
		З. Д	上石流	等の激	敦化												
		4. 涫	高潮及	び海岸	‡侵1	食の	増大	_									
		5. 港	引水リ	スクロ	の増え	大											
		6. 泝	可川環	境の変	变化												
	Π	-4 .	国土	• 社会	今へ (の影	響										23
		1. Ј	-流域														
		2. 中	卢流域														
		3. 7	下流域	・海岸	岸域												
Ш		適応領	後の基	本的ス	方向												26
	Ш	— 1	諸外	国の道	適応 負	策の	動向]									26
		1. 力	k害、	高潮釒	災害等	等へ	の遊	応	策								
		2. 清	引水へ	の適原	さ策												
	Ш	-2	適応	策の基	本基	的方	向							٠.	٠.		29
		1. 追	適応策	の基準	本的	考え	方										
		2. E	目標の	明確(上—	「犠	牲者	ゼリ		に向	ョけ	て-	_				
		3. 增	曽大す	る外に	カへの	の対	応										
		4. 5	後害リ	スクロ	の評化	西											
		5. 适	適応策	の具体	本的7	な提	案										
		6. 道	適応策	を講っ	ずるロ	こ当	たっ	って(の課	題							

\mathbf{IV} .	適応策の進め方	46
	1. 進め方の基本的な考え方	
	2. 適応策の実施手順	
	3. 国際貢献の推進	
おれ	oりに ······	50

はじめに

人間活動に起因する地球温暖化に伴う気候変化(一般に気候変動と訳されているが、本文では以下「気候変化」という。)は、その予想される影響の大きさと深刻さから見て、人類の生存基盤そのものに影響を与える重要な課題である。その影響は、生態系、淡水資源、食糧、沿岸と低平地、産業、健康など広範囲の分野に及ぶ。特に沿岸域や低平地では、海面水位の上昇、大雨の頻度増加、台風の激化等により、水害、土砂災害、高潮災害等が頻発・激甚化するとともに、降雨の変動幅が拡大することに伴う渇水の頻発や深刻化の懸念が指摘されている(これらの災害を「水災害」という。)。

こうした中で、気候変動に関する政府間パネル *1 (IPCC)(以下「IPCC」という。)の第4次評価報告書が公表された。この報告書では、 CO_2 等温室効果ガスの削減を中心とした温暖化の「緩和策」には限界があり、「緩和策」を行ったとしても気温の上昇は数世紀続くことから、温暖化に伴う様々な影響への「適応策」を講じていくことが「緩和策」と同様に重要であるということが指摘されている。

すなわち、CO₂等の排出削減への取り組みを、仮に京都議定書どおりのシナリオで進めたとしても、温室効果ガスは増加を続け、それに伴って温暖化が進行し、様々な影響が世界的に顕在化してくることとなる。このような認識は国際的に深刻に受け止められており、先進国では温暖化の緩和策として温室効果ガスの削減に取り組むだけではなく、気候変化への適応策として、海面水位の上昇に対し堤防の嵩上げにより計画的に高さを確保するなどの対策に既に着手している国もある。一方、我が国は、先進国の中において災害に脆弱である特性を有しているにもかかわらず、気候変化が水災害に与える影響について科学的な解明がなされつつある段階であり、気候変化に適応する具体的な施策についての検討が十分に行われていないのが実情である。

^{※1} 気候変動に関する政府間パネル (Intergovernmental Panel on Climate Change、IPCC): 国際的な専門家でつくる、地球温暖化についての科学的な研究の収集、整理のための政府間機構

国民の安全・安心を確保することが、国の基本的な責務であることにかんがみれば、国は長期的な視点に立ち、早期に気候変化に対して、予防的な施設の整備をはじめとする適応策を検討・実施すべきであると考える。

気候変動に適応した治水対策検討小委員会は、気候変化に伴う水害や土砂災害、高潮災害等の頻度や規模などの特性及び社会に与える影響について分析・評価し、適応策を検討するため、河川分科会に設けられたが、これまでの議論の中で、従来の治水対策という狭い視点に限定するのではなく、より幅広い視点から検討を行うべきとの強い指摘があったことから、水災害分野における適応策について具体的方向を明らかにするとともに、幅広い視点から適応策全般についてもその基本的な方向を明らかにすることとした。

小委員会では、このような考えのもと、2007 年 8 月から 2008 年 5 月までに計 8 回の委員会と計 4 回の分科会を開催し、水災害分野における地球温暖化に伴う気候変化への適応策のあり方について審議を重ねてきた。その結果を踏まえ、本答申をとりまとめたものである。

I. 基本的認識

(急がれる適応策)

我が国は、国土の7割を山地・丘陵地が占めるため、10%にすぎない沖積平野に全人口の約1/2、総資産の約3/4が集中している。三大湾(東京湾、伊勢湾、大阪湾)にはゼロメートル地帯が発達し、その面積は577km²、居住人口は404万人にのぼっている。また、環太平洋造山帯に位置し、山岳が急峻であることから、短く急勾配の河川が多く、断層や地すべり地帯がいたる所に分布するなど、災害の危険性が高い地形・地質条件である。さらに、我が国は世界でも有数の多雨地帯であるモンスーンアジアの東端に位置し、年平均降水量は世界平均の約2倍にあたる約1,700mmであることに加え、台風の接近や上陸の脅威にさらされ、200mmに迫る時間降水量の記録があるなど一度に激しい雨が降るといった極めて厳しい気象条件にある。このように我が国は、水害や土砂災害、高潮災害等による被害に直面している脆弱な国土と言える。

このような国土条件を克服するため、我が国ではこれまで堤防を連続して築き、ダムなどの洪水調節施設を建設するなど治水対策を営々と進め、治水安全度という面ではかなり向上してきたが、依然として治水施設の整備状況は、当面の目標(大河川においては30年~40年に一度程度、中小河川においては5~10年に一度程度発生する規模の降雨)に対しても約6割程度の進捗であり、低い整備水準にとどまっている。

一方、年平均降水量は、世界平均の約2倍であるにもかかわらず、人口一人当たりにすると、世界平均の約1/3と小さく、利用する水に恵まれているわけではない。短く急勾配である我が国の河川は、一気に降雨を集水して海に流出しており、最大流出と最小流出の比が大きく、安定的な水利用が行いにくい。こうした中で、人口増加と高度経済成長期を経て水需給は逼迫し、それに対して水資源開発施設を整備することにより対応してきた。しかし、近年の産業構造の変化や水の効率的な利用の推進等により、都市用水の需要は横ばいとなっており、地域的な偏りはあるものの水

需給のバランスがとれてきている。ところが、近年、年降水量の変動幅が大きくなって、極端な少雨の年が発生する傾向にあり、 利水安全度の低下及び渇水の発生が再び懸念されるようになって きている。

こうした中で、IPCC第4次評価報告書に記載されているように、気候変化による海面水位の上昇、豪雨や台風の強度の一層の増大、渇水の深刻化など、過去の統計や経験が通用しなくなる事態が生じることも想定されている。このため、過去の気候に対応した防災体制等を整えてきた各地域においては、水害や土砂災害、高潮災害等の頻度や規模の増大による壊滅的な被害の発生、渇水の深刻化による被害の拡大が懸念される。

また、河川・海岸環境は、気候変化による気温、水質、流況、 土砂流出、流域や沿岸域の環境等の様々な環境要素の変化や人間 活動の変化から影響を受け、これに伴い河川・海岸における生態 系や水・物質循環系への影響が予想される。

このような様々な気候変化に伴う脅威に対応していくには、水害や渇水被害、土砂災害、高潮災害等に対する災害リスクの軽減及び河川、海岸における生態系や水・物質循環系の健全性の確保が重要であるが、このためには、これまでのような防災・減災対策のみならず、モニタリングの強化と災害に強い社会構造への転換が必要である。すなわち、国民一人一人が気候変化に伴う水災害の激化や頻発及び河川や海岸の環境の変化を意識し、適応策と緩和策を適切に組み合わせて、持続可能な社会・経済活動や生活を行える「水災害に適応した強靱な社会」(水災害適応型社会)を目指す必要がある。

(適応策と緩和策は車の両輪)

予測される気候変化による悪影響を低減するためには、温室効果ガスの排出削減や吸収により気候そのものの変化と変動性を緩和させる緩和策と、気候変化に対応するシステムを構築することにより発生する可能性のある被害を回避・低減させる適応策とが必要である。

緩和策となる温室効果ガスの削減については、1997年 12 月に

気候変動枠組条約^{*2} 第3回締結国会議で採択された京都議定書^{*3}において、各国別に削減目標が定められている。我が国は、二酸化炭素(CO₂)を始めとする温室効果ガスの排出量を2008年から2012年の第1約束期間に基準年(1990年)から6%削減することが定められ、この目標達成のための取り組みとして、京都議定書目標達成計画^{*4}を2005年4月に閣議決定した。また、2008年5月には、総合科学技術会議において、2050年に世界全体で温室効果ガスの半減を目指すための「環境エネルギー技術革新計画」を策定した。国土交通省では、運輸部門や民生部門等における削減目標を定め、取り組んでいるところである。

一方、IPCC第4次評価報告書によると、「適応策と緩和策のどちらも、その一方だけでは全ての気候変化の影響を防ぐことができないが、両者は互いに補完しあい、気候変化のリスクを大きく低減することが可能である。」とされており、緩和策のみならず適応策の重要性は明らかである。そのため、適応策と緩和策を車の両輪として、共に進めていく必要がある。

(緩和策への取り組み)

気候変化を抑制する観点からは、地球温暖化の進行をできるだけ抑制することが必要であり、河川・砂防・海岸の分野においても、可能な限り緩和策を進めていくことが重要である。このため、今後、河川・渓流の整備や管理における省エネルギー化だけでなく、河川・渓流の有する水、緑、空間などの特性を活かし、 CO_2 の吸収やヒートアイランド現象の抑制による CO_2 削減など低炭素社会に向けた取り組みを強化するとともに、小水力発電など水の有する自然エネルギーなどの活用をより一層推進する必要がある。

^{※2} 気候変動枠組条約:正式名称は「気候変動に関する国際連合枠組条約(United Nations Framework Convention on Climate Change / UNFCCC, FCCC)」。地球温暖化問題に対する国際的な枠組を設定した条約。大気中の温室効果ガス濃度を安定させることを目的にしている

^{※3} 京都議定書:気候変動枠組条約に基づき、1997年12月に京都で開催された第3回 気候変動枠組条約締結国会議で議決した議定書。先進国の温室効果ガス排出量について、 法的拘束力のある数値約束を各国ごとに設定し、国際的に協調して約束を達成するため の仕組みを導入していることが特徴

^{※4} 京都議定書目標達成計画:京都議定書で日本に課せられた温室効果ガスの6%削減を達成するために必要な措置を計画・立案したもの

(適応策は国の責務)

一部の先進諸国では適応策の検討を進めており、既に適応策を 決定している国もある。また、欧州連合(EU)では、気候変化 が国際安全保障上の問題につながるという認識を示しており、気 候変化の影響を考慮した計画策定に向けて「洪水リスクの評価・ 管理に関する指令」を公布している。

一方、水災害に対し脆弱な国土を有し、河川や砂防、海岸の整備水準の低い我が国においても、海面水位の上昇や豪雨の増加等について不確実性を伴うことがあるとしても、国民の生命・財産を守ることが国の基本的責務であることにかんがみれば、手遅れにならないよう専門家の意見を聴いて的確に適応策を示す必要がある。

(有効な適応策の提案)

適応策の提案に当たっては、気候変化による影響を検討し、壊滅的な被害を回避するなど被害の最小化を目指し、合理的、効率的、効果的な対策という観点から検討を行うとともに、現在の治水・利水施策の課題や問題点を見直し、治水、利水、河川環境の観点から広く国土や社会を視野に入れた適応策を検討することが必要である。ただし、気候変化の予測等には、不確実性を伴うことに留意し、今後とも精度向上に努めることが重要である。

(順応的なアプローチの導入)

気候変化により生じる海面水位の上昇、降水量・河川流量の増加については、今後観測データや知見の蓄積が進められていくことにより予測の精度が高まることから、これに応じて適応策の進め方を見直していく「順応的な」アプローチを導入することにより、その時点における適切な適応策を考えていくことが必要である。その際には、人口減少、少子高齢化の進展、土地利用形態の変化などの社会状況や投資余力、施設の整備水準、これまでの治水計画などの治水・利水施策に関する状況を十分に考慮する必要がある。

(国際貢献)

気候変化に起因する水害や渇水被害、土砂災害、高潮災害等は、地球規模の課題であり、地域によって影響の有無や度合いは異なるものの世界共通の課題である。その中でも、特にアジア・太平洋地域は、モンスーンアジアという気候条件や沖積地を生産・生活の基盤としているという土地条件が我が国と類似しており、また、急激な人口増加と様々な水問題が深刻化している地域でもあることから、これらの地域において我が国における経験、施策、技術を活用し、国際的な貢献を果たすことが重要である。

Ⅱ. 外力の増大と国土・社会への影響

Ⅱ-1. IPCC第4次評価報告書における気候変化に関する記述 2007 年2月から順次公表されたIPCC第4次評価報告書に おいて、気温や海面水位などの変化及びその影響に関して、以下 のとおり記述されている**5。

(気候変化とその影響に関する観測結果)

- ・ 気候システムの温暖化には疑う余地がない。このことは、大気 や海洋の世界平均温度の上昇、雪氷の広範囲にわたる融解、世界 平均海面水位の上昇が観測されていることから今や明白である。
- ・ 過去 100 年間(1906~2005)の線形の昇温傾向は 100 年当たり 0.74 「0.56~0.92」^{*6}℃である。
- ・ 海面水位の上昇は温暖化と整合性がある。世界平均海面水位は、熱膨張、氷河や氷帽の融解、極域の氷床の融解により、1961年以降、年平均1.8 [1.3~2.3] mm の速度で上昇し、1993年以降について言えば、年当たり3.1 [2.4~3.8] mm の速度で上昇した。1993年から2003年にかけての海面水位上昇率の増加が10年規模の変動あるいは、より長期的な上昇傾向を反映しているのかは不明である。
- ・ 降水量は、1900年から2005年にかけて、南北アメリカの東部、 ヨーロッパ北部、アジア北部と中部でかなり増加した。一方、サ ヘル地域、地中海地域、アフリカ南部や南アジアの一部では減少 した。1970年代以降、世界的に干ばつの影響を受ける地域が拡大 した可能性が高い。
- ・ ほとんどの地域において、大雨の発生頻度が増加している可能性が高い。極端な高潮位の発生についても、1975年以降全世界的に増加している可能性が高い。

^{※5} IPCC 第4次評価報告書 統合報告書 政策決定者向け要約(仮訳)平成 19 年11月30日 文部科学省・経済産業省・気象庁・環境省仮訳より引用

^{※6} 角括弧の中の数字は最良の評価を挟んだ90%の信頼区間を示す。値が与えられた範囲を上回る可能性と値が範囲未満となる可能性がそれぞれ5%ある。信頼区間の幅は、対応する最良の評価に対して必ずしも対象とは限らない

- ・ 雪、氷及び凍土の変化が、氷河湖の数と規模の拡大、山岳地域 及びその永久凍土地域における地盤の不安定化、北極及び南極の いくつかの生態系における変化をもたらしたことの確信度は高 い。
- ・ 氷河や雪解け水の流れ込む河川の多くで、流量増加と春の流量 ピーク時期の早まりにより影響を受けていることの確信度は高 い。

(変化の原因)

- ・ 産業革命以降、人間活動による世界の温室効果ガスの排出量は 増加し続けており、1970年から2004年の間に70%増加した。
- 20世紀半ば以降に観測された世界平均気温の上昇のほとんどは、 人為起源の温室効果ガスの増加によってもたらされた可能性が かなり高い。
- ・ 第3次評価報告書以降の進展は、識別可能な人為起源の影響が 平均気温以外の気候のその他の側面にも及んでいることを示し ている。

(予想される気候変化とその影響)

- ・ 21 世紀末における世界平均地上気温 (1980-1999 年を基準とした 2090-2099 年における差(℃)) は、最良の見積もりで、環境の保全と経済の発展が地球規模で両立する社会を想定したシナリオでは、1.8℃、最も排出量が多いシナリオで4.0℃と予想される。
- ・ 21 世紀末における海面水位の上昇(1980-1999 年を基準とした 2090-2099 年における差(m)) は、最も温室効果ガスの排出が少ないシナリオで 0.18~0.38m、最も排出量が多いシナリオで 0.26~0.59mと予想される。
- ・ 極端な高温や熱波、大雨の頻度は引き続き増加する可能性がかなり高い。
- ・ 熱帯低気圧の強度が増大する可能性は高い。世界的に熱帯低気 圧の発生が減少することの確信度は低い。
- ・ 温帯低気圧の進路の極方向への移動と、それに伴う、風・降水量・気温の分布が移動する。

- ・ 降水量は、高緯度地域では増加する可能性が高く、一方、ほとんどの亜熱帯陸域において減少する可能性が高い。これは、観測された最近の変化傾向を継続するものである。
- ・ 今世紀半ばまでに、世界の年間河川流量及び利用可能性は高緯 度地域において増加し、中緯度地域と熱帯のいくつかの乾燥地域 において減少する。半乾燥地域では気候変化による水資源の減少 に苦しむだろう。
- ・ 極端な気象現象の頻度と強度の変化及び海面水位上昇は、自然 及び人間システムに、主に悪影響を及ぼすと予想される。

[アジア]

- ・ 2050年までに、淡水の利用可能性は、中央・南・東・東南アジア、特に大規模河川の流域において減少すると予想される。
- ・ 沿岸域、特に人口が集中する南・東・東南アジアのメガデル タ地域において海からの、いくつかのメガデルタ地域において は河川からの、浸水リスクが最も高くなるだろう。
- ・ 急速な都市化、工業化、経済発展に関連する天然資源・環境への圧力に気候変化が複合されると予想される。
- ・ 主に洪水と干ばつに関連して発生する下痢は、水循環のサイクルにおいて罹患率と死亡率を増加させると予想される。

[小島嶼国]

- ・ 海面水位の上昇は、浸水、嵐による高潮、侵食や他の沿岸域 の危険性を進行させ、必要不可欠な島嶼国の社会を支えるイン フラ・居住域・施設を脅かす。
- ・ 沿岸の条件の衰退、例えば砂浜の侵食・サンゴの白化は、地域の資源に影響を及ぼすと予想される。
- ・ 21世紀半ばには、気候変化は多くの小島嶼国、例えばカリブ 海や太平洋において、降水量の少ない時期の水需要を満たすの に不十分になってしまうまでに水資源を減少させると予想さ れる。

(適応と緩和のオプション)

- ・ 広範囲な適応オプションが利用可能である。だが、現在行われているよりもより広範な適応策が気候変化への脆弱性を減少させるために必要である。
- ・ 予想される気候変化及び変動性による悪影響を低減するために は、今後20年間から30年間に実施される緩和策の規模によらず、 追加的な適応策が必要である。
- ・ 限定的ではあるが、気候変化への計画的な適応は既に行われている。適応は特に幅広い部門のイニシアチブに組み込まれたときに脆弱性を減少することが出来る。
- ・ 水及びインフラ/居住(沿岸地帯を含む)の適応策の事例

	1		,		
			主要な制約要素と		
部門	適応オプション	基礎となる	実施機会		
	/戦略	政策枠組	(通常の文字=制約		
			要素、斜体=機会)		
	雨水の取水拡大、	国内水資源政策及	資金、人材、物理		
	貯水及び保全技	び、水資源統合管	的障壁、 <i>統合水資</i>		
水	法、水の再利用、	理、水関連災害の	源管理、他の部門		
	淡水化、水の利用	管理	とのシナジー		
	と灌漑の効率				
	移動、防波堤、	気候変化への配慮	資金及び技術的障		
	高潮堤防、砂丘の	と設計に取り入れ	壁、移動空間の利		
ハカニ	補強、海水面上昇	る基準及び規制、	用可能性、総合政		
インフラ	及び洪水に対す	土地利用政策、建	策と管理、 <i>持続可</i>		
居住	る緩衝地帯とし	築コード、保険	能な開発目標との		
(沿岸地帯 を含む)	ての土地の取得		シナジー		
	と沼地/湿地の				
	構築、既存の自然				
	障壁の保護				

(長期的な展望)

- ・ 気候変化を考える上で5つの懸念の理由
 - ① 極地や山岳社会・生態系といった特異で危機にさらされているシステムのリスクが増加する
 - ② 干ばつ、熱波、洪水など極端な気象現象のリスクが増加する
 - ③ 地域的、社会的な弱者に大きな影響と脆弱性が表れる
 - ④ 地球温暖化の便益は温度がより低い段階で頭打ちになり、地球温暖化の進行に伴い被害が増大し、地球温暖化のコストは時間とともに増加する
 - ⑤ 海面水位の上昇、氷床の減少加速など、大規模な変動リスク が増加する
- 適応策と緩和策のどちらも、その一方だけでは全ての気候変化の影響を防ぐことができないが、両者は互いに補完し合い、気候変化のリスクを大きく低減することが可能である。
- ・ 評価された最も低い安定化レベルに関してさえ、短期的及び長期的に、起こるであろう温暖化による影響に対処するために適応策が必要である。
- ・ 温暖化時の海面水位の上昇は避けられない。熱膨張による海面水位の上昇は温室効果ガス濃度が安定化した後も数世紀にわたり継続し、評価されたどの安定化レベルでも、21世紀中に予想されているよりも高い上昇が結果的に起きるだろう。世界平均気温が、産業革命以前と比較して1.9~4.6℃以上上昇した状態が数世紀続くと仮定した場合、グリーンランド氷床の消失は、数mの規模で海面水位上昇に寄与し、それは熱膨張による寄与よりも大きい可能性がある。熱膨張及び氷床の気温上昇に対する応答の時間スケールが長いため、たとえ温室効果ガス濃度が現在又はそれ以上のレベルで安定したとしても、海面水位は今後数世紀にわたって上昇する。

Ⅱ-2. 各種レポートにおける日本の気候変化に関する記述

気象庁が作成した気候変化に関する各種レポートでは、気候や 海面水位の変化に関して、以下の記述がされている。これらの記 述のうち、予測結果に関するものは、将来の日本の気候変化の傾 向を把握する上で有効な情報であるが、不確実性を伴ったもので あることに留意する必要がある。

(これまでの状況)

[気温]

日本の年平均気温は、統計のある 1898 年以降では 100 年あた りおよそ 1.07℃の割合で上昇している。

[降水量]

- 年降水量については、長期的変化傾向はみられないが年ごとの 変動は大きくなっている。(#2)
- 月降水量における異常少雨の年間出現数は有意に増加している。 異常多雨については長期的に有意な傾向はない。(#2)
- 日降水量 100mm 以上及び 200mm 以上の日数は 1901 年から 2006 年の106年間で有意な増加傾向がある。最近30年間と20世紀初 頭の30年間を比較すると100mm以上日数は約1.2倍、200mm以上 日数は 1.4 倍の出現頻度となっている。 (#2)
- 短時間強雨(1時間に50mm以上及び80mm以上)の発生回数は ここ30年余りで増加する傾向がみられる。(#2)

[台風]

1951 年から 2006 年までの台風の発生数、日本への接近数及び 上陸数に明瞭な変化傾向は見られない。 (#2)

「寒候期の気象〕

北日本日本海側、東日本日本海側、西日本日本海側で平均した 年最深積雪の 1962~2004 年までの経年変化から、全期間を対象 として算出した 10 年あたりの長期変化傾向は北日本日本海側、 東日本日本海側、西日本日本海側において、それぞれ-4.7%、 -12.9%、-18.3%となっており、東日本日本海側、西日本日本海 側で有意な減少傾向が認められる。(#1)

引用した気象庁レポート (#1) 異常気象レポート 2005 (#2) 気候変動監視レポート 2006

[海面水位]

- 5地点の検潮所の年平均潮位の平年偏差(1906~2004年平均と の差)の平均値を日本沿岸の平均的な海面水位変化の指標として 考察すると、過去 100 年にわたる日本沿岸の海面水位は統計的に 有意な上昇を示していない。しかし、1980年代半ば以降、海面水 位は上昇を続け、近年は 1950 年代とならんで過去 100 年で最も 高い状態にある。(#1)
- ・ 近年の海面水位の上昇には 1960~1990 年頃の海面水位の変動 とは別の要因(海水温の上昇による熱膨張など)が加わっている 可能性が示唆される。(#1)

