被災した構造物の 安全・簡易・迅速復旧工法の開発

加藤 佳孝1

1東京大学 生産技術研究所 (〒153-8505 東京都目黒区駒場4-6-1)

本研究は、被災した構造物を安全・簡易・迅速に復旧できる工法の開発を目的として、水硬 性樹脂を含浸させた連続繊維シートを活用して新しい工法を提案し、実構造物への展開可能性 について検討を行った.その結果、提案する工法は、従来の算定式(土木学会式)で耐力評価 が可能であること、災害損傷時でもせん断補強効果が得られること、従来技術と比較し施工時 間を大幅に短縮できることが確認され、実構造物へ展開可能であることが分かった.

キーワード 地震被害,事後対策,復旧工法,水硬性樹脂,連続繊維シート

1. はじめに

兵庫県南部地震以降,各地で耐震補強が進んでいるが, 想定外の地域での地震発生,耐震補強の未完備などを理 由として,地震への事前対策が完全でないことがわかる. 災害への対策は,事前対策(耐震補強)が最も効果的で あるが,重要なのは災害の事前・事後を通して場面に応 じた有効な対策手段を保有することである.現在の我が 国の状況を見ると,被災により損傷した構造物を迅速に 復旧する技術開発はあまり行われていない.本開発のタ ーゲットはここにあり,本開発の目的達成により,国土 交通省基本技術計画「復旧時間を大幅に短縮した国土・ 都市の機能損失と経済損失のない社会」の実現¹⁰が可能 であると考えられる.

今後発生すると想定される地震被害として、例えば、 首都圏直下型の地震では、112 兆円の経済損失が見込ま れている². これらの被害想定結果を参照すると、中小 被害数が膨大であり、大被害の 20~40 倍となっている. 本開発は、主にこの中小被害を対象としており、損傷し た RC 構造物に対し簡易・迅速に対応ができ、安全に再 供用させることで、被災者の安心を確保するとともに、 経済的な損害を最小限にすることを目指している.

現状,既存の類似技術では施工が大掛かりであり,ま た効果発現までに日数を要するものが多く,頻発する余 震に対応できない可能性が高い.そこで,医療用ギプス をアイディアの起源とし,損傷した RC 構造物に対し, 水硬性樹脂が含浸された連続繊維シートを巻き立てた後, 給水するだけで補修効果が得られる新しい迅速復旧工法 を提案する.

本研究では、提案する復旧工法が実現可能となる材料 の開発を実施する.工法の材料の中で、含浸接着樹脂と して使用する水硬性樹脂は、医療用ギプスに用いられて いる水硬性ポリウレタン樹脂を選定し、補強材として使 用する連続繊維シートは、適用実績のあるアラミドを用 いる.まず、水硬性ポリウレタン樹脂が連続繊維シート 巻立て工法の含浸接着樹脂へ適用可能か検討し、水硬性 ポリウレタン樹脂の特性が連続繊維シートにより補強さ れた RC 梁のせん断耐力に及ぼす影響について実験的に 検討を行う.次に、梁試験体の載荷実験を、3 次元有限 要素解析によって再現し、モデル化の方法について検討 を行い、さらに、提案工法の実構造物への展開可能性に 関する検討を行う.

2. 水硬性ポリウレタン樹脂の特性

水硬性ポリウレタン樹脂は、樹脂設計の自由度が高く、 ウレタン硬化物の硬軟が調整可能であるため、保有すべ き物性を把握すれば、含浸接着樹脂として一層の改良が 期待できる³. そこで、水硬性ポリウレタン樹脂の特性 を把握するため、物理的性質が対極的な2種類の水硬性 ポリウレタン樹脂(軟性型,硬性型)を使用して、連続 繊維シートを用いた補修補強指針に直接引用される試験 ⁹を各種実施し、エポキシ樹脂と物性値の比較を行った.

