電磁波レーダを用いたRC床版上面の 滞水早期検知に関する取組み

岩谷 祐太1・石田 雅博1・藤木 裕二1・夏堀 格1

1(国研) 土木研究所 構造物メンテナンス研究センター (〒305-8516 茨城県つくば市南原1番地6)

近年,RC床版上面の土砂化が顕在化しており,床版の抜け落ちに至る事例も見られている. 土砂化は,床版下面の変状との相関が明確ではなく,定期点検による床版下面の近接目視のみ では早期発見が難しい.そこで,土砂化の発生要因と考えられる床版上面の滞水に着目し,非 破壊検査手法である電磁波レーダを使用したRC床版上面の滞水検知手法について検証を行った. 検証の結果,電磁波の反射強度の違いから,滞水の有無及び範囲を視覚的に判断することが可 能であることが分かった.また,作業効率化及び定量的な評価を行うため,AIを用いて電磁波 レーダの計測結果から床版上面の滞水を自動推定可能なアプリケーションを構築した.

キーワード RC床版, 土砂化, 電磁波レーダ, 滞水, AI

1. はじめに

道路橋では、2014年の道路法改正により5年に1度の頻度 で近接目視を基本とする点検(以下、定期点検)が義務 化されている.これは、道路構造物で老朽化による変状 が顕在化してきたことを背景に、道路構造物の状態を適 切に把握し、その後の診断・措置といったメンテナンス につなげるためのものであり, 道路橋定期点検要領及び 橋梁定期点検要領において橋長2.0m以上のものに対して 行うこととされ、現在2巡目の定期点検を行っていると ころである. 道路橋定期点検要領及び橋梁定期点検要領 における既設床版の劣化・損傷状況の点検は、主な着目 箇所の例として床版下面及び舗装面が挙げられており, 実際の現場でも床版下面からの外観目視および舗装面の ひび割れ等の発生状況の目視確認により行われている122. しかし、輪荷重による疲労、材料劣化等により生じるRC 床版上面の土砂化は、舗装のポットホールや床版下面の ひび割れおよび漏水痕などの外観変状との相関が明確で なく、現状の定期点検では床版上面の土砂化の発生や進 行を見落とすリスクを抱えている.

加えて、1993年のスパイクタイヤ規制以降、凍結防止 剤の散布量が増加しており³、塩分を含んだ水が床版へ 浸入し、床版下面に変状が発生していなくても、床版上 面が土砂化している事例が報告されている.写真-1は、 供用後10年経過した橋梁の舗装開削後のコンクリート床 版上面の状況である.全面的に土砂化が発生しているこ とが確認できる.また、写真-2は前回の定期点検時には 明確な変状が見られず,対策不要と判定されていた箇所 で,数年後に床版下面の抜け落ちが発生した事例である. このように床版の土砂化は,損傷の進行が速いことが特 徴となっている.これらは,路面からの水が床版上面に 浸入し,輪荷重による疲労劣化を促進するだけでなく, 凍害,塩害等のコンクリートの劣化を誘発することが原 因と推察される.

床版上面の滞水は、舗装や床版の劣化状況からその有 無を推測することは可能だが、多くの場合変状箇所の舗 装を開削して初めて確認され、この時点で既に床版の性 能が著しく低下していることがある.また、変状箇所の 舗装開削により局所的な滞水を確認することは可能であ っても、橋梁全面の滞水箇所を面的に把握することはで きず、潜在的な劣化リスクを抱えている箇所を全て特定

写真-1 舗装開削後の土砂化が進行した事例

(a)前回の定期点検時 (b)床版下面抜け落ち時 写真-2 床版下面の抜け落ち事例

することは困難なのが現状である.

膨大な量の道路橋を効率的に維持管理していくために は、潜在的な劣化リスクを抱えた箇所をスクリーニング し、劣化が生じる前に予防保全対策を実施することが重 要である.そこで本稿では、非破壊検査技術の一つであ る電磁波レーダを使用した床版上面の滞水検知手法の検 討結果について報告する.

2. 電磁波レーダ法の原理

電磁波レーダ法は、電磁波が金属以外の媒質を透過し、 透過した媒質と異なる比誘電率を持つ媒質の境界で反射 する性質を利用し、物質内部を非破壊で探査する手法で ある.探査原理は、図-1に示すように電磁波を媒質中に 送信器から放射し、反射した電磁波(以下、反射波)を 受信アンテナで受信し、反射波が返ってくるまでの時間 から深さ方向の位置を推定するものである.平面的な位 置は、距離計を内蔵した装置を移動させることで位置情 報を得る.

