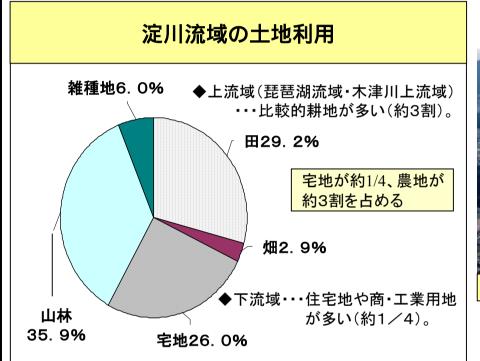
参考資料 1

特徴と課題(地形特性と洪水)


淀川水系

- ・淀川の下流部は、低平地に大阪市をはじめとする我が国有数の人口・資産が集積する地域であり、破堤による被害ポテンシャルは 極めて大きい。
- ・宇治川・木津川・桂川という流域面積の大きい3川が合流し、その下流部では特に人口資産が集中している。
- ・宇治川・木津川・桂川はそれぞれ狭窄部を有し、その上流部、特に琵琶湖沿岸・上野盆地・亀岡盆地では浸水が生じやすい。

淀川流域の気象・気候

淀川流域の平均降水量は1,600mm程度。多様な気候特性を有する地域となっている。

①琵琶湖北部区域:日本海型気候区、②木津川上流部区域:太平洋型気候区、③桂川上流部区域と猪名川上流部区域:前線の影響を受ける、④中・下流域:瀬戸内海気候区

淀川下流部(3川合流から下流) に人口・資産が集中

流域内人口:約1,173万人 (平成12年 国勢調査)

想定氾濫区域内人口

(平成11年 河川現況調査) 流域全体 : 約766万人

淀川下流域:約654万人(流域全体の85%)

想定氾濫区域内資産

(平成11年 河川現況調査)

流域全体 : 約137兆6,618億円 淀川下流域:約123兆1,600億円

(流域全体の89%)


特徴と課題(主な洪水と治水対策の変遷)

明治29年の淀川改良工事以降、大規模な浸水被害の発生や流域の社会経済の発展を踏まえて、治水計画の見直しを実施

過去の主な洪水被害

明治18年、大正6年、昭和28年洪水

東京 (中国) (

昭和28年 台風13号 久世郡久御山町

明治18年洪水 大阪市天満橋

主な洪水と治水対策

明治18年6・7月 洪水(台風)

下流部の破堤氾濫

流量:4,280m³/s 死者・行方不明者:100名 浸水家屋:約76,000戸

明治29年9月 洪水(台風) 琵琶湖沿岸域の越水氾濫

流量:4,240m³/s 死者・行方不明者:34名 漫水家屋:約58,000戸

明治29年 淀川改良工事(~明治43年)

計画高水流量 :5,560m³/s(淀川)

3,600m³/s(木津川) 1,950m³/s(桂川) 835m³/s(宇治川)

計画の概要

- ・明治18年の洪水実績を基に計画高水流量を決定 < 淀川 >
- ・大阪市街地を流下する大川の放水路を設置 (現在の淀川本川)

<琵琶湖>

・下流域の洪水流量の低減及び琵琶湖沿岸域の 治水対策としての琵琶湖水位低下のため、瀬田 川の改修による疎通能力の増大と洗堰の設置

大正6年9月 洪水(台風) 下流部の破堤氾濫

流量 : 4,620m³/s 死者行方不明者 : 52名 浸水家屋 : 約44,000戸

大正7年 淀川改修増補工事(昭和8年)

計画高水流量 : 5,560m³/s(淀川) 4,650m³/s(木津川)

4,650m³/s(木洋川) 1,950m³/s(桂川) 835m³/s(宇治川)

計画の概要

<淀川:

- ・大正6年の洪水実績を基に計画高水流量を変更
- ・破堤原因であった淀川本川の堤防の嵩上げ、 宇治川等の弱小堤防の強化と3川合流部の法線 改良による流下能力の増大

昭和13年7月 洪水(梅雨前線) 桂川で計画高水位を超過 全川で60箇所漏水

流量 : 4,000m³/s 死者・行方不明者 : 8名 浸水家屋 : 約8,400戸

昭和14年 淀川修補工事(~昭和43年)

(昭和44年から淀川改修工事と改称)

