(2)歩行者空間(交通広場)における軌道整備方法の検討結果

案	A 横断歩道部の整備方針	B 横断不可部分の整備方針	整備イメージ
案1	 ・ 横断歩道部分の舗装は広場と同じとし、 広場全体で統一したデザインとする。 ・ 横断部の場所、位置を示す道路標識等を 設置する。 (A-1) 	 ・ 横断を避けるために軌道部分を芝生として、視覚的に区分する。 (B-1) 	
案2	 ・横断歩道部分の舗装は広場と同じとし、 広場全体で統一したデザインとする。 ・横断部の場所、位置を示す道路標識等を 設置する。 (A-1) 	 ・横断を避けるために軌道部分を芝生として、視覚的に区分する。 ・横断不可部分に、植込み、花壇、水路等を設置して、歩行者の軌道への侵入を防止するとともに、広場の景観に配慮する。 (B-2) 	
案3	 ・横断歩道部分の舗装は広場と同じとし、 広場全体で統一したデザインとする。 ・横断部の場所、位置を示す道路標識等を 設置する。 (A-1) 	 ・ 横断を避けるために軌道部分を芝生として、視覚的に区分する。 ・ 横断不可部分に、柵等(ボラード+チェーン)を設置して、歩行者の軌道への侵入を防止する。 (B-3) 	
案4	 ・横断歩道部分の舗装は広場と同じとし、 広場全体で統一したデザインとする。 ・横断部の場所、位置を示す道路標識等に 加えて、音と光で路面電車(LRT)の 接近を知らせる信号機を設置する。 (A-2) 	 ・ 軌道敷部分の舗装材は、広場のものとは区分する。 ・ 横断不可部分に、柵等(ボラード+チェーン等)を設置して、歩行者の軌道への侵入を防止する。 (B-3) 	

利便性	安全性	景観
0		O
0	0	0
0	0	Δ
Δ	Ø	Δ

【横断防止部分の整備イメージについて】

形式	構造等	整備イメージ
段差 水路	 ●段差構造 ・軌道敷と広場との間に段差を設ける。 (軌道面を下げた構造や縁石を設置する構造等が考えられる) ■水路 ・軌道敷と広場との間に、水路を設ける。 (溝程度のものから2m程度の小川まで考えられる) 	<image/> <caption></caption>
植栽帯 花壇	 ■植栽帯(花木等) ・平面的な植栽帯に花木等を植える。 ■植栽帯(低木・生垣) ・平面的な植栽帯にツツジ等の低木を植える、あるいは生垣状にする。 ■花壇 ・高さのある花壇を設置して、花を植える。 	<image/>
柵類	 ■防護柵 ・横断防止用の柵を設置する。 ■ボラード+チェーン ・ボラード状の支柱を設置し、 チェーンで結ぶ。 	「「「「「「「「」」」」」

5.7 富山駅広場におけるケーススタディー

5.6で検討された軌道整備案について富山駅前広場をケーススタディーとし、それぞれの案について、問題点や課題を整理する。

案	A 横断歩道部の 整備方針	B 横断不可部分の 整備方針	利便性	安 全 性	景観	富山駅前広場へ適用する場合の 問題点、課題
案1	 ・横断歩道部分の舗装 は広場と同じとし、 広場全体で統一し たデザインとする。 ・横断部の場所、位置 を示す道路標識等 を設置する。 	・横断を避けるために軌 道部分を芝生として、 視覚的に区分する。	0		O	 ・視界を遮る障害物がなく、広場の 一体性が確保できるため、景観上 最も好ましい。 ・一方、安全性については、構造上 軌道敷へ容易に踏み入られるた め、課題が大きい。 ・警察をはじめ、路面電車(LRT) 運行者、子連れの利用者等からの 反対意見が予想される。
案 2	 ・横断歩道部分の舗装 は広場と同じとし、 広場全体で統一し たデザインとする。 ・横断部の場所、位置 を示す道路標識等 を設置する。 	 ・横断を避けるために軌 道部分を芝生として、 視覚的に区分する。 ・横断不可部分に、植込 み、花壇、水路等を設 置して、歩行者の軌道 への侵入を防止する とともに、広場の景観 に配慮する。 	0	0	0	 ・軌道敷と広場とを物理的、心理的に区分することで比較的高い安全性が確保できる。 ・緑や花などにより季節感を演出できるため、景観的にも好ましい。 ・ただし、積雪時には構造物が低いと横断抑制効果が小さくなるため、注意を要する。
案 3	 ・横断歩道部分の舗装 は広場と同じとし、 広場全体で統一し たデザインとする。 ・横断部の場所、位置 を示す道路標識等 を設置する。 	 ・横断を避けるために軌 道部分を芝生として、 視覚的に区分する。 ・横断不可部分に、柵等 (ボラード+チェー ン)を設置して、歩行 者の軌道への侵入を 防止する。 	0	0		 ・軌道敷と広場とを柵等で明確に区 分することで、高い安全性が確保 できる。 ・一方、景観面では、柵等により広 場が分断された形となり、好まし くない。
案 4	 ・横断歩道部分の舗装 は広場と同じとし、 広場全体で統一し たデザインとする。 ・横断部の場所、位置 を示す道路標識等 に加えて、音と光で 路面電車(LRT) の接近を知らせる 信号機を設置する。 	 ・軌道敷部分の舗装材 は、広場のものとは区 分する。 ・横断不可部分に、柵等 (ボラード+チェー ン等)を設置して、歩 行者の軌道への侵入 を防止する。 		Ø		 ・軌道敷と広場とを柵等で明確に区 分することで高い安全性が確保 できる。 ・また、横断歩道部分に信号機を設 置することで、横断者に対する安 全性向上が期待できる。 ・一方、景観面では、柵等により広 場が分断され、また信号機が設置 されるため、好ましくない。

本調査ではそこで本調査では、環境モデル都市の中から、北九州市と富山市において、交通分野において都市の環境負荷低減を目指した検討を行った。

北九州市における運輸部門における CO2 排出量は、市全体の排出量の約 11.2%を占めており、その 中でも自動車の占める比率は 82%となっている。今後、自動車に過度に依存しない交通体系への転換、 集約型都市構造のため交通施策検討が、全国的にも重要になっている。

そのためには、交通結節点でのシームレスな乗換え、快適で利便性の高い公共交通サービスの提供、 環境負荷のない自転車利用促進のための空間整備、ソフト施策の重要性が高まっている。

本調査においてそれらの施策を具体的な駅、バスの運行区間、モデル地区において、その整備案、 効果について検討を行った。交通結節点であるJR城野駅では、環境負荷を低減させるための先導的 な各種設備・装置の提案、二輪等の利用促進のための自由通路整備などを提案した。

さらに、富山駅でのLRT路線整備における駅前広場の利便性、景観形成、安全性の面からの方向性 について示した。BRTについてはその事業コストと効果の算出、自転車利用促進については、土地 利用・地区特性の異なる地区での整備モデルについて検討した。

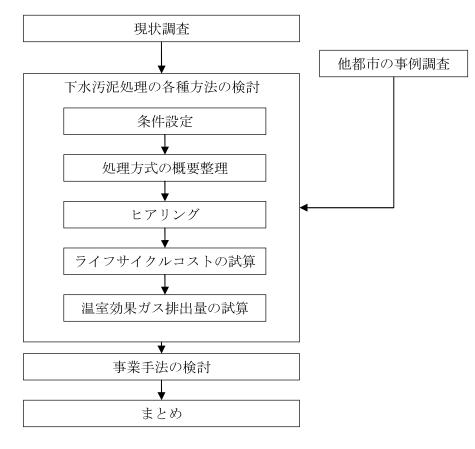
このような事項については、他都市でも重要かつ事業実施に向けた検討が行われており、本調査で 得られた国内外の事例、整備の考え方、効果の定量的検討については、参考となるものと考える。

第2編

環境負荷低減のための下水処理廃棄物高度化利用推進検討調査

目	次
	次

1.	調査の目的	2–1
2.	調査の方法	2–1
З.	北九州市の環境モデル都市提案書における下水道の位置づけ	2–2
4.	下水汚泥の高度利用に向けた事業化検討調査	2–7
5.	他都市事例調査	2-19
6.	「下水水汚泥の燃料化」の各種方式並びに「消化ガスの活用」の各種方法の検討	2–27
7.	事業手法の検討	2–44
8.	まとめ	2–49


1 調査の目的

地球温暖化防止のためには、都市構造の見直しなどを通じて低炭素社会づくりを推進して いくことが重要である。平成20年1月の第169回国会での総理の施政方針演説において、 低炭素社会に向けて先駆的な取組みにチャレンジする「環境モデル都市」をつくることが示 され、7月に6都市が選定された。環境モデル都市の取組の中でも、下水道事業での取り組 みは温室効果ガスの削減に大きな役割を果たすものであり、早急に具体化を促すことは取組 の全国への拡大にもつながる。

本調査は、環境モデル都市の中から、北九州市における下水道事業について、各種事業の 具体化に向けた検討を行い、その成果をもとに他都市の低炭素社会づくりを促す資料として とりまとめるものである。

2 調査の方法

調査は、下水道分野における下水汚泥再資源化に係る効果等を検証することを目的に次の 手順で実施する。

図 2.1 調査フロー

3. 北九州市の環境モデル都市提案書における下水道の位置づけ

- (1) 全体構想
- 1) 環境モデル都市としての位置づけ

北九州市は産業都市であり、その産業を基盤に発展を遂げてきた。その発展の過程で、甚 大な公害問題を経験したが、産業界、行政、市民の一体的な取組により克服し、街の資産と して環境技術、産学官民の太い絆が備わった。また、蓄積された資産は、循環型社会づくり でのアジアのモデルと称される「エコタウン事業」、アジア諸都市との都市間外交ネットワ ークに基づく「環境国際協力拠点づくり」等に活かされ、ヨハネスブルグサミットで環境都 市モデルとしての明記や日本の環境首都コンテスト 06、07 年度連続引立受賞に示されるよ うに、本市は現在、国内外を問わず環境都市としての地位を確固たるものとしている。

今回の環境モデル都市提案は、これまでの本市の経験、取組の中で育んできた地域の「環 境力」を結集し、「世代を超えて豊かさを蓄積していくストック型社会の構築」を基本理念 に、「都市構造」「産業構造」「人財育成」「文化の創造」「アジアへの貢献」という総合的ア プローチの下に、次に掲げる3つの基本方針に沿って取り組み、もって発展するアジアの低 炭素社会づくりを牽引する「アジアの環境フロンティア都市・北九州市」の実現を図るもの である。

- ①工場と街の連携などを通じて産業基盤を機軸とした地域最適エネルギーシステムを確立し、「産業都市としての低炭素社会づくりのあり方」を提示する。
- ②街のコンパクト化、長寿命化などを通じて、お年寄りや子供にとっても豊かで住みよい「少 子高齢化社会に対応した低炭素社会づくりのあり方」を提示する。
- ③成長するアジアの産業都市の持続的発展を支えるべく、「アジアの低炭素化に向けての都 市間環境外交のあり方」を提示する。
- (2) 現状分析
- 1) 温室効果ガスの排出実態等(CO₂換算)
- i)排出実態

北九州市の温室効果ガス排出総量は、2005年度推計で1,560万トン(国全体の約1.2%) である。市民一人当たり約16トンと、全排出量の66%を産業部門が占める産業都市である が故に、全国レベルと比較し高めの数値となっている。傾向としては、産業分野での省エネ ルギーが進められる一方で、業務部門、家庭部門での排出が増加傾向にあり、総量は概ね横 ばいである。(2005年度は、1990年度比で-1,8%)。