電磁波の速度は、真空中の速度(3×10th/s)が基準 となり各媒質に対する固有の速度で伝わる.各媒質内で の伝播速度は、各媒質の固有の比誘電率に依り、式(1) の速度で進む.

$$V = \frac{3 \times 10^8}{\sqrt{\varepsilon_r}} \tag{1}$$

ここで, V:各媒質における電磁波の速度 (m/s) *ε*_r:各媒質の比誘電率

電磁波が媒質の異なる境界面に達すると、その境界面 で一部反射し残りは透過する.境界面に電磁波が垂直に 入射する場合、この反射と透過の割合は境界面で接する 二つの媒体の比誘電率によって決まり、式(2)により反 射強度として表すことができる⁴.比誘電率の概略値を 表-1に示す.アスファルトとコンクリートでは比誘電率 に大きな差はなく、反射強度は小さい値となる.一方、 水の比誘電率は大きいため、舗装下に滞水が生じていた 場合反射強度は大きい値となる.電磁波レーダの計測結 果を図化した場合、この反射強度の違いが白黒の濃淡と なって表示される.

$$R = \frac{\sqrt{\varepsilon_{r1}} - \sqrt{\varepsilon_{r2}}}{\sqrt{\varepsilon_{r1}} + \sqrt{\varepsilon_{r2}}} \tag{2}$$

R:反射強度

*ε*_{r1}:上層の比誘電率

Er2: 下層の比誘電率

電磁波レーダには、ハンディ式、カート式、車載式と いくつかの種類があるが、本研究では交通規制を伴わず 一度に広範囲を計測可能な車載式電磁波レーダを主に用 いている.外観および仕様について、写真-3及び表-2に 示す.

3. 実橋における電磁波レーダの適用

積雪寒冷地に架橋され、冬季には凍結防止剤が散布される鋼橋のRC床版において、車載式電磁波レーダによる計測を実施した.本橋梁は上り線と下り線で供用年数が 異なり、上り線は39年、下り線は7年である.車載式電

表-1	比誘電率の概略値
材料	比誘電率
アフフラルト	2~4(乾燥状態)
	6~12(湿潤状態)
コンクリート	4~10(乾燥状態)
コングリード	10~20(湿潤状態)
水	81

写真-3 車載式電磁波レーダ外観

表-2 車載式電磁波レーダ仕様

		/ I=I4:
項目	仕様	性能
測定速度	推奨 40km/h	80km/h
距離測定	車速信号取得	精度±0.3%以内
	マルチステップ周波数方式	200MHz~3GHz
	アンテナ幅1.8m	有効測定幅員1.5m
電磁波		走行方向 7.5cm 間隔
	チャンネル数21	走行直角方向 7.5cm 間隔
		深さ方向1.0cm間隔

ここで,

磁波レーダによる計測結果を図-2に示す. ここで, 図上 段が計測時に併せて取得した路面画像、図中段が床版上 面付近で計測した電磁波の反射強度の違いを濃淡で表し た平面コンター図,図下段が平面コンター図の緑破線位 置における縦断スライス図である. 平面コンター図は, 反射強度に差がない、即ち水が存在しない場合は濃淡の 変化の少ない一様な色調で表示される、平面コンター図 を見ると、供用年数が短い下り線は全体的に一様な色調 であるのに対し、供用年数の長い上り線では局所的に白 いまだら模様が生じている. これは、舗装下に生じた滞 水により反射強度が大きくなったためと考えられる.次 に縦断スライス図を見ると、下り線では舗装と床版の境 界面の反射が連続的に確認できているが、上り線では部 分的にがたつきが生じ、境界面の反射が不連続となって いる.同位置の舗装面では土砂噴出が確認されており, 床版に土砂化が生じていると考えられる.

このように、電磁波レーダを用いることで滞水の有無を 視覚的に判断可能であるが、判断のためには平面コンタ 一図及び縦断スライス図を人間の目で1つずつ確認する 必要があり、多大な労力を要する.また、判断基準が定 性的であり、判断する人間により結果にばらつきが生じ るおそれがある.

以上のような課題への対応策として、AIによる機械学 習を用いて、電磁波レーダの計測により取得した波形デ ータから床版上面の滞水を自動推定する手法について検 討を行った。

4. 機械学習による滞水自動推定手法の検証

(1) 機械学習の概要

機械学習とは、コンピュータにデータを学習させ、ア ルゴリズムに基づき分類や予測などのタスクを遂行する 技術のことをいう.本検討では、電磁波レーダ計測で取 得した床版上面付近の波形データと、舗装を開削し計測 した床版上面の水分量を学習データとし、それを AI に 学習させる教師あり学習を実施し、構築した学習モデル に任意の波形データを入力することで、床版上面の水分 量を正確に推定できるかを検証した.