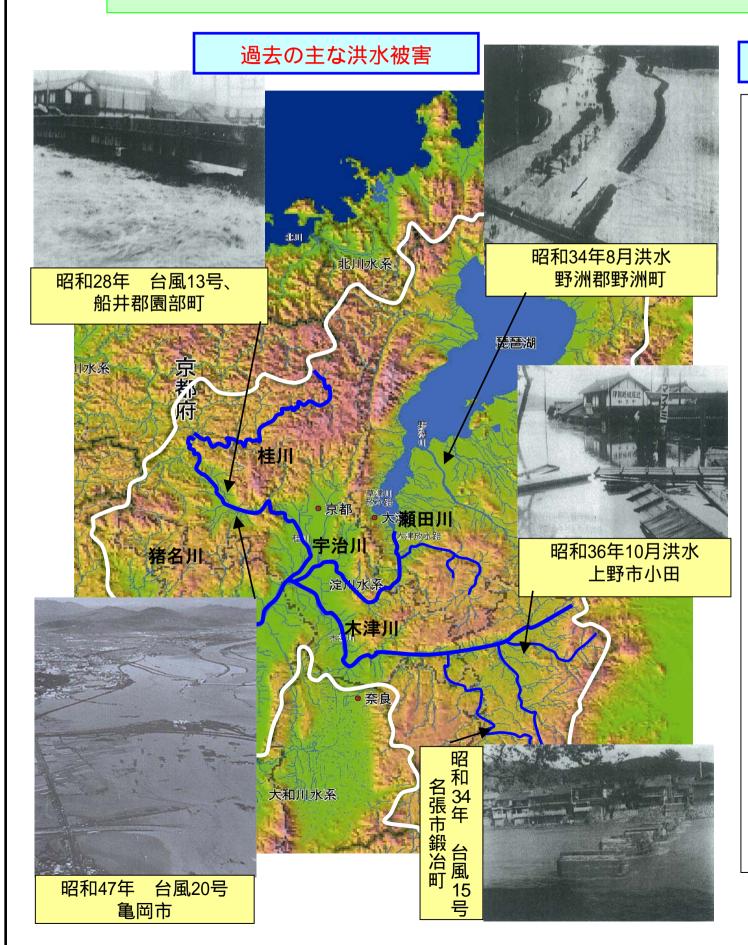
計画高水流量 : 6,950m3/s (淀川)

4,650m3/s(木津川) 2,780m3/s(桂川) 835m3/s(宇治川)

<淀川>

- ・昭和13年の洪水実績を基に本川及び桂川の計画 高水流量を変更
- ・計画高水流量及び計画高水位の変更による本川 堤防の嵩上げ
- ・下流低平地の高潮被害を踏まえた高潮対策工事 の着手

昭和18年 淀川河水統制第一期事業 (~昭和27年)


<琵琶湖>

- ・都市用水、かんがい用水の確保のための琵琶湖 の利水活用にあわせた治水対策のさらなる強化
- ・琵琶湖に制限水位を設定し、琵琶湖を計画的に 多目的利用

琵琶湖制限水位 0 m以下 利水活用 0 m ~ 0 . 8 m 洪水調節

特徴と課題(主な洪水と治水対策の変遷)

明治29年の淀川改良工事以降、大規模な浸水被害の発生や流域の社会経済の発展を踏まえて、治水計画の見直しを実施。

主な洪水と治水対策

昭和28年9月 洪水(台風13号) 観測史上最大流量 7,800m³/s

(氾濫が無かった場合 12,800m³/s)

桂川の氾濫

琵琶湖沿岸の農地が浸水(4,500ha)

死者・行方不明者 : 178名 浸水家屋 :約56.000戸

昭和29年 淀川水系改修基本計画(~昭和39年)

基本高水のピーク流量 計画高水流量

淀川(枚方1/100) $8.650 \,\mathrm{m}^3/\mathrm{s}$ $6.950 \,\mathrm{m}^3/\mathrm{s}$ 木津川(加茂1/80) $5.900 \,\mathrm{m}^3/\mathrm{s}$ $4.650 \,\mathrm{m}^3/\mathrm{s}$ 桂川(羽束師1/80) 2,850m³/s $2.850 \,\mathrm{m}^3/\mathrm{s}$ 宇治川(宇治) $1.570 \,\mathrm{m}^3/\mathrm{s}$ $900m^{3}/s$

計画の概象

- ・明治28年洪水実績、流域の開発状況等を総合的 に踏まえ、治水計画の規模を1/100(本川)に
- ・下流域での引堤の可能性等を考慮し、本川、木 津川、宇治川は上流ダム群による洪水調節

主な事業内容

<淀川>

- ・宇治川の築堤、河床掘削
- ・淀川の改修 (既定計画の継続)
- ・上流ダム群による洪水調節(天ヶ瀬ダム、高山 ダムの完成)
- ・瀬田川、木津川砂防の強化

<琵琶湖>

・瀬田川の疎通能力の増大と琵琶湖水位低下の ための瀬田川改修と洗堰の改築

昭和34年9月 洪水(伊勢湾台風)

