木質構造	制振構造	応答評価法
壁動的載荷実験	振動台実験	基礎構造の検討

1. はじめに

都市の地震災害の大小は、多数存在する住宅の被害に よって決まると言っても過言ではない。国民の大多数が 生活の基盤としている戸建て住宅の被害を最小化し、人 命を守ることはもとより、個人的・国家的な経済損失、 都市の経済活動の低下を防ぐ必要がある。

我国において戸建住宅の数は約2,500万戸であり、その 半分以上において耐震性に問題があるとも言われている。 大地震での倒壊防止・人命保護という従来の目標に対比 し、本研究では地震後の財産保持までを目標として、膨 大な数の新旧住宅の耐震性を向上させるような設計・施 工技術の開発を行っている。

特に本研究では、高層建築で培われてきたパッシブ制 振技術を戸建住宅に展開している。すなわち、制振は大 規模建築の常識となりつつあるが、それを住宅にも健全 かつ加速度的に普及させることを考えている。木質およ び軽量鉄骨架構の力学特性を加味した接合法の開発、低 コスト小型制振ダンパーの開発、短周期領域での地震応 答やその抑制法について、接合部、ダンパー、制振シス テムそれぞれの詳細な実験と解析により探求し、応答低 減・損傷制御に優れた制振住宅の確立を目指している。

2. 制振性能に関する留意点および簡易評価法

図1は、本研究で開発した制振壁の例を示すものであ る。これらの形式に限らず、制振壁に対する水平力と層 間変形の殆どをダンパーに伝達することができ、かつダ ンパーが充分大きいと高い制振性能が得られると言える。 このために、例えば図1(a)のシェアリンク型では、水平 力の伝達のため接合部の回転剛性を小さくし、また、

1.欧州赤松集成材 105x180mm, 2.ホワイトウット 集成材 105x105mm, 3. 欧州赤松集成材 105x105mm, 4.構造用合板 12mm, 5.スリムブレ ート, 6.ホールダウン金物 Φ16, 7.アンカーボルト Φ12

1.欧州赤松集成材 105x180mm, 2.オワイトウット 集成材 105x105mm, 3. 欧州赤松集成材 105x105mm, 4.スタント コーナー, 5.アンカーボ ルト Φ12, 6米2弾性ケ ンバー

図 1 開発した制振壁の例:(a) シェアリンク型、(b) 方杖型

東京工業大学 笠井 和彦、和田 章、坂田弘安、大木洋司 建築研究所 緑川 光正、五十田博

層間変形の伝達のために、梁・柱・パネルの剛性、接合 部のせん断・軸剛性を高くすることが肝要である。また、 図 1(b)の方杖型または既往の仕口型の場合も同様なことが 言えるが、この架構の形状により、ダンパーの変形は元 来小さく、かつ通常の剛性をもつ梁・柱はダンパー力に より曲げ変形がおこるため、さらにダンパー変形を減ら すという傾向がある。このため、一般に制振性能は低い。 また、両形式とも勿論ダンパー取付け部の剛性を高くし、 ダンパーに注入する変形量を損なわないように注意する 必要もある。

以上のように、制振壁の性能は一般に梁、柱、接合部、 ダンパー、取付け部の剛性のバランスに支配される。こ れらの関係を定量的に表す簡易評価法が必要であり、本 研究では一貫して静的解析による評価法を用いている。

図1の制振架構の部材、接合部(図2)、取付け部(図3)を 含む骨組み解析モデルを作成し、ダンパー部が剛の場合、 ダンパー無しで自由の場合それぞれに対し、静的水平力F による層間変形、ダンパー部変形、ダンパー力を求める。 これらを「ダンパー固定解析」、「ダンパー解除解析」、ま たは「状態A解析」、「状態B解析」と呼ぶ(図4)。

状態 A 解析からは、ダンパーが非常に硬い場合の周辺 部の変形、およびダンパーへの力の分担、状態 B 解析で はダンパーが非常に柔らかい場合のダンパー部の変形量 が明らかになる。また、1サイクルの載荷中には、ダン パー割線剛性が上記2状態をとる時点が必ずあるため、

ダンパー履歴曲線を数学的に表した上で、上記 2 つの解 析結果を利用して、制振壁全体の履歴曲線、ひいては剛 性とエネルギー吸収も評価できる。さらに、ダンパー量 を変化させた場合の制振壁の性能変化も追加解析無しで グラフ化でき、最適なダンパー量や、他部材・接合部の 必要剛性値も簡易に求めることができる。