- ii) これまでの主な取組
- ①産業部門のエネルギーポテンシャルの効率活用の観点から、地域の複数工場がエネルギー を融通しあうエコ・コンビナート事業、ガスエンジン発電で発生する熱や電気を工場や民 生で利用しあう東田グリーンビレッジ事業(C0,: 20%削減)。

- ②温暖化防止への市民力の結集としての「北九州市環境首都グランド・デザイン」に基づく 取組(年間 43 万人市民参加)。
- ③アジア地域を中心とした国際協力(日中両国政府首脳立会いの下で調印式が行われた中 国・天津市との「エコタウン建設」に関する覚書など)。

今後、これらの取組を発展させると同時に、部門間の連携を進め、点の取組から市域全体 の面に広げ、社会を支えるすべての主体の意識改革と参画をさらに強める。

2) 関係する既存の行政計画の評価

計画の名称及び策定時期	評価
北九州市基本構想	本年12月策定予定の基本構想は、本提案を大きな柱の一つとし て反映。
2050年北九州市低炭素都市ビ	低炭素都市の長期ビジョン策定の検討に昨年秋に着手。本提案の 具体化のロードマップ、アクションカプログラムとなるもので 20 年度
ジョン	内に策定予定。
北九州市地球温暖化対策地域	温暖化防止の具体的計画を平成18年度に策定し、地域が一体と
推進計画	なった取組みを推進中。目標は 2010 年に民生等における CO ₂ 発 生量を、原単位 10%削減。
北九州市環境首都グランド・デザ	低炭素社会を含む持続可能な社会構築のための、市民、企業、行 政等の行動指針として、250のアクションプランを内容とするグラン
イン	以等の11動指針として、230の19ションフランを内容と9 るクラン ド・デザインを市民企業参画の下に、平成 16 年に策定。

(3) 削減目標等

- 1) 削減目標
- i) 都市・地域の将来像

ものづくりのまちとして産業の発展を図りつつ、その基盤の中で世代を越えて豊かさが蓄 積していくストック型都市の形成を目指す。また、地域のみならず未来を共有するアジアの 豊かで低炭素な社会づくりを牽引する役割を担う。

ii) 長期(2050年)目標

本市では、2005 年度比 CO₂の 800 万トン減(50%削減)を目標とし、また、都市間環境外 交を通じ 2,340 万トン(150%)をアジア地域で削減ずる。合計での削減目標量は、本市の 排出量の 200%相当分 3,140 万トンとなる。

なお、市域での取組については、60%削減に向け、さらなる努力を積み重ねていく。

さらに、本市の産業構造を環境付加価値の高いものに変革し、国内外の低炭素化の普及に 多大に貢献する環境素材、環境製品、環境技術、環境サービスを本市産業界から発信してい く。

iii) 中期(2030年)目標

長期目標達成のための中間評価指標として、産業、民生、運輸等全ての分野で、各々の温

室効果ガス排出原単位が現状より30%改善がなされるよう取り組む。

2) 削減目標の達成についての考え方

i) 基本方針

「ストック型都市構造への変革」、「低炭素型産業クラスター構築」といった基盤づくりと 同時に、全ての市民・企業が「地球温暖化問題」に取り組むためのプラットフォーム(仕組 み、制度)を整備し、その両輪の下に、取組を推進する。さらに、これまで築いてきたアジ ア諸都市とのネットワークを強化、拡充し、アジアの低炭素化への効果的な都市間環境協力 を進める。なお、これらの取組は、2050年の都市像の共有の下、バックキャスティングに よる耽組方針・具体的取組の確認を行いながら進め、目標達成を目指す。

- ii) 取組の進め方
- ① 取組のプラットフォーム構築

市民、企業大学、行政が目標を共有し、行動を主体的に進める推進母体を設立するとともに、皆が参加し、自らを評価できる仕組みを整備する。

② リーディングプロジェクトの実施

環境モデル都市の象徴プロジェクトとして、「低炭素 200 年街区」、「グリーン IT プロジェ クト」、「低炭素社会総合学習システム」等を実施する。

③ 市域全体への展開

リーディングプロジェクトの成果の検証と平行して、取組を市域全体に広げる。

④ アジア諸都市への波及

本市のモデル的力ジェクト等⑦成果をアジア諸都市へ移転する。

取組み方針	削減の程度及びその見込みの根拠		
低炭素社会を実現するストック型都市への転換	2050年:130万トン		
本市の高度な素材技術、多核都市構造、工場とま	2030年:80万トン		
ちの近接性などの特性を活かし、長寿命でエネル			
ギーの利用が少ないコンパクトな都市を目指す	【根拠】		
とともに、工場との連携による都市内の効率的な	 ・長寿命・省エネ住宅の普及率 ・森林整備面積、植林数 		
エネルギーの活用や CO2吸収源としての効果が大	・モーダルシフトの量などをもとに算定		
きい緑の拡大を進め、低炭素で豊かな生活が出来			
るストック型都市づくりを推進する。			

表 3.2 取り組み方針と根拠

表 3.3 提案書における削減目標達成についての考え方

削減目標の達成についての考え方(3.1.3 2)関連)(60%削減)

(単位:万 t-CO₂)

		(中	이 <u>교</u> . 기 t 002)		
取組み方針	施策内容	2030 年 削減見込み	2050 年 削減見込み		
低炭素社会を実現す	&炭素社会を実現す (a)低炭素先進モデル「200街区」の形成				
るストック型社会へ	7.先進モデル街区の形成	7.2	19		
の転換	イ.200 年住宅など住宅の長寿命・省エネ化	9.4	28		
	り環境配慮型建築物の普及	11	30		
	(b)高効率交通システムの構築	9.2	9.7		
	(c)モーダルシフトの推進	3.2	4.2		
	(d)工場とまちの省エネルギーシステム構築	0.8	2.3		
	(e)下水汚泥の高度利用による省資源システム構築	0.7	1.1		
	(f)総合的な緑化・森林整備の実施	4.7	6.2		
	※その他、エネルギー消費原単位の改善等	36	45		
	小計	82	146		
低炭素化に貢献する	(a)次世代型産業・地域エネルギーシステムの構築				
産業クラスターの構	7.工場排熱等未利用エネルギー供給システムの構築	23	84		
築	インーラーファクトリー	6.1	29		
	り.水素利用モデル地区の形成	3.6	36		
	エ.グリーン IT の推進	28	28		
	(b)資源の地産地消システム(エコタウン事業の次期展開)	3.6	5.9		
	※その他、エネルギー消費原単位の改善等	213	389		
	小計	277	572		
低炭素社会づくりを 通じての豊かな生活	(a)北九州カーボン・オフセット、エコポイント・システ ムの構築	5	8.8		
の創造	(b)総合的自然エネルギー導入支援モデルつくり	54	121		
	※その他、エネルギー消費原単位の改善等	52	92		
	小計	111	222		
	市域内削減見込みの合計	470	940		
低炭素づくりのアジ	(b)環境協力都市ネットワークを活用したコ・ベネフィッ	、低炭素化協力			
ア地域への移転	イ.東南アジアにおける「北九州方式生ごみ堆肥化事業」 の拡大	39	96		
	 ウ.上水道分野における無収水量対簑技術等の移転による CO₂ 削減への協力 	1.5	3.1		
	エ.下水・廃水処理事業に付随する温室効果ガス削減	1.7	1.7		
	オ.石炭高度利用技術の移転	160	860		
	(d)アジア低炭素ビジネスの創出	-	•		
	7.中国(青島、天津)での「エコタウン」建設協力	75	180		
	り、製鋼スラグ処理技術移転の国際ビジネス展開支援	620	1,200		
		900	2,340		
	アジアでの削減見込みの合計	900	2,340		

※削減見込みの基準年度は2005年度

(4) 取組み内容

- 1) 低炭素社会を実現するストック型都市への転換
- i) 下水汚泥の高度利用による省資源システム構築

	2013 年	2030年	2050 年
削減量(万 t-CO ₂)	0	0.7	1.1

1 推進の基盤

・下水汚泥の全量再利用(セメント原料、乾燥汚泥による廃棄物発電の発電燃料化)

・北湊浄化センターにおける下水汚泥造粒乾燥の実証実験の実施

2 推計の前提

・現状の処理方法(0.1kg-C0₂/汚泥t)より、さらにCO₂削減効果のある処理方法(-205kg-CO₂/ 汚泥t)に変更する。(2013年:現状と同様、2030年:50%分を変更、2050年:全量を変更)

(人口減少による汚泥発生量の減少も加味する(2013年:現状と同様、2030年:1割減、 2050年:2割減))

- ③ 計算式
 - ・年間下水汚泥発生量:8万トン/年(脱水ケーキ)
 - ・C0₂排出量(kg-C0₂/脱水ケーキ t)
 脱水汚泥+セメント原料化
 0.1kg-C0₂/脱水ケーキ t
 造粒乾燥+燃料利用
 -205kg-C0₂/脱水ケーキ t
 - ・CO₂削減量(t-CO₂/脱水ケーキ t)

削減量=0.205t-C0₂/脱水ケーキ t

- 2013 年 検討中のため、削減量は0トン
- 2030 年 0.205t× (8 万トン×0・5) ×0.9=<u>7,380t-C0</u>₂

2050 年
 0.205t×8 万トン×0.8=13,120t-C0₂
 このうち都市ごみとの混焼による C0₂削減量を差し引くと、
 13,120t-C0₂-1,800t-C0₂=<u>11,320t-C0₂</u>

※都市ゴミとの混焼による CO₂削減量

都市ゴミと混合焼却している年間下水汚泥量 1.2万t

・発電による CO₂ 削減量

1.2万t×2,100×106cal/t×1.16×10⁻⁶kWh/cal×0.25×0.375kg/kWh=2,741t ※乾燥汚泥1t当たりの発熱量:2,100×10⁶cal/t(測定実績)

・乾燥による CO₂ 排出量

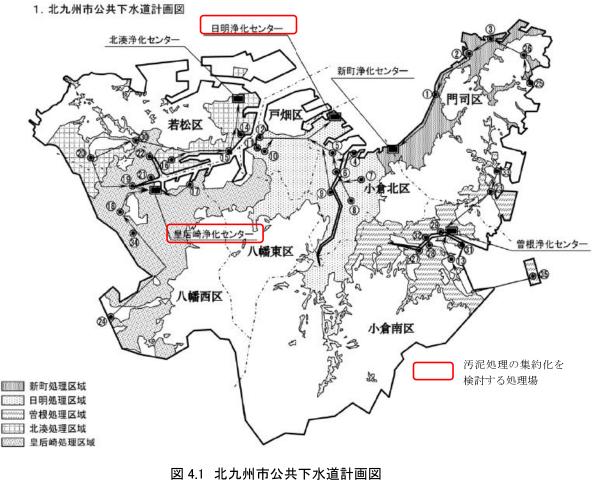
電力:1,1811,078kWh×0.375kg/kWh=679t

灯油:113,642L×2.51kg/L=285t

∴収支:2,741t-(679t+285t) =1,777t≒<u>0.18万t</u>

※電力:1,811,078kWh、灯油使用量:113,642L(処理実績)

4 下水汚泥の高度利用に向けた事業化検討調査


4.1 現状整理

北九州市の汚泥処理、消化ガスの活用について、量・コスト・温室効果ガス排出量の3項目について整理した。方法としては、平成15年度から平成19年度までの過去5年間分の北九州市下水道 管理年報のデータ整理により行った。