(気象及び海面水位の予測)

将来の気象予測について、A 2^{*7}、A 1 B^{*8}及びB 1^{*9}シナ リオに基づいて、地域気候モデルのRCM20^{**10} 又はCRCM^{**11} モデルを用いて行った地球温暖化予測結果によると、約 100 年後 (2081~2100 年) には現在(1981~2000 年) と比較して、日本 付近で以下のような気候変化が予測された。

〔気温〕A2シナリオーRCM20

- 気温は一年をとおして全国的に上昇し、特に北日本の冬から春 にかけての上昇量が大きい。(#3)
- 平均気温は2~3℃(北海道の一部で4℃)程度上昇する。(#3)

A2シナリオ:「多元化社会シナリオ」、世界経済や政治がブロック化され、貿易や 人・技術の移動が制限。経済成長は低く、環境への関心も相対的に低い。

A1Bシナリオ:「高成長型社会シナリオ」、世界中がさらに経済成長し、教育、技 術等に大きな革新が生じる。各エネルギー源のバランスを重視。

B1シナリオ:「持続的発展型社会シナリオ」、環境の保全と経済の発展を地球規模 で両立する。

^{※10} RCM20 (Regional Climate Model 20):日本周辺を計算の領域としている地域気 候モデル。水平解像度は 20km×20km

^{※11} CRCM (Coupled atmosphere-ocean Regional Climate Model):日本域大気モデ ルRCM20 と高解像度北太平洋海洋モデルNPOGCM^{※12}を結合した大気・海洋結合 地域気候モデル。

^{※12} NPOGCM (North Pacific Ocean General Circulation Model): 北太平洋を計 算領域としている海洋モデル。解像度は経度方向が 1/4°、緯度方向が 1/6°。

引用した気象庁レポート (#3) 地球温暖化予測情報 第6巻

[降水量] A2シナリオーRCM20

- ・ 降水量は多くの地域で冬から春にかけては減少し、梅雨雨期から秋雨期にかけては増加する。 (#3)
- ・ 年降水量はほとんどの地域で増加する。特に西日本での増加が 大きく、多いところで20%程度の増加が見込まれる。 (#3)
- ・ 夏は、西日本を中心に降水量が増加するとともに、東日本では 降水量の年々変動が大きくなる。 $^{(#3)}$
- ・ 大雨の発生頻度はほとんどの地域で増加し、西日本日本海側では日降水量 50mm 以上の日数が現在よりも3日以上増加するところもある。 (#3)

〔寒候期の気象〕 A 1 B 及び B 1 シナリオー C R C M

21世紀末の寒候期(12~3月)の平均気温は、高緯度ほど大きく上昇する。上昇量は、A1Bシナリオの場合、北海道で3℃以上、東北から西日本では2~3℃、沖縄・奄美では1.5℃程度である。

B 1 シナリオの場合、北海道で $1.5\sim 2^{\circ}$ 、その他の地域で $1\sim 1.5^{\circ}$ 2 程度である。 $^{(\#4)}$

- ・ 北海道では、真冬日(日最高気温が0℃未満)の出現頻度が現在の半分程度に減少する(A1Bシナリオ)。東北では、冬日(日最低気温が0℃未満)の出現頻度が半分程度に減少する(A1Bシナリオ)。北陸、関東・東海、西日本では、冬日の出現頻度が半減(B1シナリオ)、あるいはほとんど現れなくなる(A1Bシナリオ)。(#4)
- ・ 21 世紀末の寒候期の降水量は、沖縄・奄美を除いて増加傾向である。上昇量は、A1Bシナリオの場合、北海道、東北日本海側で10~30%増加する。 (#4)
- 21世紀末の降雪量は、北海道を除くほとんどの地域で、排出シナリオに係らず減少する。北海道の標高の高い地域では、排出シナリオにかかわらず増加する。 (#4)
- ・ 北海道の標高の高い地位では、大雪の頻度が増加する。北海道 を除くほとんどの地域では大雪の頻度が減少する。 (#4)

引用した気象庁レポート

^(#4) 地球温暖化予測情報 第7巻

[海面水位] A 1 B 及び B 1 シナリオー C R C M

- 日本付近の海面水温は上昇し、21世紀末までの長期変化傾向は、A1Bシナリオの場合100年あたり2.0~3.1℃、B1シナリオの場合100年あたり0.6~2.1℃となっている。21世紀末までの海面水温の長期変化傾向は、日本南方海域より日本海で大きい。(#4)
- ・ 日本付近の海面水位は上昇し、21 世紀末までの長期的変化傾向は、A1Bシナリオの場合 100 年あたり $9\sim19$ cm、B1シナリオの場合 100 年あたり $5\sim14$ cm 程度である(ただし、グリーンランドや南極の氷床など陸氷の縮小による寄与は含まれていない)。 (#4)

Ⅱ-3. 外力の増大

『外力』とは、気候変化の影響を受ける降水量などの気象要素と、その変化により生じる洪水、渇水、土砂流出、高潮等の災害として作用する力を流量や水位などの物理量で示したものである。気候変化への適応策の検討に当たっては、この外力の変化の適切な見積りが必要となる。いくつかの地域気候モデルによる日本周辺の予測結果が公表されており、それらの結果は外力の変化量の推定に有力な資料となる。ただしその際には、予測の不確実性に留意する必要がある。一般に、地域レベルでの予測結果は世界規模の平均的な予測に比べて不確実性が大きい。また、現状では、地域気候モデルによる予測例は少なく、今後とも予測結果の改善に向けた努力が必要である。

1. 降水量の変化

IPCC第4次評価報告書は、全地球的な予測を基にして作成されている。このため、日本における影響を詳細に把握し、政策に活かすには、ダウンスケーリング^{*13}をするなど日本周辺の現象をより詳細に表現できるモデルによる検討が必要である。

こうした中で、計算機の能力や気象現象の解明状況などから、 検討には不確実性が伴うものの、中位のシナリオに基づき、現 時点における外力の変化量の推定を試みた。

この結果、年最大日降水量を現在と 100 年後とで比較した場合に、RCM20 の予測結果の変化率 *14 (A 2 シナリオ) は、おおむね $1.0\sim1.5$ 倍となり、GCM 20^{*15} の予測結果の変化率 *16 (A 1 B シナリオ) は、おおむね $1.1\sim1.2$ 倍で、北海道、東北など地域によっては 1.3 倍になり、最大では 1.5 倍となる。

^{※13} ダウンスケーリング:粗い分解能での予測値を、地域の気候特性を反映できるより 細かな分解能に翻訳すること

^{※14} RCM20の予測結果の変化率: (2081~2100年平均値) / (1981~2000年平均値) ※15 GCM20 (General Circulation Model 20): 全地球を計算の領域としている気候 モデル。水平解像度は20km×20km

^{※16} GCM20 の予測結果の変化率: (2080~2099 年平均値) / (1979~1998 年平均値)

また、R CM20 による予測の結果から、100 年確率最大日降水量を現在と 50 年後、100 年後とで比較した結果(A 2 シナリオ)では、50 年後の変化率 *17 はおおむね 1.1 $^{\sim}$ 1.2 倍、100 年後の変化率 *18 はおおむね 1.2 $^{\sim}$ 1.4 倍となる結果が得られた。

これらの結果から、100 年後の降水量の変化を予測すると、現在のおおむね $1.1\sim1.3$ 倍、最大で 1.5 倍程度と見込むことが妥当である。

100 年後における地域別の降水量の変化を見るため、GCM 20 で予測された年最大日降水量の変化率の中位値を全国 11 の地域に区分してまとめた。

なお、これは現段階の予測に基づく数字であり、今後とも予 測精度の向上に努力していく必要がある。

地域名	降水量の変化率	地域名	降水量の変化率
北海道	1.24	紀伊南部	1. 13
東北	1.22	山陰	1. 11
関東	1. 11	瀬戸内	1. 10
北陸	1.14	四国南部	1. 11
中部	1.06	九州	1.07
近畿	1.07		

表-1 各地域における100年後の年最大日降水量の変化率

2. 洪水の増大

100 年後の降水量の変化が、河川において想定される洪水の大きさに対して、どのような影響を及ぼすかについて検討した。GCM20 の予測結果から算出した、各地域における 100 年後の年最大日降水量の変化率により、現計画の治水安全度^{*19}がどの程度低下するか、全国の 82 水系の一級河川において試算を行った。治水安全度は年超過確率^{*20}で示し、地域及び現計画の治水安全度別にとりまとめた。その結果、現計画が目標としてい

^{※17 50} 年後の変化率: (2031~2050 年の計算結果から求められた値) / (1981~2000年の計算結果から求められた値)

^{※18 100} 年後の変化率: (2081~2100 年の計算結果から求められた値) / (1981~2000 年の計算結果から求められた値)

^{※19} 治水安全度:治水計画における河川の安全の度合い

^{※20} 年超過確率:何年に1度の割合で起こる現象かを表現したもの。例えば、年超過確率が1/10の降水量は、10年に1回の割合でそれを超えるような雨が降ること。

る治水安全度は、200年に1度程度の場合は90~145年に1度程度、150年に1度程度の場合は22~100年に1度程度、100年に1度程度の場合は25~90年に1度程度となり、発生頻度が高くなった。特に降水量の倍率が大きい北海道、東北において、発生頻度が高く治水安全度の低下が大きい。同様に中小河川においても治水安全度の低下が想定される。

このことから、将来の降水量の増加により、現計画が目標とする治水安全度は著しく低下することになり、浸水・氾濫の危険性が増えることが明らかになった。

表-2 100年後の降水量の変化が治水安全度に及ぼす影響

将来の治水安全度(年超過確率)									
地域名	1/200 (現計	上画)	1/150 (現計	十画)	1/100 (現計画)				
		水系数		水系数		水系数			
北海道			$1/40 \sim 1/70$	2	1/25~1/50	8			
東北	_		$1/22 \sim 1/55$	5	$1/27 \sim 1/40$	5			
関東	1/90~1/120	3	$1/60 \sim 1/75$	2	1/50	1			
北陸	1		1/50~1/90	5	1/40~1/46	4			
中部	1/90~1/145	2	1/80~1/99	4	1/60~1/70	3			
近畿	1/120	1	_	_	_	_			
紀伊南部	_		1/57	1	1/30	1			
山陰			1/83	1	1/39~1/63	5			
瀬戸内	1/100	1	1/82~1/86	3	1/44~1/65	3			
四国南部	_	_	1/56	1	1/41~1/51	3			
九州	_	_	1/90~1/100	4	1/60~1/90	14			
全国	1/90~1/145	7	1/22~1/100	28	1/25~1/90	47			

3. 土石流等の激化

気候変化による影響は、降水量の時間的、空間的変化をもたらし、土石流、地すべり等の土砂災害の誘因となる短時間雨量や総雨量の増加を生じさせることが考えられる。また、現時点では不明確な部分が多いが、土砂災害の素因となる表層の風化を進展させ、山地斜面の植生を変化させることも考えられる。こうした中で、土砂災害に対して想定される影響としては、

発生頻度の増加、発生時期の変化、発生規模の増大などが考えられる。発生頻度の増加の結果としては、崩壊発生分布域の拡大や土砂災害危険箇所以外での発生が考えられ、同時多発的な土砂災害の増加も考えられる。特に、これまで大雨が少なかった地域で想定を超える降雨が発生した場合は、激甚な土砂災害が発生する恐れがある。発生時期の変化の結果としては、降雨の降り始めから崩壊発生までの時間が短縮化し、避難を必要とするまでの時間が短くなることが考えられる。発生規模の増大の結果としては、深層崩壊の発生頻度の増加等による崩壊土砂量の増大や、土石流等の到達範囲の拡大が想定される。

なお、土砂流出量の増加は、中下流部において多量の土砂と 一体となった洪水を発生させる恐れがあるほか、河道に大量の 土砂が堆積することによって、氾濫の危険性が高まるとともに、 河川環境への影響も懸念される。またダム貯水池への堆砂が急 速に進行しダムの機能に支障を与えることが想定される。

4. 高潮及び海岸侵食の増大

海洋は、深層への熱の伝播に時間を要するため、熱による海水の膨張が数世紀にわたって継続することとなり、温室効果ガス濃度が安定化したとしても、海面水位は上昇し続ける。

海面水位は、大気の流れの数十年規模の変動や黒潮の変動など自然要因の影響を強く受けることから、地域ごとにどの程度海面水位が上昇するかについて、精度よく技術的に見通しを立てることは難しい。しかし、長期間にわたる比較的安定した現象のため、この影響を施設設計に見込むことは技術面で可能である。

また、台風の激化に伴い、気圧低下により海面水位が上昇するとともに、風による吹き寄せや波浪が大きくなる。このため、海面水位の上昇とあわせて、台風の激化により、高潮による危険性が増大することが想定される。

一方、海岸の地形は岸向きと沖向きの土砂移動量が平衡すること等によって形成されているが、海面水位の上昇に伴って平衡状態が変化していくことにより、上昇分以上に汀線が後退する。さらに、台風の激化に伴い高波浪が増加すること等によって海岸侵食がより進行していくと想定される。

5. 渇水リスクの増大

我が国の降水量は、1965年頃から少雨の年が多くなっており、1973年、1978年、1984年、1994年、1996年、2005年の降水量は、年平均降水量を大きく下回り、渇水被害が発生している。また、近年では、異常少雨と異常多雨の変動が大きくなる傾向が見られる。今後、気候変化により、極端な少雨が生じることも予測され、1994年渇水やそれを超える大規模な渇水の発生も懸念される。また、積雪量の減少や雪解け時期の早期化等の傾向も強まるものと考えられる。

我が国の都市用水使用量は2007年3月末現在で約283億m³/年で、このうちダムなどの水資源開発施設による開発水量が約63%(約178億m³/年)を占めており、水利用の相当程度は水資源開発施設の運用に依存している。しかしながら、我が国のダムが計画された時点での供給可能量に対し、現時点では供給実力は低下しており、都市用水等の安定的な供給に影響を生じる可能性が高い。また、農業用水などの水資源を融雪に依存する地域においては、春先以降の水利用に大きな影響が生じる可能性が懸念される。

具体的には、極端な少雨現象の発生は、河川流出量を減少させ、ダムの貯水量の低下等から、下流の必要流量の確保が困難となる。さらに、気温上昇による積雪量の大幅な減少と雪解け時期の早期化が伴う場合は、河川流出量の減少のみならず、流出時期が早まり、代かき期のダムの貯水量の低下等から、農業等における必要流量の確保が困難となる。なお、水に対する需要は、社会条件の変化の影響を大きく受けることから、渇水リスクは、気候変化と社会条件の変化の双方から考える必要があり、長期的には見通しを立てることは困難である。

6. 河川環境の変化

気温など気候そのものの変化により、生態系は影響を受け、 流域を越えた大きな範囲で環境の変化が想定される。ここでは、 流域レベルでの河川環境を対象とした変化を予想する。

気候変化による気温の上昇、降水量の変化、森林や水田・畑地などの流域の環境の変化等により、河川の流況や土砂・栄養塩類等の物質の流出が変化することが予想される。

降水量の変動幅が大きくなることから、異常洪水や異常渇水が発生し、流量の変動幅が大きくなるとともに、積雪量や雪解け時期の変化による流量パターンが変化する。また、異常洪水の発生や大規模な洪水の発生頻度の増加により、土砂・物質の流出量が増加し、水質(濁度)や河床の環境に影響を及ぼすことが予想される。流量パターンの変化は、魚類等のライフサイクルに影響を及ぼし、適応が難しい種は生息数の減少など大きな影響を受けることが予想される。濁度の増加やシルト・粘土質の堆積による河床環境の変化は、魚類、底生動物、付着藻類等への影響が考えられる。また、流況や土砂・物質の流出の変化は、河道内の植生にも影響を与え、攪乱の状況等に応じて種の分布が変わることが考えられる。こうした様々な種の変化は、種間関係を通じ生態系に対しさらなる影響を及ぼすことが考えられる。また、連続性を有する流域の環境の変化は、外来種の繁殖や新たな種の侵入などが考えられる。

水質への影響は、流況との関係もあり、予想することは難しい面もあるが、水温の上昇や溶存酸素(DO)消費を伴った微生物による分解反応が進むことにより、溶存酸素濃度の低下による水質の悪化が懸念される。湖沼や貯水池においては、気温・水温の上昇により湖沼等内部での温度成層や植物プランクトンの活動が影響を受ける等、河川以上に厳しい水質変化が予想される。水質の変化によっても生物への影響は考えられる。

気候変化による生態系や水・物質循環系への影響は、現段階において知見やデータも少なく、予測するのは難しい。

Ⅱ-4. 国土・社会への影響

気候変化による水害や渇水被害、土砂災害、高潮災害等が国土・社会へ与える影響は、極めて大きなものとなると考えられるが、流域における地形や河川形態、社会・生活の状況などによりその度合いは異なる。このため、適応策を考える上で流域単位での検討を進めることが重要であるとともに、流域内の適切な分担が不可欠であることから、流域を上流域、中流域、下流域・海岸域に分け、典型的な例を用いて想定される影響を検討する。

1. 上流域

上流域では、過疎化、高齢化が進む中山間地域において、管理の放棄等により森林の荒廃が進む中で、降水量や短時間降雨強度の増加、台風の激化等により、土砂災害や風倒木災害の増大が想定される。土砂災害では、発生頻度の増加、発生時期の変化、発生規模の増大などによる直接的な被害の増加が想定される。

土砂災害による被害の増加は、地域外への転出者の増加、限 界集落の出現、さらにはコミュニティの崩壊など、過疎化、高 齢化が進む中山間地域において大きな打撃となる。

また、土砂流出が増大することにより、下流の洪水調節施設での堆砂が進み、治水・利水機能に支障が生じるとともに、河道での著しい堆積が発生し、洪水の流下阻害による治水安全度の低下が想定される。加えて、土砂流出の増加による濁水の長期化も想定される。

2. 中流域

中流域では、山間部から扇状地が広がる地域において、降水量や短時間降雨強度の増加、上流部からの洪水や土砂流出の増加等により、堤防決壊等による氾濫や浸水頻度の増加が想定される。これらの地域は、築堤により洪水氾濫からの安全を確保してきた地域であり、氾濫域の土地利用は農地から宅地などへと変化している。こうした中で、遊水機能や氾濫戻し機能を有する霞堤も近年の土地利用の変化から開口部が閉じられてき

た。扇状地での堤防決壊等による氾濫は、氾濫流が広がる拡散型となることが多く、広域に被害が生じる。急勾配河川では、多量な土砂を含む氾濫水が土石流のように大きなエネルギーをもって家屋等を押し流し、壊滅的な被害が生じる。また、洪水の頻発や規模の増大、土砂流出の増加は河床の安定性を低下させることから、橋梁などの施設災害を引き起こすだけでなく堤防決壊等によるさらなる氾濫の増加につながる。

堤防決壊等による氾濫は、地方の中核都市や工業団地、水田や地域の特産物を産出する農地などに対して被害形態を変えながら、さらに下流部へと広がっていく。地域の活性化が課題となっている中で、水害による地域の競争力や活力の低下は、地域経済に大きな影響を与える。

一方、気温上昇による大幅な積雪の減少と融雪時期の早まりは、河川流量の減少によって代かきなどの農業用水に大きな影響が生じるなど、水資源を融雪に依存する中流域では、春先以降の水利用に支障を生ずることが懸念される。

3. 下流域·海岸域

下流域・海岸域では、低平地やゼロメートル地帯が広がる地域において、降水量や短時間降雨強度の増加、海面水位の上昇、台風の激化、中流部からの洪水や氾濫水による影響等により、堤防決壊等による氾濫や浸水頻度の増加が想定される。低平地やゼロメートル地帯では、市街化の進展により流出量が増加している上に、排水が困難であることから、洪水や高潮による外水や内水の氾濫による浸水が長時間に及ぶことが想定される。特に三大湾(東京湾、伊勢湾、大阪湾)のゼロメートル地帯においては、平均海面水位がIPCC第4次評価報告書の予測上限値である59cm上昇すると仮定した場合、海面水位以下となる面積、人口が約5割増加すると予想されており、高潮等による被害は増大する。

下流域・海岸域には人口、資産が集積していることが多く、 特に三大都市圏においては、社会経済活動の中枢機能が集積し ていることから、水害や高潮災害等は国民の生命・財産への影 響のみならず、国家機能の麻痺や国際競争力の低下につながることが懸念される。

また、海岸域では現時点でも供給土砂量の減少により海岸侵食が進行しているところもある中で、さらなる海面水位の上昇や台風の激化により、砂浜の消失など海岸侵食の増加が想定される。30cmの海面水位の上昇により、我が国の砂浜の約6割が消失するとの予測もある。

このように、海面水位の上昇や台風の激化などによる影響は、国土保全の観点から大きな支障となる。

一方、気候変化による渇水が、人口等が集積している下流域・海岸域で発生した場合には、都市用水等に深刻な影響を与え、都市機能や生産活動の著しい低下等を招くことが懸念される。さらに、海面上昇による塩水の遡上域の拡大や地下水の塩水化により、河川水や地下水の取水への影響も懸念される。

Ⅲ. 適応策の基本的方向

Ⅲ-1. 諸外国の適応策の動向

1. 洪水、高潮災害への適応策

欧州連合(EU)では、2007年10月に「洪水リスクの評価・管理に関する指令」を公布し、気候変化が洪水発生に与える影響を含めた既往の知見に基づく洪水リスク評価を行うことを定め、複数の年超過確率に対応した洪水ハザードマップや洪水リスクマップを作成することとしている。また、洪水リスク管理計画の策定及びこの計画の見直しの際には気候変化の影響を考慮することも定めている。

イギリスでは、近年の気候変化による海面水位の上昇と急速な宅地開発の影響により、高潮に対する1,000年に1回の安全度が100年に1回の安全度に低下すると推定されているため、洪水リスク管理計画である「Thames Estuary 2100(TE2100)」が検討され、テムズ防潮堰の改良も検討されている。

オランダでは、オランダの洪水リスク管理計画である「Room for the River」において、ライン川の流量増加への新たな対応方法として約7,000ha の遊水地の確保等が考えられている。また、レク川のマエスラント高潮堰は50年後の海面水位の上昇を見込んだ構造となっているほか、高潮対策の堤防整備に対し、耐用年数を考慮した海面水位の上昇を見込んだ設計がされている。

経済協力開発機構(OECD)では、2006年5月に先進国に おける気候変化に関する適応策の進捗状況をとりまとめてい る。その他にも、ドイツ、フランスなど欧州諸国やアメリカ、 オーストラリアなどでも適応策の検討が進められている。 一方、日本を除くアジア諸国では、気候変動枠組条約における非付属書 I 国^{*21}に属し、適応技術の不足や予算の制約等により適応策を国家施策に位置づけている例は少ないが、大韓民国では「国家水安保確保方策」の構築や「水資源影響評価体系」の構築などに取り組んでいる。なお、バングラデシュ、ブータン、カンボジアといった後発開発途上国に関しては、地球環境ファシリティ(GEF)の助成により国連環境計画(UNEP)や世界銀行の協力の下、国別適応計画(National Adaptation Programme of Action; NAPA)が策定されている。

2. 渇水への適応策

経済協力開発機構(OECD)による、先進国における気候変化に関する適応策の進捗状況調査(2006.5)等によれば、多くの先進国では気候変化による水資源への影響を認識し、気候変化影響評価を進め、水資源分野の適応策の検討に着手している。

アメリカのカリフォルニア州では、節水対策の強化、表流水 貯留、地下水貯留、送水施設などを含む水管理・送水システム の拡張が検討されている。また、エネルギーと水のトレードオ フの関係に着目し、効率的な水管理による排出ガス削減を目標 に、エネルギー政策セクターと共同で適応戦略を検討中である。 カナダでは、利用者による節水対策、渇水に対する計画及び 準備のさらなる重視、水量・水質・気候に関する国の監視、河 川生態系を考慮した水の公平な配分に関する手続き、温度に耐 性のある作物品種改良、かんがいシステムの開発等が検討・実 施されている。

