3.8.3 シミュレーション解析結果のまとめ

時刻歴シミュレーション及び輪重横圧推定式により、各因子が外軌側の輪重、横圧に及ぼす影響を解析した結果を表 3.8-8に示す。3.8.2項の感度分析結果(表 3.8-7)から、単独因子として推定脱線係数比に及ぼす影響度が大きいものは、外軌側車輪静止輪重比、車輪フランジ角度、内軌側横圧輪重比、カント、軸ばね上下ばね定数、軸距平面性狂いであり、この中では静止輪重比の影響が大きいことが分かった。

なお、これらは、一定の前提条件を仮定した上で、個々の因子の影響を抽出して分析した ものであり、パラメータの変化の幅が異なる場合や複数の因子の影響が複合した場合には、 結果も異なることに留意する必要がある。

表 3.8-8 シミュレーションの実施内容と結果概要

因子 番号	因子	項	目	設	定	条件	時刻歴シ	ミュレーション	推定式	結果 概要				
番号	四丁						総研	生研	総研	横圧への影響	輪重抜けへの影響	限界脱線係数	備	考
	輪重	静止輪重	のアン	車体対角	・台	車対角を設計				大きいと増加	大きいと抜け増加		内軌輪重が	Qに影響
		バランス		諸元を基	準に	増減								
	空気ばね	差圧弁設定		設計諸元							大きいと抜け微増		設計値では	
		高さ	不感帯	設計諸元	を基	準に増減					敏感だと抜け微増		線形で高さ	調整弁の
				設計諸元							応答良で抜け微増		みが動作	
		台車枠ねし	ごれ	静止輪重	のアン	バランスで考慮					大きいと抜け増加		内軌輪重が	Qに影響
		台車回転	削性	設計値を	基準	に減少						小でアタック角微減		
		上下軸ばれ	2定数	設計諸元	を基	準に増減					大きいと抜け増加		内軌輪重が	
		前後軸ばれ	2定数	設計諸元	を基	準に増減				影響小	影響小	アタック角に影響小	現場の軌道	の場合
		左右動ダン	パ定数	設計諸元	を基	準に増減				影響小	影響小			
		車体ねじれ	7	静止輪重	のアン	バランスで考慮				大きいと増加	大きいと抜け増加		内軌輪重が	Qに影響
		車体質量		空車を基	準に	増加				大きいと増加	大で減少率が減少		軌道面のねじ	れが同一
		連結器力		定常力・	衝擊	力作用				外力相当分増減	影響小			
,	車輪·			新品形状	と実	測形状				実測形状の方が	影響小	接触角に影響小	実測形状に	はフランシ゛接
	レール	形状					_			微増			触点が先端	
						60°と70°							安全対策効	
						面、フランジを				内軌 μ 大で増加		フランジμ 小さい		
		擦係数		実測値等						フランシμ小で増加			りにて踏面	
		かト逓減倍	·率	現場の状態	況を	基準に増減					小さいと抜け増加	小でアタック角増加	内軌輪重が	Qに影響
		勾配		現場の勾					_		影響小			
		曲線半径				基準に増減						小でアタック角増加		
		カント				基準に増減					大きいと抜け増加		同一速度、	かト超過
		スラック		70 70 17 17 17		基準に増減					* -	アタック角に影響小		
		通り ,水準				は箇所の狂い、					水準(平面性)狂い	アタック角に影響小		
		軌間		各単独狂							が影響			
	運転条件	走行速度		速度 5 kr	n/h	から 40km/h				高いと微増	高いと抜け減少			

- 注) 1.因子番号欄の数字は、「3.1 要因推定の手法」で述べた各因子の番号に対応している。
 - 2. を記載した分担欄の総研は、鉄道総合技術研究所の、生研は、東京大学生産技術研究所の略語を示す。
 - 3.推定式は、3.8.2項に記載した輪重横圧推定式を示す。