表-1 含浸接着樹脂の特性

(1) 実験概要

本研究で用いたエポキシ樹脂(粘度:2000 mPa·s at 20℃)は、二液混合型の連続繊維シート接着用である. 水硬性ポリウレタン樹脂(粘度:35000~45000 mPa·s at 25℃)は、一液硬化性であり、水と接触することで反応・硬化が始まり、それに伴い炭酸ガスを発生する.原液のままでは粘性が高く扱いが困難であるため、軟性型はグリコールエステル系溶剤により、硬性型は反応性モノマーによりそれぞれ希釈して使用した.なお、希釈剤の影響により、軟性型はウレタン特有の柔軟性を有しているが、硬性型は硬質な塗膜を形成するためゴム弾性を有していないという異なる性質を持っている.

含浸接着樹脂の塗布量は、エポキシ: $0.8kg/m^2$,軟性型: $0.45kg/m^2$,硬性型: $0.85kg/m^2$ とした.含浸接着樹脂 の塗布方法は、エポキシの場合、プライマー塗布→樹脂 下塗り→シート貼付け→樹脂上塗り、水硬性ポリウレタ ン樹脂の場合、シートに樹脂含浸→シート貼付けの手順 で行った.なお、連続繊維シートは、アラミド繊維シー ト(公称値、目付量: $280g/m^2$,引張強度 $2060N/mm^2$,弾 性率 1.18×10^5)を使用した.

試験は,連続繊維シートの引張試験(JSCE-E 541-2007),連続繊維シートの継手試験(JSCE-E 542-2007), 連続繊維シートとコンクリートとの付着試験(JSCE-E 543-2007),連続繊維シートとコンクリートとの付着試験(JSCE-E 544-2007)を各規格に準拠し実施した.

(2) 水硬性ポリウレタン樹脂の特性比較

各試験より得られた物性値を表-1にまとめる. なお, 表中()内の数値は、エポキシを基準(100%)とした 百分率で表している.また、界面剥離破壊エネルギー G_f

は,	土木学会推	針より	$G_{f} = 0.5$	N/mmを	基準((100%)	とし
た.	軟性型の場	} 合,付	着強度	および接	着強度	をは高く	ない
が,	継手強度お	うよび界	面剥離	波壊エネ	ルギー	・が高く	, せ
ん断	抵抗や変形	性能を	有してい	いる. 硬	触型の)場合,	シー
ト界	し面に硬質な	途膜を	形成する	るため付	着強度	Eおよび	接着
強度	ミは高いが,	脆い塗	膜でもる	あるため	せんと	抵抗や	変形
性能	を有してい	いない.	各試験約	詰果より	,軟性	「型およ	び硬
性型	の特性が対	極的で	あるこ。	とが確認	された		

3. 梁試験体による構造特性の把握

軸方向鉄筋

SD490 D29

せん断補強筋

SD295A D6

(0.2%offset)

連続繊維シート

アラミド

目付量 280g/m²

523

349

含浸樹脂

エポキシ

軟性型

硬性型

677

506

引張強度

 (N/mm^2)

2130

2610

2460

2660

1.87×10⁵

1.82×10⁵

弾性係数

 (N/mm^2)

1.53×10⁵

1.28×10⁵

1.44×10⁵

1.43×10⁴

水硬性ポリウレタン樹脂の特性がせん断補強効果に及 ぼす影響を把握するため、補強後もせん断破壊が先行す るように設計したRC梁を用いて載荷試験を行い、連続 繊維シートが受け持つせん断耐力に含浸接着樹脂が及ぼ す影響について検討した.

(1) 実験概要

とした 試験体寸法を図-1,試験体緒元を表-2,材料試験結果 ギーG_f を表-3 に示す.実験は,連続繊維シートをせん断スパ 表-4 各試験体耐力

試験体 No.		計算値(kN) せん断耐力					実験値(kN) せん断耐力	破壊形式	終局時の	
	V _{cCAL}	V _{sCAL}	V _{VCAL}	V _{fCAL}	V _{fyCAL}	M _{uCAL}	$V_{fyEXP}(V_{yEXP})$		建税減能ノート	
1	255.9	76.8	332.7	-	-	726.2	355.7		-	
2	250.8	76.8	327.6	338.4	666	723.4	780.1	14 / MC	シート破断	
3	258.5	76.8	335.3	376.4	711.7	727.6	757.3		シート破断	
4	255.9	76.8	332.7	373.8	706.5	726.2	649.9		継手部破壊	

図-2 荷重-変位関係(No.1~No.4)

ンに1層巻き立て,梁上面にて200mmの継手(定着) 長を設け,7日間気中養生した後,載荷した.