^{※21} 非付属書 I 国:いわゆる発展途上国であり、京都議定書で定められた温室効果ガスの排出削減に関する数値目標を有していない国。現在、148ヶ国が非附属書 I 国になっている。なお、附属書 I 国とは、気候変動枠組み条約の附属書 I 国に列挙されている国であり、京都議定書附属書に掲げられた排出削減に関する数量目標を有している。いわゆる先進国、旧ソ連・東欧等の移行経済諸国がこれに該当する。

オーストラリアの西オーストラリア州南西部では、2005年に多様性による安全保障戦略「水資源開発計画 2005-2050」を策定しており、当該計画は、海水淡水化、下水処理水再利用、水源域管理、水取引等、降雨状況に依存しない水資源オプションと計画対象年の見直し等により、将来の水需要増と気候変化への適応を図るものとなっている。

ョーロッパ各国では、供給を増やすための技術的方策、水使 用効率向上(雑用水利用等)、経済的手法の改善(水価格設定)、 保険制度、水使用制限、水収支を改善する国土計画、予測・監 視・情報提供等の適応策が検討・実施されている。

Ⅲ-2. 適応策の基本的方向

1. 適応策の基本的考え方

地球温暖化への対応として、適応策が緩和策とともに重要であることは、IPCC第4次評価報告書での記述のみならず世界における共通認識である。しかし、我が国の社会におけるこの点の認識は低く、ともすれば議論は緩和策に偏りがちである。特に水災害に対し脆弱な国土である我が国においては、適応策の必要性の認識を高めることは重要である。

気候変化への対応は、人の命を守るとともに、これまで作り上げてきた社会・文化を継承するという視点が重要である。さらに、少子高齢化や大量生産・消費・廃棄型の社会などにおける社会問題の解決と併せて行うという考え方が必要である。すなわち、これまでの社会構造を見直して、安全・安心のみならず、エネルギー効率の高い、自然と共存した社会を目指し、適応策と緩和策の適切な組み合わせにより、持続可能な「水災害適応型社会」を構築すべきである。

2. 目標の明確化ー「犠牲者ゼロ」に向けて一

気候変化により激化する水害や土砂災害、高潮災害等は、様々な規模が考えられるため、これらからすべてを完全に防御することは難しい。このため、気候変化への適応策としては「犠牲者ゼロ」に向けた検討を進めるとともに、首都圏のように中枢機能が集積している地域では、国家機能の麻痺を回避することなど重点的な対応に努め、被害の最小化を目指すことが必要である。

その際には、我が国は地震や火山が多いことから、地震が発生し地すべりが起こるというような複合的な災害の発生への対応も考えておく必要がある。

3. 増大する外力への対応

(洪水に対する治水政策の重層化)

将来的に降水量が増加すると想定し、さらに現在の治水安全度を将来的にも確保することを考えると、基本高水のピーク流量は大きく増加することとなる。この増加する流量を河道改修や洪水調節施設の整備等で対処するには、社会条件等の制約から、そもそも対応が極めて困難であったり、完成まで相当の長期間を要することから、実現が困難であったりする。

また、現在の計画の流量を目標とすると、将来的に治水安全 度は著しく低下することになり、浸水・氾濫の脅威が増すこと になる。

これらの課題を解決していくためには、気候変化による外力の増加分への対応も治水政策として取り扱う必要がある。

このため、これまでの計画において目標としてきた流量に対し、河道改修や洪水調節施設の整備等を基本とする「河川で安全を確保する治水政策」で対処することに加え、増加する外力に対し「流域における対策で安全を確保する治水政策」を重層的に行うべきである。これにより、起こり得る様々な規模の洪水を対象とし、その規模に応じて弾力的に流域で対応する。これまでの総合治水対策で実施してきた方策の拡充をはじめ、流域における対策の積極的な展開を推進する。

(激化する土砂災害への対応強化)

土石流等の土砂災害における発生頻度の増加や規模の拡大に対して、すべて予防的措置を行うことは、社会条件等の制約や完成までの期間から現実的でなく、危険性に応じた対応を考えるべきである。このため、施設の整備に当たっては、人命を守る効果が高く、土砂災害の危険性の高い箇所を抽出し、重点整備を進めるとともに、施工方法を工夫し費用を縮小することにより、できるだけ多くの危険箇所において対応を図ることが重要である。さらに、増大する土砂災害の危険性に対し、ソフト対策を強化することが必要であり、土砂災害警戒区域等の指定などの土地利用規制を推進するとともに、前兆現象や災害の初

期情報を的確に捉え、情報技術を活用して、防災関係機関や住民等と情報を共有するなど警戒避難体制の整備を進める必要がある。

増加する流出土砂量に対して、流域の治水、利水、環境のバランスを考慮しながら、山地から海岸までの一貫した総合的な土砂管理の取り組みを強化することが重要である。特に、河道への著しい土砂堆積が生じ、貯水池への堆砂が急激に進むことが懸念されるので、上流域での効果的な土砂流出の調節や治水、利水および河川環境に配慮したダムからの効果的な排砂対策を講じる必要がある。また、河道での堆砂やそれに伴う流れの変化による局所的な河床低下などに対しては、河床の動的平衡性を確保しつつ、河床高を適切に維持する。

(高潮への段階的な対応及び進行する海岸侵食への対応の強化)

海面水位の上昇や台風の激化に対応するため、高潮堤防等を 的確に整備する必要があるが、高潮堤防等はコンクリート構造 が多いことから、施設更新時などにあわせて、その時点で今後 増大する外力を見込んで嵩上げを行い、浸水頻度を減少させる 必要がある。

具体的には、今後の海面水位の上昇や台風の激化に係る研究 の進度を踏まえ、嵩上げは段階的に考え、

- 第 I 段階として既に上昇した海面水位上昇分を見込む
- ・ 第Ⅱ段階として既に上昇した海面上昇分に加え、構造物の 耐用年数を考え、外挿や予測計算などでその期間における海 面水位上昇分を見込む
- ・ 第Ⅲ段階として第Ⅱ段階における考え方に加え、台風の激 化に伴う高潮上昇分を見込む

という方法で嵩上げを実施する。この場合、背後地の重要度によっては早い時期に第Ⅱ段階、第Ⅲ段階での考え方を取り入れるなどの措置を講ずることが重要である。なお、海面水位の上昇に伴い構造物に作用する外力が目標を超えた場合でも壊れにくい構造設計の考え方を検討していく必要がある。

また、進行する海岸侵食に対応する観点からも総合的な土砂

管理を積極的に推進し、海岸に土砂が適切に供給される対策を 講じるとともに、サンドバイパス等により海岸における土砂移 動の連続性の確保を図り、海岸保全施設によって沿岸漂砂の制 御等を進めていく必要がある。

(渇水リスクへの対応)

将来にわたって安全・安心な水資源の確保と利用のため、既に顕在化している課題である限られた水資源の有効活用や震災時をはじめとしたリスクへの対応として、水資源の有効利用の観点からのマネジメント、量と質の一体的マネジメント、危機管理の視点からのマネジメントを柱に、受水域を含めた水系(以下「水系」という。)ごとに一体として調整のとれた管理を計画的に行う総合的水資源マネジメントに向けた取り組みが推進されている。この中で、気候変化により高まりつつある渇水リスクへの対応については、新たな最重要課題として位置付けていく必要がある。

(河川・海岸環境の変化への対応)

気候変化による生態系や水・物質循環系への影響については、 現状では予測しにくい状況であることから、気候変化に伴い生 じる流況や土砂・物質の流出の変化、流域や沿岸域の環境の変 化等による生物の生息・生育環境や生物種への影響及び気温上 昇等による水質への影響等について、十分にモニタリングを行 いながら考えていくことが重要である。このため、気候の変化 とあわせて、河川・海岸環境の変化の把握に努めるべきである。

4. 災害リスクの評価

適応策の検討に当たっては、その前提となる気候変化の影響に伴い発生する水災害が社会や経済等に与える影響を、国民や関係機関等にわかりやすい形で示す必要があり、国土構造や社会システムの脆弱性を災害リスクとして評価し、明らかにすることがますます必要となる。この脆弱性を十分理解した上で適切な適応策が選択されるべきである。

洪水被害を対象にした場合には、起こり得る様々な規模の洪水に対し、流域での氾濫形態を分析して、氾濫形態ごとに水害リスクを評価することが可能と考えられる。また、施設整備の状況や避難活動などの防災力を反映させた上で算出された人的・経済的被害などの大きさに災害による被災確率を掛け合わせて集計したものや地域の防災力などを水害リスクとして評価することも考えられる。また、評価において、大河川の堤防決壊等によって、社会・経済活動や生活が持続不可能な事態に陥り、再興が困難な状況の発生に留意する。結果は、リスクマップとして目に見える形で示すことが重要である。水害リスクの評価は、現況の脆弱性を示すだけでなく、適応策を導入した場合に、比較をすることでその効果を把握することができるという意味においても重要である。

渇水被害を対象にした場合にも、将来の河川流況の変化から、 正常流量を下回る度合い、取水制限や給水制限の度合いや期間、 減水区間の距離などを総合的に勘案することにより、水系ごと に渇水リスクを評価することができる。

5. 適応策の具体的な提案

今後具体的に適応策を考えるに当たっては、流域全体で予想される新たな事態について、災害リスクなどの形で国民や関係機関等に周知するとともに、流域においてどのように対応していくのか、関係機関、団体等との役割分担を含め、国が中心となって地域とともに広く検討することが重要である。

また、流域における適応策の策定は、川と地域の関係の再構築とも考えられ、地域と一体となって取り組む必要がある。このため、上流域、中流域、下流域の住民や関係機関等が共通の認識を持つことができるように、気候変化による影響のみならず、流域における社会や自然と安全の関係に関する情報、災害リスクや費用負担などの情報をわかりやすく、徹底して公表し、共有化する中で合意形成を図ることが重要である。

地域によっては、複数の流域において同時に水災害が生じることがあるため、流域を越えた広域的な対応を考えておく必要

がある。

その際、洪水においては、施設でどこまで対応するのかを明確にした上で、流域において流出の抑制策、浸水・氾濫からの被害軽減策、被災施設の復旧・被災地域の復興策を検討し、起こり得る様々な規模の洪水に対して「犠牲者ゼロ」などの目標の達成を図ることが重要である。

適応策としては、水害、土砂災害、高潮災害等に対して、着実に被害の軽減を図る「施設による適応策」、地域づくりのビジョンとも関係する「地域づくりと一体となった適応策」、浸水・氾濫や土砂災害が発生した時に被害の最小化を図るための「危機管理対応を中心とした適応策」、渇水に対しては「渇水リスクの回避に向けた適応策」、また、河川環境の変化に対しては、気候変化が河川環境へ与える影響の把握を中心とした「河川環境の変化への適応策」を以下のとおり提案する。

(1)施設による適応策

施設は、その能力以内の外力に対し、生命・財産への被害を防止し、通常の社会・経済活動が継続することを可能とする。このため、国民の生命・財産を守るという観点からは、出来る限り、施設能力の向上に努め、施設により被害を予防・最小化することを引き続き重視していかなければならない。

しかしながら、我が国の現状の施設整備率が未だ低く、目標までの完成に長期間を要することなどを考慮すると、当面は、現在の整備目標水準を目標としながら、適切に社会条件を評価し、必要な施設整備を着実に進めるべきである。

1)新規施設の整備

新たな施設整備に当たっては、徹底したコスト縮減を図るとともに、今後、外力が変化することを念頭に置き、過度のコスト増大とならない範囲で、設計上の工夫や技術開発を出来る限り行う。例えば、構造物の設計は計画高水を外力としているが、今後はこれに加えて堤防満杯規模の高

水時を想定した安全性の照査を行う。

浸水・氾濫の頻度が増加する中で、社会・経済状況等の 制約により施設を設置しにくい場合や災害の状況に応じ て機動的な運用が必要な場合には、被害軽減のために効果 的な可搬式の特殊堤防や排水ポンプ等の整備を図る。

2) 既存施設の安全性の維持・向上

堤防などの治水施設は、長い歴史の中、延長や数量の確保が精一杯で、質の確保まで至っているわけではない。気候変化により、洪水の頻度が増大することを考えれば、既存施設の安全性の維持・向上は急務である。

特に堤防については、速やかに安全性の点検・評価を行い、安全性が不足している箇所については、強化対策を強力に推進する必要がある。また、強化の方法について積極的に技術開発を推進する。

また、伊勢湾台風を契機に整備が進んだ高潮対策施設や流域の急激な都市化に伴って整備が進められた治水施設の老朽化が進んでおり、更新時期を迎えてきている。更新投資の集中を避けるためにも、施設の安全性の点検・評価を行い、長寿命化に向けた予防保全的な管理を行うなど計画的な維持管理が必要である。さらに、高潮堤防等については、施設の更新時等に気候変化による外力の変化に対応した対策を行う必要がある。なお、施設が被災した際の災害復旧と併せて対策を行うことも効果的である。

3) 既存施設の徹底した活用

これまで蓄積されてきた施設のストックを活かし、現在の技術や新たな技術を用いて、施設の改良、再生、運用の高度化、さらには複数の施設の再編などにより、既存施設の能力をできるだけ幅広く引き出すことがコストや早期効果発現の面で極めて有効である。

降雨・流出予測技術と施設の運用の高度化

気候変化により降雨パターンの変化等が考えられる中で、観測体制の強化や降雨・流出予測技術の向上によってダム等の施設操作の確実性を高めたり、ダムの治水・

利水容量を効率的・効果的に活用するため、施設の改良、再生、運用の高度化を図る。

・ ダム群の容量の再編等

既設ダムの治水や利水効果の向上を図るため、流域における降雨・流出特性やダムの運用状況を踏まえ、既設ダム間で治水容量と利水容量を振り替えるなどダム容量の再編を行う。また、有効活用の観点から発電ダムなどの連携運用についても検討すべきである。

4) 流域における施設の整備

外力の増大により氾濫リスクが増大する中で、氾濫域をいくつかのブロックで区切ることにより、洪水氾濫の拡散を抑制し、浸水しても生命等の重大な被害の少ない地域づくりを進める。流域に残されている遊水地、二線堤、輪中堤などについては、これまでの治水の歴史における役割を再認識し、現在の土地利用との整合を図って、氾濫流の拡散防止に役立てる。また、地域の土地利用を踏まえ、水害リスクの評価を行って、道路や鉄道等の盛土の活用や新たな整備も行う。

地域においては、利便性からこれらが排除される可能性 もあり、河川や海岸の施設と一体的に管理することが必要 である。

都市域においては、市街地における都市河川の整備が難しい中、調整池や雨水貯留浸透施設を積極的に整備し、地下貯留施設など限られた空間の利用を進め、流出量を抑制する。

5)総合的な土砂管理の推進

気候変化による流出土砂量の増大は、治水、利水のみならず河川や海岸の環境を含めた流砂系全体に影響を及ぼす。一方、海面水位の上昇や台風の激化によって海岸侵食がより進行していく。このため、モニタリング等により土砂動態を明らかにし、治水、利水、河川や海岸の環境等への影響を把握する必要がある。

山地から海岸まで、それぞれにおける課題に対し、適切な土砂の移動や管理、沿岸漂流砂の制御、海岸の保全・再生が行えるように、関係者が連携して施設の整備や操作、維持活動、採取規制などハード、ソフトを組み合わせた対策を行う。

(2)地域づくりと一体となった適応策

人口減少や少子高齢化の進展など社会が変化する中で、土地利用や住まい方なども変化してきている。こうした社会構造の変化と併せて適応策を講じることは効率的で実現性が高い。気候変化により増加する外力に対し、大きな外力を対象に防御することは困難なため、様々な流域対策で外力の集中を避け、外力をできるだけ分散して守ることが社会、経済、環境面で有効である。このため、これまで限定的に総合治水対策などで実施してきた方策を拡充し、外力の増加要因であるCO2の削減策も含めた地域づくりを社会構造の変化と併せて実施する。今後は、経済的な効率性や利便性などに加えて、エネルギーの効率性や都市内の環境、水災害のリスクの軽減を考慮した地域づくりを進め、「水災害適応型社会」を構築していくことが重要である。

1) 土地利用の規制・誘導と一体となった治水対策の推進

浸水頻度や浸水のおそれが高い地域、がけ崩れや土石流など土砂災害の危険性が高い地域などでは、土地利用の規制・誘導と一体として被害を抑制する方策が有効である。 海外においても、施設整備を実施するだけでなく、流域の特性や災害に対する危険度に応じて幅広く土地の利用や規制の考え方をとり入れ、強い規制を採用している地域もある。こうした例を見ても災害を封じ込めるだけでなく、許容する余地も考えるべきである。

災害危険区域の指定と治水対策の一体的推進等

災害危険区域条例等を活用し、区域を指定して新たな 住宅等、浸水時に被害が生じる施設が立地しないよう一 定の規制をかけることとあわせて、輪中堤の築造、宅地 のかさ上げ、浸水防止施設、貯留施設、内水排除施設の整備などにより住宅を洪水による氾濫から防御することが有効である。

さらに、災害の危険性の高い地域において、災害リスクを示すことや保険制度等を活用したインセンティブを与えることにより被害の軽減に向けた土地利用を誘導することも重要である。

土砂災害警戒区域等における対策の推進

土砂災害の危険性が高い区域において、住宅等の新規立地の抑制、既存住宅の移転促進などをより一層推進するとともに、気候変化に伴う土砂災害の規模の増大等に対し、必要に応じて警戒区域等の見直しを行う。

さらに、都市計画において市街化区域の設定が行われる場合等には、土砂災害警戒区域等の土砂災害の危険性がある区域が含まれないようにする。

2) まちづくりの新たな展開

河道で流せる流量には限りがあることから、まちづくりと併せて積極的に雨水の貯留・浸透・流出抑制機能を流域で増やすことがより一層重要となってきている。

また、低炭素社会の実現に向けて浸水対策による安全性の確保と併せて、 CO_2 削減による環境負荷の低減が重要である。

具体的には、水害リスクの低減と、水辺景観や親水性の確保に加えて、河川の持つ水辺や緑地の空間の重要性を踏まえ、ヒートアイランド現象の抑制や CO_2 削減効果を兼ね備えた河川整備などを進めるべきである。

・ 低炭素型及び水災害適応型のまちづくり

エネルギーの効率が良く、治水対策を実施しやすい住居等の集約型のまちづくりや、太陽エネルギーの活用などCO₂削減効果の高い住宅と大規模調整池を一体として整備するレイクタウンのような、低炭素型及び水災害適応型のまちづくりを進める。

都市河川の緑化

水害対策や水防に資する河畔林の形成と併せて水辺の 緑化を推進する。これにより、都市空間に水辺や緑を増 やすとともに、流域にある公園や緑道などの緑地帯と緑 のネットワークを形成し、風の道を確保する。

・ 河川の再生

都市化が進展する中において、コンクリート化された 河川や暗渠化された河川などについては、その再生を図 り、都市の中に水辺や緑地空間を形成し、都市空間に水 辺や緑と風の道を確保する。

・ 雨水の貯留・浸透・流出抑制のための施設の推進

特に中小河川において降雨の急激な流出を緩和するため、流域全体の保水対策として雨水の貯留・浸透・流出抑制のための施設を、都市計画の中で下水道と十分に連携しつつ配置し、条例等による規制や助成等を用いて推進する。

3) 住まい方の工夫

浸水や土砂災害による被害が想定される地域においては、住宅の被害軽減と早期復旧・復興のため、浸水に強い建築構造や土砂災害の発生を想定した建築構造を採用するなど住まい方に工夫が必要である。また、浸水被害を想定し、電源やコンピュータ等の電子機器等の配置、災害時要援護者の居室等、安全・安心を考えた建築物の利用、止水板や土のうによる水防など自衛策を考えることが重要である。

・ 水害等に強い住まいの工夫

住宅を長期的に良好な状態で利用できるようにするため、浸水や土砂による被害の想定される地域においては、耐震性などとあわせて、浸水や土砂災害に強い建築構造を考えることが重要である。浸水に強い建築構造としては、高床式の構造やRC構造などが考えられ、土砂災害に強い建築構造としては、住宅の壁をRC構造で補

強することなどが考えられる。

一方、住宅の長期的に良好な状態での利用を想定する場合には、あらかじめ浸水想定区域図等により、浸水区域を避けて建築することも検討すべきである。

4) 自然エネルギーの活用

地球温暖化・ヒートアイランド対策を推進するため、河川水などの未利用の自然エネルギーを活用したヒートポンプを導入すること等により、効率的なエネルギー利用を図る。

(3) 危機管理対応を中心とした適応策

施設整備を重点的に実施したとしても、水害や土砂災害、 高潮災害等を完全に防御できず、社会・経済活動や生活活動 に影響が及ぶ。また、突発的な大規模災害に対しては、減災 に向けて発生時に速やかな対応が可能となるように平常時 からの備えが必要である。こうしたことから、大規模災害に 対し、平常時における予防的な施設整備とあわせて、危機管 理の観点から一体的に減災や復旧・復興対策を講ずる必要が ある。

1) 大規模災害への備えの充実

壊滅的な被害を回避し、復旧・復興を早期に達成して、 社会・経済活動や生活活動を継続していくため、危機管理 対応の充実・強化の一環として、国による広域的な災害支 援体制の強化や広域防災ネットワークの構築など大規模 災害への備えを充実させるべきである。また、国と地域が 連携して、万が一堤防決壊・氾濫した場合の緊急対策、氾 濫域等における氾濫流や排水の対策、大規模土砂災害への 迅速・適切な対応を考える必要がある。

・ 広域防災ネットワークの形成

氾濫による道路の浸水は、避難誘導、被災箇所の応急 復旧対策、排水機場への燃料輸送等を困難とし、迅速な 復旧活動の障害となるとともに、復興段階においても長 時間物資輸送を不可能とするなど影響が大きい。このため、防災ステーションや資材備蓄場等から災害箇所へのアクセスを確保する広域防災ネットワークの構築が重要である。具体的には、浸水しにくい堤防及び緊急用河川敷道路と高架道路等を連結し、ネットワークを形成すること等が考えられる。

復旧・復興のための排水対策の策定

大規模な洪水氾濫が発生すると、広範囲に浸水し、氾濫源の地形により、また、堤防・盛土等が障害となることにより浸水が長期間に及ぶ可能性があり、社会の混乱が長期化するため、悪影響をより小さくする必要がある。このため、早期に被災施設の復旧、被災地域の復興を可能にするため、排水ポンプや水門の確実な操作により氾濫水の迅速な排水を行うほか、非常用排水樋門の整備も推進する。

2) 新たなシナリオによるソフト施策の推進

施設整備の効果は、確実であっても限られていることから、施設整備と一体となった情報伝達、水防、避難、救助、復旧・復興などのソフト施策を併せて推進する必要がある。安全性を高め、適切にソフト施策を運用するため、従来のシナリオだけではなく、気候変化による外力の規模や発生時期の変化を考慮した新たなシナリオに基づき、活動を検討する必要がある。

また、人口が減少していく少子高齢化社会において、地域における自助、共助が被害の軽減に必要なため、防災に関する情報提供や住民等との双方向の情報共有などを積極的に行うとともに、地域一体となった備えができるように水害、土砂災害、高潮災害に対する地域防災力の向上に向けた取り組みを推進する。

避難活動の支援

ゼロメートル地帯などの低平地においては、周辺に 避難場所が少なく、また、人口が稠密している地域で は、避難場所の確保が難しい。このため、これらの地 域において高層建築物等を緊急避難場所として設定する際には、ハザードマップや災害リスクなどの情報を 提供し、これらの円滑な設定を支援することが重要で ある。

また、速やかな避難を実施するためには、早期に被害を受ける可能性がある住民や土地に不案内であっても避難場所への経路が容易に入手でき、河川の水位や氾濫情報、土砂災害情報などをどこでもリアルタイムで入手できるユビキタス社会を実現していくことが重要である。

3) 洪水予報・土砂災害警戒情報や水防警報の予警報等の強 化

水防活動や住民避難、応急復旧等の危機管理対応を的確に行うためには、洪水、土石流、高潮等の現象や時期、規模等を事前に予測し、洪水予報、水防警報等の予警報として関係機関や住民に伝達することがますます重要となる。このため、観測体制の強化や降雨・流出予測技術の向上等による予警報の技術及び体制の強化が必要である。