(2) 学習データの整備

AI に学習させる電磁波レーダ計測による波形データ は、中部地方に位置する橋梁にて写真-3 に示した車載 式電磁波レーダを用いて取得した.また床版上面の水分 量は、電磁波レーダ計測後に舗装を開削し、露出したコ ンクリート床版上面で電気抵抗式水分計を用いて計測し た.電磁波レーダの計測結果(平面コンター図)及び床 版上面水分量の計測結果を図-3 及び図-4 に示す.なお、

図-2 車載式電磁波レーダによる計測結果

図-3 車載式電磁波レーダ計測結果

A1	0	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500	1550	1600	1650	1700	1750	1800	1850	1900	A2
C	170	160	833	282	265	213	212	360	140	484	536	521	251	462	520	555	521	298	276	532	578	600	579	887	841	598	723	521	535	708	628	877	688	860	298	820	317	571	530	
50	310	437	521	184	223	657	176	207	194	183	286	599	601	828	851	783	762	267	263	139	520	521	524	384	214	257	588	545	333	181	785	521	822	539	537	282	518	651	817	
100	325	325	192	184	220	235	430	131	156	297	333	242	308	398	875	186	107	198	164	244	269	150	122	264	213	900	475	206	536	218	639	838	868	302	101	238	141	155	157	
150	120	158	99	178	80	157	159	175	151	105	90	129	113	146	111	107	107	128	151	90	152	150	201	870	834	452	520	247	536	149	273	166	162	201	208	181	171	148	212	
200	167	196	124	45	138	135	104	123	125	123	139	108	108	62	84	152	104	158	105	88	136	180	189	176	726	586	532	698	904	183	187	178	170	156	185	166	129	145	198	
250	216	206	144	193	135	147	206	109	148	137	116	146	150	146	117	100	76	63	75	112	132	126	226	531	537	571	564	715	915	763	171	171	132	145	150	143	132	152	599	
300	226	184	133	162	208	222	234	135	198	193	194	177	135	223	250	197	141	158	187	231	74	205	171	438	915	753	301	665	600	202	110	163	231	72	145	132	240	210	169	
350	363	110	238	259	224	209	354	322	241	132	123	179	242	160	224	176	211	187	187	211	172	188	283	261	805	286	258	256	831	235	241	189	304	199	250	163	329	167	522	
400	147	245	256	217	247	219	184	240	174	247	135	180	192	123	189	207	201	209	103	158	165	132	140	175	278	266	202	142	160	143	181	231	165	225	67	138	229	113	149	
450	534	537	688	520	378	93	525	525	644	521	339	347	238	542	248	598	538	535	554	532	236	524	683	629	685	492	233	535	532	321	160	283	522	522	609	298	644	719	489	

図-4 床版上面水分量計測結果

床版上面水分量を計測した範囲は図-4 の赤囲み部である.

電気抵抗式水分計は、床版防水施工時に床版上面水分 量を測定することを目的とした製品であり、計測面の水 分量をカウント値(電気抵抗換算値)として表示でき、 これが大きければ水分量が多いことを意味する.水分計 の仕様を図-5 に、水分状態とカウント値の関係を図-6 に示す⁵.

(3)分類モデルの構築

前記のデータを AI に学習させた場合,任意の波形デ ータを入力することでカウント値を推定する学習モデル となるが,カウント値のままでは一目で滞水が生じてい るか分かりづらい.そこで,推定したカウント値から床 版状態を健全部,湿潤部及び滞水部の3つに分類する分 類モデルを構築することとした.水分量による床版状態 の分類基準は,図-6の水分状態とカウント値との関係 を参考に表-3とした.この分類基準に従い,実際に橋 梁上で計測したカウント値から得られた床版状態の分布 を図-7 に示す.横方向が橋軸方向(車両走行方向), 縦方向が橋軸直角方向である.白色が健全部,薄い水色 が湿潤部,濃い青色が滞水部を示している.分類モデル 構築に用いるアルゴリズムは、分類精度や計算コスト等 を考慮し複数のアルゴリズムで検証した結果,最も分類 精度の高かったランダムフォレストを採用した.

(4)分類モデルによる滞水推定

ランダムフォレストを用いて構築した分類モデルに, 学習に用いた図-3の波形データを入力して得られた滞 水推定結果を図-8に示す.図-7の実際の床版状態の分 布と類似した結果を示しており,精度良く推定できるこ とを確認した.