(1) 計画区域の概要

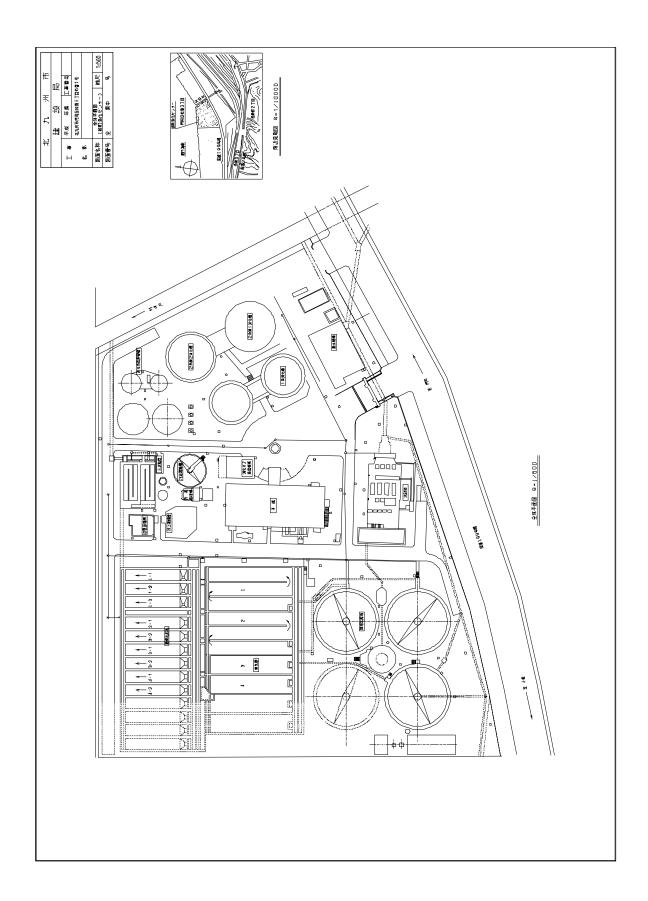
計画区域の概要を以下に示す。

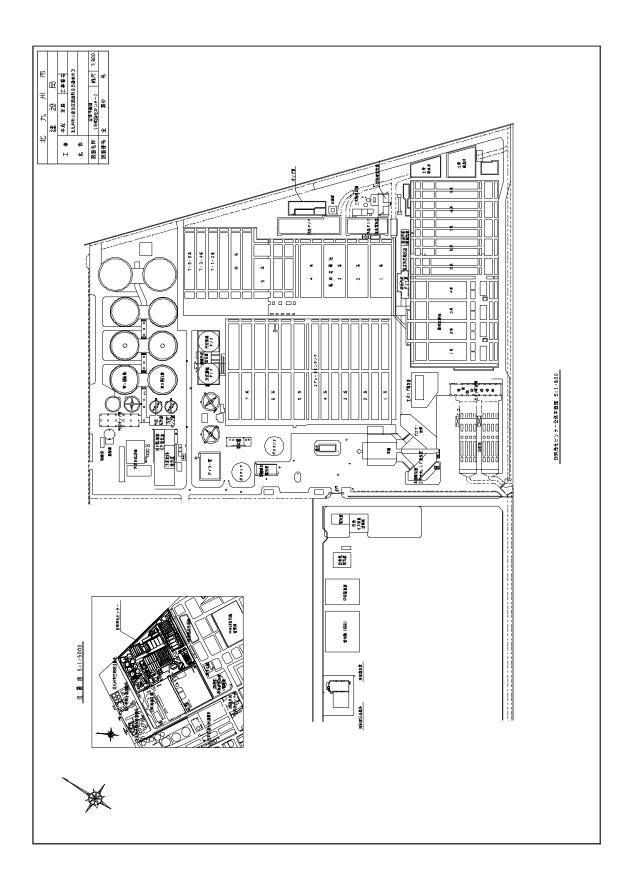
北九州市においては、5箇所の浄化センターが稼動している。そのうち、日明浄化セン ターと皇后崎浄化センターの2箇所で汚泥集約化の可能性があり、汚泥集約による汚泥燃 料化等を実施する際の対象施設となる。

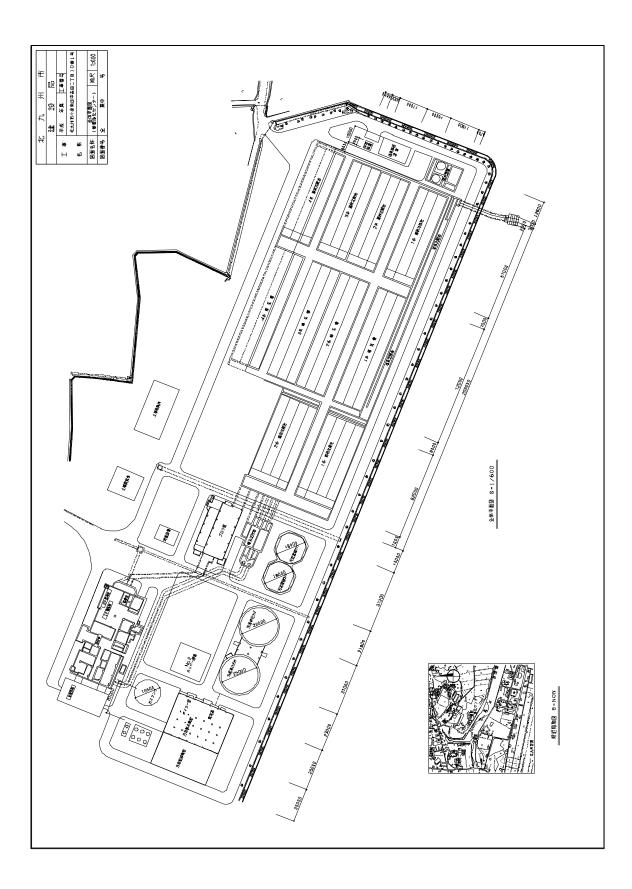
(下水道管理年報に加筆)

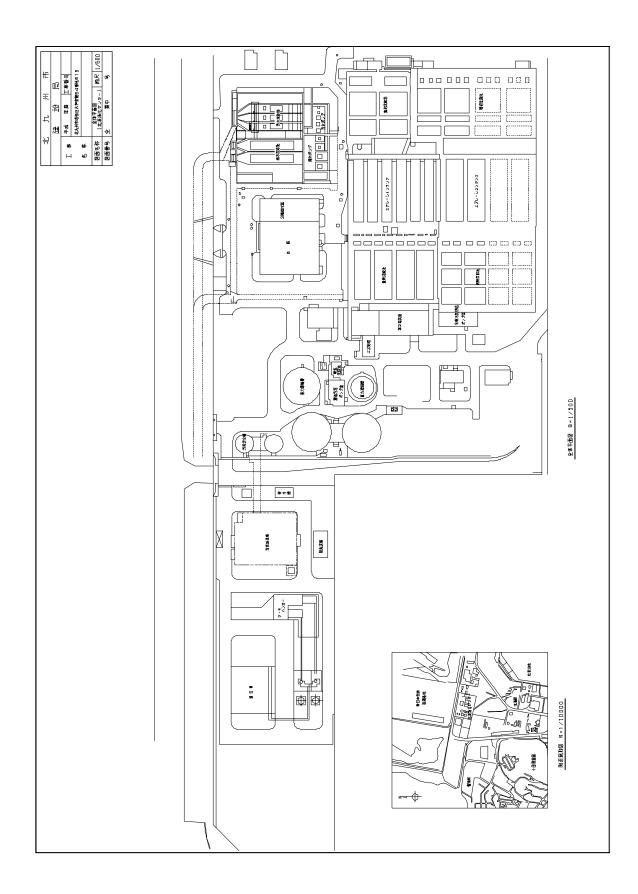
(2) 浄化センター汚泥処理施設の概要

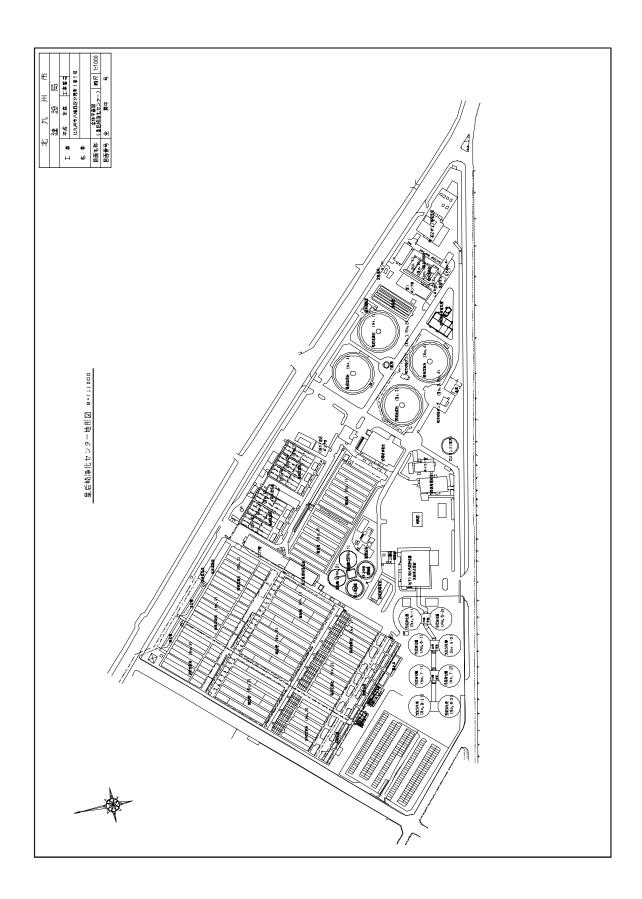
北九州市内の各浄化センター汚泥処理施設の概要を示す。

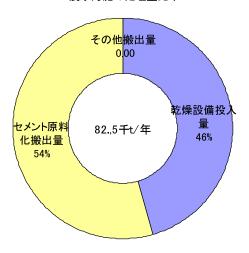

各処理場ともに脱水処理までの工程を有し、主にセメント原料化が実施されている。


日明浄化センターでは消化工程を有し、新町浄化センターと北湊浄化センターの脱水汚泥の一部を受け入れ汚泥乾燥処理後、ごみ焼却施設での混合焼却を実施している。


			センターの成安				
名称	新町	日明	曽根	北湊	皇后崎		
	浄化センター	浄化センター	浄化センター	浄化センター	浄化センター		
運転開始 年月	S47.4	S45. 4	S54. 10	S47.4	S38. 7		
現有処理能 力(m3/日)	64,000	263, 000	73, 000	44, 000	177,000		
水処理方式	標準法	標準法	標準法	標準法	標準法		
汚泥処理方 式	直接脱水法	嫌気性消化法	直接脱水法	直接脱水法	直接脱水法		
汚泥処理フ	重力濃縮	重力濃縮	重力濃縮	重力濃縮	重力濃縮		
D-	\downarrow	•	\downarrow	\downarrow			
	造粒濃縮	浮上濃縮	造粒濃縮	造粒濃縮			
		\downarrow			\downarrow		
	\downarrow	消化 ↓	\downarrow	\downarrow			
	脱水	脱水	脱水	脱水	脱水		
		↓ → 汚泥乾燥 ▲					
		混焼					
			ビクシア 原料化				


表 4.1 各浄化センターの概要


各浄化センターの施設配置図を次頁以降に示す。


(3) 下水汚泥処理の現状

北九州市の5浄化センターから発生する脱水汚泥は、年間約82,500tに上る。脱水汚泥の 処理方式別の処理量内訳を表および図に示す。

浄化セン ター名	脱水汚泥 発 生 量 (t/年)	平均 含水率 (%)	乾燥設備 投 入 量 (t/年)	セメント原料化 搬 出 量 (t/年)	その他 搬出量 (t/年)
新町	9,574.83	75.80	8,562.69	987.25	24.89
日明	20,631.77	79.50	18,154.35	2,470.86	6.56
曽根	13,244.58	75.40	4,847.23	8,397.35	
北湊	6,938.86	72.40	5,935.99	944.53	58.34
皇后崎	32,120.00	70.50	94.97	32,025.03	
合計	82,510.04		37,595.23	44,825.02	89.79