土砂災害警戒情報についても、災害発生の切迫性が分かる、よりきめ細やかな情報を提供するとともに、情報の精度向上を行うなど高度化を推進し、体制を強化する必要がある。

洪水予報のための組織、体制の整備

適時適切な災害時の応急対応や住民避難の実施の観点から、気候変化による新たな現象も視野に入れた予測の実用化や精度向上、対応のためのリードタイムの確保、伝達の多様化・迅速化等による予警報技術の強化は、重要な課題である。このために必要となる気象・水象・地象に関する観測の充実や関係機関との観測データの共有化に向けた専門的な組織体制を整備し、適切かつ効率的な業務執行と人材を育成する必要がある。

(4) 渇水リスクの回避に向けた適応策

気候変化に伴う渇水リスクの回避に向けた適応策としては、 総合的水資源マネジメントの新たな最重要課題として位置 付け、水系ごとに調整のとれた管理を計画的に推進していく 必要がある。

適応策の検討に当たっては、まず、水利用には、上水道処理をはじめエネルギーの消費やCO₂排出量の増加を伴うといった認識を持つことが大切であるとともに、気候変化に関する長期的見通しを立てることが困難であるといった点に留意する必要がある。このため、平常時より需要マネジメントによる節水型社会を構築し、エネルギーやCO₂の削減に寄与するといったことが、適応策の土台として重要である。その上で、気候変化の結果として、深刻な渇水が発生した場合の国民への影響を最小化させるため、緊急的な水資源供給をのための適応策が重要である。また、平常時より水資源供給施設の徹底活用や長寿命化等の適応策に取り組むことは、ストや早期効果発現の面で極めて有効である。既存施設の徹底活用等を図りながらも、不足分については新たに施設の整備を行う。さらに、将来の社会構造の変化に応じた水利用のあり方についても検討が重要である。

このような適応策は、水の最終利用者までを含む水資源に 関係する者が連携し、水系ごとに一体として調整のとれた管理を計画的に推進することが最も有効である。この際に、各適応策は、短期、中期、長期といった時間軸で整理し、必要となるコストとエネルギーを考慮しながら検討し、順応的な対応を図ることが重要である。

1) 需要マネジメントによる節水型社会の構築

限られた水資源を有効に利用するため、平常時より需要マネジメントを行い、節水型社会を構築していくことが重要である。具体的には、国民の節水に関する意識の高揚と徹底のため、広報活動を実施するとともに、例えば、国民や節水型水使用機器を開発する企業まで含めてインセンティブが働く各施策や義務付け等の規制施策を講じて行く必要がある。また、工業用水等の再利用率の一層の向上、

雨水利用の推進に努めるとともに、最近の膜処理等の水処理技術の活用等により、下水の再生水利用の一層の推進に努める必要がある。

2) 緊急的な水資源の確保

深刻な渇水が発生した場合には社会・経済活動への想定できない影響が懸念されることから、緊急時における水供給体制等を確立しておくことが重要である。具体的には、水が危機的に不足する地域への水バッグによる輸送や連絡管の整備による水の相互融通、移動式海水淡水化施設による水の供給、多様な備蓄等を推進する必要がある。さらに、水系内の利水者間の水融通のための渇水調整等も必要である。

3) 水資源供給施設の徹底活用・長寿命化等

これまでに蓄積された既存施設の有効利用、長寿命化、再編や運用の変更による効率化などにより水資源供給施設の徹底活用を図る。具体的には、ダムの嵩上げや堆砂の排除、ダム群連携や容量の再編、ダムのオペレーションの高度化等を行う。また、既存施設の徹底活用等を図りながら、なお必要な新規施設についても整備を進めていく必要がある。

(5) 河川環境の変化への適応策

河川環境は様々な要素から成り立っており、気候変化の観点からの河川環境の変化については、知見やデータが少なく、河川環境全体の変化を把握、予測することは困難な状況である。このため、モニタリングの強化により、知見やデータの蓄積を図って、河川環境の変化と気候変化の関係を分析し、河川環境の管理のあり方を検討するとともに、適切な河川管理に努める。

(6) 気候変化による影響のモニタリングの強化

緩和策への取り組みや社会条件の変化など不確実性がある中で、外力の変化の予測についても予測値に大きな幅が存在する。こうした中で、調査・観測によるモニタリングは重要であり、気候変化の把握を目的としたモニタリングを行う。

各流域や沿岸域において調査・観測してきた雨量、水位、 流量、潮位、波高、水質、流出土砂量、河道形状、生物、被 災状況等のデータを活かして、関係機関と連携のもとに気候 変化に伴う外力の変化をモニタリングすべきである。外力の 変化を適切に調査・観測できるように指標を明確にし、現在 の調査・観測方法などを検証して、必要に応じて改善や新た な技術の導入を図る。

モニタリングの結果は、データベース化し、定期的もしくは適宜とりまとめ、適応策の検討に反映するとともに、わかりやすい形で公表する。また、気候変化に関するデータは、関係機関が相互に提供し、協力することが重要である。

6. 適応策を講ずるに当たっての課題

不確実性のある気候変化の適応策を講ずるに当たっては、 様々な課題が想定されるが、ここでは主な課題を列挙する。これらについては、知見やデータが少なく研究レベルのものや広範な関係者に関わるものもあるが、適応策に関わる部分には国土交通省が責任を持って取り組むべきであり、課題に応じて政府全体での取り組みや省庁連携に加え、産・学・官の協力体制を作り、新しい知恵を導入する枠組みづくりを考えるべきである。

- 気候変化による外力の変化の把握(予測、調査・観測、 分析等)
- ・ 災害リスクの評価方法及び評価結果の公表
- ・ 流域等での安全確保の考え方と進め方
- ・ 河川生態系や水・物質循環系への影響予測と評価の方法

Ⅳ. 適応策の進め方

1. 進め方の基本的な考え方

治水は、長期的な計画の下で整備を進めるものであることから、外力変化を適切に想定し、継続している治水の施策の中に、 気候変化への適応策を組み込んでいく必要がある。

このような前提の中で、以下のような基本的な考え方に基づき適応策を進めていく必要がある。

(1)政府全体の取り組み

適応策の重要性にかんがみ、政府が一体となって適応策に 関する取り組みを推進すべきである。中央防災会議など関係 機関が会する場で適応策の議論がなされるように積極的な 働きかけが必要である。

(2) 国民との協働

適応策の策定・実施に当たっては、国民との協働が不可欠である。このため、気候変化による水害や渇水被害、土砂災害、高潮災害等の激化や国土・社会への影響について、広く国民に理解が得られるよう様々な機会を通じてわかりやすい情報の提供に努める必要がある。

また、各種災害の被災経験や河川、砂防や海岸に関する知識が少ない住民が多くなっているため、災害に関する基礎知識や災害時に取るべき行動などの防災基礎教育や河川環境教育が体系的に行われるよう、河川管理者等は関係機関と連携し、支援を行う必要がある。

(3)予防的措置への重点投資

投資余力の限られている中で、特に脆弱化が予想される施設や地域、人口・資産や中枢機能の集積する地域における予防的措置への重点投資を考える必要がある。

(4)優先度の明確化

限られた予算の中で気候変化への適応策を強化するためには、包括的な施策メニューだけでなく、選択と集中により優先すべき施策や箇所を明確にする必要がある。

(5) ロードマップの作成

今後、5年、10年といった短期・中期的な視点から、さらに長期を見据えた国土計画に反映させるような視点まで、時間軸を設定した上で、短期、中期、長期の施策を展開する必要がある。このため、時期ごとに災害リスクの評価を行い、明確なロードマップを作成する必要がある。作成に当たっては、時間とともに気候変化の影響や社会状況の変化が見込まれるため、予測等の不確実性を考慮し、選択の幅の広い柔軟な対応を採れることが重要である。

(6) 順応的なアプローチの採用

気候変化の予測等に不確実性がある中で適応策を検討するため、今後の観測データや知見の蓄積に応じてロードマップを修正していく順応的なアプローチを採用する。

予測やモニタリングの結果に応じて、社会への影響を鑑み、 適宜、適応策の内容や組み合わせ、優先順位を検証し、手戻 りのない選択、見直しを行う。この際、予測は長期的な予測 と併せて行う。

(7) 関係機関等との連携

適応策を総合的に行う流域においては、河川管理者だけでは達成が出来ないことも数多くあるため、住民や地方公共団体等の協力を得ることや、連携しながら進めていくことが不可欠である。例えば、地域づくりからの適応策を進めるに当たっては都市計画や住宅及び農業関連部局等、危機管理対応を中心とした適応策では道路や下水道部局、消防関連部局、警察、自衛隊等、渇水に対する適応策では利水部局等と連携が必要となる。このため、災害リスクやロードマップを示し、

利害関係者間の調整や適応策の総合的な取り組みを行うことにより、水に関する様々な部門の統合的な管理を行うことが必要である。

(8) 新たな技術開発と世界への貢献

気候変化による影響評価や適応技術において、産・学・官の連携の下に新たな技術の開発とその積極的な活用を図る。また、我が国の経験、施策、技術を積極的に発信し、強いリーダーシップを発揮して全世界的に貢献できるよう科学技術外交を積極的に推進する。

(9)調査・研究の推進と治水、利水、環境の計画への反映

気候変化に伴う水害や渇水被害、土砂災害、高潮災害等のリスクの変化や河川・海岸の環境への影響に関する調査・研究を大学や研究機関等と連携して推進し、治水、利水、環境の計画等へ反映する。

2. 適応策の実施手順

次の新たな知見の進展となる I P C C 第 5 次評価報告書等が出される頃までの 5 年程度の期間を第 1 段階として設定し、適応策を講ずるに当たっての課題(Ⅲ − 2. 6)について検討すべきである。また、今後増加していく外力への対応を含め施設整備の再設定を行うとともに、ロードマップを作成し、重要な適応策と評価される取り組みについては直ちに重点的に実施する。

続く期間を第2段階として設定し、第1段階での取り組みを評価して、その結果に基づく優先度に応じて対策を実施するとともに、新規に効果的、効率的な適応策については重点的に実施する。これにより、ロードマップを修正する必要がある。また、設定した治水政策や適応策は、河川整備基本方針、河川整備計画等に反映するとともに、国土形成計画など国土づくり・地域づくりのビジョンに反映し、「水災害適応型社会」を構築する。

第2段階以降では、社会状況の変化、検討により得られた各種の知見の蓄積、モニタリングの進展や災害の発生状況に伴う設定条件の変化も考えられることから、これらを踏まえた適応策を段階的に取り入れることが重要である。この際必要に応じて、施設整備の目標等の再設定も検討する。

3. 国際貢献の推進

国際貢献としては、気候変化による水災害は地域によって影響の有無や度合は異なるものの世界共通の課題であるため、各国の首脳等に国の最重要課題として適応策の取り組みの重要性や国際協力の必要性を働きかける必要がある。技術面では先進的な予測・評価技術や情報技術を発信するとともに、アジア・太平洋地域においてグローバルモデルなどによる気候予測や国土・社会への影響予測への支援、適応策の立案、実施の支援を行うことが重要と考える。

また、国連機関などによる開発途上国等への水管理や災害対応等のプロジェクトに対して協力を進める。

おわりに

IPCC第4次評価報告書が公表され、より現実的な地球温暖化の影響が示された。我が国においても、様々な分野で地球温暖化に伴う気候変化への適応策の検討が進められており、小委員会では、水害や渇水被害、土砂災害、高潮災害等の激化による国土・社会への影響を考え、壊滅的な被害を回避し、「水災害に適応した強靱な社会」(水災害適応型社会)を構築するための適応策を幅広い観点から議論してきた。

現時点において、地球温暖化や社会条件のシナリオ、気候変化の予測計算等に不確実性はあるものの、外力の増大と国土・社会への影響をできるだけ具体的に想定し、目標を明確にした上で、これまでの治水や利水などの政策を見据えながら、新たに必要な適応策の基本的方向を明らかにしてきた。治水、利水及び河川や海岸の環境に関して未だ脆弱な我が国の国土において、気候変化は大きな影響を及ぼすが、信頼性の高い施設による安全性の確保を次世代に向けて着実に進めるとともに、社会条件の変化や社会構造の再構築の中で地域づくりと一体となった流域における適応策を進めるなどにより、この難しい問題に立ち向かっていかなければならない。

しかしながら、社会構造に関わるような適応策に関しては、河川部局単独で行えるものに自ずから限界があり、政府、関係省庁等が一体となって、住民や地方公共団体等の理解や協力・連携の下に推進することが極めて重要である。このため、政府や関係省庁等が一体となって水災害の適応策に取り組める仕組みを作ることが必要である。また、国土交通省は、流域の住民や関係機関、地方公共団体、企業等において水災害に対する共通認識が持てるように、わかりやすい情報を徹底的に公表し、適応策に関する合意を形成していく必要がある。さらに、今後とも気候変化の予測計算等の不確実性を減らし、適切な目標を設定する努力が必要である。

本答申の作成を契機に、より実効性の高い適応策を見出すとともに、適応策の進め方についても検討するために、社会資本整備審議会や国土審議会などの関係する分科会や中央防災会議などと幅広

く意見交換を行う必要がある。国土交通省は、本答申に基づき、直ちに実効性のある行動計画を立案し、実現に向けた努力を開始していただきたい。

また、2007 年 12 月に開催された第1回アジア・太平洋水サミットにおいて、水問題の解決が最優先の課題であること、洪水、干ばつ、その他水災害の発生の防止などに早急に効果的な行動を取ることなどが合意され、適応策の重要性については共通の認識となるに至った。7 月に開催されるG8北海道洞爺湖サミットにおいても、水災害への適応策の重要性が認識され、安全で安心な世界の形成に向けた取り組みが推進されることを期待する。このため、本答申の内容が積極的に発信されることを望むものである。

社会資本整備審議会河川分科会

委員名簿

分科会長 虫明 功臣 福島大学理工学群共生システム理工学類教授

委 員 池淵 周一 京都大学名誉教授

岡島 成行 (社)日本環境教育フォーラム理事長

岸 由二 慶応義塾大学教授

越澤 明 北海道大学大学院教授

坂村 健 東京大学大学院情報学環教授

櫻井 敬子 学習院大学教授

田中 里沙 (株)宣伝会議編集室長

津田 和明 (独) 日本芸術文化振興会理事長

福岡 捷二 中央大学研究開発機構教授

藤吉洋一郎 大妻女子大学文学部教授

松田 芳夫 中部電力 (株) 顧問

マリ・クリスティーヌ 異文化コミュニケーター

山岸 哲 (財)山階鳥類研究所所長

社会資本整備審議会河川分科会 気候変動に適応した治水対策検討小委員会

委員名簿

委員長 福岡 捷二 中央大学研究開発機構教授

委 員 池淵 周一 京都大学名誉教授

磯部 雅彦 東京大学大学院新領域創成科学研究科

社会文化環境学専攻教授

沖 大幹 東京大学生産技術研究所教授

岸 由二 慶應義塾大学教授

木本 昌秀 東京大学気候システム研究センター

副センター長・教授

小池 俊雄 東京大学大学院工学系研究科社会基盤学専攻教授

重川希志依 富士常葉大学大学院環境防災研究科教授

中北 英一 京都大学防災研究所気象 · 水象災害研究部門教授

藤田 正治 京都大学防災研究所流域災害研究センター教授

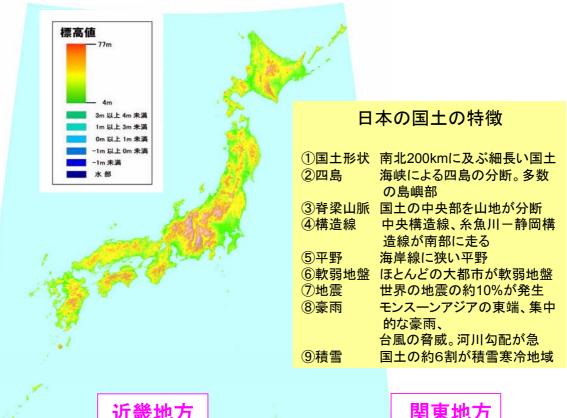
藤吉洋一郎 大妻女子大学文学部教授

三村 信男 茨城大学広域水圏環境科学教育研究センター教授

虫明 功臣 福島大学理工学群共生システム理工学類教授

※敬称略、五十音順

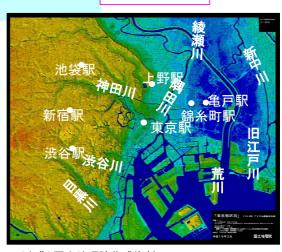
審議経緯等


- 平成19年7月27日 第28回河川分科会
 - ・気候変動に適応した治水施策のあり方ついて (諮問)
 - 8月27日 第1回気候変動に適応した治水対策検討小委員会
 - ・適応策の基本的な方向に関する審議
 - ・基本的な認識・適応策の基本的な方向
 - 9月27日 第2回気候変動に適応した治水対策検討小委員会
 - ・具体的な適応策に関する審議
 - ・想定外力の検討 ・具体的な適応策
 - 10月11日第30回河川分科会
 - ・気候変動に適応した治水対策検討小委員会での 検討状況の報告・審議
 - 10月23日第3回気候変動に適応した治水対策検討小委員会
 - ・将来の洪水の変化予測に関する研究紹介
 - ・外力の増加に対する治水対策の考え方
 - ・中間とりまとめ(骨子案)に関する審議
 - 11月15日第4回気候変動に適応した治水対策検討小委員会・中間とりまとめ(案)に関する審議
 - 11月29日中間とりまとめ公表
 - 12月7日 第31回河川分科会
 - ・中間とりまとめに関する報告・審議
 - 1月 中間とりまとめ(修正)公表

- 平成20年2月25日 第5回気候変動に適応した治水対策検討小委員会
 - ・適応策選択の考え方に関する審議
 - ・水害リスク軽減対策に関する新たな評価手法の 導入に関する審議
 - 3月18日 国土審議会 水資源開発分科会 調査企画部会 第6回気候変動に適応した治水対策検討小委員会 合同会議
 - ・渇水に対する適応策に関する審議
 - 4月23日 第7回気候変動に適応した治水対策検討小委員会 ・答申(素案)に関する審議
 - 5月16日 第8回気候変動に適応した治水対策検討小委員会 ・答申(案)に関する審議
 - 5月29日 第37回河川分科会
 - ・ 答申 (案) に関する審議

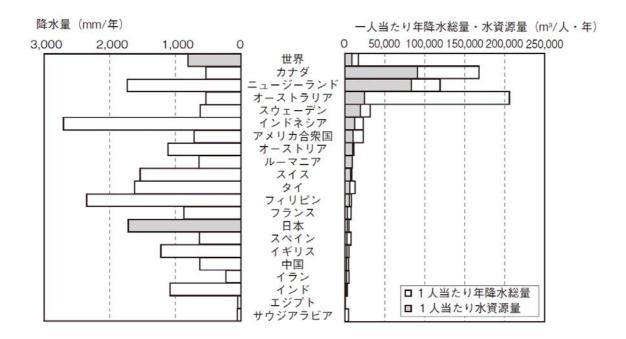
参考資料

洪水時の河川水位より低い


- ▶ 約10%の土地に
- ➤ 約50%の人口と
- ▶ 約75%の資産を抱えている。

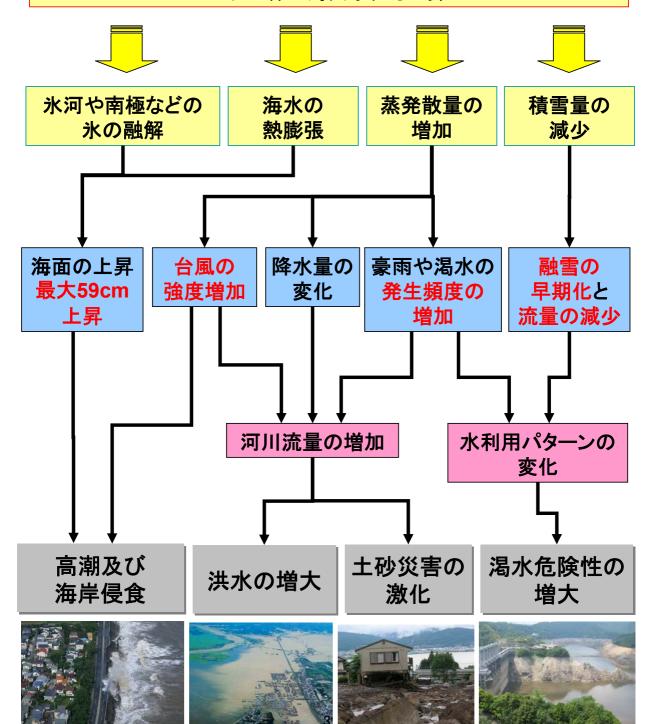
近畿地方

神崎川 新大阪駅 尼崎駅 寝屋 大阪駅阪城 淀川 平野川 天王寺駅


関東地方

(出典)国土地理院作成資料

一人あたりの水の量


- ▶ 我が国の年平均洪水量は1,700mmで、世界(陸域)の年 平均降水量約810mmの約2倍
- → 一方、これに国土面積を乗じ全人口で除した一人当たりの年降総量でみると、我が国は約5,100m³/人・年で、世界の一人当たり年降水総量16,800m³/人・年の3分の1程度

- (注) 1. FAO (国連職業農業機関) 「AQUASTAT」をもとに国土交通省水資源部作成
 - 2. 日本の人口は総務省統計局「国勢調査」(2000年)、平均降水量と水資源量は1971~2000年の平均値で、国土交通省水資源部調べ

出典: 平成19年度版 日本の水資源 一安全で安心な水利用に向けて ー

温室効果ガスが大量に排出されて大気中の濃度が高まり 熱の吸収が増えた結果、気温が上昇。 これに伴い海面水位も上昇

本文P8~12 II-1. IPCC

主題1 気候変化とその影響に関する観測結果

- ・大気や海洋の世界平均温度の上昇、世界平均海面水位の上昇などが観測されていることから、気候システムの温暖化は明白である。
- 過去100年間の線形の昇温傾向は100年当たり0.74℃である。
- 海面水位の上昇は温暖化と整合性がある。

など

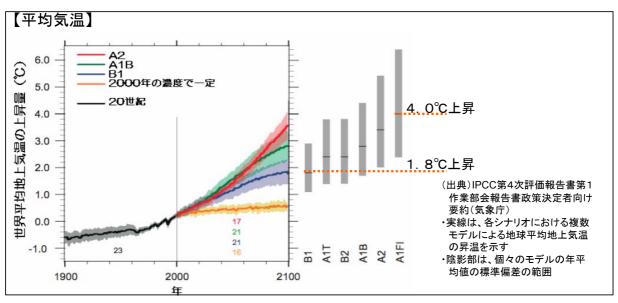
主題2 変化の原因

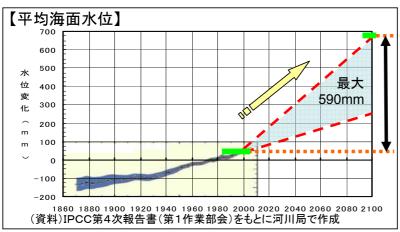
-20世紀半ば以降に観測された世界平均気温の上昇のほとんどは、**人為起源の温室** 効果ガスの増加によってもたらされた可能性が高い。

主題3 予測される気候変化とその影響

- -21世紀末の<u>世界平均地上気温の上昇は、高成長型シナリオで化石エネルギー源を</u> <u>重視した場合、4℃(2.4~6.4℃)と予想</u>される。 海面水位は0.26~0.59m上昇と予想される。
- ·極端な大雨の頻度は引き続き増加する可能性が高い。
- ・熱帯低気圧の強度が上昇する可能性が高い。
- ・<u>極端な気象現象の強度と頻度の変化および海面水位上昇は、自然システムおよび人間システムに悪影響</u>を及ぼすと予想される。
- ・アジアでは、<u>淡水利用可能性は2050年までに中央・南・東・東南アジア、特に大規模</u> 河川の流域で減少すると予想される。

また、沿岸域、特に人口が集中する南・東・東南アジアのメガデルタ地帯において、海からの、あるいは川からの浸水リスクが高まる。 など

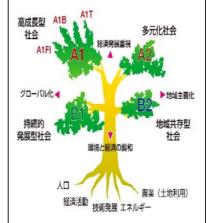

主題4 適応と緩和のオプション


- ·<u>現在行われているより広範な適応策が気候変動の脆弱性を減少させるため必要</u>である。
- ・実施される緩和策の規模によらず、<u>今後10年から20年間に追加的な適応策が必要</u>である。