木津川、猪名川の破堤氾濫

 $: 7.970 \,\mathrm{m}^3/\mathrm{s}$ 流量

(氾濫が無かった場合 10,100m³/s)

死者・行方不明者:47名

浸水家屋 :約38,000戸

昭和40年 淀川水系工事実施基本計画(~昭和45年)

基本高水のピーク流量 計画高水流量

 $8.650 \,\mathrm{m}^3/\mathrm{s}$ $6.950 \,\mathrm{m}^3/\mathrm{s}$ 淀川(枚方1/100) 木津川(加茂S28.9実績) 6.200m³/s 4.650m³/s 桂川(羽束師1/80) $2,850 \text{m}^3/\text{s}$ $2,850 \text{m}^3/\text{s}$ 宇治川 (宇治) $1.570 \,\mathrm{m}^3/\mathrm{s}$ $900m^{3}/s$

- ・前計画を概ね踏襲した工事実施基本計画の策定
- ・昭和34年洪水を踏まえ、木津川の基本高水の ピーク流量を変更し、上流ダム群による洪水調 節を強化(天ヶ瀬ダム、高山ダム、室生ダム、 青蓮寺ダムの完成)
- ・猪名川の追加 堤防の拡築、引堤、捷水路工事、上流ダムの 調査検討

昭和46年 淀川水系工事実施基本計画改定

基本高水のピーク流量 計画高水流量

 $17,000 \,\mathrm{m}^3/\mathrm{s}$ $12,000 \,\mathrm{m}^3/\mathrm{s}$ 淀川(枚方1/200) 猪名川(小戸1/200) $3,500 \,\mathrm{m}^3/\mathrm{s}$ $2,300 \,\mathrm{m}^3/\mathrm{s}$

- ・昭和40年洪水実績、流域の開発状況等を総合的 に踏まえ、治水の計画規模を1/200(本川)に
- ・堤防の整備状況、沿川の高度な土地利用状況等 を踏まえた引堤等改修の実施可能性を考慮し、 河道掘削とあわせて上流ダム群による洪水調節 の強化

特徴と課題(昭和46年工事実施基本計画の概要)

