河道内樹木群の治水上の効果・影響に関する研究

河川局 治水課 課長補佐 畠山 慎一 国総研 河川研究部 河川研究室 室長 山下 武宣 北海道開発局 建設部 河川計画課 課長補佐 各地方整備局 河川部 河川計画課長

1 はじめに

河道内の樹木群は出水時の流速を低減することにより堤防等の侵食・洗掘被害を減少させるとともに流木・土砂等を集積・堆積させ、また、生態系の保全、良好な景観形成などの機能を有している。しかし、同樹木群は出水時に水位をせき上げ(河積阻害) また、場合によっては樹木群外に高流速を発生させるなどして侵食・洗掘被害を誘発し、さらに流木化の恐れがあることなどから、河道内樹木群の治水上の効果・影響を適切に評価することが重要である。

このため、本研究では、河道内の樹木群による流速低減、侵食・洗掘被害の軽減・誘発、流木・土砂等の集積・堆積、水位のせき上げ並びに流木化に関する評価手法の開発に向けて調査・研究を行い、より適切な樹木群管理手法について検討することとし、平成 17~19年度の 3 箇年の研究を予定している。

図1.1 鳴瀬川水系吉田川

図1.2 阿賀野川水系阿賀川

図1.3 大井川水系大井川

図1.4 江の川水系江の川

今回は、昨年度選定した現地調査箇所の一部において出水時の流況観測等を実施したので概要を報告する。

2 現地調査箇所の概要

現地調査箇所の選定に当たっては、河道特性(河床勾配、流域規模等)が異なる箇所を 選定するよう留意するとともに、調査箇所において樹木群が水没する規模の出水が研究期 間中に発生するとは限らないことを踏まえ、出来るだけ多数の箇所を選定し、出水の発生 状況に応じて現地調査を行うこととした。

現地調査箇所として表2.1に示す30箇所を選定した。

研究テーマとしては、「樹木群内の流速・河積阻害」が23箇所と最も多く、「平面流況」 13箇所、「貯留効果」5箇所、「倒木・流木化」3箇所、「土砂等の集積・堆積」1箇所となっている。(図2.1)

エル また ^^	1-1-75	r-m	A = 11	L- #2.15.1	lili-kn+ o
地整等	水系	河川	位置·地先	セグメント	出水時の 流況観測 実施状況
北開局	十勝川	音更川	左岸1.6~2.6km	1	
	石狩川	石狩川	左右岸44.5~58.0km	2 - 2	
	釧路川	釧路川	左岸37.6~46.2km	2 - 2	
東北	岩木川	岩木川	中流部(36~48km)	2 - 2 ~ 2 - 1	
	米代川	米代川	右岸12km 常磐	2 - 2	
	鳴瀬川	吉田川	左右岸23.5km	2 - 2	
			左右岸28.3km	2 - 2	
関東	利根川	渡良瀬川	左岸50.2km	1	
	利根川	神流川	右岸9.4km	1	
	利根川	小貝川	右岸36.4km	2 - 2	
	久慈川	久慈川	左岸6.5km	2 - 2	
	久慈川	久慈川	右岸8.5km	2 - 2	
北陸	荒川	荒川	右岸2.75~4.15km 神林村宿田	1	
	阿賀野川	阿賀川	左岸23~24km 飯寺	1	
			右岸9.8~10.6km 立川	1	
中部	大井川	大井川	右岸15.6~16.0km 金谷河原	1	
	天竜川	天竜川	左岸12.6km 匂坂	2 - 1	
近畿	加古川	加古川	中央12km 加古川市八幡・上荘	2 - 1	
	九頭竜川	九頭竜川	右岸19.2km 福井市天池	2 - 2	
	由良川	由良川	福井市天池 右岸36.4km 福知山市猪崎	2 - 2	
	淀川	木津川	右岸1.4~2.2km 八幡市八幡一丁畑	2 - 2	
	淀川	桂川	左岸14.8~15.4km 京都市右京区梅津	1	
中国	江の川	江の川	左右岸21.2~28.8km 大貫·川越	2 - 1	
	江の川	江の川	左岸36.6km 木路原	2 - 1	
	天神川	天神川	右岸3.7km 大塚	2 - 1	
四国	吉野川	吉野川	左岸63.4~64.4km 太刀野	2 - 1	
	那賀川	那賀川	左岸6.2km 古庄	2 - 1	
	那賀川	那賀川	右岸7.4km 南島	2 - 1	
九州	山国川	山国川	左岸3.0~4.0km 高瀬·垂水	2 - 1	
	矢部川	矢部川	左岸15km 船小屋	2 - 1	
	⊨ າ	<u>'1 I</u>	自地电太色的	_	