表 4.2 脱水汚泥発生量と処理方式別処理量内訳

乾燥設備投入量とセメント減量化搬出量は、ほぼ半々となっている。乾燥処理後の脱水汚 泥はごみとの混合焼却処理されている。

脱水汚泥の処理量比率

図 4.2 脱水汚泥の処理量比率

浄化センター別の脱水汚泥発生量比率および乾燥処理、セメント減量化搬出量の比率を図 に示す。 1) 脱水汚泥発生量

皇后崎浄化センターが全体の約40%、次いで日明浄化センターが約25%を占める。

2) 乾燥設備投入量

乾燥設備が設置されている日明浄化センターの処理量が最も多く、全体の約半数を占める。他浄化センターからの搬入量のうち、約4割程度を新町浄化センターが占め、曽根と北 湊浄化センターの受入量は、ほぼ同量を占める。

3) セメント減量化搬出量

セメント原料化への搬出量は、皇后崎浄化センターからの搬出量が全体の約7割を占める。

図 4.3 浄化センター別の脱水汚泥処理量比率

4) 浄化センター別の汚泥処理量内訳

浄化センター別の汚泥処理の状況を図 に示す。

i) 新町浄化センター

脱水汚泥量の約9割を日明浄化センターに搬出して乾燥処理し、残る約1割の脱水汚泥をセメント原料化している。

ii) 日明浄化センター

脱水汚泥量の約9割を乾燥処理し、残る約1割の脱水汚 泥をセメント原料化している。

iii) 曽根浄化センター

脱水汚泥量の約4割を日明浄化センターに搬出して乾燥処理し、残る約6割の脱水汚泥をセメント原料化している。

iv) 北湊浄化センター

脱水汚泥量の約9弱を日明浄化センターに搬出して乾 燥処理し、残る約1割強の脱水汚泥をセメント原料化して いる。

v) 皇后崎浄化センター 脱水汚泥のほぼ全量をセメント原料化している。

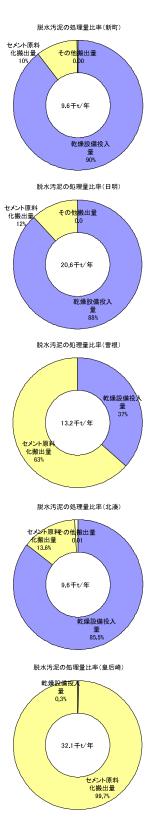


図 4.4 浄化センター別の処理状況

以上の状況から、北九州市における汚泥処理状況を整理すると図に示す通りとなる。

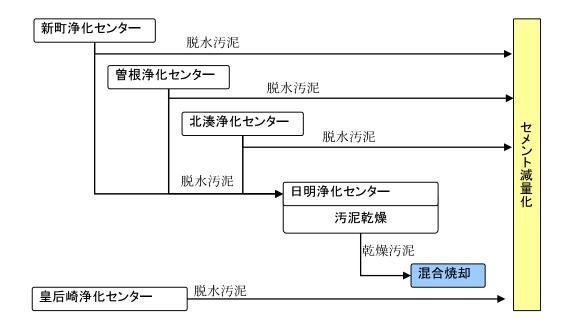


図 4.5 汚泥処理の状況

(4) 日明浄化センターにおける消化ガスの活用状況

日明浄化センターは汚泥消化工程を有しており、発生した消化ガスを消化槽の加温および 乾燥工程の熱源として利用している。

消化ガス使用量の内訳を次図に示す。日明浄化センターにおける消化ガスの発生量は、年間約5,400 千m3 である。そのうち、約40%を消化槽加温用のボイラー燃料として、約17% を乾燥工程の燃料として利用している。なお、乾燥工程の主な熱源は、隣接するごみ処理施 設から供給される蒸気である。日明浄化センターでは、一部の消化ガスを乾燥工程で利用している。

消化ガスの利用面では、約4割の消化ガスが余剰ガスとして未利用となっている。 下水汚泥が有するエネルギー活用の点からは、この余剰ガスの有効活用が課題といえる。

消化ガス発生量		5,388,200	m ³ /年
消化ガス使用量	加温用ボイラー	2,086,400	m ³ /年
	乾燥	889,800	m ³ /年
余剰ガス		2,412,000	m ³ /年

表 4.3 日明浄化センターにおける消化ガスの利用状況

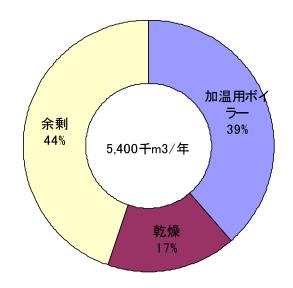


図 2 日明浄化センターにおける消化ガスの利用状況

5 他都市事例調査

北九州市で事業展開を図る上で、各政令市、東京都および汚泥燃料化事業、消化ガス発電事業 を実施している都市(以下「他都市」とする。)の中から先行事例の調査を行い、事業概要(事業規 模、年数、方式、受託者等)の整理を行う。また、他都市で行われている「汚泥燃料化事業」、「消 化ガス発電事業」、「消化ガス精製燃料化事業」の3事業について整理を行った。

5.1 調査対象

調査対象は、各政令指定都市等のホームページおよび文献を対象とした。 各都市のURLと現在の主な汚泥処理方式を次表に示す。

都市名	主な処理方法	ホームページ URL
札幌市	焼却、	http://www.city.sapporo.jp/gesui/
	コンポスト化	札幌市下水道資源公社
		http://www.sapporo-src.com/index2.html
仙台市	焼却	http://www.city.sendai.jp/kensetsu/gesui/
さいたま市	脱水(単独)	http://www.city.saitama.jp/gesuido.html
千葉市	焼却	http://www.city.chiba.jp/gesui/index.html
東京都(区部)	焼却	http://www.gesui.metro.tokyo.jp/
	燃料化(炭化)	
横浜市	焼却	http://www.city.yokohama.jp/me/kankyou/gesui/
川崎市	焼却	http://www.city.kawasaki.jp/53/53keiei/home/gesui_top/gesui_top.htm
新潟市	焼却	http://www.city.niigata.jp/info/geki/
静岡市	焼却	http://sc.city.shizuoka.jp/kigyo/index.html
浜松市	焼却	http://www.city.hamamatsu.shizuoka.jp/lifeindex/life/gesui/
名古屋市	焼却	http://www.water.city.nagoya.jp/
京都市	焼却	http://www.city.kyoto.lg.jp/suido/
大阪市	焼却または溶融	http://www.city.osaka.jp/kensetsu/shigoto/gesuido/index.htm
堺市	濃縮→広域処理	http://www.water.sakai.osaka.jp/gesuidou/index.html
神戸市	焼却	http://www.city.kobe.jp/cityoffice/30/031/
広島市	焼却、	http://www.city.hiroshima.jp/icity/
	コンポスト化	browser?ActionCode=genlist&GenreID=100000000647
福岡市	焼却、	http://gesui.city.fukuoka.jp/
	コンポスト化	(財)福岡市下水道資源センター
		http://www.gesuidoushigen.jp/index.html

表 5.1 公開資料収集先一覧(政令市、東京都)

他都市における汚泥処理における環境負荷低減に向けた取組み事例を以下に示す。

ŀ					
主な処理方法	汚泥処理における環境負荷低減に向けた取組み事例	りけた取組み事例		メの外の町り組む	妆
(在御川の 1 1 Pより)	対象施設	利用形態	エネルギー等の利用先	へこ目に共ったみ	Ψ \$
	【東部スラッジセンター】 焼却方式/ 循環式流動焼却炉による汚泥焼却方式	焼刦炉廃熱	発生したガスを水洗浄 した排水は構内のロー ドヒーティングの熱源 として再利用。	焼却炉から排出される燃 焼ガスは、排ガス除塵装 置・冷却脱硫塔等で、ばい じん・硫黄酸化物等を取り	札幌市下水道資源公 社 HP
1	【西部スラッジセンター】 焼却方式/ 燃焼回収熱利用による汚泥間接乾燥焼却方式	焼却炉廃熱	廃熱ボイラで蒸気を作り、乾燥機や工場内暖房 り、乾燥機や工場内暖房 等に利用	除き、排出する。	
コ 化	【厚別水再生プラザ】 薬注加圧脱水 【厚別コンポスト工場】 ・粉状施設(発酵工程) 一次発酵槽:横型回転パドル式 二次発酵槽: 堆積式 二次発酵槽: 堆積式 ・粉状施設(造粒工程) 造粒機: 回転ドラム型 乾燥機: 回転ドラム型並流熟風式	人 ズ ボ ン コ	發展地	コンポストの生産過程で発生する具気は、薬品により脱臭。	
	 ・焼却灰のアスファルト合材への混合(東郡山ボンブ場内整備) ・モルタルと下水汚泥焼却灰の混合材料 ・モルタルと下水汚泥焼却灰の混合材料 ・高温焼却化による温室効果ガス排出量削減 汚泥焼却のときに排出される温室効果ガスは年間約4万 to 汚泥焼却のときに非出される温室効果ガスは年間約4万 to 焼却温度の上昇(高温焼却化)により、一酸化二窒素の排出 量削減を図る。840℃での焼却を可能とするよう2号焼劫炉 を建設し、これにより、二酸化炭素換算で、毎年約4500tの 温室効果ガスを削減できる。 ・1,256haになる。これは青葉山公園(34.6ha)の36倍に相当 する。 	烧 劫厌 龙水污泥	道路舗装に使うアスフ アルトの合材等として 利用する実験を進めて いる。 下水道建設のときな どに使うモルタルの一 部としての利用も現在 進めています。 携払しない汚泥は、セ メント原料として再利 用(平成 18年度から)		仙台市下水道 HP

表 5.2 他都市における事例

茶	5		千葉市下水道局 HP
イのなの町の名た	くっと言う そう ぎょう		
	エネルギー等の利用先	セメント原料化	セメント原料化 地域冷暖房
こ向けた取組み事例	利用形態	撓劫灰	塘 大 秋 秋
汚泥処理における環境負荷低減に向けた取組み事例	対象施設	【下水処理センター】 本市の絵末処理場は、昭和 41 年に施設が建設され、大宮駅 東側の区域の下水処理を開始した。 平成 8 年 6 月に荒川左岸南部流域下水道事業芝川準幹線の 完成により、昭和 41 年建設の施設は廃止された。 現在は大宮区の大門町、宮町、東町、高鼻町、堀の内町、 天沼町を含む南部処理区を処理しており、その面積は 110.8haである。	①下水汚泥の有効利用 現在、浄化センターで発生する汚泥は焼却処理を施し、焼 却灰として埋め立て処分している。 現在、焼却灰の一部を、セメントの原料として再利用している。 いる。 ②下水熱利用 下水が保有する熱エネルギーを利用し、省エネルギー型リ サイクル社会の検討を進めていく。
主な処理方法	Pより)	城	ح
<u>対</u> 社		よい、市また	千 葉 市