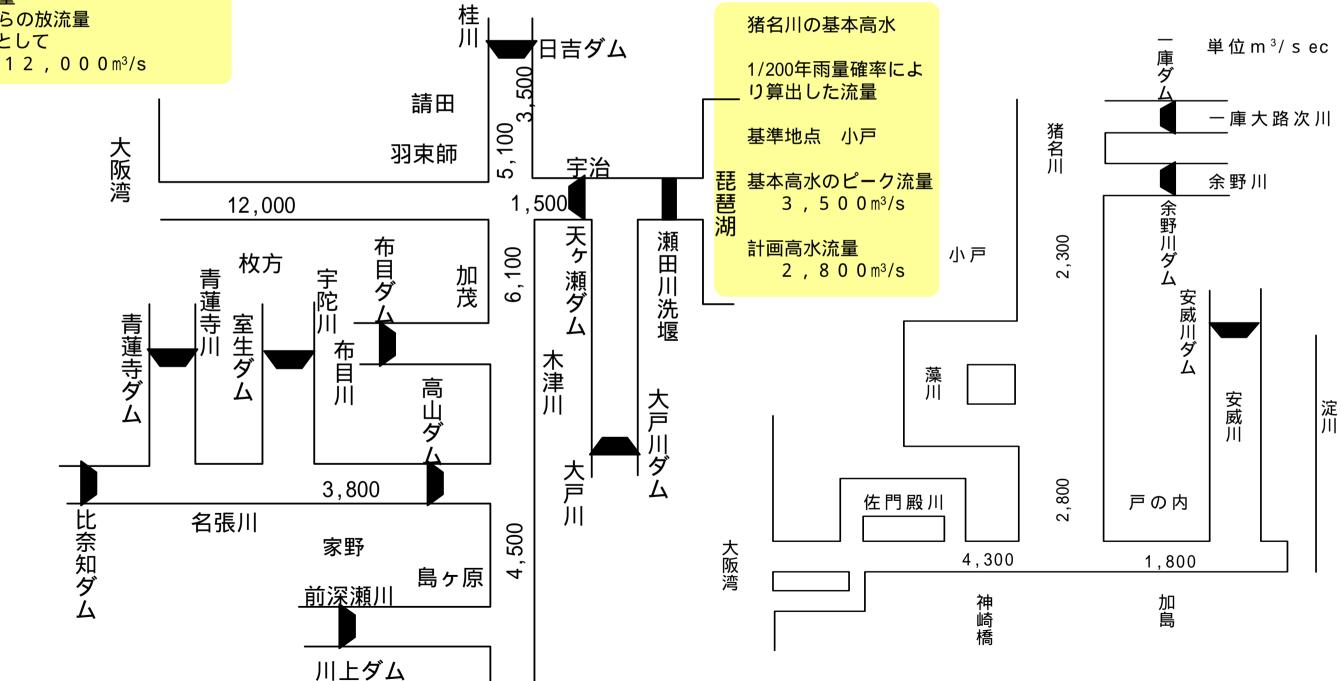
単位m³/s

淀川水系

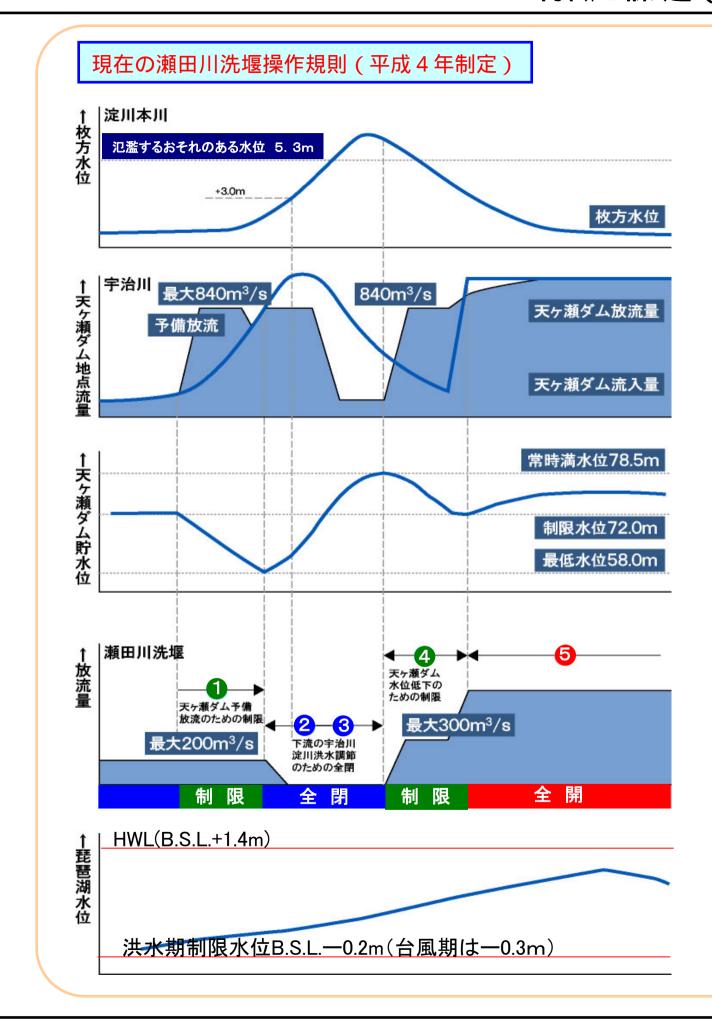
流量配分図

淀川

・上流洪水調節施設により5,000m3/sを調節


淀川本川の基本高水
1/200年雨量確率により算出した流量
基準地点 枚方
基本高水のピーク流量
17,000m³/s
計画高水流量
琵琶湖からの放流量
を0m³/sとして

計画高水流量設定の考え方


堤防が概成し沿川の高度な土地利用状況から大幅な引堤等による 河道改修は困難であり、高水敷の高度な利用等も考慮して、可能 な限り河道掘削で対処し、不足する分は洪水調節施設で対応する。

猪名川

・上流洪水調節施設により1,200m³/sを調節

特徴と課題(瀬田川洗堰操作の概要)

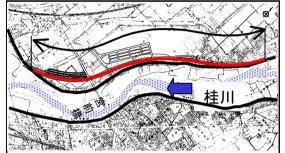
天ヶ瀬ダムが宇治川及び淀川本川下流部のために洪水調節を行っている時はダムの洪水調節機能を確保するためダムへの流入量を抑えることとし、洗堰を全閉している。

内容	洗堰操作	
【淀川洪水時】(図の3) 枚方地点の水位が現に+3.0メートルを超え、かつ零点高+5.3メートル(氾濫するおそれのある水位)を超えるおそれがあるときから枚方地点の水位が低下し始めたことを確認するまで	洗堰全閉	
【天ヶ瀬ダム洪水調節中】(図の2~3) 天ヶ瀬ダムが洪水調節を開始したときから洪水調節 後の水位低下のための放流が開始されるまで	(0m3/s)	

