

災害時の人工衛星活用ガイドブック 水害版・浸水編

宇宙航空研究開発機構 衛星利用運用センター 国土交通省 水管理・国土保全局 河川計画課

平成30年3月

目次

1. SAR画像の活用

- 被害状況把握の手法
- 衛星SAR画像の浸水対応への活用
- 衛星SAR画像の活用の流れ

2. 浸水解析·判読

- 解析·判読可能規模
- 後方散乱強度•一時期単偏波
- 単画像からのポリゴンデータ
- 後方散乱強度・二時期カラー合成
- SAR浸水解析の留意事項(水田・都市部)
- SAR画像の留意事項

3. 条件による判読精度の違い

- 観測角度①②
- アーカイブの有無、時期、季節の違い
- 判読精度見込み(評価)

4. 浸水判読事例

浸水判読事例:平成28年8月北海道豪雨災害

【まとめ】

浸水把握における衛星SAR画像の活用について

被害状況把握の手法

- ○SAR画像・・・昼夜・天候に関わらず広範囲観測が可能だが、画像解釈には専門知識が必要
- ○光学画像・・・観測機会は晴天の昼間に限られるが、より直感的な画像解釈が可能

被害状況把握手法		活用場面			特徴			
		夜間観測	<i>√{{\alpha}</i> [5] #[1]		観測・調査結果 の判読・解釈	利点等		
	SAR画像	0	0	×	広い	× 難しい	昼夜・天候に関わらず広範囲の 概況把握が可能	
		周回軌道による観	測機会の制限あり	不向き	(数万km²)	専門知識が必要		
一	光学画像	×	×	×		〇 容易	広範囲の概況把握が容易 ※現在日本で運用されているも	
		周回軌道による観測機会の制限あり		不向き	広い (数万km²)	(観測角度により歪み が生じることがある)	のはない	
航空機・ヘリ		×	×	△ やや不向き	△ 中程度 (数百km2)	〇 容易	数百km ² 単位の調査を一日数 回行うことが可能	
無人飛行機(ドローン等)		×	△ 機種による	△ やや不向き	× 狭い	〇 容易	人の立ち入りが困難な箇所の調 査が可能	
地上現地調査		×	△ 雨風の程度による	0	× 狭い	〇 容易	被害の詳細調査が可能	

SAR衛星は<u>昼夜・天候に関わらず観測が可能</u>であり、他の手法が困難な場合に、大規模な浸水状況の把握・推定に有効

衛星SAR画像の浸水対応への活用

夜間·悪天候時

SAR観測

画像解析・判読(被害箇所の推定)

JAXA

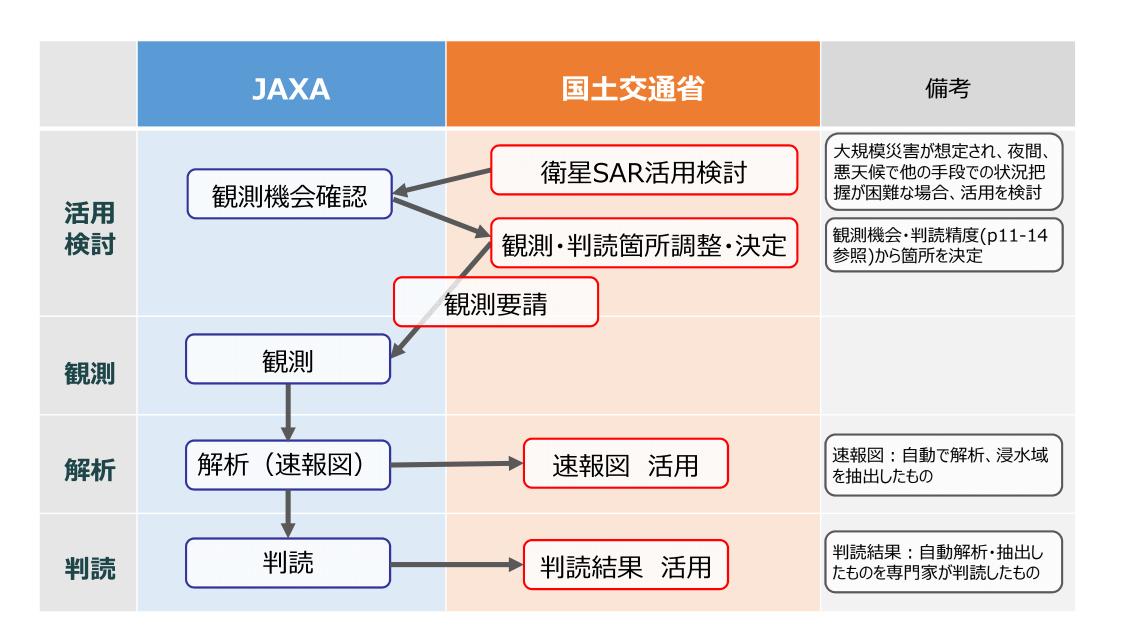
- ・調査箇所の絞り込み
- ・調査ルートの 検討
- ・排水ポンプ車 の配置検討