載荷方法は、2点集中の単調載荷とし、支点は移動お よび回転支持とした.また、目視によるひび割れの観察 を行うとともに、荷重、鉛直変位、軸方向鉄筋ひずみ、 せん断補強筋ひずみ、連続繊維シートひずみを適宜測定 した.

(2) 試験体耐力および破壊形式

表-4に各試験体耐力の計算値(CAL)および実験値(EXP),破壊形式を示す.ここで、せん断耐力は土木 学会の連続繊維シートを用いた補修補強指針⁴⁰に基づき 式(1),式(2)により算出した.なお、本実験では軸方向 圧縮力を作用させないため、V_cは二羽式⁵⁰により算出し た.また,表-4に示すV_cはV_cとV_sの和である.

$$V_{fy} = V_c + V_s + V_f$$
 (1)

ここに、 V_{b} :部材のせん断耐力、 V_{c} :コンクリートが 受持つせん断耐力、 V_{s} :せん断補強筋が受持つせん断耐 力、 V_{f} :連続繊維シートが受持つせん断耐力

$$V_f = K \cdot \left[A_f \cdot f_{fu} \left(\sin \alpha_f + \cos \alpha_f \right) / s_f \right] \cdot z$$
(2)

ここに、K:連続繊維シートのせん断補強効率、 A_f : 区間 s_f における連続繊維シートの総断面積(mm²)、 s_f :連続繊維シートの配置間隔(mm)、 f_{fu} :連続繊維シートの引

表-5 連続繊維シートが受け持つせん断耐力

757.3		し ん あ	シート破断				
649.9							
試験体 No.	١	V _{fyEXP} - V _{yEXP}	(kN)	実験値 / 計算値 V _{fEXP} / V _{fCAI}	_		
2		424.4		1.25			
3		401.6		1.07	_		
4		294.2		0.79	_		
					_		

張強度(N/mm²), a_f : 連続繊維シートが部材軸となす角度([°]), z: 圧縮応力の合力の作用位置から引張鋼材の図 心までの距離(mm)

破壊形式は、全ての試験体でせん断破壊であった.表 -4に終局時の連続繊維シートの状態を試験体毎に示す.

(3) 連続繊維シートが受け持つせん断耐力に 含浸接着樹脂が及ぼす影響

含浸接着樹脂の種類が、連続繊維シートが受け持つせん断耐力V/に与える影響を把握するため、試験体No.1~No.4の結果を用いて比較検討する.

a) 荷重-変位関係

図-2にNo.1~No.4の荷重-変位関係を示す. 無補強の No.1と補強有のNo.2~4を比較すると、大幅に最大耐力 が向上していることが確認できる. No.2とNo.3を比較す ると、最大荷重および最大荷重時の変位に若干の差はあ るが、ほぼ同様の挙動を示していることが分かる. No.3 とNo.4を比較すると、最大荷重だけでなく、最大荷重時 の変位にも大きな差がみられる.

b) 連続繊維シートが受け持つせん断耐力

表-5にV_{EXP}およびV_fの実験値と計算値の比を示す. V_{EXP}は、修正トラス理論に基づきNo.2~No.4のせん断耐 力V_{6EXP}から無補強試験体No.1のせん断耐力V_{EXP}を差し引 いた値である.No.1のせん断耐力V_{EXP}を用いた理由は、 No.2~No.4の計算値V_{5CAL}よりも高い実験値V_{EXP}を示して おり、計算値を用いるよりも、より正確にV_fを算定でき ると考えたためである.また、計算値V_{fCAL}との比で表わ すことでV_{EXP}を評価した.No.2の場合、1.25と計算値よ り安全側に評価できており、No.3の場合も1.07と、No.2 と比較すると僅かではあるが計算値より安全側に評価で きている.しかし、No.4では0.79と計算値を下回る結果 となった.これは、硬性型が継手部破壊により連続繊維 シートの性能を充分に発揮できなかったためと考えられ る.