図 5 は上記の評価法によって得られた、シアリンク型 粘弾性ダンパー制振壁の特性である。層間変形角 1/120 で の性能評価に必要な制振壁の等価剛性 K', 損失剛性 K', 最大層せん断力 F_{max} ,およびダンパー最大変形 u_{dmax} が、導 入ダンパー量(ダンパー剛性 K_d として考慮)や $\alpha\theta$ (仕口 回転剛性の梁曲げ剛性に対する比)に対して、どのよう に影響されるかが簡易に評価できる。

3. 接合部・ダンパーの繰返し載荷実験による性能評価

上述したように、制振壁の性能評価のためには、予め 接合部やダンパーの特性を知る必要がある。

これまで在来木造住宅に用いられてきた接合金物は、 引張接合を成立させるために用いられてきており、研究 も引張耐力に限られてきた。しかし、前述のように制振 壁の評価のためには、耐力のほか剛性も重要であり、ま た、引張だけでなく、せん断や曲げの評価も重要となる。 併せて、既存住宅の場合は現接合部の耐力・剛性が不十 分である可能性が大きく、その補強・補剛を行った場合 の評価も重要である。

そこで本研究では、図 6 に示すせん断、引張、曲げそ れぞれの繰返し実験を多数の接合部に行った。2 章で述べ た評価法により、様々なレベルの制振性能ごとに接合部

図6 接合部実験:(a) せん断、(b) 引張、(c) 曲げ

の必要剛性値および選択すべき金物の種類が決まるが、 本成果を活用することにより、それが可能となる。実験 では、金物はホールダウン金物(HW99-3-4, B-HD25)、フリ ーダムコーナー(F-C)、スタンドコーナー(SC)、かすがい (C120)を採用したほか、金物を用いない短ほぞのみの場合 についても検討している。

同じ金物に対して 3 体ずつ行われた実験結果は、以下 に示す方法に従い、荷重 P・変形Δ曲線をモデル化されて いる。すなわち各試験体について、繰返し実験の荷重・ 変形曲線の包絡線を求め、3 体の包絡線の平均を、以下に 示す曲線に適合させている。

図7 引張、せん断、曲げに対する接合部の荷重・変形

式(1)中、 k_i, k_p, n, P_0 は接合部ごとに求まる係数である。引 張、せん断実験では、 P, Δ は荷重と変形であるが、曲げせ ん断実験では、モーメントと回転角になる。各実験の接 合金物について、得られたモデル曲線を図 7 に示す。図 7 や式(1)から接合金物の剛性・耐力を得て、2 章の評価法 により、架構の性能を得ることができるばかりでなく、 有限要素法で制振架構の解析を行う場合に、接合部のモ デル化へ適用し、より詳細な検討を行うことできる。

また本研究では、小型かつ簡易な粘弾性ダンパー、鋼 材ダンパー、摩擦ダンパーの開発を行っている。図 5 に 線形粘弾性ダンパー、非線形(軟化型)粘弾性ダンパー、鋼 材弾塑性ダンパーの履歴曲線を示す。

粘弾性ダンパーは、高精度な時刻歴解析モデルと剛 性・粘性の評価式が研究代表者により提案されている。 鋼材ダンパーは既往のバイリニアモデルを用いているが、 曲線履歴形状をもつモデルの開発もさらに進めている。

4. 制振壁および耐震壁の動的載荷実験

図1 に示した制振壁の試験体を作成し、動的繰返し載 荷実験を行った。これらの壁架構については、3章で言及 した小型の線形粘弾性ダンパー、非線形(軟化型)粘弾性ダ ンパー、鋼材ダンパーを用いている。

図 9 は、動的載荷試験装置である。試験体の土台梁は 一方向のみに移動を拘束された台車に固定されており、 アクチュエータがこれに接続される。試験体の上部は、 剛な加力フレームに固定されたタイロッドによって、梁 の中心でピン接合される。また図 10 は動的載荷時の加振 方法である。振幅は層間変形角 1/480 から 1/30 までを考 慮し、特に速度依存性のある粘弾性ダンパーをもつ制振 壁の実験では、加振振動数も 2.6Hz から 0.9Hz まで変化さ せた。振動数は、層間変形角 1/240rad までは線形で、これ以降の層せん断力が $C_0 = 0.3$ となる完全弾塑性モデルとして、ある想定した建物質量と等価剛性から求めたものである。