主題5 長期的な展望

- ・<u>適応策と緩和策のどちらも、その一方だけではすべての気候変化の影響を防ぐことができないが、両者は互いに補完しあい、気候変化のリスクを大きく低減することが</u>可能である。
- ・短期的および長期的に起こるであろう温暖化による影響に対処するために適応策が必要である。
- ・気候変化への緩和策がとられなければ、長期的に見て、自然システムおよび人間システムの適応能力を超える可能性が高い。
- 緩和策により、多くの影響は減少、遅延、回避することができる。

- ▶100年後には、地球の平均気温は1.8~4.0℃の上昇が予測される
- ▶100年後には、地球の平均海面水位は18~59cmの上昇が予測される
- ▶温室効果ガスの排出が抑制されたとしても、温暖化や海面上昇は数世紀にわたって
 続く



【21世紀末の平均気温上昇と平均海面水位上昇】

	環境の保全と経済 の発展が地球規模 で両立する社会	化石エネルギー源を 重視しつつ高い経済 成長を実現する社会
気温上昇	<mark>約1. 8℃</mark> (1.1℃~2.9℃)	約4.0℃ (2.4℃~6.4℃)
海面上昇	18~38cm	26~59cm

資料)IPCC第4次報告書(第1作業部会)より

【検討に用いたシナリオ】

A1.「高成長型社会シナリオ」

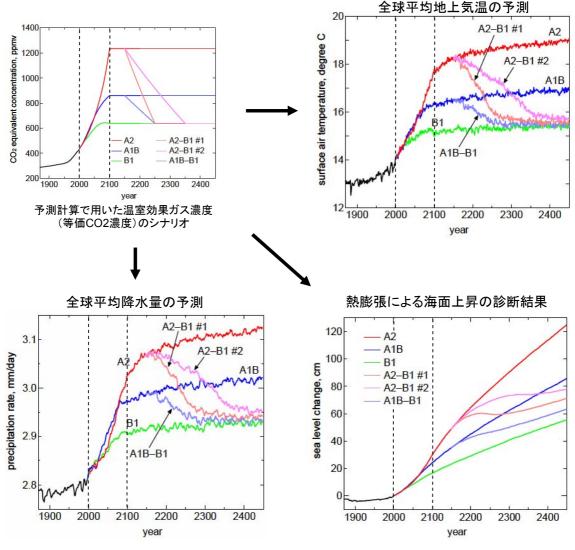
A1FI: 化石エネルギー源を重視

A1T: 非化石エネルギー源を重視 A1B: 各エネルギー源のバランスを

重視

- A2.「多元化社会シナリオ」
- B1.「持続的発展型社会シナリオ」
- B2.「地域共存型地域シナリオ」

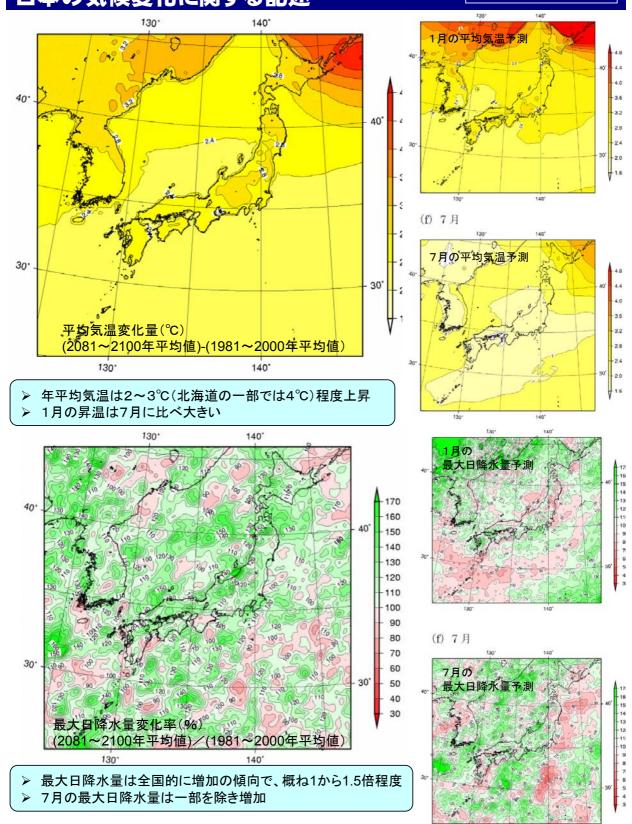
(出典)IPCC第4次報告書統合報告書 概要(公式版) 2007年12月17日version


- ▶ 過去30年で強い熱帯低気圧の占める割合が増加
- ▶ 西太平洋地域においてもカテゴリー4,5の熱帯低気圧が 増加
- ▶ さらに、今後、熱帯低気圧の強度は強まると予測

各カテゴリー※の熱帯低気圧の割合 カテゴリー4.5の熱帯低気圧の発生数及び割合 50 期間 1990-2004 1975-1989 40 cats: 2+3 数 % 数 % cat: 1 割合(%) 東太平洋 36 25 49 35 cats: 4+5 西太平洋 85 25 116 41 北大西洋 16 20 25 25 橙:カテゴリー4.5 南西太平洋 12 10 22 28 特に強い台風が ₩:カテゴリー2.3 10-増えている。 北インド洋 青:カテゴリー1 1 8 7 25 破線は全期間の平均値 南インド洋 23 18 50 34 70/74 75/79 80/84 85/89 90/94 94/99 00/04 年(5年毎) ※ 熱帯低気圧の強度を示す等級。1~5に分けられ、5が最も強度が大きい。

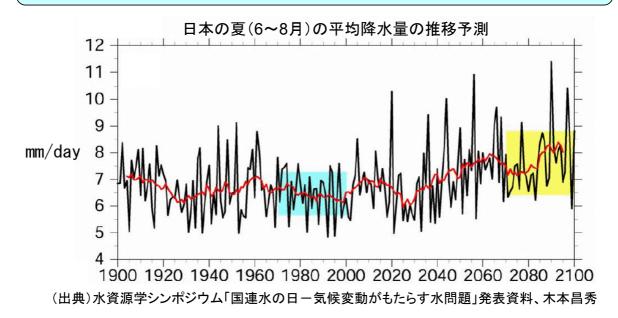
(出典)IPCC第4次報告書第1作業部会報告書概要(公式版)

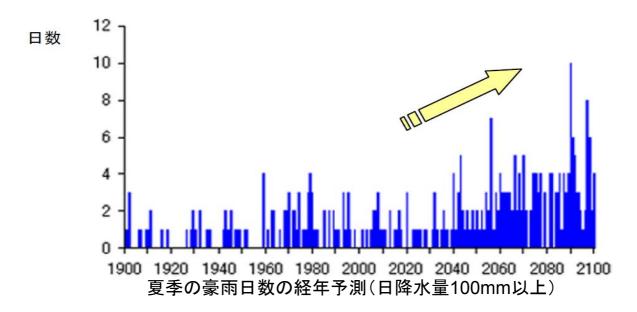
気候変動に関する政府間パネル(IPCC)第4次評価報告書 第1作業部会


- ▶ 放射強制力を、2100年時点でB1またはA1Bシナリオの水準で安定化しても、主に 2200年までに、世界平均気温が約0.5℃さらに上昇すると予測。
- ▶ 放射強制力を、2100年時点でA1Bシナリオのレベルに安定化した場合、<u>熱膨張のみで、2300年までに(1980~1999年と比較して)0.3~0.8mの海面上昇。</u>
 深層への熱の輸送に時間を要するため、熱膨張はその後数世紀にわたって継続。
- ▶ 過去及び将来の人為起源の二酸化炭素の排出は、このガスの大気からの除去に必要な時間スケールを考慮すると、今後千年以上の昇温と海面水位上昇に寄与。

気候変動の長期的影響予測の一例

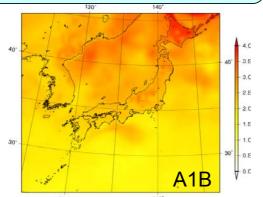
出典:(財)電力中央研究所 人・自然・地球共生プロジェクト 大気海洋結合モデルの高解像度化 報告書


本文P13~16 Ⅱ -2. 各種レポート


出典:地球温暖化予測情報第6巻 【RGM20を用いた予測結果(A2シナリオ)】

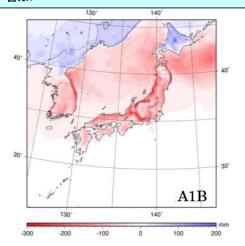
- ▶ 降水量の増加とともに変動幅が増大。無降雨日数も増加
- ▶ 大洪水の可能性が増加する一方、

 る水の可能性が増大


今後100年間に、日降水量が100mm以上となる豪雨日数は、 現在の年3回程度から、最大年10回程度に増加すると予測される

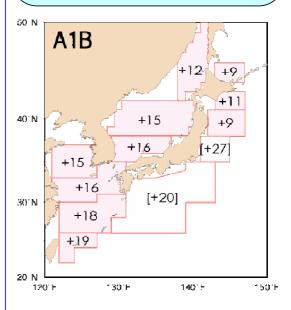
(出典)異常気象レポート2005(気象庁)を元に作成

【寒候期(12~3月)気温上昇】


- ▶高緯度ほど大きく上昇
- >A1Bシナリオで、北海道では3℃以上、東日本から西日本で2~3℃上昇

大気・海洋結合モデル(CRCM)により、現在気候 (1981~2000年平均)と将来気候(2081~2100年 平均)の寒候期における平均気温の変化を予測

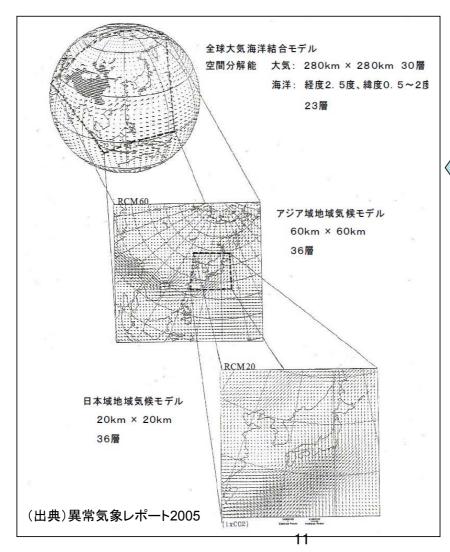
【降雪量の変化】


▶北海道を除くほとんどの地域で降雪量の減少、北海道の高標高地域で増加

CRCMにより現在気候(1981~2000年平均)と将来気候 (2081~2100年平均)の寒候期の総降雪量の変化量を 予測(降雪量は降水量に換算)

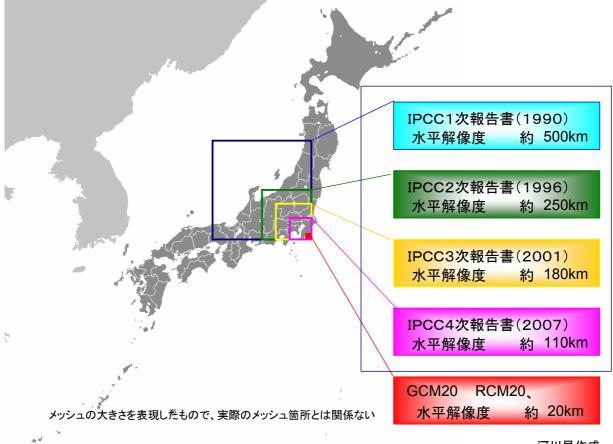
【年平均海面水位の変化】

- ▶ A1Bシナリオで1981~2100年までの100年あたりの上昇率は0.09 ~ 0.19m程度
- ▶ ただし、温暖化に伴う海水温の上 昇による熱膨張と海流の変化によ る水位変化の合計。陸氷の縮小に よる寄与は含まない


北太平洋海洋モデルNPOGCMにより1981~2100年の 将来予測を基に100年あたりの変化量を予測。[]で囲 んだ海域は将来予測の長期変化傾向の不確実性が大 きいと考えられるため、利用には注意が必要

地域気候モデル(RCM20とGCM20)

近年、より詳細な地域気候の予測が可能なシミュレーションモデルも 開発されている。


地域気候モデル

	GCM20 (General Circulation Model)	RCM20 (Regional Climate Model)
計算の領域	全球	日本周辺
水平解像度	約20km	約20km
	格子数1920×960	格子数129×129
鉛直層数	60層	36層
側面境界条件	全球モデルのため不要	アジア域気候モデル

気候変動の予測を行うモデルの解像度は年々進歩

河川局作成

気候変動の予測

災害リスクの増大について予測

- ▶ 流域ごとの洪水発生の増加予測
- ▶ 流域ごとの安全度の低下の評価

目標の再設定

RCM20を用いた降水量の変化予測

- > 将来100年確率最大日降水量は増加の傾向
- ▶ この傾向は50年後に比較して100年後さらに顕著に
- > 50年後で概ね1.1から1.2倍程度、100年後で概ね1.2 から1.4倍程度

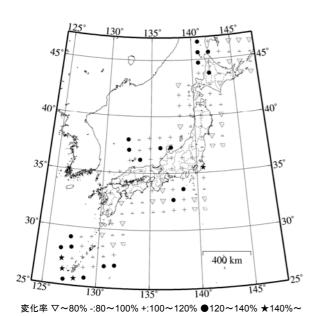
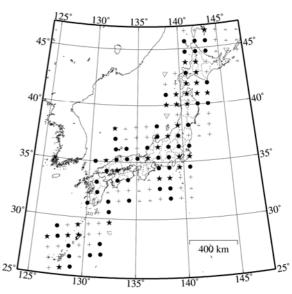
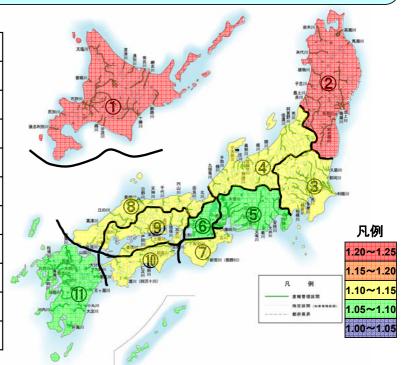



図 100年確率最大日降水量の変化 (50年後/現在)

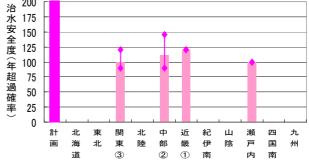
変化率 ▽~80% -:80~100% +:100~120% ●120~140% ★140%~

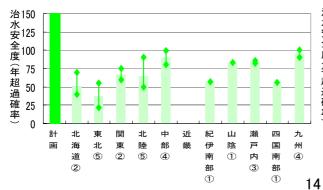
図 100年確率最大日降水量の変化 (100年後/現在)

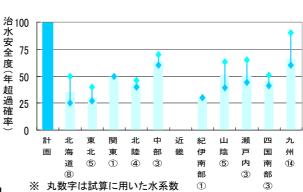
RCM20を用いた予測結果(A2シナリオ)


出典:土木学会論文集No.796 和田一範、村瀬勝彦、冨澤洋介 「地球温暖化に伴う降雨特性の変化と洪水・渇水リスクの評価に関する研究」 GCM20(A1Bシナリオ)で求めた各調査地点の年最大日降水量から

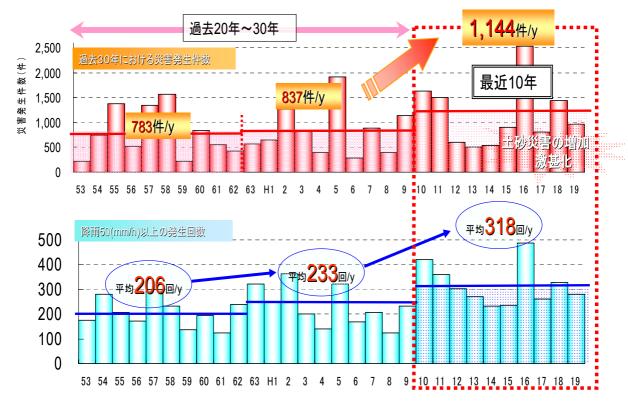
(2080-2099年の平均値)


を求め将来の降水量を予測 ※


(1979-1998年の平均値) (※各地域における調査地点毎の平均値分布の中位値)

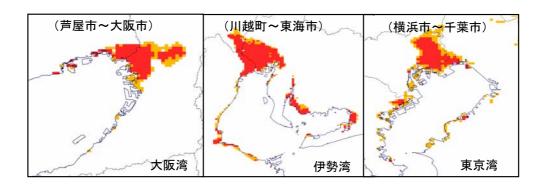

1	北海道	1.24
2	東北	1.22
3	関東	1.11
4	北陸	1.14
5	中部	1.06
6	近畿	1.07
7	紀伊南部	1.13
8	山陰	1.11
9	瀬戸内	1.10
10	四国南部	1.11
11)	九州	1.07

上記の地域における年最大日降水量の変化率により、現計画の治水安全度がどの程度低下するか全国の82水系において試算を行い、地域及び現計画の治水安全度別にとりまとめた



各種予測検討では、降雨量が概ね1.0~1.2倍程度。地域によっては 1.3倍、最大でも1.5倍程度。

そこで、計画降雨量に日単位を採用している全国の1級河川のうち9河川を抽出し、計画降雨量を11.1倍、21.2倍、31.3倍、41.5倍とした場合の基本高水のピーク流量を試算した。



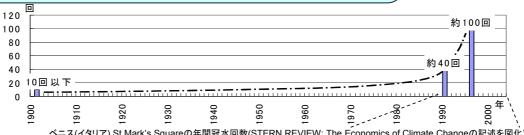
過去30年間の災害発生件数の平均は921件/年[※]。 <u>気候変動の激化に伴い、土砂災害も増加・激甚化</u>の傾向。今後もIPCC報告の通り、<u>温暖</u>化が進行すれば、土砂災害が増加・激甚化すると予想。

(※H4-7の雲仙普賢岳による火砕流を除く。S53~57の土石流、地すべりの件数は推計値:砂防部保全課調べ)

三大湾(東京湾、伊勢湾、大阪湾)のゼロメートル地帯が拡大

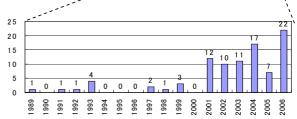
高潮による水害リスクを 有するエリアが拡大する

	現状	海面上昇後	倍率
面積(km²)	559	861	1. 5
人口(万人)	388	576	1. 5


- ※国土数値情報をもとに河川局で作成
- ※3次メッシュ(1km×1km)の標高情報が潮 位を下回るものを図示。面積、人口の集計 は3次メッシュデータにより行っている
- ※河川・湖沼等の水面の面積については含 まない
- ※海面が1m上昇した場合の面積、人口の6 0%分を増分として計算

高潮による浸水リスクの増大

▶ベニスSt Mark's Squareの冠水回数は、地盤沈下や気候変 動の影響により、20世紀はじめには年間10回以下であった が、1990年までに年間40回ぐらい、1996年には年間100回 にもなった。


※現状において、地球温暖 化の影響であるか明確では ないが、原因となっている可 能性が考えられる

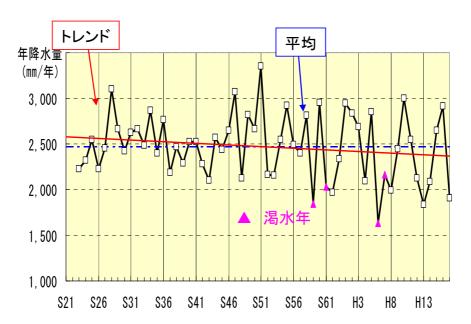
▶2006年には250回/年との情報もある

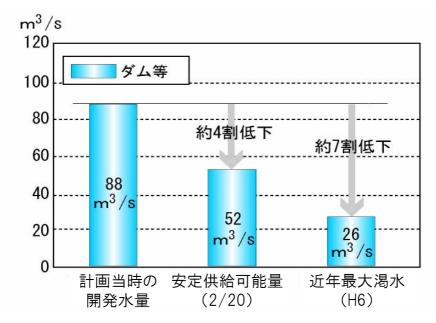

ベニス(イタリア) St Mark's Squareの年間冠水回数(STERN REVIEW: The Economics of Climate Changeの記述を図化

厳島神社回廊の冠水回数は、1990 年代は年間5回以下であったが、 2000年代には年間10回程度、また 2006年には年間22回も発生しており、 なお冠水回数は増加傾向にある。

厳島神社回廊の年間冠水回数(厳島神社社務日誌より中国地方整備局作成

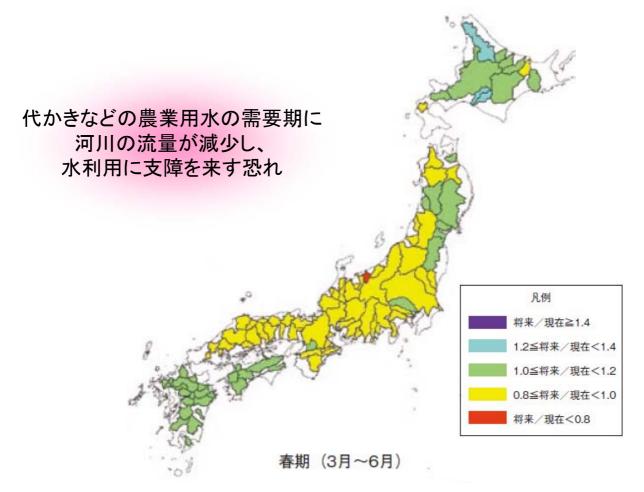
- ▶ 海面が上昇すると砂浜が安定勾配に移行しようとするため水位上昇 分以上に汀線が後退。
- ▶ 1m海面が上昇すると砂浜は約100m後退し、我が国の砂浜の約 90%が侵食されるおそれ

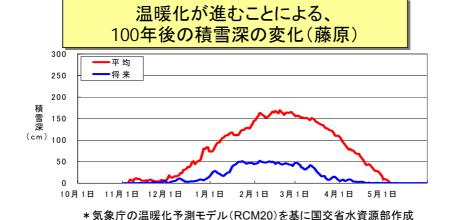

三村信男・幾世橋慎・井上馨子:「砂浜に対する海面上昇の影響評価」より河川局作成


- ▶ これにより、ダムからの安定供給可能量は低下

【木曽川水系の例】

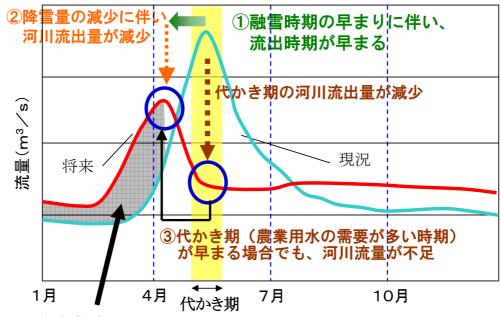
- ◇近年(昭和54年~平成10年):計画当時に比べて約4割低下
- ◇近年最大渇水(平成6年):計画当時に比べて約7割低下


【木曽川水系の例】


河川流量に影響を及ぼす、降雪量と降雨量を加算した地表到 達量について、現在と100年後を比較すると3~6月の間は多く の地域で減少

> 一級水系における現況(1979~1998年)と 将来(2080~2099年)の地表到達水量の比較

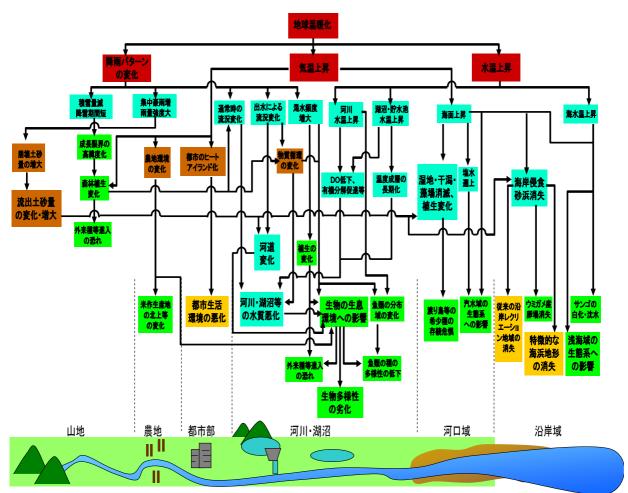
(出典)平成19年版 日本の水資源 国土交通省 土地・水資源局


利根川上流域では、<u>積雪深が大幅に減少する可能性</u> これに伴い、融雪時期や春先の流出量の減少を生じる

温暖化に伴う①融雪時期の早まり、②降雪量の減少により、 河川の流出の形態が変化し、

③代かき期の早まりにより、

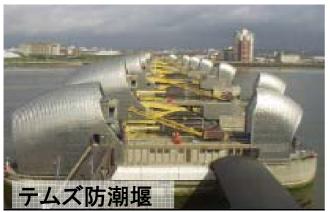
<u>年間の水需要パターンの変化が予想され、水利用への深刻な影響が予想</u>される



無効放流の発生!