その他の時は、部分開放または全開している。

【天ヶ瀬ダム予備放流中】(図の❶) 天ヶ瀬ダムが予備放流しているとき	200m3/sを上限で放流 (過去の実績を考慮)
【天ヶ瀬ダム後期放流中】(図の4) 天ヶ瀬ダムが洪水調節の後の水位低下のための放 流をしているとき	300m3/sを上限で放流 (過去の実績を考慮)
琵琶湖周辺の洪水を防御するため、速やかに、水位を低下させ、または水位の上昇を抑制する必要があるときは、洗堰の既設部分を全開しなければならない。(図の⑤)	洗堰全開
琵琶湖周辺又は下流淀川において重大な洪水被害が生じ、若しくは生ずるおそれがある場合における洗堰の操作は、この規定によらないことができる。	臨機応変

特徴と課題(淀川の治水対策-洪水対策)


淀川水系

- ・人口・資産が集中する3川合流下流部は堤防が概成。破堤による壊滅的被害を防止するため、洪水調節施設の整備による下流部の安全度の向上とあわせ、 高規格堤防の整備や堤防強化が不可欠。
- ・木津川下流部は堤防が砂土で築造されており、浸透洗掘に対する堤防強化が必要。狭窄部上流ではせき上げによる洪水を防止するため、洪水調節施設の 整備が必要。
- ・宇治川は、琵琶湖の水位低下や洗堰操作の改善のため、天ヶ瀬ダムの洪水調節能力やダム下流区間の流下能力の増大が必要。
- ・桂川は、狭窄部上流のせき上げによる洪水を防止する洪水調節施設の整備が必要。
- ・市街化が著しい都市内河川においては、流出抑制対策等の総合治水対策を実施。

中下流部の対策

河道断面確保

河道の掘削(浚渫)、引堤により河道断面の拡幅を行い、洪水時の水位低下を図る。

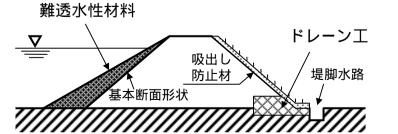
桂川 大下津地区(1.6k~3.8k)

猪名川 中の島地区(11.6k~11.8k)

高規格堤防の整備

破堤すれば壊滅的な被害を 受ける3川合流下流の約89 km(対象区間延長)について、 超過洪水対策として、計画高 水位を上回る洪水流量によ る浸透や越水に対してより高 い安全性を持たせ、壊滅的な 被害の発生を防ぐ。

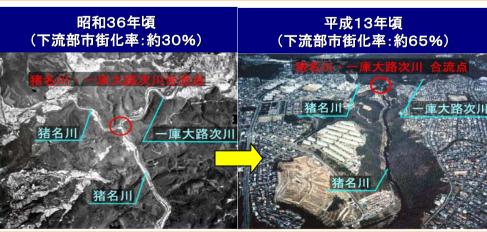
※H16.3時点で4.9kmを整備済


堤防の強化対策

断面拡大工法

計画高水位までの洪水流 量による浸透や洗掘作用に 対して、より高い安全性を 持たせ、破堤による壊滅的 な被害の発生リスクを軽減 する。

木津川、桂川、 猪名川で約6km を実施中


ドレーン工法

総合治水対策

市街化の著しい寝 屋川流域、猪名川 流域では総合治 水対策を実施。

特徴と課題(琵琶湖の治水対策)

淀川水系

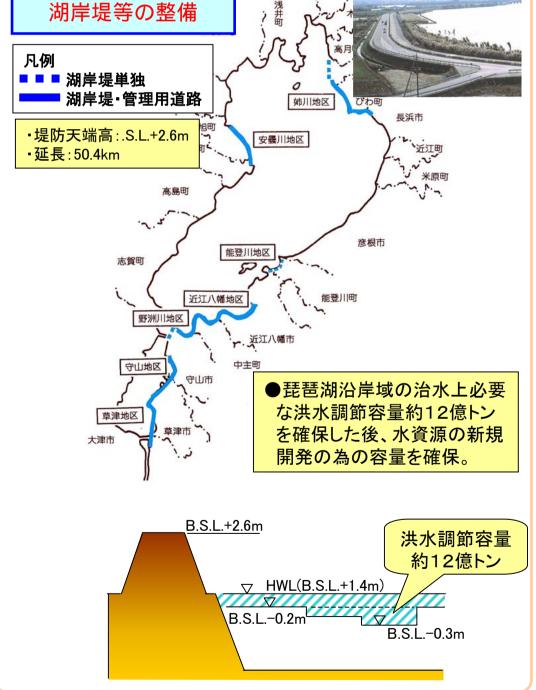
琵琶湖の治水対策の計画規模は1/100とし、琵琶湖の計画高水位をB.S.L.+1.4m(1/100水位確率)に設定。これを基に、