図-4 連続繊維シート継手部の要素配置詳細

これらの実験結果より、軟性型の様に、付着強度や接 着強度が高くなくとも、継手強度および界面剥離破壊エ ネルギーが高ければ従来の土木学会式(式(2))により 評価可能である.一方、硬性型の様に、付着強度や接着 強度が高くとも、継手強度および界面剥離破壊エネルギ ーが低ければ土木学会式により評価ができない結果が得 られた.

4. FEMによる解析的検討

3.で実施した載荷実験の梁試験体計4ケースを対象として再現解析を行い,モデル化の方法について検討した.

(1) 解析モデル

有限要素メッシュは、図-3に示すように、コンクリートおよび載荷板は20節点六面体要素、繊維シートは8節点平板要素でモデル化し、繊維シート要素とコンクリート要素の間に16節点接合要素を配置した.解析対象の対称性を考慮して、梁の中央から片側スパンを対象とした1/2モデルとした.

シートの継手部は、図-4に示すようにシート端部間に 6節点接合要素を配置することによって再現した. 接合 要素の幅(=シート端部間距離)は初期段階でゼロであり、 両側のシートに引張力が作用することによって、接合要 素幅が開口していくものである. なお、解析で入力した 材料の特性値は表-3の数値を使用した.

(2) 解析結果

試験体合計4体の解析結果として,最大荷重(せん断 耐力)の一覧を表-6,荷重-変位関係を図-5にそれぞれ 実験結果と併せて示す.

表-6 解析における最大荷重の比較

計除けい。	最大荷	网北、中联	
武 海史 1本 NO.	実験	解析	₩ 机/ 夫 級
No.1(無補強)	355.7	372.9	1.048
No.2 (エポキシ)	780.1	630.6	0.808
No.3(軟性型)	757.3	753.6	0.995
No.4(硬性型)	649.9	644.5	0.992

図-5 荷重-変位関係(実験の再現解析)

実験に対する解析の最大荷重の比はNo.2(エポキシ) を除き、いずれのケースも±10%の範囲内におさまって おり、最大荷重(せん断耐力)については概ね推定する ことが可能であった. また,荷重-変位関係についても, 変位20mm程度までは精度良く推定されたが、No.2(エ ポキシ)やNo.3 (軟性型) で観察されたような大きな変 位までは再現されていない. これらのケースでは、シー トがコンクリートから剥離した後もコンクリートを十分 に拘束することによって、高い靱性能が得られたものと 推定され、特に載荷点近傍の圧縮縁コンクリートには非 常に高い拘束圧力が作用する. 解析においては、このよ うな高い拘束応力下におけるコンクリートの応力・ひず み特性が十分に再現されず、コンクリートの圧縮軟化が 変位20mm程度からの荷重の低下を招いたものと考えら れる. 特に, No.2 (エポキシ) については, 実測された 圧縮強度自体が他のケースに比べて低いことから、上記 の傾向がより顕著に表れたものと考えられる.

解析結果より、水硬性ポリウレタン樹脂を用いてせん 断補強した場合のせん断耐力を概ね推定可能なモデル化 の方法が考案できたといえる.ただし、今回のモデル化 では、樹脂特性を定義するにあたり幾つかの仮定を設け ており、今後さらに検討を要する点を残している.

5. 柱試験体を用いた構造性能の確認

3., 4.では、水硬性ポリウレタン樹脂が含浸接着樹脂 として適用可能であることを確認した.本章では、提案 工法の実構造物への展開可能性について、柱試験体を用 いて構造性能の観点から検討した.試験は、損傷後の補

試験体	破壊形態	有効高さ d (mm)	スパン a (mm)	a/d	<u>軸</u> 方向 材質 径]鉄筋 鉄筋比 (%)	せん断 材質 径	補強筋 鉄筋比 (%)	・連続繊維 シート種類
<u>軟性型</u> エポキシ	曲げ	260	910	3.5	SD345 D22	6.0	SD295A D4	0.072	アラミド