初動対応 に活用

国交省

夜明け・天候回復後

ヘリ、ドローン、現地調査による詳細把握

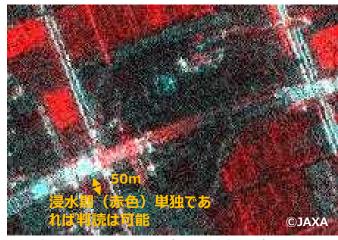


排水ポンプ配備・排水

衛星SAR画像の活用の流れ

解析·判読可能規模

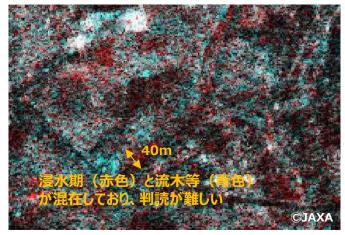
概ね50m四方以上であれば、被害の可能性がある箇所としてSAR画像で解析・判読が可能


解析:自動で解析、浸水域を抽出すること

判読:自動解析・抽出したものを専門家が判読して浸水域を抽出すること (解析より精度が向上)

平成27年9月 関東·東北豪雨(常総IC)

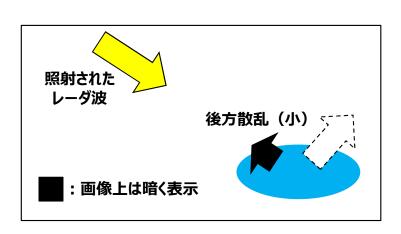
2015年9月11日昼撮影 空中写真



2015年9月11日22時56分観測 SAR画像

平成29年九州北部豪雨災害(赤谷川流域)

2016年7月8日昼撮影 空中写真



2016年7月7日23時43分観測 SAR画像

後方散乱強度·一時期単偏波

後方散乱※強度(反射波)の大小を黒白で画像化 後方散乱強度の違いから、浸水域を推定

※レーダ源の方向へ戻る散乱

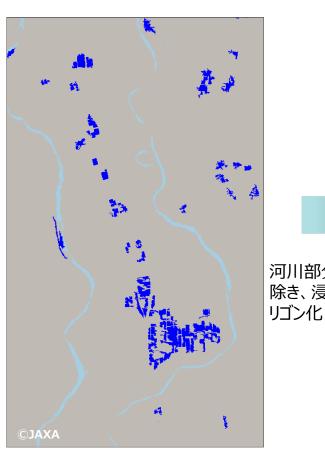
水面の場合の見え方

平成27年9月 関東·東北豪雨(常総地区)