	仕様	
(1) 測定方式	電気抵抗式	
(2)検量線	カウント(電気抵抗換算値)	
(3)測定範囲	10~990カウント	

図-5 水分計の仕様

表-3 水分量による床版状態の分類基準

床版状態	分類基準
健全部	水分量≦230
湿潤部	230<水分量≦520
滞水部	520<水分量

5. 模型供試体を用いた推定精度の検証

(1) 模型供試体の概要

上記の滞水推定結果は、機械学習に使用した1橋のみ にのものであり、舗装厚等諸条件が異なる場合にも同様 の精度が確保できているか検証する必要がある.そこで、 当研究所が保有する舗装と床版の境界部に滞水を模擬で きる模型供試体を用いて推定精度の検証を行った.

模型供試体の概要図を図-9 を示す.供試体の寸法は 2.0m×2.0m,主筋のかぶり厚が40mmとなっており,舗装 と床版の間には床版防水層(Wp)が施工されている.ま た,舗装と床版防水層の間(As/Wp)と床版防水層と床 版上面の間(Wp/Co)の2パターンの滞水状況を再現で きるようになっており,各層に厚さ1mmのゴム板で50cm 四方の滞水スペースを作り,滞水スペース内に注水孔と 排水孔を設けることで供試体内部への水の出し入れを可 能とした(写真-4).滞水スペースに注水した供試体を 電磁波レーダで計測し,その波形データを用いて滞水推 定を行った.模型供試体の電磁波レーダ計測結果(平面 コンター図)を図-10,滞水推定結果を図-11に示す.縦

軸及び横軸は計測長と幅員を表しており,図-10の左上 と右下の滞水スペース部に白い模様が確認できる.これ は設計通りに滞水スペース内に水が存在していることを 示している.図-11でも同様に左上と右下の滞水スペー スを滞水部と推定している.滞水スペース以外の部分に ついては全体的に湿潤部と判定しており,一部滞水部と 推定している部分も確認された.健全部と湿潤部の区別 は難しいものの,滞水スペースに注水した水については 概ね推定できており,構築した分類モデルが舗装厚等異 なる条件下においても比較的精度の良い推定結果を示す ことを確認できた.

6.滞水推定結果の活用方法

出力した滞水推定結果を活用することで、目視では 確認できない床版上面の診断・措置につなげることが可 能である. 図-12 は図-2 の橋梁の上り線の計測結果を用 いて出力した滞水推定結果である. 舗装打継目周辺や路 肩部,及び伸縮装置付近に滞水(青色部)が推定されて いるのが確認できる. これは,施工打継目や地覆及び伸 縮装置との境界の目地部から雨水が浸入したためと考え られる. このような場合の措置としては、止水シールや 目地充填材等の止水工法による止水や、舗装の打換えに よる排水がある. 舗装面や床版下面の劣化状況と組み合 わせて見ることで、優先順位をつけつつ適切な予防保全 を行うことができると考えられる.

7.おわりに

電磁波レーダを用いて RC 床版上面の滞水を早期に検 知することにより、事後保全型メンテナンスから予防保 全型メンテナンスへと転換でき、補修コストの低減にも つなげることができる. 今後も引き続き実橋を用いた検 証等を行い、滞水推定の更なる精度向上や、電磁波レー ダを用いた点検の留意点等の整理を行っていく.

謝辞:本研究は、「官民研究開発投資拡大プログラム (PRISM)」及び「AI を活用した道路橋メンテナンス効 率化に関する共同研究」の成果の一部である.また、研 究の実施にあたり、調査フィールドを提供頂いた各道路 管理者には多大なるご協力を頂きました.ここに謝意を 記します.

参考文献

- 1) 国土交通省道路局:道路橋定期点検要領, p. 36, 2019.
- 2) 国土交通省道路局:橋梁定期点検要領, p. 54, 2019.
- 3) 国土交通省 国土技術政策総合研究所:凍結防止剤散布と沿

道環境,国土技術政策総合研究所資料,第412号, pp. 6-32, 2007.

- 松井繁之:移動荷重を受ける道路 RC 床版の疲労強度と水の影響について、コンクリート工学年次論文報告書、Vol.9、 No.2, pp.627-632, 1987.
- 5) 谷倉泉, 榎園正義, 後藤昭彦:床版防水工における水分計 の適用性に関する研究,構造工学論文集, pp. 1122, 2012.

写真-4 模型供試体外観と滞水スペース

図-10 模型供試体の電磁波レーダ計測結果

図-12 滞水推定結果