表 2 . 1 現地調査箇所

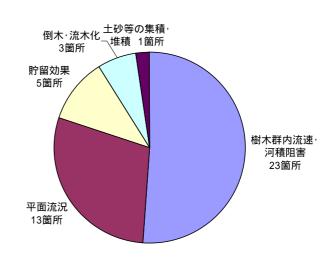


図2.1 研究テーマ別箇所数(重複あり)

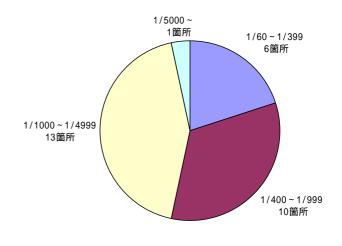


図2.2 河床勾配別箇所数

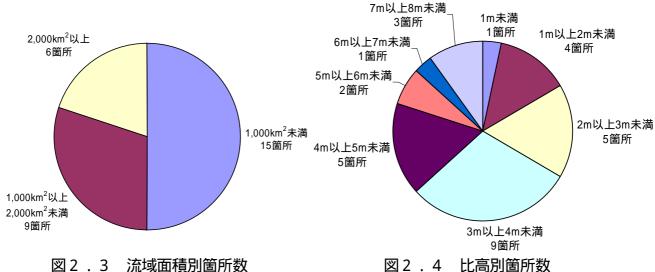


図2.3 流域面積別箇所数

河床勾配では 1/1000~1/4999 の箇所が 13 箇所 (43%) と最も多く(図2.2) セグメ ント別ではセグメント1、2-1及び2-2が各約三分の一を占めている。

流域面積では 1,000km² 未満の箇所が 15 箇所 (50%) と最も多い。(図2.3)

調査対象樹木群生育地盤の平水位からの比高は 0.5~8m であり、3m 以上 4m 未満の箇 所が9箇所(30%)と最も多い。(図2.4)

なお、これまで(平成18年8月現在)に出水時の流況を観測できた箇所は表2.1で 印を付した10箇所(33%)である。

3 主な現地調査結果の概要

3.1 十勝川水系音更川

樹木群の適正な管理による流下能力の確保が課題となっている音更川では、平成 17 年 9 月の台風 14 号による出水時に、距離標(以下略)1.6~2.6km の左岸寄りの低水路内の樹 木群において、樹木群内の流速等を観測した。本観測結果と平成 15 年以降の同様の調査 結果とを合せて分析し、樹木群内の水面勾配が水位の下降に応じて緩くなる

図3.1.1 出水時観測状況

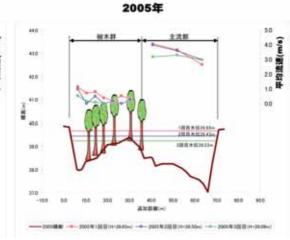


図3.1.2 観測された流速分布

こと、樹木群の密度等によっては樹木群内の流量が無視できない量になることなどを明らかにした。

3.2 米代川水系米代川

樹木群の適正な管理による流下能力の確保が課題となっている米代川では、平成 18 年 7 月の低気圧による出水時に、12km 右岸高水敷の樹木群において、ビデオカメラと水位計による流況観測を行った。樹木群内の水面のビデオ画像を PIV 手法により解析した結果、高水敷上の水深が約 1.1m の状態において、0.4m/s 前後の樹木群内平均流速が確認された。同観測結果と樹木群の密度等を用いた準二次元不等流計算結果とを比較することにより、樹木群の繁茂する河道の流下能力評価手法の信頼性の向上を図っている。

図3.2.1 出水時の画像

図3.2.2 PIV 解析結果

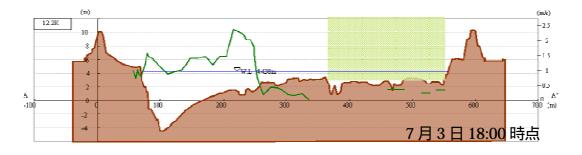


図3.2.3 観測された流速分布

3.3 利根川水系小貝川

樹木群の適正な管理による流下能力の確保が課題となっている小貝川では、平成 18 年 6 月の梅雨前線による出水時に、36.4km 右岸の樹木群において、ビデオ画像から樹木群内の流速を測定した。同観測結果と樹木群の密度等を用いた準二次元不等流計算結果とを比較することにより、樹木群の繁茂する河道の流下能力評価手法の信頼性の向上を図っている。

図3.3.1 出水時の樹木群内の流況

3.4 荒川水系荒川(北陸)

樹林化が顕著であるとともに、出水時に倒木・流木が多数発生している荒川では、より適切な樹木群管理の検討に資するため、倒木・流木の発生条件を把握するための調査を行った。平成 16 年 7 月の梅雨前線による出水における倒木・流木化調査結果に基づき、作用外力と倒木・流木化との関係を分析した。分析の結果、樹木群内の流速を適切に評価することにより、倒木・流木化を予測できることを明らかにした。さらに、平成 17 年度に河道内樹木の引き倒し試験を行い、胸高直径と倒伏限界モーメントとの間に強い相関があることなどを明らかにした。