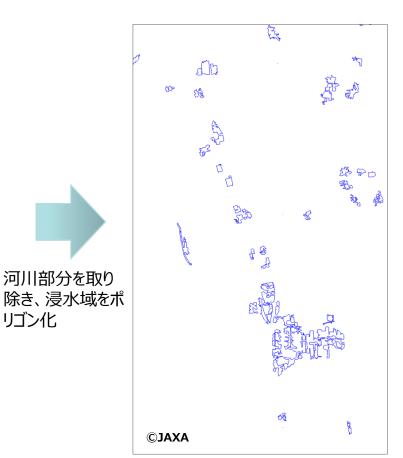
2015年9月11日昼撮影 空中写真

2015年9月11日22時56分観測 ALOS-2データ

単画像からのポリゴンデータ


後方散乱強度解析(一時期単偏波)の画像から、自動的に水域と陸域に区別し、河川部分を取り除いたデータを浸水域として自動抽出しポリゴン化

GISで利用可能なファイル(kmz, shpファイル)で提供



1時期画像(緊急観測)

二值化画像

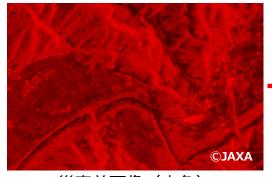
浸水域抽出プロダクト

2. 浸水解析·判読

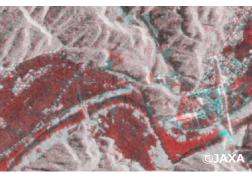
後方散乱強度・二時期カラー合成

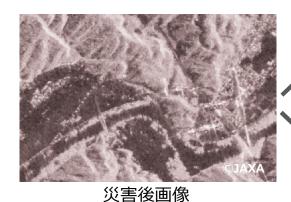
着色

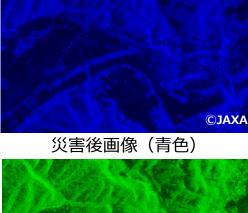
災害前の画像に赤、災害後の画像に青 と緑を割当てて画像を作成


合成画像は、光の三原色により、変化が有る箇所のみ赤色・水色になる = 赤色・水色箇所が被害箇所(被害の可能性がある箇所)と判別できる

カラー


合成

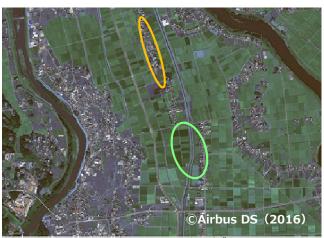

災害前画像


災害前画像(赤色)

カラー合成画像

※災害後観測と同じ条件の、災害前の 観測画像(アーカイブ)がある場合のみ 二時期カラー合成が可能

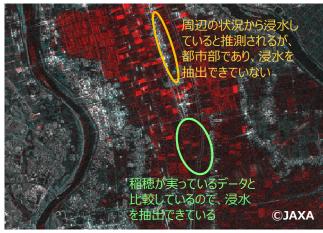
CJAXA

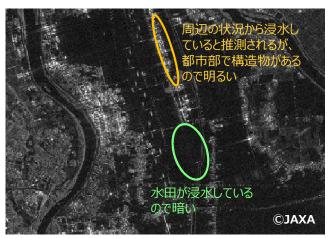

光の三原色

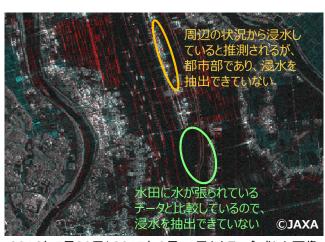
ター資料(平成28年11月) http://www.pref.iwate.jp/dbps_data/_materi al_/_files/000/000/049/390/setsumeikaisiryo u161108h.pdf

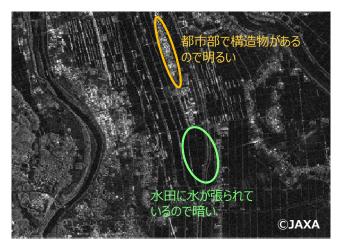
2. 浸水解析·判読

SAR浸水解析の留意事項(水田、都市部)