ダムが満水の場合、無効放流(有効に利用できない放流)となる

(出典)平成19年版 日本の水資源 国土交通省 土地・水資源局


地球温暖化に伴う河川環境・流域環境への影響 イメージ

「地球温暖化、(独)国立環境研究所: http://www.nies.go.jp/escience/ondanka/ondanka01/index.html.」「地球温暖化と日本(自然・人への影響予測)。原沢英夫・西岡秀三編著:古今書院、2003.」「地球温暖化を考慮した水環境管理、花木啓祐: 水環境学会誌、Vol.29, No.2, pp57-61, 2006.」「「気候変動等によるリスクを踏まえた総合的な水資源管理のあり方研究会」(第4回会合)資料2」「「第3回 気候変動に適応した治水対策検討小委員会」資料5」「ニュートン2007年8月号。(株)ニュートンプレス」「地球温暖化の日本への影響1996。環境庁地球温暖化問題検討委員会、1997.4」を参考に河川局作成。

諸外国においては、国土保全の観点から既に温暖化への対策に 着手している例もある

イギリス

テムズ川の高潮防御は1000年に1度の 規模の安全度で対応がなされているが、 気候変動により100年後には、その安全 度が100年に1度の規模を下回ることが、 推定され、現在、高潮対策の計画を2009 年10月目処に策定中

テムズ防潮堰の建設期間中における暫定防御 1928年洪水とそれに続く1930年洪水法 19世紀後半の洪水法の改正 1897年洪水法

(出曲)

- DAVID RAMSBOTTOM(HR Wallingford Ltd),
 SARAH LAVERY (Environment Agency). 2007.
- PAUL SAYERS(HR Wallingford), BEN GOULDBY(HR Wallingford),
- OWEN TARRENT(Environment Agency). 2007
- Environment Agency. 2005.

オランダ

〇通常の高潮施設は、1953年の災害を踏まえるとともに、 将来の海面上昇(当時100年間で30cmを念頭に施設の耐用年数50年間で15cm)を見込んで設計・施工。

○さらに、今後新設及び更新する施設は、50年先の海面 上昇(25cm~50cm程度)見 込んで設計。(マエスラント高 潮堰は25cm見込んでいる)

EU

洪水リスクの評価・管理に関する指令

この指令では、気候変動が洪水発生に与える影響を含めた既往の知見に基づいた洪水リスク評価を2011年までに行うことを定めたほか、複数の確率規模に対応した洪水ハザードマップや洪水リスクマップを2013年までに作成することとしている。また、洪水リスク管理計画は、これらのマップによる情報を基に2015年までに策定することとされている。計画の見直しの際に気候変動の影響を考慮することも定めている。

- <u>①洪水リスク予備アセスメント(Preliminary Flood Risk Assessment)の実施</u> 加盟各国は、以下の内容の<u>洪水リスク予備アセスメントを行うことが義務化</u> される。
 - A)流域界及び小流域区分が入った地形及び土地利用がわかる地図。沿岸域(Coastal Area)の範囲もあれば含める。
 - B)大きな影響をもたらした過去の洪水に関する記述。今後も類似のことが起きる可能性がある場合には、浸水範囲、氾濫経路、生じた悪影響の内容の評価もこの中で行う。

②洪水ハザードマップと洪水リスクマップの作成

<洪水ハザードマップ(Flood Hazard Map)>

洪水リスク予備アセスメントの結果を基に、洪水で大きな被害が生じる恐れがある地域を特定し、最も適切な縮尺の洪水ハザードマップ及び洪水リスクマップを作成し、以下のシナリオに対応したものとする。

- A)低頻度(Low Probability)又は激甚な事象(Extreme Event)対応のもの
- B)<u>中頻度(再起確率年≧100年)</u>
- C) 高頻度

洪水ハザードマップでは、以下の内容を示すものとする。

- A)浸水範囲、浸水深又は水位
- B)氾濫流速又は関連河川等の流速

<洪水リスクマップ(Flood Risk Map)>

洪水リスクマップは、上に示す各シナリオに対応するものとし、以下の内容を示すものとする。

- A)被災する恐れがある区域内の住民の数の指数
- B)被災する恐れがある区域内の経済活動種別
- C)公害防止の観点から別のEU指令で定めている施設やその他の環境上の危険施設

③洪水リスク管理計画(Flood Risk Management Plan)の作成

<u>洪水ハザードマップ及び洪水リスクマップを基に、洪水リスク管理計画を策定</u> する。 OECD報告書において、我が国は「影響の評価は進んでいるが、適応対応策の策定が遅滞している。」と位置づけられており、諸外国においては、国土保全の観点から既に温暖化への対策が実施されている

	内仁士《丛桥市内			
	実行中の対策事例			
米国	ニュージャージー州では、気候変動対策で護岸整備に毎年1,500万ドルが割り当てられており、州は将来護岸を必要とするような建設行為を禁止している。 ニューヨーク市では、気候変動の影響を考慮して低地の汚水、気候変動の影響を考慮して低地の汚水、処理プラントの周辺に長期的なインフラ対策により洪水防護壁の整備等を検討している。	<u>は</u> 、海 呼で防 可能性 当初の い位置		
英国	イギリスのテームズ川は、洪水防護基準を現状維持する場合、気候変動による海面上昇と高潮洪水地帯での急速な宅地開発の影響で、2030年までに防潮堤の改修が必要になると予想されている。そのため、今後100年間のロンドンおよびテームズ河口保護のために、洪水リスク管理計画(Flood RiskManagement Plan)を現在策定中である。			
オランダ	高潮堤やダムは、	大臣ため、		
オーストラリア	南オーストラリア州政府は、 <u>海面の30cmの上昇に対して、沿岸開発の100年間にわ岸浸食に耐えうる安全性確保</u> を求めている。	<u>たる沿</u>		

出典:OECD: PROGRESS ON ADAPTATION TO CLIMATE CHANGE IN DEVELOPED COUNTRIES AN ANALYSIS OF BROAD TRENDS

水資源問題に関する気候変動に対する国レベルでの活動

国名	主な活動	
ベルギー	・堤防建設時、 <u>60cmの海面上昇を考慮</u> する ・気候変動と海面上昇により2100年までに、洪水リスクレベルは、現在の350年に1回 から、25年に1回にまで上昇する	
チェコ共和国	 BILAN、CLIRUN、SAC-SMAモデルを使用して、エルベ川、Zelivka川とUpa川流域への気候変動によるインパクトスタディを実施した 2001~2002年に、水文学者チームは、気候変動の水資源への影響を評価する新手法の実用性を検討した 	
フィンランド	・気候条件と経済条件のシナリオを設定して、社会全体としての適応戦略を策定した (農林省、2005年)(2005年~2015年の適応策として、洪水リスク地区の一覧表作成 と洪水リスク管理総合計画の準備等を認定) ・ハザードのリスク解析手法の開発、地域気候モデルによるシミュレーション及びその 結果の地域計画への応用等について研究中である	
フランス	 ・2006年に、水管理の気候変動への適応を目的とした立法上の枠組み(2006年水法)を制定した。 ・洪水ハザードマップは、フランス全土で作成済みであり、インターネットで閲覧可能である。・ミューズ、ロアール、ジロンド、ローヌ川流域における適応策に関する研究を開始した 	
ドイツ	・洪水頻度の増加と洪水流量の増加の可能性を考慮に入れた洪水管理を試行している ・バーデン地方とバイエルン地方では、新しい洪水管理計画において、気候変動要因の検討結果(ネッカー流域において2050年には小規模、中規模洪水の洪水流量が約40-50%増加し100年確率の洪水が15%増加する)を取り入れた	
アイスランド	・予想される海面水位上昇はアイスランドの <u>新しい港湾の設計においてすでに考慮</u> されている	
スペイン	・国家適応戦略を策定済み	
スウェーデン	・Rossbyセンターシナリオに基づき、将来の <mark>気候変化、平均的な流出量の変化について明らかにした</mark> (選択シナリオの差、地域差、季節変動等について明らかにしている)ただし、極端なハザードについては、今後の課題である・適応についての国家戦略は未策定ではあるが、2005年の夏に気候と脆弱性についての政府調査を開始し、2007年10月に調査結果がまとまる予定調査報告には、種々の分野(社会基盤(道路、鉄道、および通信)、建物、エネルギーと水供給、林業、農業、人の健康、および生物多様性)における、経済上の結果が記述される	

アジア諸国の適応策の状況

バングラデ シュ	近年の洪水被害への対処として、コミュニティ参加による沿岸の植林、 洪水シェルターや、主要な氾濫原における災害情報支援センターの建 設等の提案、プロジェクトの実施主体や必要となる予算にも言及 (NAPA2005)
ブータン	パイロット地域における地滑り管理、洪水防御対策、Pho Chu 流域に おける早期警報システムの設置等の提案(NAPA2006)
カンボジア	居住及び農業地域における洪水堤防の建設と復旧、沿岸防御施設の 復旧等(NAPA2006)
中国	洪水管理技術、予警報技術等が不足しており、技術移転等の支援を 要望(第一次国別報告書、2004)
インド	適応策のためのより正確な気候変動影響予測の必要性について言及 (第一次国別報告書、2004)
タイ	適応策のためのより正確な気候変動影響予測の必要性について言及 (第一次国別報告書、2000)
インドネシア	具体的適応策についての言及なし(第一次国別報告書、1999)
フィリピン	具体的適応策についての言及なし(第一次国別報告書、2000)
ベトナム	洪水ピーク流量の増加が懸念されており、調節池(150~200億m³)に よる適応策を検討(第一次国別報告書、2003)
韓国	政府が各部門における気候変動への適応策の必要性を認識し、水部門では中央と地方における効果的な早期警報システムの構築を目指す(第二次国別報告書、2003)

アジア諸国(日本を除く)は、気候変動枠組み条約における非附属書 I 国[※]に属し、適応技術の不足や予算の制約等により適応策を国家施策等に位置付けている例は少ない。なお、後発開発途上国(バングラデシュ、ブータン、カンボジア)に関しては地球環境ファシリティ(GEF)の助成によりUNEPや世界銀行の協力の下、国別適応計画(National Adaptation Programme of Action; NAPA)が策定されている。

※発展途上国であり排出削減に関する数値目標を有していない国

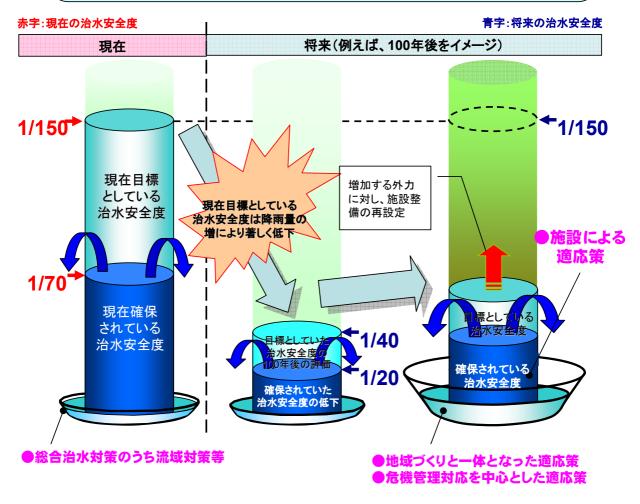
- ▶ 先進諸国は、気候変動による水資源への影響を認識し、影響評価を進行
- ▶ 先進国(一部)は、国家、地域、流域レベルの適応戦略に着手
- ▶ アジア諸国では、技術的・予算的制約等により適応策を国家施策等に位 置付けるのは少数

国名	顕在化している渇水事象	将来予測(渴水関連)	主な適応策の状況 (水資源管理関連)
アメリカ ¹⁾	✓ 常に国家の20%が渇水状態を経験✓ 広範囲の渇水の際は、程度の差(中程度~深刻)こそあれ、国家の80%が渇水を経験	 ✓ 温暖化による蒸発散量の増加、渇水リスクの増大 ✓ 西海岸沿いでは、冬期の湿潤状態の増加、夏期の乾燥状態の長期化を懸念 ✓ 2050年までにシエラ山脈の積雪量は25%減少することを示唆 	✓ カリフォルニア気候変動センターの影響評価と適応オションの検討 が が が が が が が が が が が が が が が が が が が
カナダ ²⁾	✓ 干ばつ(2001~2002 年)で作物の損失や保 険支払いなどのため 50~60億ドルの損失 が発生	✓ 冬期の流出増加、夏期 の流量減少と水温低下 を懸念	✓ ブリティッシュコロン ビア州等での気候 変動問題に対応し た広範囲な地方水 政策の実施
オーストラ リア ³⁾	✓ 激しい干ばつのために、 2002~2003年の小麦 生産量は半分以下の 1,010万トンに減少	✓ 西オーストラリア州南西 部では1970年代半ば から降雨が15%減少✓ 将来の気温の上昇によ り南西部の降水量のさ らなる減少を予測	✓ 西オーストラリア州 南西部の気候変動 の影響と適応策に 関する戦略を策定
ヨーロッパ EU ⁴⁾	✓ 過去30年においていく つかの大きな干ばつを 経験 ✓ 過去100年間の北ヨー ロッパの年降水量は 10~40%増加、南・東 ヨーロッパの年降水量 は20%減少	 √ 北ヨーロッパの年降水量は1~2%/10年増加、夏季降水量減少 ✓ 南ヨーロッパの年降水量、夏季降水量は減少し、より頻繁に過酷な干ばつが予想される 	✓ EU委員会は、 2007年に適応策の 重要性を訴える「グ リーンペーパー」 「EUの水不足と干 ばつへの取組」を 公表

(参考文献)※先進国、アジア諸国の動向は、国連気候変動枠組み条約(UNFCCC)へ提出された最新の国別報告書(National Communications) 等より把握 1)U.S. Environmental Protection Agency. 2006, Fourth National Communication of the United States of America Under the United

Nations Framework Convention on Climate Change.

The California Strategic Growth Plan -Flood Control and Water Supply (Governor's Budget 2008-2009)

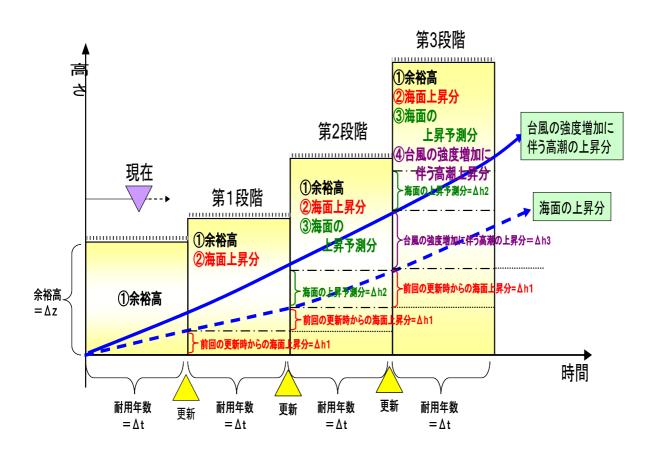

²⁾ Environment Canada. 2006. CANADA'S FOURTH NATIONAL REPORT ON CLIMATE CHANGE Actions to Meet Commitments Under the United Nations Framework Convention on Climate Change.

³⁾ Australian Greenhouse Office within the Department of the Environment and Heritage. 2005. Australia's Fourth National Communication on Climate Change A Report under the United Nations Framework Convention on Climate change

⁴⁾Climate change and water adaptation issues; EEA Technical Report, 2007

これまでの計画において目標としてきた流量に対し、河道改修や洪水調節施設の整備等を基本とする

- •「河川で安全を確保するという治水政策」に加え、
- ・増加する外力に対し「流域における安全を確保する治水政策」 を重層的に行う



起こりうる様々な規模の洪水を対象とし、その規模に応じて弾力的に流域で対応

海面水位の上昇や台風の激化に対応するため、コンクリート構造の多い高潮堤防等においては、施設更新などにあわせて、増大する外力を見込んだ高潮堤防等の嵩上げを行い、浸水頻度を減少させる必要がある。

具体的には、今後の海面水位の上昇や台風の激化に係る研究の進展を踏まえ、 嵩上げは段階的に考え、

- ・第1段階: 既に上昇した海面水位上昇分を見込む
- ・第2段階: 既に上昇した海面上昇分に加え、構造物の耐用年数を考え、外挿や予測 計算などでその期間における海面水位上昇分を見込む
- ・第3段階:第2段階における考え方に加え、台風の激化に伴う高潮上昇分を見込む なお、海面水位の上昇に伴い構造物に作用する外力が目標を超えた場合でも壊れに くい構造設計の考え方を検討していく必要がある。

社会的要請

水資源の有効利用

合

的

な

源

マネ

X

F

~安全で安心な潤いのある水の恵みの享受

安全でおいしい水

自然条件、社会条件 の変化

> 震災・事故時の リスクの高まり

気候変動等に対する 新たなリスク

総合的水資源マネジメントを 進める上での基本的視点

水資源の有効利用の観点からの マネジメント

- ●需給両面からのマネジメント
- ●需要面では水を大事に使う社 会の構築
- ●供給面では、既存ストックの最 大限活用
- ●地表水と地下水が一体となった マネジメント

量と質の一体的マネジメント

●人の生命・健康、水のおいしさ、 人と水の関わり、生物の生存基盤 に大きな影響を及ぼす水質をこれ まで以上に重視、量と質の一体的 な取り扱い

危機管理の視点からの マネジメント

●震災・事故時、安全保障の観点 から国民への影響の最小化

気候変動リスクへの対応

●新たなリスクを基本的なリスクとし て早い段階から順応的に対応

本文P26~45 Ⅲ-2. 適応策の基本的方向

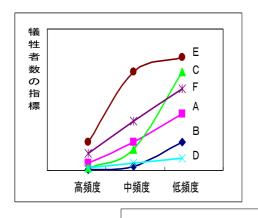
⑤渡良瀬貯留型氾濫 【利根川で行った氾濫解析の例】 4伊勢崎·太田沿川氾濫 ⑥古河·坂東沿川氾濫 ①本庄•深谷沿川氾濫 氾濫解析の結果から氾濫形態を 流域の氾濫解析を実施 類型毎に区分 類型区分内を適応策に応じて 地区毎に細区分 河川 道路や鉄道 の盛土 【②首都圏広域氾濫】でのイメージ 類型区分においても、道路や鉄道の線 盛土、河川などによりさらに細かいブロッ クに分け、それぞれで防御計画を立案

本文P26~45 Ⅲ-2. 適応策の基本的方向

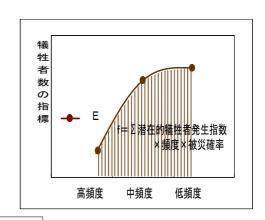
気候変動により『外力指数』は増加する。施設整備や土地利用の見直し、危機管理対応の強化などの適応策により『防災力指数』を向上させるとともに、その結果として適応策により人的被害など『被害・影響指数』を減少させることにより、『災害リスク』を軽減させることが可能となる。

災害リスク 無 サカ指数 × 被害・影響指数 × 被災確率 防災力指数 ※

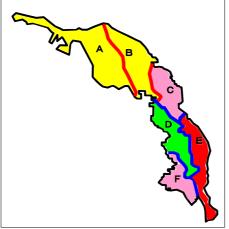
・外力指数:自然的外力や場の条件

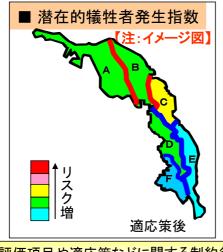

(気象、水文、地形・地質などと外力規模)

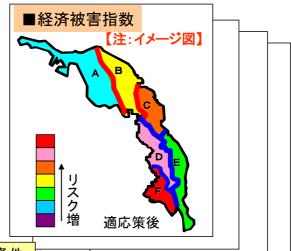
・被害・影響指数 :災害に対する社会的脆弱性


(浸水人口、浸水家屋、道路・鉄道・ライフラインへの悪影響など)


・防災力指数: 国や自治体、コミュニティの防災への取組み(適応策)


(治水施設の整備状況、ハザードマップの整備状況、防災意識など)





氾濫域の地形について、 道路や鉄道などの盛り土 や河川堤防などを反映し て細分化 目標に対して、評価項目間の関連、トレードオフの検討とともにコストなどを総合的に検討し政策決定

評価項目や適応策などに関する制約条件 の下で目的関数の最大化を図る

 $\Delta f = f_1 - f_2$ $\sum_{i}^{n} \alpha_{i} \Delta f_{i} / \sum_{i}^{n} C_{i}$

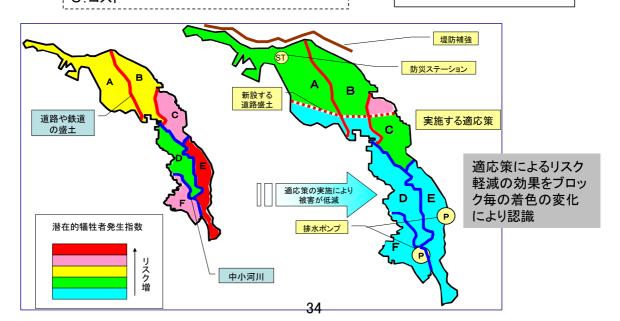
f1:現況の被害・影響指数

f2:適応策後の被害·影響指数

Δf:適応策により低減された被害・影響指数

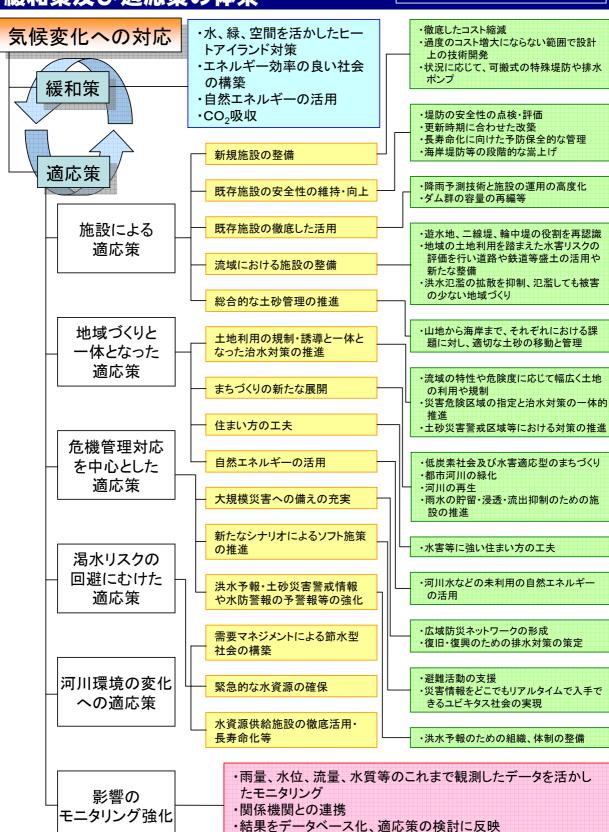
α::評価する被害・評価指数ごとの重み係数

n:対象とした評価項目数


C:コスト

複数の指数による 被害・影響の検討が必要

被害・影響指数の例


被害·影響指数 f

- •潜在的犠牲者発生指数
- •経済被害指数
- ・行政サービス機能低下指数
- 浸水家屋指数
- •環境被害指数

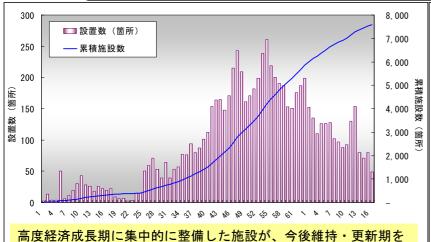
気候変化への 緩和策及び適応策の体系

本文P26~45 Ⅲ-2. 適応策の基本的方向

新たな堤防整備や河道の拡幅・洪水調節ダムの建設など新規施設の整備

洪水調節施設の整備(ダム)

