建設機械，AI・ロボット，ICT等による建設事業や災害対応の合理化に関する政策の企画•立案を行います。

1．イノベーション創出によるインフラ整備•維持管理の合理化

少子高齢化•人口減少社会における建設関連業の深刻な担い手不足に直面する中，インフラインフラ整備•維持管理は益々重要性を増している。

こうした社会課題に対応し，持続可能なインフラ整備•維持管理を行うために，イノベーションを創出し，新しい技術による生産性向上等の合理化を図る。
（1）インフラ用ロボット・AI（人工知能）の開発•導入の推進によるインフラ点検の効率化

担い手不足に対応したインフラ点検を実現するため， ドローン等のインフラ用ロボットの開発•導入を促進す るための政策の企画•立案を行う。

（2）インフラ用AI（人工知能）の開発促進

ロボットを活用したインフラ点検を更に効率化するため，イン フラ点検に活用可能なAI（人工知能）の開発環境の整備を行い，民間での開発を支援•促進を行う。

（3）i－Constructionの推進

建設現場が直面している諸課題（生産性向上，品質確保，長寿命化，熟練労働者不足等）に対応するため，あら ゆる建設生産プロセスでICTの全面導入 を図る。

そのため，従来方法に代わるICTを活用した監督検査基準，データ交換標準等の技術基準の策定等を行う。

2．建設機械の環境対策に関する業務

大気環境改善•地球温暖化防止のため，建設施工に おける環境対策を推進している。

そのため，建設機械の排出ガス基準やエンジンの試験方法等技術基準の策定や環境対策型建設機械の普及促進を図るための施策について企画•立案等を行う。

3．機械類の整備に関する業務

河川及び道路管理施設における機械設備（排水ポン プ設備，ゲート設備，トンネル換気設備等）について は，確実な操作と適切な維持管理を図るため，技術の高度化を進めている。そのため，機械設備の技術基準 の策定や新しい技術の開発•導入の推進を行う。

また，道路，河川事業の維持管理及び災害対策に必要な建設機械（橋梁点検車，排水ポンプ車，照明車等）を整備する。また，冬期道路交通の確保を図るた めに必要な除雪機械の整備を推進する。そのため，整 15 備運用計画の策定や技術開発等を行う。
 ． －．．．．．．．．．．．．．．

出水対応のために設置された
河川用ポンプ及びゲート設備

2．業務事例

インフラ点検Al（入工知能）の開発環璄整備によるイノベーシヨン創発

■「人の作業」の支援から「人の判断」の支援が生産性向上の力ギであり，建設生産プロセ スへの人工知能（AI）の社会実装が重要である。特にインフラ点検分野を先行させて，AI技術との組合せ等による生産性向上を実現すべく，土木技術者の正しい判断を蓄積した「教師データ」提供の取り組みを技術開発支援として推進

【目指すところ】

ロボットによる人の点検「作業1の効率化

点検画像

インフラ事業者
（インフラ管理者，士木技徚者など）

－変状の自動抽出により点検員の「判断」を支援

建設施工における地球温暖化対策の推進

平成27年10月，地球温暖化対策推進本部（本部長：内閣総理大臣）にて2030年の温室効果ガス の削減目標を，「2013年比26．0\％減」とする ことが正式決定。今後も計画的に対策に取り組 んでいくことが必要。

> | 建設機械の燃費向上により |
| :--- |
| CO_{2} 非出量を削減する |

タイ国への排水ポンプ車の派遣

洪水被害を受けたタイへの排水支援の一環とし て，排水能力が高く機動性に優れた国土交通省所有の排水ポンプ車（排水能力： $30 \mathrm{~m}^{3}$ $/ \mathrm{min}) ~ 10$ 台及び国土交通省職員をタイに派遣 （初の海外派遣）。
平成23年11月19日のロジャナ工業団地での排水開始を皮切りに，工業団地や住宅地等の7箇所の冠水地域において，12月20日までの32日間で約810万m3（東京ドーム約7杯分，25m プール約23，000杯）を排水。

タイ国工業大臣からの挨拶（要旨）

今回，日本からは，多くの物資支援のほか，排水ポンプ車での排水支援を行って頂いた。 24 時間体制で活動する排水ポンプ車チーム に感銘を受けた。排水ポンプ車チームの活動に より，当初の予定より早く排水活動を進めるこ とができ，洪水により苦しんでいた多くのタイ国住民が早く元の生活に戻ることができた。

タイ国の洪水に対する排水ポンプ車チームの活動状況

排水ポンプ車
国際緊急援助隊