- ・水田は、田植え時期はほぼ水面のため、一時期単偏波の後方散乱強度解析では浸水と誤判読
- ・災害後と、災害前の田植え時期の画像を二時期カラー合成しても、浸水域が抽出されず、誤判読が生じる(使用するアーカイブの時期は注意が必要)
- ・都市部は建物が全て浸水しないと二時期カラー合成でも浸水域が抽出されず、判読が困難

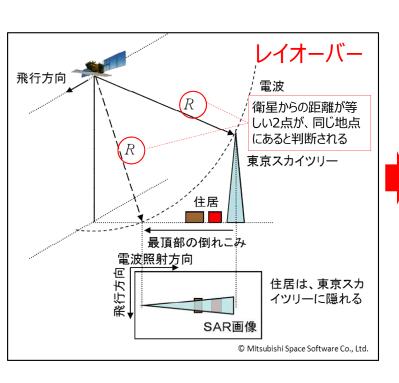

2016年8月17日の観測データ 平時の光学衛星画像


2015年7月31日の観測データ 稲穂が実り始めている画像


2015年7月31日と2015年9月11日をカラー合成した画像 赤色: 2015年7月31日、緑色・青色: 2015年9月11日

2015年9月11日の観測データ 平成27年9月 関東・東北豪雨による浸水時の画像

2016年5月20日と2015年9月11日をカラー合成した画像 赤色: 2016年5月20日、緑色・青色: 2015年9月11日

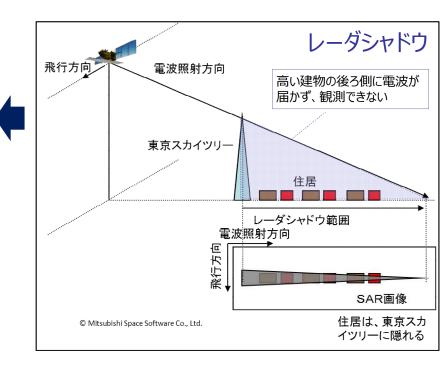

2016年5月20日の観測データ 水田に水が張られ、田植え前後の画像

SAR画像の留意事項

・SAR画像は、観測手法の特性上、以下のような現象が発生するので注意が必要

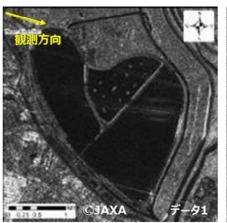
レイオーバー

高い建物が、衛星から近い距離にあると 判断され、倒れて見える現象

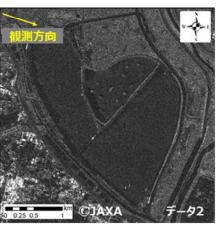


レーダシャドウ

高い建物が壁となり、<u>建物の後ろ側に電</u> 波が当たらず、情報が得ることができない 現象

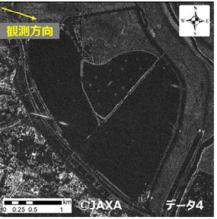

レイオーバー、レーダシャドーの事例(東京スカイツリー)

観測角度の違い①

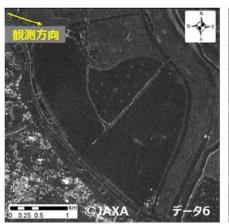

3. 条件による判読精度の違い

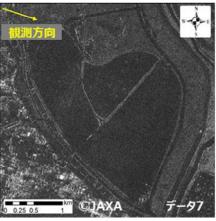
- 観測角度によって、見え方(判読のしやすさ)が大きく異なる
- 軌道方向や衛星からの観測方向では、見え方に差はみられない

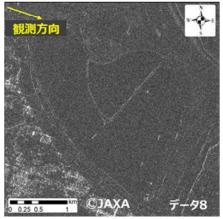
観測地:渡良瀬遊水池(谷中湖)