洪水調節施設の整備(地下調整地)

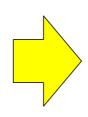


高規格堤防の整備

既存施設の安全性の維持・向上:老朽化が進んだ護岸への対応

本文P26~45 Ⅲ-2. 適応策の基本的方向

更新投資の集中を避けるため、施設の安全性の点検・評価を行い、長寿命化に 向けた予防的な管理を行うなど計画的な維持管理が必要



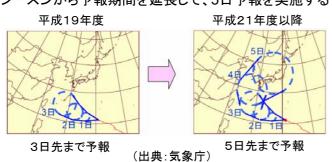
高度経済成長期に集中的に整備した施設が、今後維持・更新期を 迎えることで費用が増大

コンクリートの劣化等老朽化が進んだ護岸

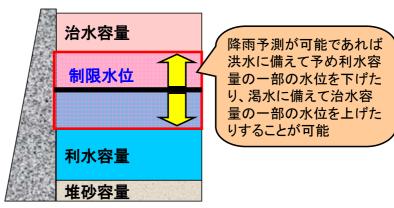
対策後

前腹付けによる老朽化対策後の護岸

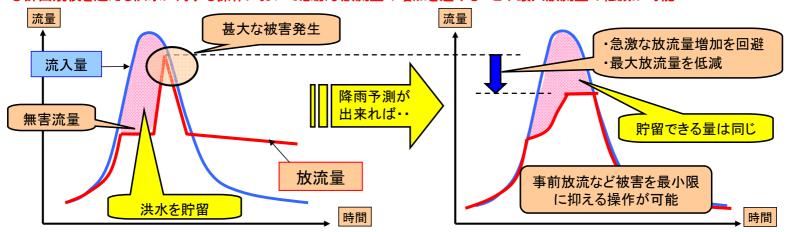
既存施設の徹底した活用:


降雨・流出予測技術と施設の運用の高度化

本文P26~45 Ⅲ-2. 適応策の基本的方向

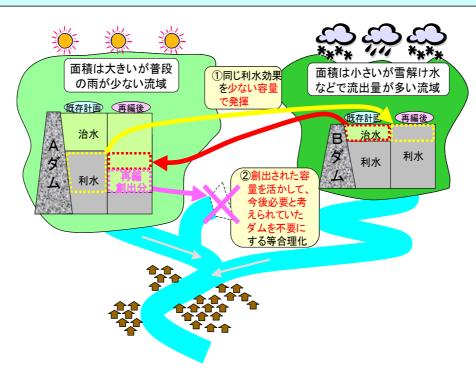

降雨・流出予測の精度向上により、より効果的なダム運用を実施し、洪水調節効果を高める

◎降雨予測技術向上への気象庁の取り組みの例


「台風5日予報作成システム」を構築し、21年度の台風シーズンから予報期間を延長して、5日予報を実施する

◎治水と利水の各容量を効率的に利用することが可能

◎計画規模を超える洪水に対する操作において急激な放流量の増加を避けることや最大放流量の低減が可能



既存施設の徹底した活用:

治水容量と利水容量を振り替えるダム群の再編

本文P26~45 Ⅲ-2. 適応策の基本的方向

流域における降雨・流出特性やダムの運用状況を踏まえ、既設ダム間で治水容量と利水容量を振り替えるなどダムの再編を実施

ダム群の再編

- ●既存ダムの利水容量の治水への活用
- ●既存ダム・新設ダムをあわせた 容量振り替え

洪水調節効果を高め、治水安全度を向上させる

二線堤等により被害エリアの拡大を防止するための氾濫流制御の実施

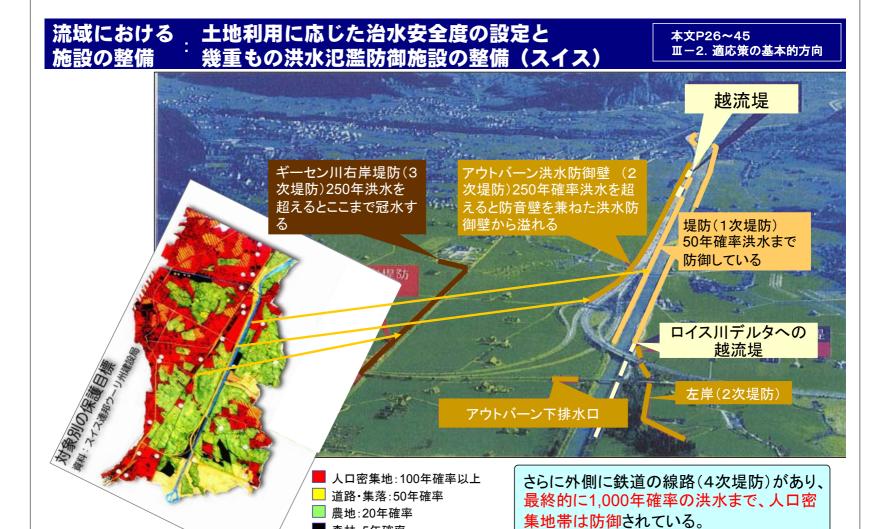
合計4箇所の破堤により、浸水面積は3、060ha、床上 浸水家屋は1,510戸を数え、低平地など局所的に12日 間も浸水した。

当地区の二線堤は道路事業(バイパス工事)と連携し、 整備を実施中である。

流域における施設の整備:道路事業と連携した輪中堤の整備

本文P26~45 Ⅲ-2. 適応策の基本的方向

道路整備と連動した河川整備


上今井地区輪中堤:千曲川

■輪中堤の整備をバイパス整備と連動し、事業費を軽減

地域の動向を把握し、他事業と連携・連動して治水効果の早期発現を図る必要がある

(提供:<mark>北陸地方整備局)</mark>

流域における施設の整備:

(資料:スイス・ウーリ州建設局)

雨水の貯留・浸透・流出抑制のための施設の推進

■ 森林:5年確率□ 遊水地:守らない

本文P26~45 <u>Ⅲ-</u>2. 適応策の基本的方向

山脇正俊(2007), 近自然河川工法におけるランドシャフトと危機管理

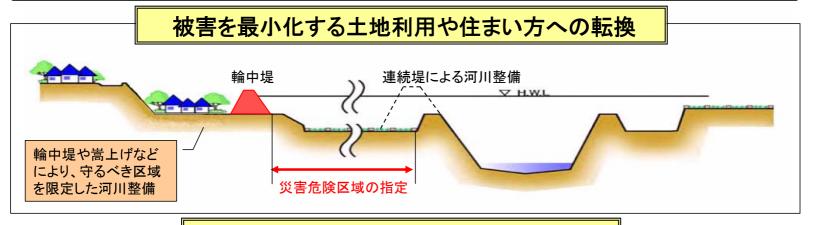
雨水貯留浸透施設の設置

(出典:第4回大規模水害対策に関する専門調査会)

透水性舗装

浸透ます・浸透トレンチ

洪水時


総合的な土砂管理計画に基づき、砂防・ダム堆砂・河床変動・海岸侵食に対して連携して対策を実施

土地利用の規制・誘導と一体となった対策の推進

本文P26~45 <u>Ⅲ-2. 適応策の基</u>本的方向

施設による対応のレベルを越える大きな洪水に対して、浸水を前提とする土地利用や地域づくりで対応

災害危険区域の指定による土地利用規制

建築基準法抜粋(災害危険区域)

第39条 地方公共団体は、条例で、津波、高潮、出水等による危険の著しい区域を災害危険区域として指定することができる。

2 災害危険区域内における住居の用に供する建築物の建築の禁止その他建築物の建築に関する制限で災害防止上必要なものは、前項の条例で定める。

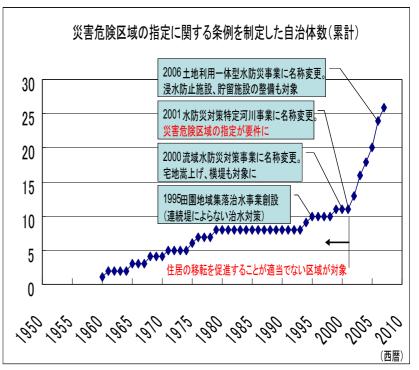
名古屋市臨海部防災区域図

条例による制限の具体例(名古屋市)

土地利用の規制・誘導と一体となった治水対策の推進: 土地利用一体型水防災事業

本文P26~45 Ⅲ-2. 適応策の基本的方向

連続堤によらない治水対策は、従前から制度があったが、災害危険区域の指定を事業の採択要件とすることによって、災害危険区域に関する条例を制定した自治体が増加


治水対策が困難である地域において、土地利用状況 等を考慮し、効率的・効果的な家屋浸水対策を実施

- 〇床上浸水被害等を解消するために行う輪中堤の築造や宅地の 嵩上げ、貯留施設等の設置であって、以下に該当するもの
- 1. 近年の浸水被害が著しい地域であること
- 2. 地域の意向を踏まえ、この治水方式が河川整備計画等に位置づけられていること
- 3. 総事業費が通常の連続堤方式等により改修を行う場合の事業費を上回らないこと
- 4. 氾濫を許容することとなる区域において、<u>災害危険区域の指定</u>等必要な措置がなされること

家屋の移転が必要となるな ど完成までには多大な費用 と期間が必要

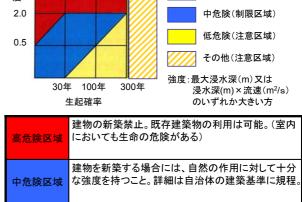
輪中堤や宅地嵩上げを効率的に短期間で実施することにより、家屋の浸水被害を解消

注)上記は、指定理由が「出水」を含む災害危険区域に関する条例を制定した自治体数の年度別推移

土地利用の規制・誘導と一体となった治水対策の推進: 災害危険区域を活用した土地利用規制【スイス】

本文P26~45 Ⅲ-2. 適応策の基本的方向

高危険(禁止区域)


- ▶ スイスのハザードマップは、危険の程度に応じて3色(赤、青、黄)に分類。さらに、大規模な災害により影響注1)が生じる地域を 記載。
- ▶ 色分けは災害の強度(最大浸水深、浸水深×流速)と生起確率を指標として分類。
- ▶ ハザードマップは、連邦政府の勧告に従い、地方政府の土地利用計画に反映。
- ▶ この方式(Swiss system)は、ドイツ・ザクセン州、ニカラグア、エクアドル、チェコでも採用。

注1:標準的な設計の外力を上回るなど

(出典:第4回大規模水害対策に関する専門調査会)

危険度の凡例

生命に関する建築物、学校など人が集中する建築物は、自然の作用力に対して十分な強度を持つこと。

土地利用の規制なし。上水道施設、学校、病院など重要施設については、災害が発生した場合の施設の安全性確保や危機管理計画における対応策の整備に努力する。

National Plattform Naturgefahren ,Hazard Maps Instruments The Swiss System And its Application Aboard

土地利用の規制・誘導と一体となった治水対策の推進: 保険制度を活用した被害の軽減

本文P26~45 Ⅲ-2. 適応策の基本的方向

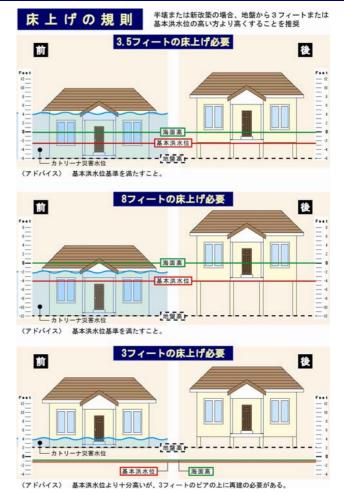
- ▶アメリカの建築基準は、FEMAが定義する洪 水危険区域内注1)では、氾濫水位に相当する 基本洪水位注2)以上の高さに設計洪水位注3) を定め、床高を設計洪水位以上にすることを 規定1)P300, 2)P37。
- ▶設計洪水位は国家洪水保険への加入に合わ せて地域ごとに定める3)。
- ▶ニューオーリンズ市の洪水危険区域内の設計 洪水位は、基本洪水位と宅地面から3フィート の高さのいずれか高い方に設定。また、洪水 危険区域外の住宅についても、宅地面から3 フィート以上の床高が必要4)Р9。
- ▶ FEMAは、洪水の危険性が高い地域の保険 加入者に対し、嵩上げ費用等が家屋価格の 50%以上の場合に最高3万ドルまで補助5)。

ニューオーリンズ市における床上げ高さの規則⁶→

注1:100年に1度の生起頻度の洪水により浸水する区域

注2: BFE: Base Flood Elevation 注3: DFE: Design Flood Elevation

1) International Building Codes 2006, International Code Council


2) Flood Resistant Design and Construction, ASCE Standard
3) Christopher P. Jones, PE (2006), Flood Resistance of the Building Envelope

(http://www.wbdg.org/design/env_flood.php)

4) Lambert Advisory. Bermello, Ajamil & Partners Inc. Hewitt- Washington (2006): Reconstruction Implications (http://www.nocitycouncil.com/advisoryBaseFloodElevation.pdf)

5) FEMA(2006): Increased Cost of Compliance Coverage

(http://www.fema.gov/business/nfip/icc.shtm)
6) New OrleansNet LLC: Raising Rules (http://www.nola.com/katrina/pdf/raising_rules.pdf)

(出典:第3回大規模水害対策に関する専門調査会)

土地利用と一体となった治水対策の推進: 土砂災害警戒区域等における対策の推進

本文P26~45 Ⅲ-2. 適応策の基本的方向

土砂災害の規模の増大に対して、警戒区域等の見直しを行う。

■土砂災害防止法(H12土砂法制定)の概要

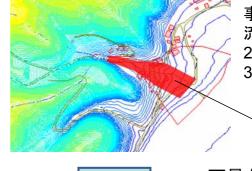
対象となる土砂災害: 急傾斜地の崩壊、土石流、地滑り

土砂災害防止対策基本指針の作成[国土交通大臣]

- ・土砂災害防止に基づき行われる土砂災害防止法に関する基本的な事項
- ・基礎調査の実施について指針となるべき事項

●移転等の勧告

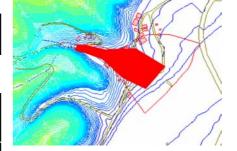
●移転者への融資、資金確保


- ・土砂災害警戒区域等の指定について指針となるべき事項
- ・土砂災害特別警戒区域内の建築物の移転等の指針となるべき事項

基礎調査の実施[都道府県]

①都道府県は、土砂災害警戒区域の指定等の土砂災害防止対策に必要な基礎調査を実施 ②国は、都道府県に対して費用の一部を補助

土砂災害警戒区域の指定[都道府県知事] (土砂災害のおそれがある区域) <警戒避難体制> ●警戒避難体制の整備 市町村地域防災計画 ●警戒避難に関する事項の住民への周知 (災害対策基本法) 土砂災害特別警戒区域の指定[都道府県知事] (建築物に損壊が生じ、住民の生命または身体に著しい危険が生じるおそれがある区域 ●特定開発行為に対する許可制 <建築物の構造規制> ・民家を有する建築物の構造 耐力に関する基準の設定 対象:住宅宅地分譲、社会福祉施設等のための開発行為 ●建築規制(都市計画区域外も建築確認の対象) (建築基準法)


最大24時間雨量が増加すると、土砂災害 特別警戒区域(土石流)は拡大する。

事例 流域面積0.3km² 24時間雨量 330mm/24hrs.

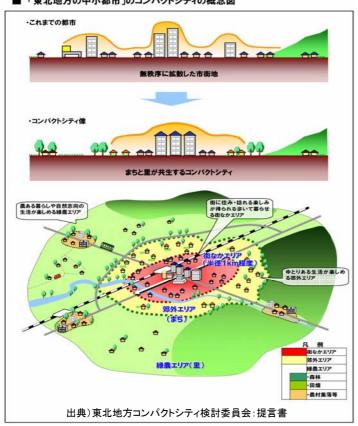
土砂災害特 別警戒区域

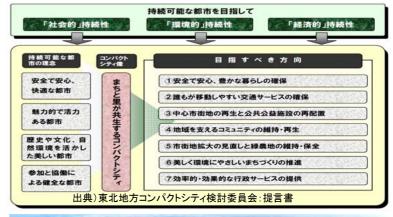
雨量を1.5倍 すると・・・

土砂災害特 別警戒区域 の面積が広く なる。

警戒区域等の見直し

·住宅金融公庫融資等


まちづくりの新たな展開:


治水対策を実施しやすい集約型のまちづくり

本文P26~45 Ⅲ-2. 適応策の基本的方向

エネルギー効率が良く、治水対策のしやすい 住居棟の集約型のまちづくりを実現

■「東北地方の中小都市」のコンパクトシティの概念図

母子島遊水地の状況(平成2年度完成)

まちづくりの新たな展開:

低炭素型及び水災害適応型のまちづくり

本文P26~45 Ⅲ-2. 適応策の基本的方向

元荒川【区画整理事業】

低炭素社会への取り組みと水害に強いまちづくりを一体 として実施するまちづくり

【調整池】

·面積:39.5ha

一体的な共同事業(レイクタウン整備事業)

治水対策として河川事業の調整池建設 流域の治水安全度の向上を図る

土地区画整理事業による新市街地整備

安全性・利便性・快適性に配慮した 潤いと緑豊かな水辺都市を創造

さらに、緩和策

街区まるごとCO。20%削減事業

(環境省モデル事業の第一号採択)

住宅メーカーが分譲マンション(500戸) 戸建住宅(132戸)を一体開発

計画戸数:約7,000戸 ·調整容量:120万㎡ 計画人口:約22,400人 ・ 元荒川の高水 施工面積:約225.6ha →洪水調整後、中川へ 施工者:(独)都市再生機構 # H 変更(第2回)事業計画(平成 【マンション】

- ・日本最大規模の住宅用太陽熱利用設備
- ・太陽熱利用システムの共同利用 など 【戸建】
- ・地域の「風」を活かす工夫
- ・緑陰と保水性舗装によるヒートアイランドの抑制

•「超」次世省エネルギー基準の住宅性能 など

適応策と緩和策が一体となったまちづくり

(出典)独立行政法人都市再生機構HPより河川局作成

まちづくりの新たな展開:

都市河川における緑のネットワークの形成による風の道の確保

本文P26~45 Ⅲ-2. 適応策の基本的方向

- ▶ 東京都では、H18.12に「10年後の東京都」を策定
- ▶ 『水と緑の回廊で包まれた、美しいまち首都東京を復活させる』を第1の柱に
- ▶ 都市防災や潤いと安らぎを与える機能だけでなく、ヒートアイランド対策など都市環境 向上を含めた多面的な効果も期待

これまで整備されてきた一定規模の緑地を、 有機的に結び「風の道」を創出

具体的な目標を持って計画的に推進「緑の10年後の東京プロジェクト」

水辺の緑化率(河川延長比) H27まで90%以上(H17=52%)

ツタによる護岸の緑化

(出典)東京都HP「10年後の東京 ~東京が変わる~」より河川局作成

まちづくりの新たな展開:

暗渠化された都市河川の再生による水辺や緑地空間の形成

本文P26~45 Ⅲ-2. 適応策の基本的方向

復元後

清渓川(チョンゲチョン)復元事業は、ソウル市中心部を西から東へ流れる清渓川上の5.8kmの覆蓋構造物(6車線の地上道路と4車線の高架自動車専用道路)を撤去し、都市河川を復元した事業。

<復元工事概要>

〇期間:2003年7月

~2005年9月

〇内容:清渓高架道路等の撤去と

清渓川の復元整備

○区間:5.84km

○事業費:約3,900億ウォン

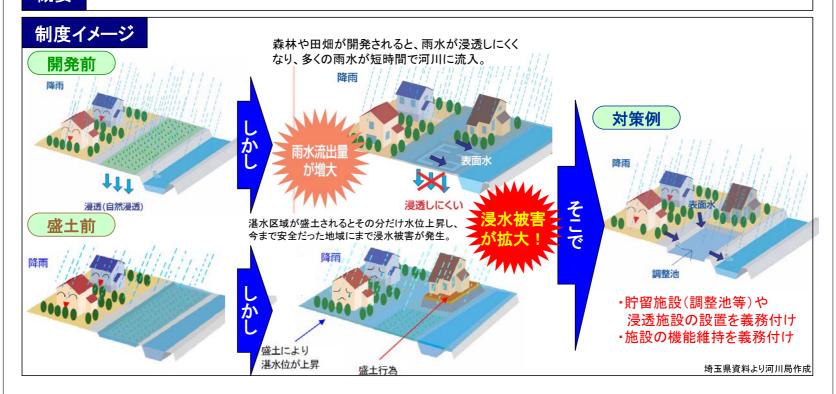
<復元の効果>

- (1)清渓川訪問者の増加
- (2)都心の温度低下
- (3)商店街の活性化
- (4)多様な生物の回帰

清渓川流域の夏場の温度は、周辺部の温度よりも平均3~4℃低く、風の流れも速くなり、流域は「自然のエアコン」になっている

- ・清渓川の水が流れる地点の気温は、川の復元前に比べ最大23%まで下がり、 鐘路 (チョンノ)5街に比べると1.7度~3.3度低下
- ・平均風速は2002年7月(平均風速0.7m/s)に比べ清渓4街は最大6.9%、清渓8街は最大7.8%速くなった。

(出典)ソウル市資料より


規制を用いた雨水の貯留・浸透・流出抑制

開発行為等に対して、流出抑制施設の設置を義務付けることにより、浸水被害を軽減

埼玉県の例

雨水流出抑制施設の設置等に関する条例 (平成18年10月~)

制度 概要 •1ha以上の開発行為及び指定区域内での盛土行為に対し、雨水流出抑制施設の設置を義務付ける。 ・さらに設置施設完成後は、その機能の維持・管理を義務付ける。 →条例違反の場合の罰則有り

まちづくりの新たな展開:

助成・規制を用いた雨水の貯留・浸透・流出抑制

本文P26~45 Ⅲ-2. 適応策の基本的方向

- > 雨水貯留浸透施設の設置により流出を抑制
- ▶ 誘導策と規制策を組合わせることにより、普及を促進

千葉県市川市の例 市民あま水条例

○制度名:市川市宅地における雨水の地下への 浸透及び有効利用の推進に関する条例

(平成17年7月~)

制度の概要

- •市が指定する地域における新築・増築に 対する浸透施設設置を義務付け
- •市が指定する地域における既存施設へ の浸透施設の設置への助成
- •市内全域おける新築・増築・既存建築物 への小型貯留施設設置への助成

○規制について:

【浸透】…指定地域、新築・増築

- ・新築・増築時に建築面積38m2ごとに 350 φ × 600の浸透ます1基を設置
- ・雨水排水計画の届出

〇助成について:

【貯留】・・・市内全域

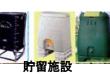
雨樋取付型:購入設置費用の1/2 (上限2.5万円) 浄化槽転用型:改造費用の2/3 (上限8万円)

【浸透】⋯指定地域、既存建築物

標準積算基準より算出した額を全額助成

制度の概念図

指定地域



市全域で地質調査を実施し、 浸透しやすい場所を指定

主な対象工事

雨水浸透トレンチ

肿瘤施設

(雨樋取付型) (浄化槽転用型)

市川市資料より河川局作成

浸水に強い建築構造への誘導

横浜ラポール

▲鶴見川多目的遊水地の中に建っているため、洪水時に も施設の利用が可能なようにピロティ構造とした

▲鶴見川の近くに住んでいるため過去の経験を生かし、洪水時に被害がないようピロティ構造とした

住まい方の工夫:助成を用いた高床式住宅への誘導

本文P26~45 Ⅲ-2. 適応策の基本的方向

住宅の高床工事への助成などにより浸水被害を軽減

東京都中野区の例

高床工事助成事業 (平成17年12月~)