~	汚泥処理における環境負荷低減に向けた取組み事例	向けた取組み事例		その他の取り組み	核
Pより)	対象施設	利用形態	エネルギー等の利用先		
	多摩川上流水再生センター、浅川水再生センター、清瀬水再 生センター、東部スラッジブラント 【江東区新砂三丁目地区地域冷暖馬事業】 下水汚泥を焼却したときに生じる廃熱(洗煙水)を利用して 温水を作るとともに、処理水をガス吸収冷温水機の冷却用水 に利用するなど、水再生センターの未利用上ネルギーを最大 限に活用して、給湯や冷暖房を行う。 この事業による環境効果は、ビルごとに冷暖房する場合と 比較し、二酸化炭素を約6割、窒素酸化物を約7割削減する ことができる。この二酸化炭素の削減量は、代々木公園の約 13倍の森林が吸収する二酸化炭素の自減量は、代々木公園の約 13倍の森林が吸収する二酸化炭素の自減量は、代々木公園の約 13倍の森林が吸収する二酸化炭素の自減量は、代々木公園の約 13倍の森林が吸収する二酸化炭素の削減量は、代々水公園の約 13倍の森林が吸収する二酸化炭素の削減量に、代々水子 能力を水再生センターで利用している。これにより、エネル ギーの有効活用、電力コストの縮減、温室効果ガスの排出量 の削減を図ることができる。みやざ水再生センターでは昭和 63年から、森ヶ崎水再生センターでは PFI 方式により平成 16年度から実施している。 500歳と加った路熱を回収し、発電に利用している。 諸気はプラント内で使用し、焼却炉の運転に必要な電力の約 80%を自給している。	焼劫炉廃熱(冷暖 バイオマスエネル ギーによる発電 焼劫炉廃熟(発電)	場內利用		東京都下水道局HP 支献 1)「資源エネル ギー長官賞」受賞、東 部スラッジ汚泥炭化事 業 第 1619 号 2008.12.16 支献 2) 「東部スラッジプラント汚 泥 成 化 事 業」Vol.44 No.533 2007.3 No.533 2007.3 文ラント汚泥炭化事業」 Vol.31 No.8 2008.7
	平成 19 年度下期には、民間企業のノウハウを活用し、バイ オマス資源である下水汚泥から炭化燃料を製造し、国内で初 めて石炭火力発電所に販売する「東部スラッジブラント汚泥 炭化事業」を実施ししている。	火力発電所の燃料としての利用 (予定	発電所 (電力事業者)		

生なる	主な処理方法 (各都市のH-	汚泥処理における環境負荷低減に	る環境負荷低減に向けた取組み事例		その他の取り組み	参考
~~ `	Р է У)	対象施設	利用形態	エネルギー等の利用先		> \
	焼劫	〇改良土ブラント 改良土グラント 改良土とは、下水道工事等で掘削された土に焼却灰を約 しの%混合して良質な埋め戻し材とした土のことである。 下水汚泥の焼却灰は、土を良質なものにする石灰分が多く 含まれており、また、土の水分を吸収する効果をもっている。 この焼却灰の性質に目をつけ、改良土プラントを設置し、改良土を製造している。	燒劫灰	建設残土の改良材		
		下水汚泥焼却灰は、セメント製造の主原料である粘土と成分が類似していることから、粘土の代替えとして焼却灰を利用するものである。セメントは、土木、建築工事などで使用量が多いことから、大量の焼却灰が有効利用できる。	燒劫灰	セメント化原料		
	基	【入江崎総合スラッジセンター】 市内の4つの水処理センター(入江崎、加瀬、等々力、麻 生)からバイプラインにより圧送されてくる汚泥を、遠心濃 縮した後、ベルトプレス脱水工程を経て、流動焼却炉により 焼却にはセメントの原料として有効利用されている。また、 にの処理工程から発生する余熱エネルギーを、市民温水プー ルに活用しているほか、施設の冷暖房、給湯等の熱源に有効 利用している。	焼켘灰	セメント化原料 余剰エネルギーの活用		
1 112	焼却	下水道管から発生した砂を集め洗砂施設できれいにした砂 は、下水道工事等での埋め戻し用として利用	沈砂	埋め戻し材		
116	焼却					
焼却	E.					

本 水	Ŷ	文献 1) 炭化実験予定 (H20年度)、空見スラ ッジリサイクルセンター の第2期事業、第 1616 号 2008.11.25	
その外の町り組む	へい回い及り組み		
	エネルギー等の利用先	楊	石材として建設資材利用 外装曜タイル (鳥羽水環 境保全センター第1管 建棟,東海北陸自動車道 城端トンネル等で使用) 透水性セラミックブ 日ック (京都競馬場等で 使用) 等
る環境負荷低減に向けた取組み事例		焼 劫亇홋熱	茶園メラブ
汚泥処理における環境負荷低減	対象施設	【山崎汚泥処理場】 山崎赤泥処理場】 山崎水処理センターに隣接する汚泥処理場は、おもに守山、 名城、堀留、熱田、伝馬町、山崎水処理センターで発生する 汚泥を集中して処理するため、昭和 39 年 月、運転を開始し た。その後も汚泥の増加に対処するため、昭和 45 年には施設 の増強、昭和 57 年には脱水機種の変更(真空脱水機→ベルト プレス)が行われ、さらに平成 2 年には焼却炉機種の変更(多 段炉→流動炉)を行い、設備の方実、増強につとめている。平 成 15 年 1 月にはべいトプレス脱水機の更新を完了しました。 集田水処理センターに隣接する汚泥処理場は、おもに西山、 植田、鳴海、千年、柴田の各水処理センターで発生する汚泥処 理から、濃縮、機械脱水、焼却による近代的な汚泥処理場と して生まれかわった。平成 3 年に活動炉が稼働している。 (宝神汚泥処理場】 おもに露橋、岩塚、打出、宝神の各水処理センターで発生 する汚泥を集中して処理するため、昭和 50 年 11 月から一部 の施設の運転を開始した。	【鳥羽水環境保全センター】 下水汚泥の再資源化を行う鳥羽水環境保全センター溶融石 材化設備を導入し、平成8年12月から1基目が、平成13年 4月から2基目が稼動している。 汚泥溶融石材化設備は脱水ケーキ(酒かす状になった汚泥) を焼却し、残った灰分を溶融し結晶化することによって、下 水汚泥を天然石と同様の石材として資源化する設備である。 生産した石材化溶融スラグは「京石」(みやこいし)と命名 し、利用・販売に努めている。
主な処理方法	(在御川の日 Pより)	斑	焼払、溶融
対土	ゆ三字	名古屋市	方

	₹ ₩				
· 나 ~ 나 (· 나)	その他の取り組み				
	エネルギー等の利用先	発電および焼却の燃料	建設資材として利用		アスファルト材料の一部や舗装ブロック 部や舗装ブロック 場内利用
こ向けた取組み事例	利用形能	消化ガス	溶融スラグ	ョンポスト	焼却反 消化ガス
汚泥処理における環境負荷低減に向けた取組み事例	対象施設	【舞洲スラッジセンター】 汚水を処理した後に残る汚泥は、濃縮⇒消化⇒脱水⇒溶融 又は焼却 大阪市では独自の消化技術を開発し、汚泥を半分程度に減 量している。また消化槽で発生した消化ガスはメタン(CH4) を多く含み、発電や焼却の燃料として利用している。 焼却は汚泥を埋立処分するのに際し、減量・安定化するた め行っている。	溶融は焼却に替わる処理方法で、溶融炉で生成する溶融ス ラグは建設資材として有効利用している。	【三宝下水処理場】 当処理場は、市の北西端大和川河口に位置し、昭和 38 年に 運転を開始し平成 9 年に増設を行い現在に至っている。 また、下水と共にし尿の処理も行っている。 【石津下水処理場】 当処理場は、市の西部石津川河口の臨海埋め立て地に位置 し、昭和 47 年に運転を開始し、昭和 58 年の増設、平成 11 年の津人野処理区の統合を経て現在に至っている。 【泉北下水処理場】 当処理場は、昭和 44 年に運転を開始し、平成 12 年に増設 を行った。	【東クリーンセンター】 東灘・西部・ポートアイランド処理場では、必要電力の約 90%をごみ焼却施設の発電電力でまかなっています。 【東灘処理場】 東灘・中部・西部・垂水・玉津処理場では汚泥処理の過程 で発生する消化ガスを場内の燃料に利用している。
主な処理方法	(谷都市の日 Pより)	焼却、溶融		広域処理、」 ンポスト化 シポスト化	焼劫
ע 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-		大阪市		形	神 一

タキ	主な処理方法		汚泥処J	汚泥処理における環境負荷低減に向けた取組み事例	に向けた取組み事例		ろのなら形らなど	1 4 국
金三	(在御川ジロ Pより)		対象施設		利用形能	エネルギー等の利用先	へこ回り取り置め	Ų.
広島市	焼却、コンポ スト化	焼却、コンポ 焼却処理およびコンポスト化を実施 スト化	コンポスト化を実施		焼却廃熱 コンポスト	場內利用 緑農地利用		
福岡市	焼却、コンポ スト化		各処理場においては、焼却処理を実施 汚泥の一部を【(財) 福岡市下水道資源	各処理場においては、焼却処理を実施 汚泥の一部を【(財) 福岡市下水道資源センター(コンポスト	焼却廃熱	場內利用		文献 1)「下水汚泥の 燃料利用をテーマに共
		工場)】 にんコン	工場)】にてコンポスト化している。		コンポスト	禄農地利用		同研究」第 1527 号
								2007.2.6 文献 1) 「下水浜泥園
								一般的一般的。
								究開始」第 1561 号
								2007.10.16
文献 1	文献1) 週刊下水道情報		文献 2) 下水道協会誌	文献3) 月刊下水道	眞			

6「下水水汚泥の燃料化」の各種方式並びに「消化ガスの活用」の各種方法の検討

6.1 ヒアリングによる情報収集と検討

(1) 検討条件

製造メーカーからのヒアリングを行い、下記の項目について検討を行う。

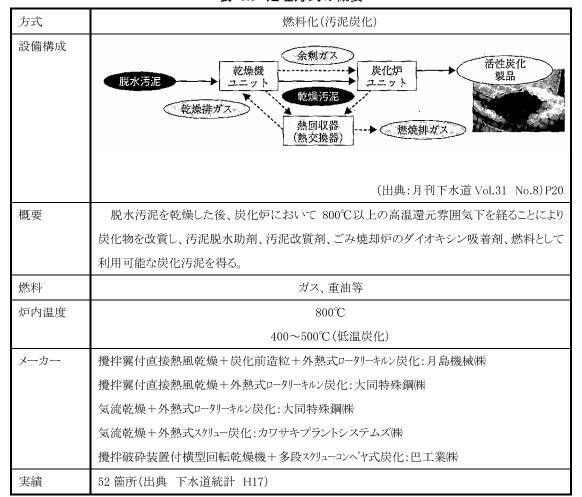
1) 下水汚泥の燃料化

方式:「低温炭化」、「中温炭化」、「造粒乾燥」の3方式 能力:「日100トン」、「日50トン×2基」

2) 消化ガスの活用方法

「消化ガス発電」、「消化ガス精製燃料」、「下水汚泥の燃料化に係る熱利用」

·			I
燃料化方式	低温炭化	中温炭化	造粒乾燥
処理能力		100 t / 日	
(湿潤ベース)			
設備構成		100 t /日×1 基	
		50 t /日×2基	
	脱水汚泥受入設備		脱水汚泥受入設備
	乾燥設備		乾燥設備
	炭化設備		貯留・搬出設備
	貯留・搬出設備		ユーティリティ供給設
	ユーティリティ供給設備		備
	その他付帯設備		その他付帯設備
ユーティリティ	電気		
	燃料(重油または灯油)		
	上水		
	薬品		
	その他		


表 6.1 下水汚泥の燃料化に係る条件

燃料化方式	消化ガス発電	消化ガス精製燃料	燃料化工程への		
			エネルギー供給		
設備構成	消	化工程より後段を対象とす	3		
	発電機	消化ガス精製設備	消化ガスボイラー		
	付帯設備	付帯設備	付帯設備		
ユーティリティ	電気				
	燃料(重油または灯油)				
	上水				
	薬品				
	蒸気(消化ガスボイラー	からの熱供給を想定)			
	その他				

