
西大宮バイパスに伴うCO₂抑制効果等に関する試算

検討対象としたネットワーク

〈開通前後の交通状況等の変化※1〉

	単位(千台/日)			
交通量	開通前	開通後	変化量	変化率 (%)
周辺道路	568	542	-26	-5%
西大宮バイパス	0	30	30	-
計	568	572	5	1%


	単位(十台ギロ/日)					
走行台キロ	開通前	開通後	変化量	変化率 (%)		
周辺道路	1,150	1,062	-88	-8%		
西大宮バイパス	0	112	112	-		
計	1,150	1,174	24	2%		

-			単位	፲(km/h)
走行速度	開通前	開通後	変化量	変化率 (%)
平均走行速度 ※2	25	31	6	24%

- ※1 (開通後-開通前)の値
- ※2 全区間の走行速度は、走行台キロでの重み 付き平均で算出

自動車交通の変化に起因するCO2排出量の増減

西大宮バイパスの整備により、周辺区間の交通量は若干増加(各区間の断面交通量合計で約1%、走行台キロで2%増加)。一方、走行速度の向上により、結果的に CO_2 排出量は 13,600 t $-CO_2$ /年(10%)低減された。