- ・湖岸堤等の整備を実施し、琵琶湖沿岸域の治水に必要な洪水調節容量約12億トンを琵琶湖に確保することにより、琵琶湖の氾濫による洪水を防止。
- ・あわせて堤防整備に伴う沿岸域の内水対策は、1/30規模で整備。
- ・今後、琵琶湖の洪水調節容量とあわせ、洪水位を計画高水位以下にするために必要な瀬田川の流下能力の増大が必要。
- ・琵琶湖に流入する河川の多くは天井川であり、一旦氾濫すると広範囲に被害が及ぶことから、天井川の治水対策が特に重要。洪水位の低下を図るため、 これまで大規模な放水路の整備や河床掘削等を実施。
- ・その他、琵琶湖の高水位に対応した堤防嵩上げ等を実施。

瀬田川の浚渫

浚渫による疎通能力の 増大

(B. S. L. ±0. 0mで流下 能力800m³/sを確保)



流入の河川改修

- ●天井川の解消のため、放水路の整備、河床高 の切り下げ等を実施
- ●琵琶湖計画高水位より堤防高が低い河川での 堤防嵩上げ

特徴と課題(淀川の治水対策-高潮・地震・津波対策)

- ・淀川下流部の大半は海抜0m以下の低平地であり、人口資産が密集していることから高潮・津波に対する対策が重要。
- ・桁高の低い橋梁の箇所では陸閘により対処しており抜本的な対策(橋梁改築)が必要。また、水門も多く迅速な対応が必要。
- ・淀川流域は東南海・南海地震防災対策推進地域に指定されており、東南海・南海地震を想定したハード・ソフト一体となった対策が必要。

大阪市の大半が低平地

堤防の耐震化

阪神淡路大震災対応で復旧しているが、東南海・南海 地震対応は未実施

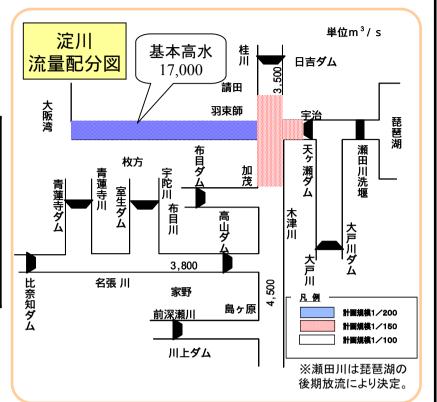
阪神淡路大震災による被災状況(酉島地区)

復旧後(酉島地区

緊急時の活用

緊急用河川敷道路

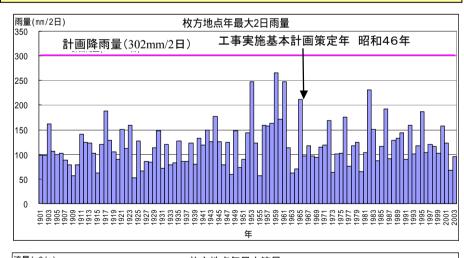
地震時に道路等が不通になった場合でも緊急物資の 輸送等が行える重要な道路。密集市街地等を流下する 区間で全体延長約73kmのうち51kmについて整備済

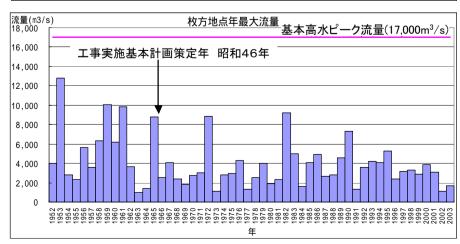

特徴と課題(既定計画の検証)(淀川)

S46工事実施基本計画の概要

| ・本川は1/200確率降雨を対象 | ・支川下流部は1/150確率降雨を対象 | ・支川上流部は1/100確率降雨を対象 | ・1/200確率の降雨量に対して、降雨の地域分布及び時間分布について実績降雨群等によりさまざまな降雨流出パターンを想定しピーク流量の生起確率を算定 | ・河道とダムに対する流量の配分は、沿川の高度な土地利用状況から、大幅な引堤及び堤防の嵩上げ等による河道改修は困難であり高水敷の高度利用や水資源開発計画との整合性等も考慮して設定

工実 [計画高水とダム河道配分](単位:m³/s)

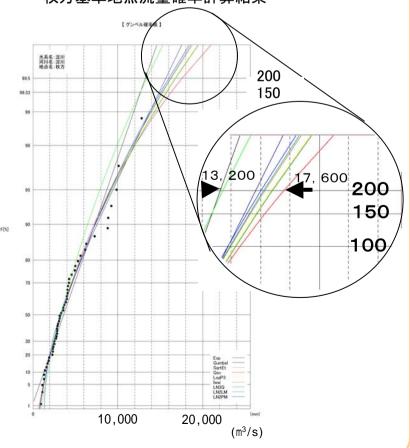

河川名	基準地点	基本高水 ピーク流 量	計画高水 流量	調節量
淀川	枚方	17,000	12,000	5,000
猪名川	小戸	3,500	2,300	1,200