表 6.2 消化ガスの活用に係る条件

(2) 処理方式の概要

処理方式の概要を以下に示す。

表 6.3 処理方式の概要

方式	燃料化(汚泥乾燥)
設備構成	脱水汚泥
概要	熱風や油などを用いて、直接または間接的に脱水汚泥を乾燥させ、含水率が低く (5~10%)、ハンドリングの良い乾燥汚泥を得る。得られた乾燥汚泥は、燃料として
	利用される。なお、炭化のような汚泥の改質は行われない。
燃料	消化ガス、ガス、重油等
炉内温度	600~800°C
メーカー	乾燥ドラム方式造粒乾燥機:新日鉄エンジニアリング㈱
	多段円盤式造粒乾燥機:日立造船㈱
	油温減圧乾燥方式:㈱プロレックス
	汚泥造粒乾燥:荏原環境エンジニアリング㈱
	真空攪拌乾燥:前澤工業㈱
実績	100 箇所(出典 下水道統計 H17)

表 6.4 処理方式の概要

(3) ヒアリング調査の対象

汚泥資源の有効活用実績を有するメーカー等を対象にヒアリングを実施した。 汚泥処理方式ごとの実績を次に示す。

	実	績
メーカー名	乾燥	炭化
日立造船(株)	0	
荏原環境エンジニアリング(株)	•	
月島機械(株)	•	0
大同特殊鋼(株)		•
カワサキプラントシステムズ(株)	•	•
巴工業(株)		•
メタウォーター(株)	•	•
三機工業(株)	•	
(株)神鋼環境ソリューション		
(株)クボタ	•	
日揮		

表 6.5 ヒアリング一覧

※●は実績有り、○はJSまたは下水道新技術推進機構の認定のみ

また、下水汚泥の有効活用を目的とした研究開発「LOTUS Project 」における技術開発概要と 参加企業を表 に示す。

また、汚泥焼却施設の実績一覧を表 に示す。

		表 6.6 LOTU\$	LOTUS Project への参加企業
Č,	(1)スラッジ・ゼロ・ディスチャージ技術の開発	~ 捨てるよ	り安く下水汚泥を全量リサイクルできる技術の開発 ~
No.	技術名	技術提案者	開発技術の概要
1	下水汚泥のバイオンリッド燃料化	日立造船株式会社	熱エネルギーの利用・回収技術と下水汚泥の乾燥造粒技術とを組み合わせてバイオソリッド燃料を製造す る技術。
7	下水汚泥焼却灰からのりん回収技術 リン酸 Ca 塩回収の場合	日本ガイン株式会社 (岐阜市上下水道事業部)	下水汚泥焼却灰にアルカリ性溶液を加えてりん酸を溶出させ 液肥又はりん酸カルシウム塩 として,高付加価 値の肥料原料とする技術。
က	下水汚泥の活性炭化と有効利用による汚泥処理費の低減	カワサキ環境エンジニアリング株式会社 株式会社木村製作所	脱水汚泥から活性炭化物を製造し、汚泥脱水助剤、汚泥改質剤又はゴミ焼却炉のダイオキシン吸着剤等と する技術。
(2	(2)グリーン・スラッジ・エネルギー技術の開発		→ 下水汚泥等のバイオマスを使って買電よりも安く発電できる技術の開発 →
No.	o. 技術名	技術提案者	開発技術の概要
4	+ 下水汚泥とバイオマスの同時処理方式 によるエネルギー回収技術	月島機械株式会社	下水汚泥を超音波可溶化するとともに,その他バイオマスを受け入れて下水汚泥と合わせて消化し,消化ガ ス発生量を増加させ発電する技術。
		JFE エンジニアリング株式会社	

への参加企業
Project 🗸
LOTUS
表 6.6

No.	技術名	技術提案者	開発技術の概要
4	<u>下水汚泥とバイオマスの同時処理方式</u> によるエネルギー回収技術	月島機械株式会社	下水汚泥を超音波可溶化するとともに,その他バイオマスを受け入れて下水汚泥と合わせて消化し,消化ガ ス発生量を増加させ発電する技術。
Э	<u>低ランニングコスト型混合消化ガス発電 システム</u>	JFE エンジニアリング株式会社 アタカ大機株式会社 鹿島建設株式会社 ダイネン株式会社	その他バイオマスを受け入れて下水汚泥と合わせて消化し,消化ガス発生量を増加させ発電する技術。生 物脱硫設備の導入によるコスト低減等も検討。
9	<u>消化促進による汚泥減量と消化ガス発</u> (株)日立プラントテクノロジー 重	(株)日 <i>立プラントテクノロジー</i> 栗田工業株式会社	下水消化汚泥をオゾン処理することにより消化を促進し、汚泥の減量化を図るとともに消化ガス発生量を増加させ発電する技術。

(3) 両技術の一括開発

開発技術の概要	その他バイオマスを受け入れて下水汚泥と合わせてメタン発酵・発電する技術及び発酵残渣から活性炭化物を製造し、環境浄化剤とする技術。
技術提案者	カワサキ環境エンジニアリング株式会社
技術名	湿潤バイオマスのメタン発酵・発電・活 性炭化システム
No.	L