表1は、提案した制振壁および性能比較のための在来 耐震壁(構造用合板使用)の一覧である。前述の通り、 ダンパーは粘弾性、弾塑性からなり、試験体 PI-VE, K-VE の粘弾性体は線形、Pi-4VE, Pi-VE では非線形タイプを用 い、壁倍率の大きいものは新築用、壁倍率の小さいもの は既存住宅の補強用を想定している。金物は、ホールダ ウン金物(HW99-3-4, B-HD25)、フリーダムコーナー(F-C)、 スタンドコーナー(SC)を採用している。実験結果から各試 験体の壁倍率を得ると、試験体 PI-VE, PI-S, K-VE は壁倍 率 5、K-S は 4.4、Pi-4VE は 1.2、Pi-VE は 1.4、合板は壁 倍率 3.3 となった。これらの壁倍率の評価は、層間変形角 1/120 での層せん断力、最大せん断力の 2/3 のうち、小さ い方の値から得ており、減衰性能を特別に考慮した算定 方法は用いていない。つまり実際の応答特性は、減衰が 加味されることで、より性能が向上すると考えられる。

5. 制振架構の振動台実験

さらに、振動台による検証実験も行い、提案した制振 システムの性能について検証した。

本実験において、基本モデルとなる試験体の架構を図 11 に示す。この架構は 2730×2730×2730mm の箱型で、2 層木造軸組住宅の、1 層部分の架構の一部をモデル化した 実大試験体である。試験体の重量 W は、試験体床面積に 対し、一般住宅では壁倍率 2.0 の耐力要素が 2 枚あると想 定し、層せん断力係数 $C_0 = 0.2$ として W = 35.7kN を得た。 表 2 に示す耐力要素の組合せを、中央構面に配置した試 験体で比較検討を行った(合計 9 体)。なお表 2 には、壁 単体の実験で壁倍率 5 以上となった場合の耐力の、壁 1m あたり 200kgf に対する比を、実壁量として示した。

表1 試験体一覧(K-VE, K-S, Pi-VE は特許出願準備中のため図示していない)

試驗体名		PI-VE	PI-S	K-VE	K-S	Pi-4VE	Pi-VE	合板
ダンパー	·種類	粘彈性	彈塑性	制彈性	彈塑性	粘彈性	粘彈性	-
接合金物	左柱顫	HW99-3-4	HW99-3-4	F-C	F-C	2-SC-ONE	F-C	2-SC-ONE
	右柱顫	HW99-3-4	HW99-3-4	F-C(1個)	F-C(1個)	2-SC-ONE	F-C	2-SC-ONE
	左柱脚	HW99-3-4 & B-HD25	HW99-3-4 & B-HD25	F-C & M16アンカー ボルト	F-C & M16アンカー ボルト	2-SC-ONE	F-C	2-SC-ONE
	右柱脚	HW99-3-4 & B-HD25	HW99-3-4 & B-HD25	F-C & M16アンカー ボルト	M16アンカー ボルト	2-SC-ONE	F-C	2-SC-ONE
目標堂	信率	5	5	5	5	1~15	1~15	3

図 11 振動台試験体

入力には、JMA 神戸(NS)波、Taft(EW)波、八戸波を 200gal(レベル 1)に基準化した 3 波、神戸波、Taft 波を 600gal(レベル 2)に基準化した 2 波、合計 5 波を入力地震 動として用いた。また各加振の間にランダム波 100gal を 入力し、伝達関数から剛性、減衰の変化を確認した。

表3に実験結果を示す。在来工法である試験体1~3に 比較して制振壁の応答は小さく、その優位性が確認でき る。また構造用合板からなる試験体1は神戸波 600gal を 経験した後、釘の抜出しによって剛性が著しく低下する が、制振試験体ではその傾向が小さい。これは、大変形 時の応答低減のみならず小変形での減衰性能が保持され ることを意味し、居住性能にも貢献すると考えられる。