制度の背景

平成17年9月の集中豪雨

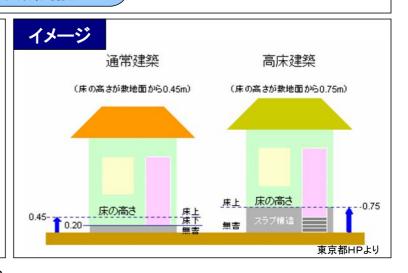
時間100ミリ以上の豪雨


妙正寺川、善福寺川が氾濫

浸水面積:119ha 床上浸水:1,171棟 床下浸水:2,175棟

(新宿区・中野区・杉並区の合計)

氾濫状況(中野区提供)


住宅高床工事の費用の一部を助成する制度を開始

(平成17年12月~)

制度の概要

- 〇制度名: 高床工事助成事業
- 〇助成対象者: 中野区が指定する地域内での住宅建築主
- 〇助成対象となる工事:
 - (1)高床の高さが敷地面から75cm以上で、床上浸水が防止できること
 - (2)床下部分が浸水に耐え、かつ通水の容易な構造であること 等
- 〇助成額:

高床部分の床面積に、工事費単価を乗じた額の1/2の額 (上限200万円)

住まい方の工夫:助成を用いた止水板の設置への誘導

本文P26~45 Ⅲ-2. 適応策の基本的方向

〇止水板の設置への助成などにより浸水被害を軽減

千葉県我孫子市の例 浸水防止工事の助成制度 (平成16年4月~)

制度の概要

大雨により住宅、店舗、事務所、駐車場 等に浸水被害を受けた者が、浸水被害の 軽減を図るために行う浸水防止工事につ いて、浸水被害者の経済的負担の軽減を 図るために助成金を交付。

- 〇制度名:浸水防止工事の助成制度
- 〇助成対象者:

市が作成する浸水被害者台帳に記載されてい る方又はハザードマップに示す対象範囲以内 にある住宅等に浸水被害を受けた住宅等の 所有者又はその使用者

- 〇助成対象となる工事:
 - (1)住宅等の出入口又は敷地内に防水板その 他浸水を防ぐ設備の設置工事
 - (2)敷地内への浸水を防ぐためのブロック壁の 設置工事その他改修工事
- 〇助成額:

助成対象となる工事の合計経費の1/2の額(但し、 上限30万円)

助成例

例1) 止水板の設置

例2) 駐車場等のかさ上げ

写真:我孫子市提供

自然エネルギーの利用:ヒートポンプの導入

本文P26~45 Ⅲ-2. 適応策の基本的方向

大阪中之島周辺 都市再生事業の進展 中之島3丁目地域熱供給 都市再生緊急 整備地域 (大阪駅周辺・ 中之島・御堂筋 構想·計画中 (11地区) ・未利用エネルギー(河川水・変電所排熱)を利用 ・ヒートポンプを導入し、大気中への熱放出はゼロ 事業中(約9ha) 周辺地域) ※ 冷却塔は不要 完了(約9ha) 河川水利用の イメージ(冷房時) 河川機能に著し い影響を与えない 「平成の通り抜け」計画 範囲で実施 中之島を含む川沿いの地域(約7km)に桜 ・市民から寄付を墓り 本年度から植栽予定 ヒートポンプ 中之島公園の整備 ・花と緑豊かな親水空間に整備 環境対策への取組 緑のネットワーク 大阪市役所本庁舎 ・中之島両端の公園を結ぶ緑 屋上緑化 中之島新線の整備 のネットワークを河岸沿いに 公共施設緑化のシンボルと 自動車交通から鉄道への転換 して緑化 を促進(平成20年度完成) 緑化の推進 保水性舗装の実施 ● 街路樹(今後整備) ・中之島地区内において、保水性 舗装の導入を検討 桜の植樹

- ▶ 未利用エネルギー(河川水)を利用した地 域冷暖房、鉄道の整備に併せた公園・緑化 の整備などを実施
- ▶ 水都・大阪の特性を活かした地球温暖化・ ヒートアイランド対策を集中的に実施。

省CO2型の都市デザインの実現へ

① 中之島三丁目地冷のCO2排出量低減効果

(実績・試算)

約8. Okg-CO2/m2/年の低減

(単位延床面積当り)

(対個別熱源・空気熱源方式)

② 中之島地区全体への展開

·地区全体の建物延床面積:約2百万m2

(既新設予定含む約15棟)

その内1/2が河川水利用のトップランナー機 器を採用するとして

約8,000ton-CO2/年の低減

大阪市温対推進目標 31.5万ton-CO2/年

(2010年度)の約2.5%に相当

「経済価値·24百万円/年(CO2排出権

コスト3千円/tonとして)]

河川水温度への影響については、夏季大潮時 に2~3°C上昇する箇所があるが、ほぼ半日周 期で通常温度に収束する。(シミュレーション結果)

多目的ダムによる発電実施状況

現在、全国185カ所の多目的ダムにて 最大出力合計で約640万kWの水力発 電が行われており、エネルギーの有効 利用が図られている。

国交省所管 503ダム 水力発電あり (*)**185**(37%)

(*. 国交省直轄、水資源機構、 都道府県補助ダムの合計)

小水力発電(新エネルギー開発)推進のバックアップ

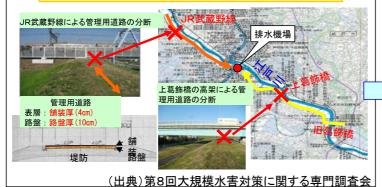
農業用ゲート動力用の小水力発電設備

小水力発電について、環境意識の高まりと導入時の補助金制度の 整備等を背景に、民間ベースでの計画が多数立案されている。 既存水路等を利用する場合でも、水利権許可申請が必要な場合が あることから、水利行政においては、手続きの簡素化等により地球 温暖化対策をソフト面でサポートしている。

あらゆる落差等を利用した水力エネルギーの有効利用、既存施設の最大活用


河川管理施設等が潜在保有する水力エネルギーを掘り起こ し、適正な評価、有効活用が図られるよう環境を整備する。

- 例. 〇発電未実施のダムへの発電事業者参画方策検討 ○ダム放流方法見直し等による発生電力量の向上検討
 - ○発電事業者への検討資料、試験フィールド提供



大規模災害への、防災拠点から災害箇所へのアクセスを確保する 広域防災ネットワーク

本文P26~45 Ⅲ-2. 適応策の基本的方向

堤防上の管理用道路が橋梁により分断されていたり、舗 装が重車両の走行に対応していないことから、タンクロ-リー車が緊急時に走行できないおそれがある

水し、燃料補給ができない場合がある

ポンプ場自体が浸水しなくても、周辺が浸

H2.7洪水 R34の冠水状況 堤防と規格の高い道路は冠水を免れる

(出典)第8回大規模水害対策に関する専門調査会

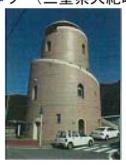
新たなシナリオによる。ペデストリアンデッキや津波避難ビルなど ソフト対策の推進 による避難路・避難場所の確保

本文P26~45 Ⅲ-2. 適応策の基本的方向

浸水被害や大規模地震発生時における津波による被害軽減のため、避難場所の確保として、 ペデストリアンデッキや堅固な建築物(津波避難ビル等)を活用

ペデストリアンデッキ

国府漁村センター緊急避難所 (三重県志摩市)

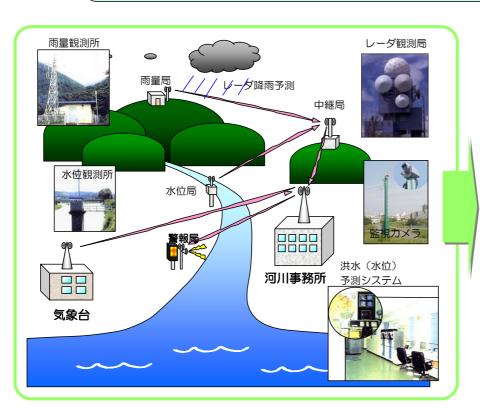

片浜コミュニティ防災センター (静岡県相良町)

和歌山県串本町



錦タワー(三重県大紀町)

津波避難ビル


ハザードマップや市街地内に過去の災害時の水位を明示するなどの取組みを実施

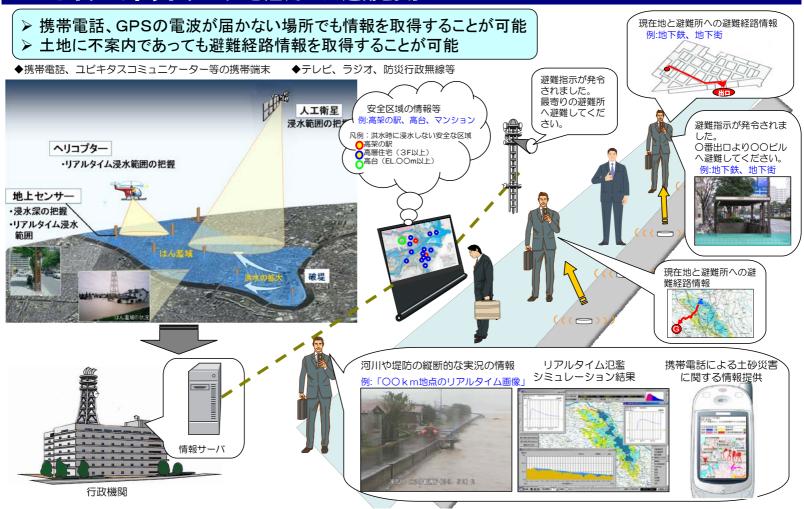
新たなシナリオによるソフト施策の推進:リアルタイム情報の共有

本文P26~45 Ⅲ-2. 適応策の基本的方向

- ▶ 雨量や水位情報の携帯電話やインターネット・地域の防災無線などによる リアルタイム情報の提供
- ▶ リアルタイムシミュレーションによる洪水予報 などに取組む

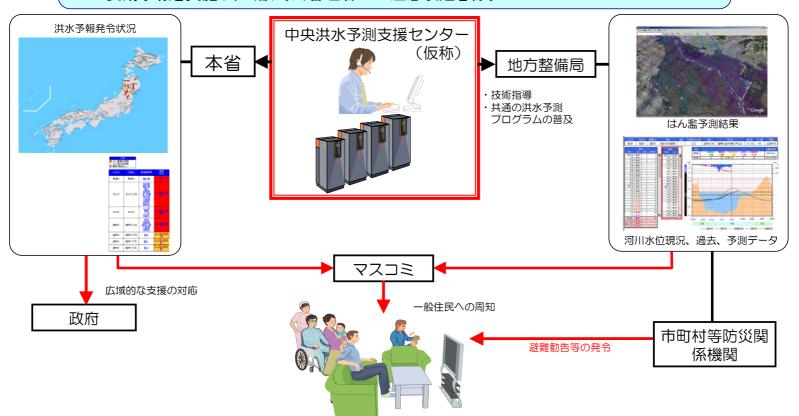
中華国語歌門的如今 了一种

による情報提供


テレビへ映像配信

リアルタイムシミュレ--ションによる はん濫水予報

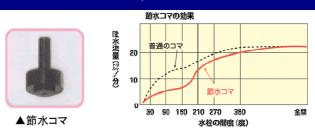
新たなシナリオによるソフト施策の推進: ユビキタスネットワークを活用した避難誘導


本文P26~45 Ⅲ-2. 適応策の基本的方向

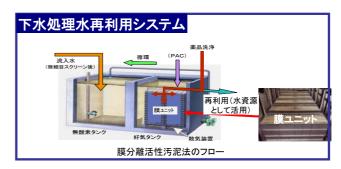
新たなシナリオによるソフト施策の推進: 中央洪水予報センターによる洪水予報体制の強化

本文P26~45 Ⅲ-2. 適応策の基本的方向

- 1. 平常時は洪水予報の技術的支援・指導を行い、洪水予報の高精度化を図る
- 2. 各洪水予報機関からの情報を全国でとりまとめ、速やかに広域的な支援に対応する
- 3. 長期予報を実施し、当該河川管理者への注意喚起を行う


- ▶ 節水に関する意識の高揚と徹底(広報活動の実施)
- ▶ 国民や節水型機器を開発する企業にインセンティブが働く施策や規制施策(義務付け等)
- ▶ 工業用水等の再利用率の一層の向上
- ▶ 下水の再生水、雨水の利用の推進

松山市における節水意識の向上への取り組み例 (松山市HPより)


- ●節水意識の向上を目的に、下図の節水機器を購入した市 民等を対象に数千円~2万円程度を上限に補助金を交付
- ●節水型都市づくりの一環として、大規模建築物(床面積 1000㎡以上)の新築・増築時に節水型機器(トイレ、浴室、台所等内)や雨水タンク(雨水の有効利用)の<u>設置を義務付ける条例</u>を制定(平成17年4月1日から施行)

節水コマの効果(東京都水道局HPより)

蛇口に取り付けるだけで、台所・洗面所のように流し洗いをするところでは、1分間で約6%節約可能。東京都水道局では無料配布。

膜分離活性汚泥法を組み込んだ世界的にも先進的な技術

緊急的な水資源の確保

本文P26~45 Ⅲ-2. 適応策の基本的方向

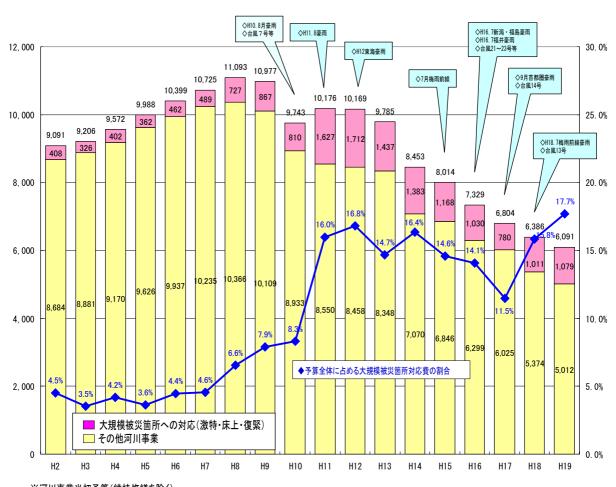
- ▶ 水の輸送:機動的に大規模な水供給が可能な水輸送バッグの配置、水を相互に融通するための連絡管の整備
- ▶ 移動式海水淡水化装置: 搬送可能な構造にした海水淡水化装置による供給
- ➤ 工場や家庭での貯留をはじめとした多様な備蓄の推進
- ▶ 水系内の利水者間の水融涌(渇水調整等)

等

水輸送バッグ (注)㈱MTI撮影

緊急時において、大量の水を水不足の地域へ機動的に移動させ、供給するため、 経済産業省及び(独)水資源機構などが、 水バッグによる海上水輸送試験を実施

移動式海水淡水化装置



渇水時における水不足を補うために、海水淡水化装置を搬送可能な構造にしたもの

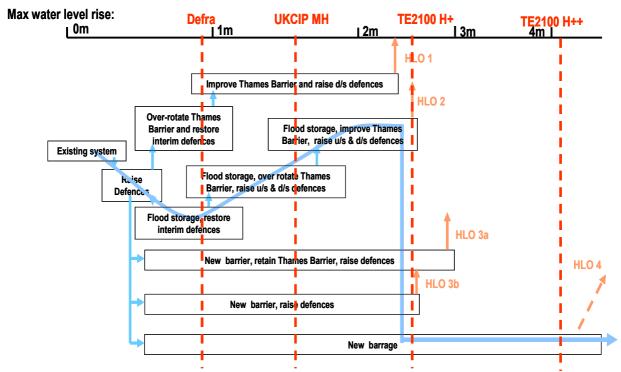
(資料)工業用水代替水源確保調査報告書 (平成19年3月);経済産業省

予防的措置への重点投資

治水予算が減り続ける一方、近年の水害頻発により、大規模 被災箇所への事後的な対策に投資する割合が増加

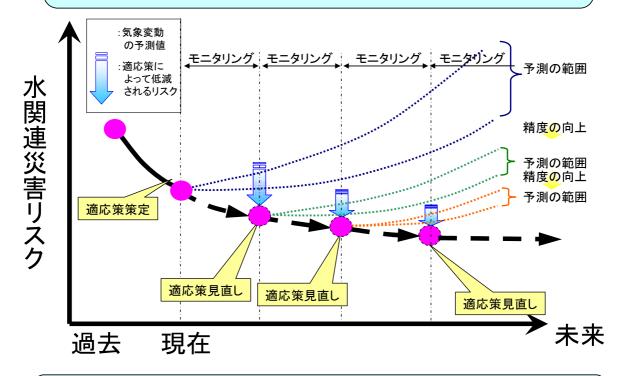
ハリケーン・カトリーナ(H17.8) 堤防整備の効果: 最大約1,250億ドル 被害額 (約14兆円)相当 約1.250億ドル (約14兆円) 約20億ドルの事前投資で 約1250億ドルの被害軽減 約20億ドル1) (約2.200億円) ハリケーン・カトリーナに 事前予防実施時の 「カテゴリー5」 よる被害総額 対応費用 想定被害額

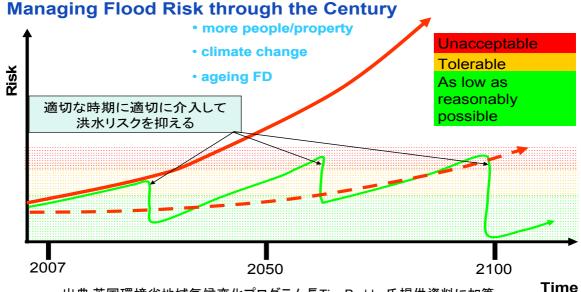
- → 従前よりカテゴリー5(カトリーナと同規模)に対応した整備の必要性を表明(事前投資が効率的と主張)¹⁾



1)陸軍工兵隊機関誌"River Side" September-October 2004

ロードマップの作成 TE2100での例


TE2100での気候変動への適応策は、①伝統的工学手法、②氾濫原で貯留、③新しいバリア、④新しい堰の4つのオプションがある。シナリオを決めて対策を検討する方法ではなく、現在の施設改良で防御できるレベルを分析するフレキシブルな方法をとり、段階的に対応する。


The final plan may be a combination of approaches

出典:英国環境省地域気候変化プログラム長Tim Redder氏提供資料

気候変動及び社会情勢の変化等をモニタリングし、洪水等の予測精度を向上させながら水関連災害リスクを分析し、適応策を見直す。 (EUでは6年毎に見直し)

TE2100での気候変動への適応策は、<u>適切な時期に適切に介入して</u> 洪水リスクを許容レベルに抑える方針である。

『水の安全保障:リーダーシップと責任』という全体テーマもと、「水のインフラと人材育成」「水関連災害管理」「発展と生態系のための水」の3つの優先テーマを中心に計10のセッションを開催

2日間にわたる議論をとりまとめ、「別府から のメッセージ」を発表

- ✓水と衛生をアジア・太平洋地域の各国の経済・開発、政治課題における最優先課題とし支援を拡充✓洪水、干ばつ、その他水関連災害の発生を防止、削減し、犠牲者を適時に救援、支援できるように早急に効果的な行動を取る
- ✓気候変動の影響を受けやすい島嶼国における、生命・財産を守る取り組みを早急に支援
- ✓ヒマラヤ山脈における冠雪・氷河の融解や、海面上昇等、一部の国ではすでに気候変動の影響が現れれている。水と気候変動の関係を議題に組み入れるよう、バリ会議に提言など
- ▶ 気候変動のリスクを軽減するための「適応策」 について本格的に首脳間で議論
- >「水」に関して厳しい状況にあるアジア・太平洋地域において、首脳級が集まって水問題の解決が最優先の課題であるとの共通の認識を再確認

皇太子殿下の記念講演でのご発言(抜粋)

- 水問題は、気候変動との関係でも大きな問題となっています。地球温暖化の結果、海面上昇や異常気象の頻発はもとより、災害の激化や大規模な水不足など、人類の諸活動に様々な悪影響が生じる可能性が危惧されています。近年は、世界的に大雨が増加する一方、干ばつの影響を受ける地域も一部で拡大しており、アジア太平洋地域で頻発する水関連災害による大きな被害に私も心を痛めています。
- -水問題はすべてが相互に関連しています。水供給、衛生、洪水対策などと、それぞれが独立して存在するものではありません。その解決のためには、水が有する多様な性格をできるだけ幅広く認識し、総合的・統合的な観点を持ちながらも、関係者の創意工夫と連携の下で、地域の実情に合った取組を一つ一つ着実に進めていくことが重要かと思います。

福田総理の挨拶(要約)

- ・アジア・太平洋地域も繁栄の一方で様々な水に 関わる問題に直面。世界の水問題の過半がこ の地域に集中していることを考えると、事態は 深刻
- ・気候変動と思われる水災害が増えているが、今後もさらに影響が大きくなることが予想される。 水災害対策は、早急に取り組まねばならない課 題
- ・世界が直面する気候変動問題については、 「水」を通じて人類に与える影響が大きい
- ・国際的枠組みの構築が急務。来年の北海道・ 洞爺湖サミットでは、環境・気候変動問題を主 要議題として取り上げる予定

・アジア太平洋水サミットでの活発な議論はG8サミットに極めて大きな力と知恵

首相官邸H.P.より

参考文献・参考資料

- 1. 平成19年度版 日本の水資源 一安全で安心な水利用に向けて一(国土交通省土地・水資源局水資源部)
- 2. IPCC第4次評価報告書 統合報告書 政策決定者向け要約(文部科学省、経済産業省、気象庁、環境省 仮訳)
- 3. IPCC第4次評価報告書 第1作業部会報告書 政策決定者向け要約(気象庁仮訳)
- 4. IPCC第4次評価報告書 統合報告書 概要(公式版)2007年12月17日version(環境省)
- 5. IPCC第4次評価報告書 第1作業部会報告書 概要(公式版)(環境省)
- 6. 人・自然・地球共生プロジェクト 大気海洋結合モデルの高解像度化 報告書((財)電力中央研究所)
- 7. 地球温暖化予測情報第6巻(気象庁)
- 8. 水資源学シンポジウム「国連水の日-気候変動がもたらす水問題」発表資料(木本昌秀)
- 9. 異常気象レポート2005(気象庁)
- 10. 地球温暖化予測情報第7巻(気象庁)
- 11. 地球温暖化に伴う降雨特性の変化と洪水・渇水リスクの評価に関する研究(土木学会論文集No.796 和 田一範、村瀬勝彦、冨澤洋介)
- 12. 砂浜に対する海面上昇の影響評価(海岸工学論文集第40巻 三村信男、幾世橋慎、井上馨子)
- 13. 地球温暖化((独)国立環境研究所 http://www.nies.go.jp/escience/ondanka/ondanka01/index.html)
- 14. 地球温暖化と日本(自然・人への影響予測)(原沢秀夫・西岡秀三編著、古今書院)
- 15. 地球温暖化を考慮した水環境管理(水環境学会誌Vol29、No.2、花木啓祐)
- 16. 気候変動等によるリスクを踏まえた総合的な水資源管理のあり方研究会(国土交通省土地·水資源局水 資源部)
- 17. ニュートン2007年8月号((株)ニュートンプレス)
- 18. 地球温暖化の日本への影響1996(環境庁地球温暖化問題委員会)
- 19. 洪水リスクの評価・管理に関する指令 Directive of the European Parliament and of the Council on the assessment and management of flood risks (European Parliament and the Council)
- 20. Progress on adaptation to climate change in developed countries an analysis of broad trends (OECD)
- 21. Climate change and water adaptation issues (EEA Technical report, 2007.2)
- 22. National Adaptation Programmes of Action (UNFCCC)
- 23. Initial national communication and date of submission (UNFCCC)
- 24. Fourth National Communication of the United States of America Under the United Nations Framework Convention on Climate Change. (U.S. Environmental Protection Agency. 2006)
- 25. The California Strategic Growth Plan –Flood Control and Water Supply (Governor's Budget 2008-2009)
- 26. CANADA'S FOURTH NATIONAL REPORT ON CLIMATE CHANGE (Environment Canada, 2006).
- 27. Actions to Meet Commitments Under the United Nations Framework Convention on Climate Change. (NUFCCC)
- 28. Australia's Fourth National Communication on Climate Change A Report under the United Nations Framework Convention on Climate change (Australian Greenhouse Office within the Department of the Environment and Heritage. 2005)
- 29. 中央防災会議大規模水害に関する専門調査会(内閣府)
- 30. 東北地方コンパクトシティ検討委員会 提言書(東北地方整備局)
- 31. 英国環境省地域気候変化プログラム長Tim Redder氏提供資料