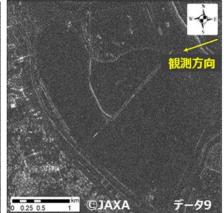

△ 2015/09/16 (降交) U1-2:13.9度

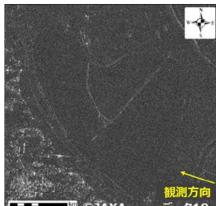
△ 2014/10/06 (降交) U1-5:25.6度


2015/09/13 (昇交) U2-8:35.4度


2015/05/28 (降交) U3-10:40.6度


O 2015/09/18 (昇交) U3-11:42.7度


2015/07/28 (降交) U3-14:48.0 度


2015/09/13 (降交) U4-17:52.1度

× 2015/05/01 (降交) U5-20:55.3度

X 2015/04/13 (昇交) U5-23:57.7度

× 2015/04/26 (降交) V5-24:58.4度

観測角度の違い②

- 渡良瀬遊水池のケースでは、観測角度がU2-8(35.4度)~U3-14(48.0度)の範囲において良好にみえる
- 軌道方向や衛星からの観測方向では、見え方に差はみられない

項目	データ1	データ2	データ3	データ4	データ5	データ6	データ7	データ8	データ9	データ10
観測日	2015/9/16	2014/10/6	2015/9/13	2015/5/28	2015/9/18	2015/7/28	2015/9/13	2015/5/1	2015/4/13	2015/4/26
観測角度	U1-2 (13.9度)	U1-5 (25.6度)	U2-8 (35.4度)	U3-10 (40.6度)	U3-11 (42.7度)	U3-14 (48.0度)	U4-17 (52.1度)	U5-20 (55.3度)	U5-23 (57.7度)	U5-24 (58.4度)
軌道方向	降交軌道 (北→南)	降交軌道 (北→南)	昇交軌道 (南→北)	降交軌道 (北→南)	昇交軌道 (南→北)	降交軌道 (北→南)	降交軌道 (北→南)	降交軌道 (北→南)	昇交軌道 (南→北)	降交軌道 (北→南)
衛星からの 観測方向	左	左	右	左	右	左	左	左	左	右
対象地の 観測方向	西北西	西北西	西南西	西北西	西南西	西北西	西北西	西北西	東北東	東南東
見え方	Δ	\triangle	\circ	\circ	\circ	\circ	×	×	×	×
備考	観測角度によ 等によるノイズ 判読に難あり。	が確認され、	-	-	-	-	観測角度により、水域と陸域の境界が不明瞭であり、判読できない。			

アーカイブの有無、時期、季節の違い

3. 条件による判読精度の違い

- 災害後観測と同じ観測条件(観測角度・方向)の災害前の観測画像(アーカイブ)があれば 二時期カラー合成が可能であり、判読精度は上がる
- 一方で、アーカイブの観測時期・季節には注意が必要
 - ・ アーカイブが古い
 - ⇒ その後の土地改変(遊水池の整備など)があると、誤判読する可能性有り
 - ・ 災害後観測とアーカイブの撮影季節が違う
 - ⇒ 水田の見え方が異なり、誤判読する可能性あり(田植え時期の水田の浸水判読は困難)
- ◇ アーカイブは撮影時期が近く、同じ季節のものであれば判読しやすい(判読精度が良い)

【水田の季節変化による見え方の違い】

2016年8月17日 光学衛星画像

2015年7月31日 SAR衛星画像

2016年5月20日 SAR衛星画像

2015年7月31日の観測データ:稲穂が実り始め、水田が明るく見える

2016年5月20日の観測データ:田植えが行われており、水田に水が張られ暗く見える

判読精度見込み(評価)

- ○観測角度(モード)とアーカイブの有無・時期・季節から<u>判読精度見込みを評価する</u>
- ⇒ 観測・判読箇所の決定に用いる

評価基準					
a, A	精度良	判読しやすい			
b, B	精度中	判読可能またはやや困難			
c, C	精度低•不可	判読困難または不可			

【①観測角度(モード)】			
U2~U3	判読する上で最も適した観測角度	а	
U1	観測角度によって天候不順等によるノイズが確認され、判読に難あり	b	
U4~U5	判読不可	С	