表 6.7 污泥焼却施設実績

方式	プラントメーカー	市町·流域名	下水処理場名称	施設規模	稼動年月 ●:稼動施設、O受注却
階段式ストーカ炉	タクマ	北海道札幌市 奈良県大和川上流	西部スラッジセンター 奈良県浄化センター	550t/日(100t/日×4基、150t/日×1基 180t/日(90t/日×2基)) ●HI2年8月 ●H7年4月
多段炉	日本ガイシ、三井造船	京都府京都市	鳥羽処理場	300t/日(150t/日×2基) 600t/日(300t/日×2基)	●H8年12月 ●S58年10月
¥ +X N ⁻	月島機械	東京都東京都区部 神奈川県横浜市	南部スラッジプラント 南部汚泥処理センター	100t/日	●S53年6月
	日本ガイシ	神奈川県小田原市 愛知県名古屋市	寿町終末処理場 宝神汚泥処理場	40t/日 300t/日(150t/日×2基)	●S48年4月OH16 ●S61年4月
		大阪府吹田市 和歌山県和歌山市	南吹田下水処理場 和歌川終末処理場	50t/日 60t/日	● S50年1月 ● S49年12月
	中外炉工業	大阪府守口市	守口下水処理場	30t/日	●S53年4月
立型多段炉	<u>月島機械、タクマ、日本ガイシ</u> 月島機械、大阪カスエンシニアリング	 京都府京都市 大阪府安威川	<u>鳥羽処理場</u> <u>中央処理場</u> 今池処理場	600t/日(150t/日×4基) 50t/日	●S62年4月 ●S57年4月
	<u>中外炉工業、クボタ</u> 日本ガイシ	大阪府大和川下流 大阪府猪名川左岸	今池処理場 原田処理場	40t/日 150t/日(50t/日、100t/日)	 \$58年2月 \$63年4月
	64012	大阪府大阪市	放出下水処理場	200t/日	●H2年2月
	月島機械	<u>鳥取県米子市</u> 大阪府大阪市	内浜処理場 津守下水処理場	30t/日 300t/日	●S50年4月 ●S54年1月
立型多段焼却炉	<u>日本ガイシ、日揮</u> 三菱重工業	大阪府大阪市 山口県下関市	平野下水処理場 彦島終末処理場	200t/日 40t/日	 S56年5月 H5年4月
8段立型多段炉	月島機械	広島県広島市	江波下水処理場	50t/日	●S49年11月
<u>立型多段乾留式</u> 流動炉	日本ガイシ 月島機械	大阪府豊中市 北海道旭川市		50t/日 140t/日(80t/日、60t/日)	●S56年4月 ●H13年4月
		增玉県 中川 東京都多摩川	<u>中川処理センター</u> ハ王子処理場	500t/日(110t/日、140t/日、250t/日) 50t/日	●H8年12月 ●H6年2月
		東京都東京都区部	小台処理場	600t/日(200t/日×3基)	●H2年4月
		東京都立川市 神奈川県横浜市	錦町下水処理場 南部汚泥処理センター	90t/日(45t/日×2基) 500t/日(150t/日×2基、200t/日)	●H3年4月 ●H14年8月
		神奈川県藤沢市 山梨県甲府市	<u>辻堂浄化センター</u> 甲府市浄化センター(ア	120t/日(60t./日×2基) 50t/日	●H2 ●H4年10月
		三重県四日市市 大阪府大和川下流	<u>日永浄化センター</u> 大井処理場	60t/日(30t/日×2基) 65t/日	● S63年 ●H9年7月
	荏原製作所	青森県岩木川 宮城県仙塩	岩木川浄化センター	80t/日	OH15年度内
	三菱重工業	<u></u> 宮城県仙塩 埼玉県荒川右岸	仙塩浄化センター 新河岸川浄化センター	110t/日 516t/日(96t/日、210t/日×2基)	●H8年4月 ●H6年10月
		東京都多摩川	北多摩二号処理場 議見川クリーンセンター	40t/日 90t/日(30t/日,60t/日)	 ●H元年12月 ●H13年4月
	クボタ、三菱重工業	<u>東京都町田市</u> 宮城県仙台市	南蒲生浄化センター	400t/日(200t/日×2基)	●H8年9月OH17年4月
	三機工業	秋田県秋田湾・雄物川(臨) 東京都多摩川	 <u>秋田臨海処理センター</u> 北多摩一号処理場 	50t/日 330t/日(130t/日、100t/日×2基)	●HII年10月 ●H8年11月〇H15年
		<u>東京都多摩川</u> 東京都多摩川	北多摩一号処理場 多摩川上流処理場 浅川処理場	300t/日(50t/日×2基、100t/日×2基) 150t/日(50t/日、100t/日)	●H8年12月 ●H7年3月
		東京都八王子市	北野下水処理場	120t/日(60t./日×2基)	●H13年4月
		神奈川県大和市 長野県千曲川	北部浄化センター 下流処理区終末処理均	100t/日(50t/日×2基) 25t/日	●H9年3月 ●H5年10月
		岐阜県岐阜市 静岡県西遠	南部プラント 西遠浄化センター	50t/日 100t/日(50t/日×2基)	● S49年7月 ●H10年6月
	クボタ	福島県いわき市	中部浄化センター	50t/日	●H13年11月
		<u>茨城県 那珂久慈</u> 長野県千曲川	<u>那珂久慈浄化センター</u> 上流処理区終末処理均	200t/日(100t/日×2基) 50t/日	●H10年4月〇H17年予 ●H14年2月
	日本ガイシ	<u>茨城県</u> 茨城県霞ヶ浦常南	深芝処理場 利根浄化センター	120t/日(60t/日×2基) 135t/日(45t/日、90t/日)	●H8年4月 ●H11年3月
		埼玉県荒川左岸北部 埼玉県荒川左岸北部	荒川浄化センター	800t/日(200t/日×4基)	●HI0年11月OHI4年1 ●H4年10月OHI5年10
		東京都多摩川	元荒川浄化センター 南多摩処理場	200t/日(50t/日×2基、100t/日) 200t/日(60t/日×2基、80t/日)	●H5年10月〇H16年
		東京都多摩川 東京都多摩川	北多摩二号処理場 八王子処理場	40t/日 100t/日	●H5年5月 ●H8年2月
		東京都東京都区部	砂町水処理センター	250t/日	●H3年4月
		<u>東京都東京都区部</u> 新潟県新潟市	<u>新河岸処理場</u> 中部下水処理場	700t/日(200t/日、250t/日×2基) 30t/日	●HI4年4月 ●H6年8月
		岐阜県岐阜市	北部プラント	50t/日 20t/日	● S55年3月 ●H9年11月
		岐阜県高山市 静岡県静岡市 	高山市下水道センター 中島浄化センター 衣浦西部浄化センター	140t/日(40t/日、100t/日)	●H12年1月
		愛知県矢作川·境川 愛知県矢作川·境川	衣油四部浄化センター 矢作川浄化センター	75t/日(25t/日,50t/日) 130t/日(35t/日,95t/日)	●H13年4月 ●H13年4月
		愛知県豊川	 豊川浄化センター 五条川左岸浄化センタ 	65t/日(25t/日、40t/日) -50t/日	●HII年12月 ●HI3年4月
		<u>愛知県五条川左岸</u> 愛知県名古屋市	山崎汚泥処理場	320t/日(160t/日×2基)	●H2年10月
		<u>愛知県名古屋市</u> 滋賀県大津市		340t/日(150t/日、190t/日) 50t/日	●H9年11月 ●H10年4月
		大阪府淀川右岸 大阪府猪名川左岸	高槻処理場 原田処理場	180t/日(90t/日×2基) 50t/日	●H12年3月 ●H7年4月
		和歌山県和歌山市	和歌川終末処理場	60t/日	OH16年3月
	中外炉工業	<u> 熊本県熊本市</u> 茨城県霞ヶ浦湖北	■ 南部浄化センター ■ 霞ヶ浦浄化センター	100t/日(50t/日×2基)	●H12年7月
	<u>三機工業、日本ガイシ</u> 日本ガイシ、三井造船	東京都荒川右岸東京流域 東京都東京都区部	清瀬処理場 南部スラッジプラント	350t/日(50t/日、100t/日×3基) 1200t/日(300t/日×4基)	●H7年3月 ●H12年4月OH15年4,
	日本ガイシ、三井造船 月島機械、三菱重工業 日本ガイン、二巻季工業	東京都東京都区部	葛西処理場	1100t/日(100t/日、150t/日、250t/日、	30(●H13年4月
	日本ガイシ、三菱重工業	東京都東京都区部 兵庫県JS	<u>東部汚泥処理プラント</u> 兵庫東エースセンター	900t/日(300t/日×3基) 400t/日(200t/日×2基)	●H12年4月 ●H12年8月
	神戸製鋼所	<u>神奈川県酒匂川</u> 京都府福知山市	<u>左岸処理場(酒匂管理</u> 福知山終末処理場	105t/日(15t/日、30t/日、60t/日) 50t/日	●H12年4月 ●H11年12月
	バブコック日立、三菱重工業 日本鋼管	神奈川県横浜市 神奈川県川崎市	北部汚泥処理センター	500t/日(100t/日×2基、150t/日×2基 150t/日(50t/日×3基)) ●H元年8月 ●H7年11月
	니~예티	石川県津幡町	河北郡広域汚泥焼却も	15t/日	●H9年4月
	荏原実業、月島機械	愛媛県松山市 長野県飯田市	 西部浄化センター 松尾浄化管理センター 	60t/日 32t/日(15t/日、17t/日)	●H13年10月 ●H9年9月
	西原環境衛生研究所	岐阜県関市 大阪府寝屋川	関市浄化センター	30t/日 330t/日(130t/日×2基、70t/日)	●H8年12月
	<u>月島機械、中外炉工業</u> 中外炉工業、クボタ	大阪府大和川下流	<u>鴻池処理場</u> 今池処理場	85t/日	●H元年9月 ●H11年2月
	神戸梨鑼所, 在原製作所 川崎重工業	大阪府大和川下流 兵庫県明石市	<u>篠山処理場</u> 二見浄化センター	115t/日(45t/日、70t/日) 85t/日(40t/日、45t/日)	 S53年12月〇H14年 H11年4月〇H16年4.
流動床炉	月島機械	和歌山県和歌山市 東京都町田市	中央終末処理場 成瀬クリーンセンター	45t/日 95t/日(45t/日、50t/日)	●h3年7月 ●H9年4月
01. BOLA 37	Aana	神奈川県横須賀市	下町浄化センター	90t/日(40t/日,50t/日)	●S56年4月
	日本鋼管	烏取県宍道湖 神奈川県相模川	<u>東部浄化センター</u> 左岸処理場(柳島管理	30t/日 590t/日(40t/日、70t/日、120t/日、180	●H5年4月 Dt/目●H10年3月〇H15年4.
	月島機械、三菱重工業 神戸裂綱所	<u>神奈川県相模川</u> 神奈川県酒匂川	右岸処理場(四之宮管 右岸処理場(扇町管理	280t/日(60t/日、100t/日、120t/日)	●H14年4月 ●H15年4月
	11.7 48(3)(177)	兵庫県加古川	加古川上流浄化センタ	- 70t/日	●H10年4月
	三菱重工業	兵庫県加古川 神奈川県鎌倉市	加古川上流浄化センタ 山崎水質浄化センター	1900/日 500/日	●H13年4月 ●H6年4月
		<u>神奈川県箱根町</u> 神奈川県湯河原町	<u> 仙石原浄水センター</u> 湯河原町浄水センター	20t/日(5t/日、15t/日)	●H11年4月 ●H7年12月
		<u>静岡県伊東市</u> 高知県浦戸湾東部	湯川終末処理場	20t/日	●H13年6月
	クボタ	高山県高山市	高須浄化センター 水橋浄化センター	70t/日 15t/日	●H9年4月 ●H7年4月
	月島機械、日本ガイシ、荏原製作所	長野農長野市	東部浄化センター (域)石川県・金沢市汚泥共	90t/日(45t/日×2基) 80t/日	●H5年8月 ●H8年4月
	中外炉工業	石川県金沢市(犀川左岸流 長野県上田市 島野県王地市	上田市下水浄化センタ 王神浄化センタ	- 25t/日	●H8年12月
	川崎重工業	<u>局取県天神川</u> 静岡県浜松市	 <u> 天神浄化センター</u> 中部浄化センター	30t/日 60t/日(30t/日×2基)	●H9年7月 ●H7年4月
	日本ガイシ	愛知県知多市 大阪府池田市	南部浄化センター 池田市下水処理場	18.9t/日 25t/日	●H6年4月 ●H7年10月
		鳥取県鳥取市]秋里下水終末処理場	70t/日(30t/日,40t/日)	●S63年3月〇H15年4,
	日立金属、日本ガイシ、クボタ		西部水処理センター	100t/日(50t/日×2基)	●H5年8月
		福岡県福岡市 福岡県福岡市	東部水処理センター	150t/日(75t/日×2基)	●HI3年4月
循環流動炉	三機工業 神戸裂御、三菱重工業 月島機械	<u>福岡県福岡市</u> 神奈川県横須賀市	下町浄化センター	90t/日	●H11年4月
	三 使工業 神戸発観、三 受筆工業 月 最優級 日本領智 日本ガイシ	<u>福岡県福岡市</u> 神奈川県横須賀市 石川県津幡町 岐阜県岐阜市	 下町浄化センター 河北郡広域汚泥焼却も 北部プラント 	90t/日 20t/日 60t/日	●HII年4月 ●H14年4月 ●S49年7月
<u>乾燥機付循環流動炉</u> 流動層炉		福岡県福岡市 神奈川県イズ質市 石川県津崎町 岐阜県岐阜市 京都府桂川石岸 大阪府大阪市	 下町浄化センター 河北郡広域汚泥焼却t 北部プラント 洛西浄化センター 放出下水処理場 	90t/日 20t/日	●HII年4月 ●H14年4月 ●S49年7月
	三機工業 神戸梨観、三後軍工業 月島极城 日本類学 日本ガイシ 中外近工業	福岡県福岡市 神奈川県橿猿須賀市 石川県津幡町 乾星県岐阜市 京都府桂川右岸	 下町浄化センター 河北郡広域汚泥焼却も 北部プラント 	90t/日 20t/日 60t/日 220t/日(110t/日×2基)	 ●HI1年4月 ●H14年4月 ●S49年7月 ●H2年10月〇H15年4月

6.2 ライフサイクルコストの試算(下水汚泥の燃料化)

(1) 試算条件

「下水汚泥の燃料化」の各種方式のライフサイクルコストの試算を行った。ライフサイク ルコストに係る項目は下記のとおりとする。

- 1) 試算条件
- i) 事業期間 20 年

事業期間中に施設の更新は見込まず、20年間使用するものとした。

- ii) 建設費 : (機器費+工事費)(土木・機械・電気・建築)
 - ・建設費は、事業期間20年間での年価とする。 年価算定に際しては、割引率は考慮せず、事業期間(20年)の単純平均とした。
 - ・建屋は、設備全体を納めるものとし、鉄骨造を想定した。
 - ・建設費については、メーカーへのヒアリング結果から算定した平均額を用いた。
- iii) ユーティリティ費: 燃料、電気、水道、その他

条件で設定した施設規模(100t/日×1基、50t/日×2基)から年間の汚泥処理量設定し、 それに応じたユーティリティ使用量に各単価を乗じて求めた。

ユーティリティとしては、燃料(A重油)、電気、水道とし、各々の単価は次の通りとした。

電力	22	円/kwh
A 重油	60	円/L
用水	200	円/m3

iv) 補修費

年間の補修費を計上する。年間の補修費は、事業期間が20年と長期に亘ることも加味し、 設備建設費の3%として計上した。

v)人件費

人件費は、施設の24時間運転を前提に、総括責任者1名、運転監視員8名の計9名として計上した。

年間の人件費は次の通りとした。

総括責任者	6,000	千円/年
運転監視員	5,000	千円/年

vi)製品燃料売却益

製品燃料の売却益は、製造量に運搬費を含む売却単価を乗じて求めた。売却単価は、次の 通りとした。

売却単価 100 円/t

vii) 温室効果ガス排出量(事業期間の排出量のみ)

事業期間(20年間)中のユーティリティ使用量に応じた温効果ガス排出量を計上した。 また、有効利用に伴う温室効果ガスの削減量を、石炭代替利用を想定して算定した。 (2) ライフサイクルコストの算定結果

1) 建設費および維持管理費

建設費および維持管理費の試算結果を次に示す。

ユーティリティは、電力、燃料(A重油)、用水を計上した。また、維持管理費のうち、補 修費については、建設費の3%を1年あたりの補修費として計上した。

		低温炭化	高温炭化	乾燥	備考
建設費	機械(百万円)	2,910	3,430	2,770	
	電気(百万円)	550	650	530	
	土木(百万円)	_	_	-	地盤条件等未定のため含まず
	建築(百万円)	335	300	295	
	小計	3,795	4,380	3,595	
	建設費年価	190	219	180	割引率は考慮しない
	(百万円/年)	190	219	100	剖灯学は今悪しない
	事業期間	20	年		
維持管理費	ユーティリティ				
(百万円/年)	電力	68	72	69	
	燃料(A 重油)	0.217	0.153	0.162	
	用水	0	5	9	
	補修費	104	122	99	建設費の3%
	人件費	46	46	46	
	小計	218	245	223	
コスト計	(百万円/年)	408	464	403	
燃料売却益	(百万円/年)	-0.62	-0.39	-0.73	
年価合計	(百万円/年)	407	464	402	

表 6.8 建設費、維持管理費年価の比較(50t/日×2基)

		低温炭化	高温炭化	乾燥	備考
建設費	機械(百万円)	2,420	2,660	2,180	
	電気(百万円)	460	510	420	
	土木(百万円)	ļ	_	_	地盤条件等未定のため含まず
	建築(百万円)	300	360	250	
	小計	3,180	3,530	2,850	
	建設費年価 (百万円/年)	159	177	143	割引率は考慮しない
	事業期間	20	年		
維持管理費	ユーティリティ				
(百万円/年)	電力	64	72	55	
	燃料(A 重油)	0.208	0.153	0.158	
	用水	0	4	9	
	補修費	86	95	78	建設費の3%
	人件費	46	46	46	
	運搬費	18	18	37	
	小計	196	217	188	
コスト計	(百万円/年)	355	394	331	
燃料売却益	(百万円/年)	-0.62	-0.39	-0.73	
年価合計	(百万円/年)	355	393	330	