表 2 振動台試験体一覧

試験体	耐力要素	実壁量	公称壁量
1	構造用合板+構造用合板	11.8	3 + 3
2	筋交+筋交	3.7	1.5 + 1.5
3	筋交+筋交(接合部補強)	5.1	1.5 + 1.5
4	シアリンク粘弾性+シアリンク粘弾性	15.7	5 + 5
5	シアリンク弾塑性+シアリンク弾塑性	12.9	5 + 5
6	Kブレース粘弾性+Kブレース粘弾性	13.5	5 + 5
7	Кブレース弾塑性+Кブレース弾塑性	10.8	5 + 5
8	Kブレース粘弾性+構造用合板	11.8	5 + 3
9	Kブレース弾塑性+構造用合板	12.3	5 + 3

	神戸波2	00gal(1回目)	神戸波600gal		
試験体	層間変形 (mm)	1/	加速度 (gal)	層間変形 (mm)	1/	加速度 (gal)
1	15.5	176	337.3	108.4	25	1455.9
2	83.7	33	-276.8	205.7	13	-567.8
3	27.8	98	311.7	259.0	11	1196.8
4	7.9	343	261.6	29.2	93	695.9
5	13.1	208	436.9	50.3	54	-710.4
6	8.7	314	254.0	38.8	70	-751.5
7	19.6	140	489.8	79.3	34	-710.4
8	11.7	233	282.7	58.7	46	856.8

52.7 52 -816.8

11.6 235 424.6

表 3 振動台実験結果

6. 基礎構造の耐力

制振住宅が、その性能を十分に発揮するためには基礎 が健全であることが前提となる。図 13 は制振住宅モデル の例であり、制振壁から基礎に伝わる引き抜き力の許容 値 F_{max}を、一般に用いられる簡便法以外に、2 次元および 3 次元での有限要素法を用いて検討した。表 4 は基礎構造 の例であり、地盤条件として I(軟らかい地盤)、II(標準的 な地盤)、III(硬い地盤)の3 種を考慮した。

図 13 基礎耐力を検討する制振住宅モデル

表4 基礎耐力を検討する基礎構造の例

基礎	タイブ	A	В	C	
断	面			G _ 002	
コンク	ァリート	Fc 1 5	Fc 1 8	F o 2 1	
上 :	端 筋	1-D13	1 - D 1 3	1-D13	
下:	端筋	1 - D 1 3	1 - D 1 3	1-D13	
あば	ら筋	900300	90@200	D10@200	

表5に結果を示すが、F_{max}は曲げ耐力によって決まるほか、壁が端部に配置されるモデル2の方が、耐力が小さいことがわかった。しかしながら基礎にヒンジが発生した場合にも、その後の変形の進行が小さいことが確認されており、比較的耐力の小さい基礎に制振壁を適用しても、その性能に及ぼす影響が小さいことを示唆している。

(単位:kb								빅고:kN)	
			モデル1			モデル2			
			簡便法	二次元	三次元	簡便法	二次元	三次元	
		地盤	Ι		24.3	15.0		17.0	12.0
基礎	А	"	Π	20.5	27.9	22.0	10.3	17.3	15.8
		"	Ш		33.7	28.6		17.9	19.7
″ Е		"	Ι	34.5	39.9	15.1	16.7	23.4	12.8
	в	"	Π		41.6	22.2		23.5	15.7
		"	Ш		43.9	29.8		23.9	19.5
" ("	Ι	48.6	55.3	18.4	23.0	29.4	14.6
	С	"	Π		55.5	24.2		29.5	16.9
		″ Ⅲ	57.2	32.0		29.8	20.5		

表5 制振壁からの柱軸力の許容値 Fmax (mach the transformation of the text)

7.まとめ

財産保持性に優れた戸建制振住宅の開発を目標に、木 質構造の力学的特性を加味しながら、パッシブ制振技術 を木質構造へ展開した。静的解析法に基づく簡易な性能 評価法を提案し、多種の柱梁接合部に対して行った繰返 し載荷実験結果と併せて、壁倍率 5 倍の新築用や、壁倍 率 1 倍の既存住宅補強用の制振壁を開発した。これらの 制振壁は、実際に動的載荷実験を行い、その力学的特性 を確認した上で、実大の振動台実験へ展開した。振動台 実験では、制振壁は在来の合板や筋交を用いた耐震要素 と比較して変位応答が低減されて、その優位性が確認さ れた。さらに、繰返し地震を経験した後の性能低下が小 さく、小振幅でも減衰性能を保持した。ちなみに、実験 は行わなかったが、基礎構造の数値解析により耐力評価 し、制振壁が充分に性能を発揮するためのクライテリア に関しても検討した。