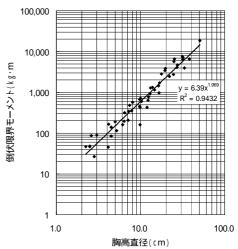


図3.4.1 引き倒し試験実施状況

図3.4.2 胸高直径と倒伏限界 モーメントとの関係

3.5 天竜川水系天竜川

河道内の樹林化対策が課題となっている天竜川下流部では、平成 17 年度にレーザープロファイラーを活用し河口から 25km までの区間の河道内樹木群等の植生樹高分布図を作成した。本成果を活用し、樹木群の繁茂する河道の概略の現況流下能力を効率的に把握することとしている。

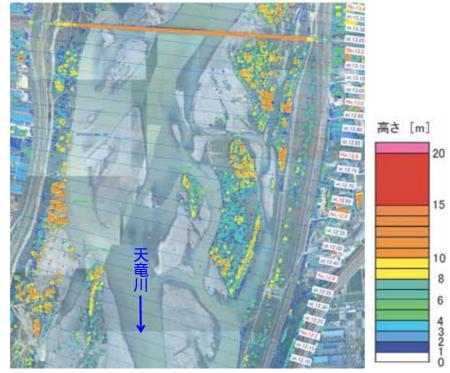


図3.5.1 レーザープロファイラーを活用した植生樹高分布図

3.6 由良川水系由良川

樹木群の適正な管理による流下能力の確保が課題となっている由良川では、平成 18 年 7 月の梅雨前線による出水時に、36km 右岸の樹木群において、水位及び流速の観測を行った。流速はビデオ画像から水面のゴミ等の浮遊物の動きを追うことにより測定した。同測定結果と樹木群の密度等を用いた準二次元不等流計算結果とを比較することにより、樹木群の繁茂する河道の流下能力評価手法の信頼性の向上を図っている。

図3.6.1 出水時の樹木群内のビデオ画像

3.7 天神川水系天神川

倉吉市街地区間を中心として河道内の樹林化が進行し、流下能力の確保に向けた樹木管理が課題となっている天神川では、平成 18 年 7 月の梅雨前線による出水時に、3.7km 右岸の樹木群において、ADCP による流速等の観測を実施した。同測定結果と樹木群の密度等を用いた準二次元不等流計算結果とを比較することにより、樹木群の繁茂する河道の流下能力評価手法の信頼性の向上を図っている。

図3.7.1 出水時の観測状況

図3.7.2 流速観測装置(ADCP)

3.8 吉野川水系吉野川

近年堤外地に残存する竹林の面積・密生度が増大し、流下能力の確保、局所洗掘対策が課題となっている吉野川では、平成17年9月の台風14号による出水時に、63.4~64.4km 左岸の竹林において、平面流況(流速・流向)及び竹林内の水位・流速の観測を行った。同観測により竹林内の水位・流速分布が明らかになったが、観測機器へのゴミの付着が認められたため、より正確なデータの取得に向けた観測手法の改善が今後の課題となっている。

図3.8.1 出水時の流況

図3.8.2 観測機器へのゴミの付着

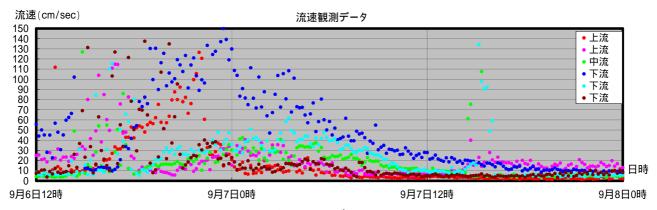


図3.8.3 竹林内及び前面の流速観測結果

3.9 山国川水系山国川

平成大堰下流(3~4km)の樹林化対策が課題となっている山国川では、平成18年6月及び7月の梅雨前線による出水時に、同箇所においてCCTV及び浮子を用いた流況観測を行い、水没した比較的樹高の低い樹木群周辺の流速等を計測した。同計測結果と樹木群の密度等を用いた準二次元不等流計算結果とを比較することにより、比較的樹高の低い樹木群の繁茂する河道の流下能力評価手法の信頼性の向上を図っている。

図3.9.1 出水時の状況 (赤丸印の箇所の水深約2m)

図3.9.2 平水時の樹木群内 (左写真の赤丸印の箇所付近)

4 おわりに

本研究のこれまでの現地調査結果の一部について報告したが、上述のとおり、樹木群内の出水時の流速等の貴重なデータが確実に蓄積されるとともに、計測手法に関する知見が蓄積されてきている。

今後、これらの知見等を活用し、より適切な現地調査を継続し、来年度のとりまとめに 向けたデータの蓄積等を図る予定である。

最後に、関係各位のご理解、ご協力に心から御礼申し上げるとともに、今後ともよろしくお願い申し上げる。