表 6.9 建設費、維持管理費年価の比較(100t/日×1基)

(3) 温室効果ガス排出量の比較

ユーティリティ使用量および汚泥燃料の使用に伴う温室効果ガス排出量を試算した。温室 効果ガス排出量の算定条件は次の通りとした。

1) 算定条件

- i) 汚泥処理施設の運転に伴う温室効果ガス排出量を算定対象とする。
- ii) 算定の対象とする温室効果ガスは、二酸化炭素(CO₂)とする。
- 温室効果ガスとして「下水道における地球温暖化防止実行計画策定の手引き、平成11年8月、 日本下水道協会」において対象とされる3物質のうち、CO₂、を除くメタン(CH₄)、一酸化二窒素 (N₂O)については、今回の検討対象から除くものとする。

iii) 二酸化炭素 (CO₂) 排出係数は、「温室効果ガス排出算定・報告マニュアル Ver2.3、平成 20 年 5 月、環境省・経済産業省」に準拠する。

iv) 電気の使用に伴う二酸化炭素(CO₂)排出係数は、九州電力(株)の平成 18 年度排出係数 0.000375 tCO₂/kWh を用いる。

2) 現状の室効果ガス排出量

現状の温室効果ガス排出量は、環境モデル都市提案書にて試算している現状の処理方法による脱水汚泥1tあたりの排出量(0.1t-CO₂/汚泥 t)に年間脱水汚泥発生量を乗じた約 8,000t-CO₂/ 年としている。

			低温炭化	高温炭化	乾燥
그	ユーティリティ使用量	電力(kWh/日)	8,500	9,000	8,600
ティリティ使用に伴う排出		燃料(A 重油 m3/日)	9.9	7.0	7.4
		用水(m3/日)	6	70	120
す使田	排出係数	電力(tCO2/kWh)	0.000375	0.000375	0.000375
に伴		燃料(A 重油 tCO2/m3)	2.70963	2.70963	2.70963
う 排	CO2 排出量	電力(tCO2/年)	1,163	1,232	1,177
畄		燃料(A 重油 tCO2/年)	9,791	6,923	7,319
		н П П	10,955	8,155	8,496
固	脱水汚泥処理量	t/年	36,500	36,500	36,500
形燃料	固形燃料製造量	t/t−脱水汚泥	0.17	0.11	0.12
料 利		t/年	6,205	3,906	4,380
固形燃料利用に伴う削減	固形燃料発熱量	GJ/t•DS	15,922	15,922	14,665
		GJ/年	98,796	62,183	64,233
	排出係数(一般炭)	(tC/GJ)	0.0247	0.0247	0.0247
1/55	CO ₂ 削減量	(t-CO2/年)	▲ 8,948	▲ 5,632	▲ 5,817
	年間排出量	(t-CO2/年)	2,007	2,523	2,678

表 6.10 温室効果ガス排出量の比較(50t/日×2基)

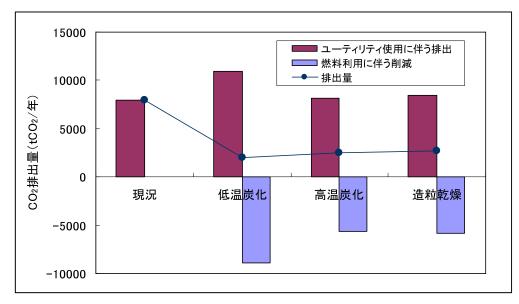


図 6.1 温室効果ガス排出量の比較(50t/日×2基)

			低温炭化	高温炭化	乾燥
ユー	ユーティリティ使用量	電力(kWh/日)	8,000	9,000	6,800
ユーティリティ使用に伴う排出		燃料(A 重油 m3/日)	9.5	7.0	7.2
		用水(m3/日)	6	50	120
使 田	排出係数	電力(tCO2/kWh)	0.000375	0.000375	0.000375
「に」		燃料(A 重油 tCO2/m3)	2.70963	2.70963	2.70963
う排	CO2 排出量	電力(tCO2/年)	1,095	1,232	931
出		燃料(A 重油 tCO2/年)	9,396	6,923	7,121
		⇒ 	10,491	8,155	8,052
固	脱水汚泥処理量	t/年	36,500	36,500	36,500
形燃	固形燃料製造量	t/t−脱水汚泥	0.17	0.11	0.12
料 利		t/年	6,205	3,906	4,380
用に	固形燃料発熱量	GJ/t•DS	15,922	15,922	14,665
形燃料利用に伴う削減		GJ/年	98,796	62,183	64,233
	排出係数(一般炭)	(tC/GJ)	0.0247	0.0247	0.0247
793	CO ₂ 削減量	(t-CO2/年)	▲ 8,948	▲ 5,632	▲ 5,817
	年間排出量	(t-CO2/年)	1,543	2,523	2,234

表 6.11 温室効果ガス排出量の比較(100t/日×1基)

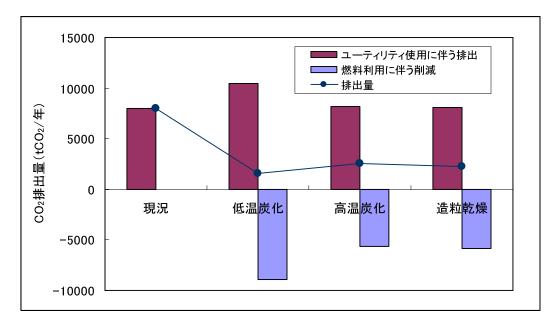


図 6.2 温室効果ガス排出量の比較(100t/日×1基)

6.3 ライフサイクルコストの試算(消化ガスの活用)

(1) 試算条件

「消化ガスの活用」方式のうち、消化ガス発電に係るライフサイクルコストの試算を行った。ライフサイクルコストに係る項目は下記のとおりとする。

- 1) 試算条件
- i) 事業期間 20 年
 事業期間中に施設の更新は見込まず、20 年間使用するものとした。
- ii) 建設費 : (機器費+工事費)(土木・機械・電気・建築)
 - ・建設費は、事業期間20年間での年価とする。 年価算定に際しては、割引率は考慮せず、事業期間(20年)の単純平均とした。
 - ・建屋は、設備全体を納めるものとし、鉄骨造を想定した。
 - ・建設費については、メーカーへのヒアリング結果から算定した平均額を用いた。

iii) ユーティリティ費: 電気、水道、その他

消化ガスの活用は、日明浄化センターにおける消化ガス発生量から、消化槽加温用ボイラーおよび乾燥設備での利用量を除く余剰ガスを有効活用するものとして、表 に示した余剰ガス量(約2,400千m³/年)を対象規模とし、それに応じたユーティリティ使用量に各単価を乗じて求めた。

ユーティリティとしては、電気、水道とし、各々の単価は次の通りとした。

電力	22	円/kwh
用水	200	円/m3

iv) 補修費

年間の補修費を計上する。年間の補修費は、事業期間が20年と長期に亘ることも加味し、 設備建設費の4%として計上した。

v)人件費

人件費は、施設の24時間運転を前提に、総括責任者1名、運転監視員4名の計5名として計上した。

年間の人件費は次の通りとした。

総括責任者	6,000	千円/年
運転監視員	5,000	千円/年

vi) 温室効果ガス排出量(事業期間の排出量のみ) 事業期間(20年間)中のユーティリティ使用量に応じた温効果ガス排出量を計上した。 また、有効利用に伴う温室効果ガスの削減量を算定した。

(2) ライフサイクルコストの算定結果

1) 建設費および維持管理費

消化ガス発電におけるユーティリティは、電力については発電電力を利用するものとし、 用水については、処理水の利用を前提に費用を見込まないものとした。また、維持管理費の うち、補修費については、ヒアリング結果から、建設費の4%を1年あたりの補修費として 計上した。

A 0.12 建設員、施行皆埕員千冊の比較						
		消化ガス発電	備考			
建設費	機械(百万円)	640				
	電気(百万円)	640				
	土木(百万円)	_	地盤条件等未定のため含まず			
	建築(百万円)	52				
	小計	692				
	建設費年価	0.5	生11日本11+文庫1 けい、			
	(百万円/年)	35	割引率は考慮しない			
	事業期間	20				
維持管理費	ユーティリティ					
(百万円/年)	電力	0	発電電力を利用			
	用水	0	処理水の利用前提として見込まない			
	補修費	26	建設費の4%			
	人件費	26				
コスト計	(百万円/年)	52				
年価合計	(百万円/年)	87				

表 6.12 建設費、維持管理費年価の比較

(3) 消化ガスの利用による温室効果ガス削減量の算定

消化ガスを活用した発電により回収可能な電力量を全量下水処理場で使用することを前提 に、電力使用に伴う温室効果ガス削減量を試算した。温室効果ガス削減量の算定条件は次の 通りとした。

1) 算定条件

i) 汚泥処理施設の運転に伴う温室効果ガス排出量を算定対象とする。

ii) 算定の対象とする温室効果ガスは、二酸化炭素(CO₂)とする。

iii) 二酸化炭素(CO₂)排出係数は、「温室効果ガス排出算定・報告マニュアル Ver2.3、平成 20 年 5 月、環境省・経済産業省」に準拠する。

iv) 電気の使用に伴う二酸化炭素(CO₂)排出係数は、九州電力(株)の平成 18 年度排出係数 0.000375 t-CO₂/kWh を用いる。

2 2 3 3 温主効未分入你山重の昇足相未				
			消化ガス発電	
出 ユ ユーティリシ	ユーティリティ 使用量	電力(kWh/日)	0	
イリテ	使用重	用水(m ³ /日)	0	
/ イ 使 田	排出係数	電力(tCO ₂ /kWh)	0.000375	
出 ユ テ イ 様 出 が し テ イ 様 単 ボ 様 単 ボ 様 出 係 数 (た の で が し 、 イ 様 出 係 数 (た の で の で イ 様 出 係 数 (の で の で の で の で の で の で の で の で の で の の の の の の の の の の の の の	電力(tCO ₂ /年)	0		
排			0	
発 電量 に よる 削 減 CO2 削減量	発電量	kWh/年	4,700,000	
	排出係数	電力(tCO ₂ /kWh)	0.000375	
	CO2 削減量	電力(tCO ₂ /年)	▲1,763	
	年間排出量	(t-CO ₂ /年)	▲1,763	

表 6.13 温室効果ガス排出量の算定結果

消化ガス発電により回収した電力の利用により、温室効果ガスの排出量は、約1,800 t/年 削減が可能となった。本ケースの場合は、24 時間連続運転を条件としたため、消化ガス発電 設備の起動停止に必要なユーティリティをほとんど計上する必要が無いことから、発電電力 量分の温室効果ガス削減を見込むことができた。 なお、消化ガスの使用量あたりの発電電力量は、消化ガスの性状や採用する設備の特性な どにより異なるが、約 $1.9kWh/m^3 \sim 2.2kWh/m^3$ であり、今回試算したケースでは、 $1.96kWh/m^3$ であった。

本ケースでは、消化ガス発生量のうち、余剰ガスを発電の燃料としたが、消化槽の加温や 乾燥への熱源供給に発電により生じる廃熱を利用することが可能なコジェネレーションシス テムを導入することで、より効率的なエネルギー活用が可能となる。

発生する消化ガス全量を発電の燃料として利用し、廃熱を活用する消化ガス発電コジェネ レーションシステムを導入する際のエネルギー利用イメージを次に示す。



図 6.3 消化ガス発電コジェネレーションシステムのエネルギー利用イメージ