主 o 友 封 睦 休 両 十

表-7 試験体諸元

衣 る 台湾映体前分																
試験体				1 次載荷												
	計算値				実験値	矿网	計算値				実験値	I				
	せん断耐力		由にまし	险荷荷重	次日 (荷荷重 ひび割れ幅 (kN) (mm)	せん断耐力					破壊形態					
	(kN)			田い高55 (FN)		□际1问1问重 U ⁴ (kN)	(kN)				取八何重 (kNI)					
	V _{cd}	V _{sd}	V _{yd}		(((1)))		V _{cd}	V _{sd}	V _{fd}	V _{fyd}	(10.4)					
专业	113 /	15.6	120.1	208.4	166.7	0.5	_	15.6	130.2	154.8	229.9					
뛰던오	113.4	15.0	123.1	200.4	(-150.1)	0.0	-	15.0	100.2	134.0	(-221.5)	曲╷┽┽╱᠉ᢑ				
エポキシ	113.4 15.6	113 /	112/	1121	1131	15.6	120 1	208.4	172.8	0.5	-	15.6	130.2	154.8	218.6	
		15.0	123.1	200.4	(-160.1)	0.5	-	15.0	139.2	134.0	(-210.5)					

修効果を検証するため、軸力を作用させずに正負交番載 荷を行った.また、これまでの実験結果より、水硬性ポ リウレタン樹脂は軟性型を用いて、エポキシとの比較を 行った.

(1) 実験概要

表-7に試験体諸元を示す.与える損傷は、日本道路協 会刊行「道路震災対策便覧(震災復旧編)」の被災度判 定表⁶より、1次載荷で残留ひび割れ幅0.5mm≦W<2mm (被災度B:中被害)のせん断損傷を与え、変位0mmで せん断スパンにアラミド繊維シートを一層巻き立てて補 修を行い、6日間養生した後、2次載荷を行った.なお、 両試験体とも、アラミド繊維シートの継手長は200mmと した.載荷点の境界条件は、下端のみを固定し上端は自 由端とした.載荷は部材角による変位制御で、部材角 1/100、1/500、1/250…と破壊に至るまで順次変位を増加 させた.なお、軸方向鉄筋の降伏後は、各部材角で3回 の繰り返し載荷を行った.また、目視によるひび割れの 観察を行うとともに、荷重、鉛直変位、軸方向鉄筋、せ ん断補強筋ひずみおよびアラミド繊維シートのひずみを 適宜測定した.

(2) 実験結果と考察

表-8に試験体の最大耐力の計算値,実験値,および破壊形態を示す.なお,せん断耐力は梁と同様に式(1),式(2)により算出した.

a) 1次載荷

1次載荷において、軟性型およびエポキシはともに、 ほぼ同様な荷重 - 変位関係となった。両者ともに部材角 が1/250 のときに斜めひび割れが発生し、部材角1/200で せん断補強筋が降伏した。部材角1/100の終了後の残留 ひび割れが、0.5mmとなったことから、設定した損傷の 条件を満たしたと判断し載荷を終了した.なお、1次載 荷終了時点で両条件の軸方向鉄筋は降伏直前であった。

図-6 荷重-変位包絡線(2次載荷)

b)2次載荷

図-6に試験体の2次載荷の荷重-変位包絡線を示す. なお、図内に各試験体の最外縁の軸方向鉄筋降伏時の荷 重を破線にて示す.エポキシは、軸方向鉄筋の降伏後、 1次載荷で発生した斜めひび割れ面を滑るように変形が 進行し、部材角±8/100で耐力低下を生じた.その後正側 のみ載荷を継続し、最終的には部材角10/100を超えた後、 アラミド繊維シートが隅角部より破断し終局に至った. 軸方向鉄筋降伏後も荷重増加が観察されるが、部材角± 8/100で急激な荷重低下が生じており、終局時の破壊状 況においてもせん断変形が卓越していたことから、破壊 形態は曲げ降伏後のせん断破壊であると考えられた.

軟性型は,緩やかな荷重低下が±4/100から始まり, 部材角±8/100で降伏時の荷重を下回った.その後正側 のみ載荷を継続し,最終的には10/100を超えた後,アラ ミド繊維シートが隅角部から破断し終局に至った.荷重 低下開始時期は異なるが,破壊形態はエポキシと同様に, 曲げ降伏後のせん断破壊であると考えられ,せん断損傷 を与えた柱部材に対して,従来工法を想定したエポキシ と同様の補修効果が確認された.