既定計画策定後の水理・水文データの蓄積等を踏まえ、既定計画の基本高水のピーク流量について検証

年最大流量等の経年変化

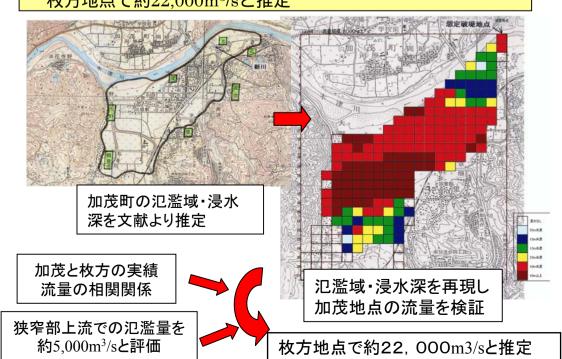
既定計画策定後に計画を変更するような大きな出水は発生していない。



流量確率による検証

蓄積された流量データを確率統計処理し検証。 枚方地点における1/200確率規模の流量は 13,200m³/s~17,600m³/sと推定。

枚方基準地点流量確率計算結果

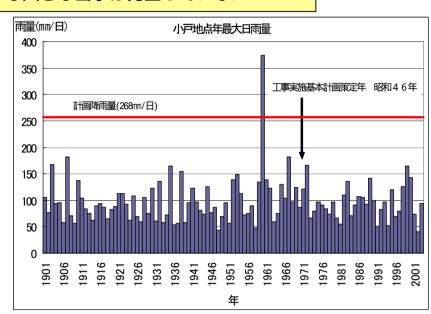

既往洪水の検証

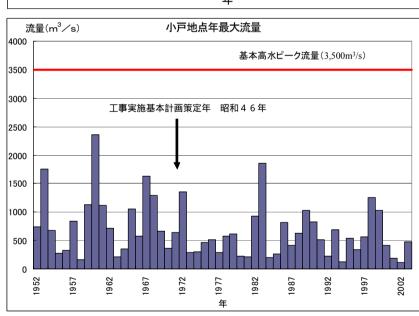
明治18年洪水の本川下流部での氾濫量実績から、枚方地点で概ね17,000m³/sと推定。

明治18年洪水の氾濫量約7,500万m³(推定)をもとに、観測史上最大の昭和28年洪水に氾濫量が同じになるよう引き伸ばして推定。

- →枚方で約12,300m³/s。1/200確率規模の降雨時における氾濫した状態での 枚方地点の流量と同等。
- →氾濫戻し後の流量を概ね17,000m3/sと推定。

享和2年(1802年)6月洪水の加茂地点での氾濫実績から、 枚方地点で約22,000m³/sと推定

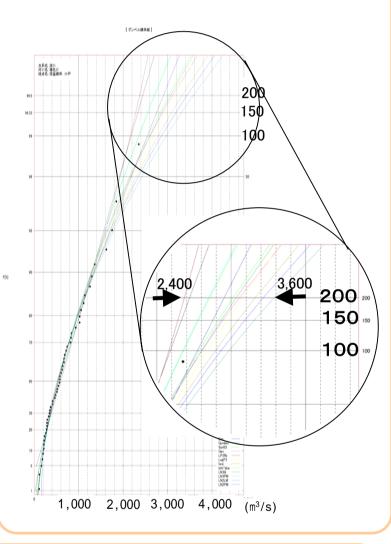



特徴と課題(既定計画の検証)(猪名川)