【②アーカイブの有無とその時期】	評価
1年以内のアーカイブ有り	а
1年超のアーカイブ有り	b
アーカイブなし	С

【③アーカイブの季節】	評価
災害後と同一の季節	a
災害後と異なる季節	b

【総合評価】	評価
精度良 (①がaで、②③はいずれもaまたはbがあっても判読への影響が少ない)	Α
精度中 (bが主)	В
精度低・不可 (①がbまたはcで、②がc)	С

浸水判読事例:平成28年8月北海道豪雨災害

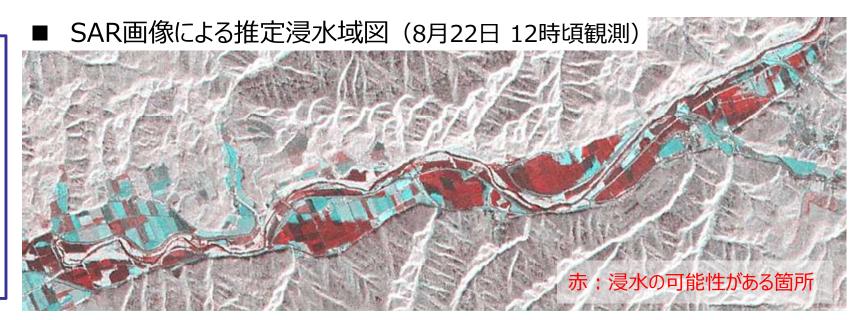
4. 浸水判読事例

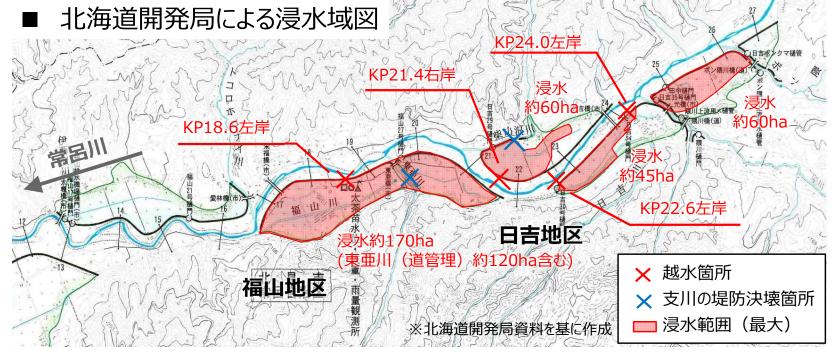
【対応の流れ】

8月21日(日)

昼:観測依頼

(機会検索依頼)


当日夜は観測機会


がなく観測見送り

8月22日(月)

昼:ALOS-2による観測

夜:判読結果を提供

【まとめ】浸水把握における衛星SAR画像の活用について

SAR衛星の強み

- 昼夜問わず観測可能
- 悪天候時でも観測可能
- 数万km²もの広範囲を一度に観測可能

SAR衛星の弱み

観測機会は衛星の回帰、軌道に依存

SAR画像でわかること

- ◆ 概ね50m四方の浸水域(推定)の判読が可能
- ◆ 一時期単偏波 ⇒ 黒の箇所が浸水の可能性有り(推定浸水域)
- ◆ 二時期カラー合成 ⇒ 赤色の箇所が浸水の可能性有り(推定浸水域)

SAR画像の弱み・留意事項

- 詳細な状況把握はできない(小規模の浸水は判読不可)
- 判読は専門知識が必要(素人には不可)
- 観測条件やアーカイブの有無等により判読精度に差有り
- 水田の浸水判読可否・精度は観測の季節やアーカイブの有無・時期などに左右される
- 都市部の浸水は判読困難

大規模災害が想定され、かつ他の手法が困難な場合に、浸水状況の把握・推定に有効