	湿潤調整,樹脂含浸	シート巻き立て	給水, 脱泡・水切り	施工時間	合計施工時間
1 段目	2' 25"	4' 40"	2' 50"	9' 55"	
2 段目	2' 40"	3' 50"	3' 20"	9' 50"	24' 55"
3段目	2' 20"	4' 50"	8' 00"	15' 10"	34 55
平均	2' 28"	4' 26"	4' 43"	11' 38"	

表-9 施工時間

図-7 各工程の作業様子

5. 模擬実大柱を用いた施工性能の検証

実大断面を模擬した柱試験体を用いて施工性能の検証 を行った.施工は、実施工時を想定し、連続繊維シート 巻立て工法の作業実績が豊富な専門業者が行った.

(1) 実験概要

柱試験体の寸法は、断面1000mm×1000mm,高さ 1700mmである.施工は、幅500mmの連続繊維シートを 試験体周方向に1層巻き立て、200mmの継手長を設ける ことを1段とし、試験体上縁より下に向かって3段行った. 施工範囲は幅1000mm×高さ1500mm×4面=6m²である.迅 速復旧時の施工フローは、補強効果が得られると判断さ れた必要最低限の手順として、表面処理工、断面修復工、 シート巻立て工である.なお、本実験では既に断面処理 工まで施しているため、施工はシート巻立て工のみであ る.作業手順は、湿潤調整、樹脂含浸、シート巻き立て、 給水および脱泡・水切りの順で行った.実験は、作業員 3名を従事させ、作業開始から終了までの時間を計測し、 施工面積当たりの作業時間の把握を行った.

(2) 実験結果と考察

施工時間を表-9,各工程の作業様子を図-7に示す.段 数毎の施工時間を比較すると、1段目と2段目はほぼ同様 の施工時間を示しているが、3段目は5分程度作業時間が 遅くなっている.これは、3段目が最下段であるため作 業をするのに体勢を変えざるをえず作業し難い箇所であ ったためと考えられた.これらの結果より、施工面積当 たりの作業時間を算出すると、5'49'/m²となる.

参考文献⁷を基に、従来工法との施工時間の比較を試 みた.従来工法の施工時間は労務歩掛より算出した.シ ート巻立て工は、日当たり施工量25m²/日(労務編成3名, 1層)であるため、日当たり標準労働時間8時間を用いて 施工面積当たりの作業時間に換算すると、19'12'/m²とな る.両者の施工面積当たりの作業時間を比較すると,水 硬性ポリウレタン樹脂を用いた場合の方が作業時間を約 1/3に短縮可能である.ただし,今回は,従来工法のプ ライマー塗布工を考慮せずに比較したため,あくまでも シート巻立て工のみの作業時間である.

6. まとめ

本研究は、被災した構造物を安全・簡易・迅速に復旧 できる工法の開発を目的として、水硬性樹脂を含浸させ た連続繊維シートを活用して新しい工法を提案し、実構 造物への展開可能性について検討を行った.その結果、 提案する工法は、従来の算定式で耐力評価が可能である こと、災害損傷時でもせん断補強効果が得られること、 従来技術と比較し施工時間が大幅に短縮可能であること を確認した.現状、実用化の段階まで至ってはいないが、 これまでの検討より、本提案工法は実構造物へ展開可能 であると考えられた.

謝辞:本研究を進めるにあたり,エムシー工業 山崎久 史氏,東京大学生産技術研究所 西村次男氏,関係各位 の協力を得た.ここに記して,感謝の意を表す.

参考文献

- 1) 国土交通省: 国土交通省技術基本計画, 2008.
- 地震情報サイト JIS: 首都直下地震交通施設の被害想定, http://j.jis.com/news/shuto/transportation.shtml, 2010.
- 3) 日本ウレタン工業協会:http://www.urethane-jp.org/, 2010.
- 4) 土木学会:コンクリートライブラリー101 連続繊維シートを 用いたコンクリート構造物の補修補強指針,2000.
- 5) 二羽淳一郎,山田一宇,横沢和夫,岡村甫:せん断補強筋を 用いない RC はりのせん断強度式の再評価,土木学会論文集, 第 372 号/V5, pp.167-176, 1986.
- 6)日本道路協会:道路震災対策便覧震災復旧編, 2007.
- 7) 東燃株式会社: FORCA トゥシート技術資料, 1995.