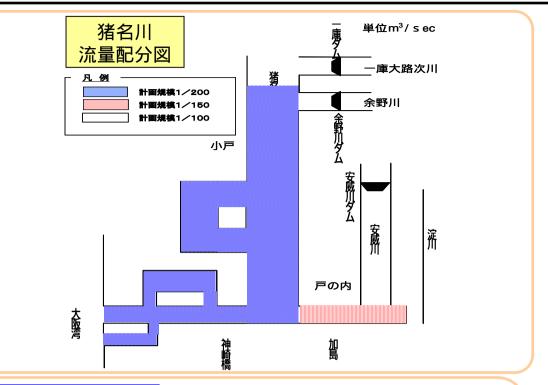
淀川水系

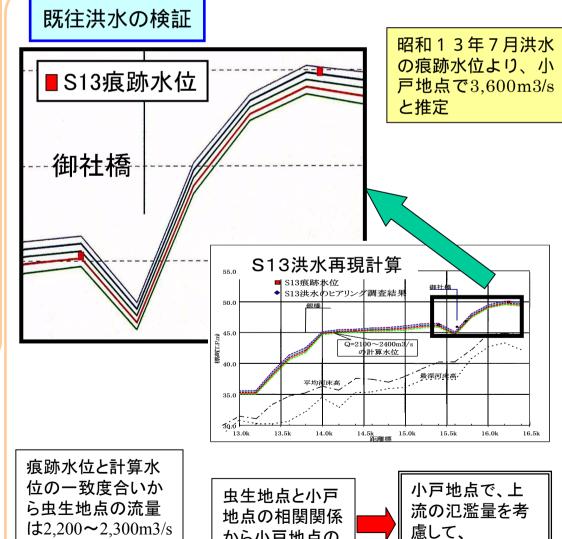
年最大流量等の経年変化

既定計画策定後に計画を変更するよう な大きな出水は発生していない



流量確率による検証


蓄積された流量データを確率統計処理し 検証。小戸地点における1/200確率規模の 流量は2,400m³/s~3,600m³/sと推定。


小戸基準地点流量確率計算結果

河川名	基準地点	基本高水 ピーク流量	流量確率に よる評価	既往洪水によ る検証流量
淀川	枚方	17,000	13,200	17,000
			~ 17,600	~ 22,000
猪名川	小戸	3,500	2,400	3,600
			~ 3,600	

検証の結果、各基準地点における 既定計画の基本高水ピーク流量は 妥当である。

から小戸地点の

河道流量を算定

3,600m3/sと推定

※虫生地点:神崎川合流点から17.3k、小戸地点:神崎川合流点から10.8k

河川整備計画策定にあたっての学識経験者からの意見聴取について

流域委員会について

河川法第十六条の二第3項では「河川管理者は、河川整備計画の案を作成しようとする場合において必要があると認めるときは、河川に関し学識経験を有する者の意見を聴かなければならない。」とされている。学識経験者からの意見を個別に聴取することも可能であるが、「委員会」形式により意見を聴取することが効率的効果的であるとの考えから、淀川に限らず学識経験者で構成される委員会を任意に設置しているものがある(淀川水系流域委員会もその一つ)。 当該委員会は地方整備局等が設置する場合があるが、委員会が河川整備計画策定に係る特段の役割を有するものではない。

なお、河川整備計画の策定にあたり、学識経験者からの意見聴取とは別に、河川法第十六条の二第4項、第5項の既定に基づき、関係住民、関係地方公共 団体の長の意見も聴くこととしている。

淀川水系流域委員会について

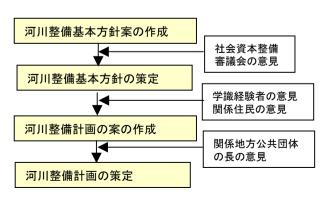
河川整備計画の策定をはじめとする河川行政に限らず、様々な行政の流れにおいて一般的に必要に応じて学識経験者の意見をお聴きすることがある。現段階の 淀川水系流域委員会はこの考えにより平成13年2月に設置し、意見を伺い、近畿地方整備局は河川整備計画原案のスタイルで考え方をとりまとめた。なお、流域委員会での意見はじめ、様々な学識経験者、住民、地方公共団体等の意見は重要な意見として様々な検討において参考とすることとしている。

今後、河川整備基本方針が策定され、河川整備計画が策定される過程において、学識経験者の意見を聴く手段として淀川水系流域委員会の場も活用する予定である。

流域委員会の提言等の主な内容

治水 〇対象規模以下の洪水に対する水害の発生を防止するという考え方から、どのような大洪水に対しても被害を 回避・軽減することを目指す考え方へ転換すべき。

環境 〇治水・利水を中心とした河川整備から、河川や湖沼の環境保全と回復を重視した河川整備へ転換すべき。


河川の利用 〇人間中心の利用から、河川生態系と共生する利用へ転換すべき。

住民参加 〇行政が計画を立案し、住民がそれを受け入れる方式から、主体的な住民参加による川づくりへ転換すべき。

ダム計画 〇ダムは、自然環境に及ぼす影響が大きいことなどのため、原則として建設しないものとし、考えうるすべての 実行可能な代替案の検討のもとで、ダム以外に実行可能で有効な方法がないということが客観的に認められ、かつ住民団体・地域組織などを含む住民の社会的合意が得られた場合にかぎり建設すべき。

今後の流れ

今後、法令に則して、河川整備基本方針の策定後、河川整備計画案を検討する際に学識経験者、住民等から意見を聴いて河川整備計画案を策定した後、関係地方公共団体の長の意見を聴き、河川整備計画を策定。

