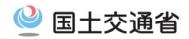

# 検討の必要性 ~下水道界の主な課題と発達したICT



下水道事業における 課題 (ニーズ)



ICT (シーズ)




- 1. 市民サービスの向上
- 2. 地方公共団体のマネジメントカの強化
- 3. 国の効果的な施策立案・地方公共団体支援の推進
- 4. 新たなビジネスの創造



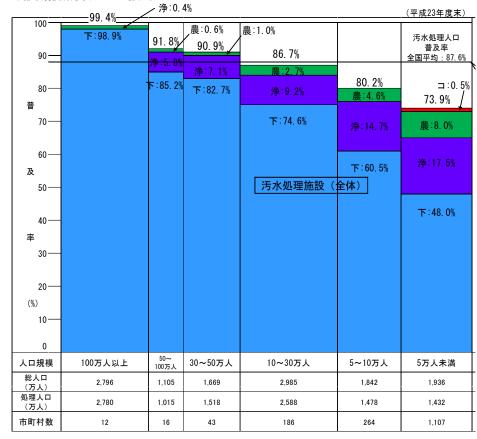
## アウトプットイメージ

- ・下水道事業のためのICT活用の将来像
- ・実施に向けた方策・仕組み
- ・具体的な行動計画



- 1. 維持管理の重要性の高まり
- 2. 下水道の役割の高度化
- 3. 災害対応の重要性
- 4. 自治体の財政の逼迫
- 5. 人材不足、世代交代による技術継承の問題
- 6. 広報・情報共有の重要性

# 1. 維持管理の重要性の高まり(下水道の普及状況の視点)


国土交通省

- •下水道処理人口普及率75.8%、 汚水処理人口普及率87.6%
- ・効率的な維持管理の必要性

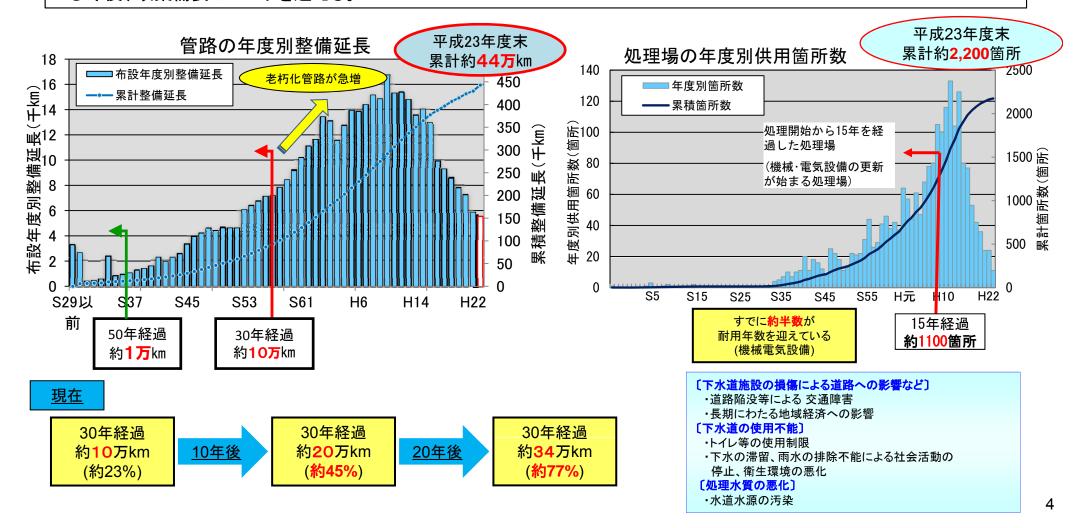


## 新規建設時は効率的な維持管理を考慮する 必要性

〇都市規模別汚水処理人口普及率

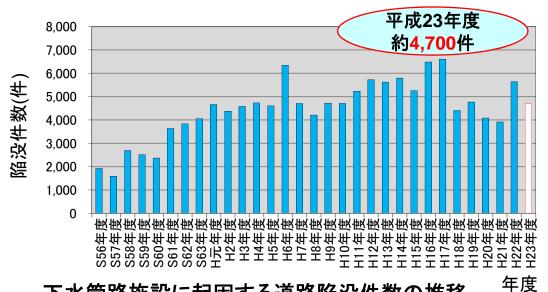


- (注) 1. 総市町村数1,628の内訳は、市 762、町 702、村 164 (東京都区部は市数に1市として含む)
  - 2. 総人口、処理人口は1万人未満を四捨五入した。
  - 3. 都市規模別の各汚水処理施設の普及率が0.5%未満の数値は表記していないため、合計値と内訳が一致した
  - 4. 平成23年度末は、岩手県、福島県の2県において、東日本大震災の影響により調査不能な市町村がある 公表対象外としている。


※平成22年度末の下水道処理人口普及率は、東日本大震災の影響で岩手県、宮城県、福島県において調査不能な市町材があるため、3県を除いた44都道府県の教植である。

能な市町村があるため、3県を除いた44都道府県の数値である。 ※平成23年度末の下水道処理人口普及率は、東日本大震災の影響で岩手県、福島県において調査不能な市町村があるため、2県を除いた45都道府県の数値である。

# 1. 維持管理の重要性の高まり(下水道ストックの状況の視点で国土交通省


### 施設情報の適切な管理、効率的な長寿命化計画策定等の必要性

- ○<u>管路延長は約44万km、処理場数は約2,200箇所</u>など下水道ストックが増大。
- 〇下水道施設は、常時稼動しているため、年数とともに老朽化が着実に進行。
- 〇今後、改築需要のピークを迎える。



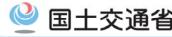
# . 維持管理の重要性の高まり(下水道ストックの状況の視点を国土交通省

## 調査・点検作業の効率化の必要性

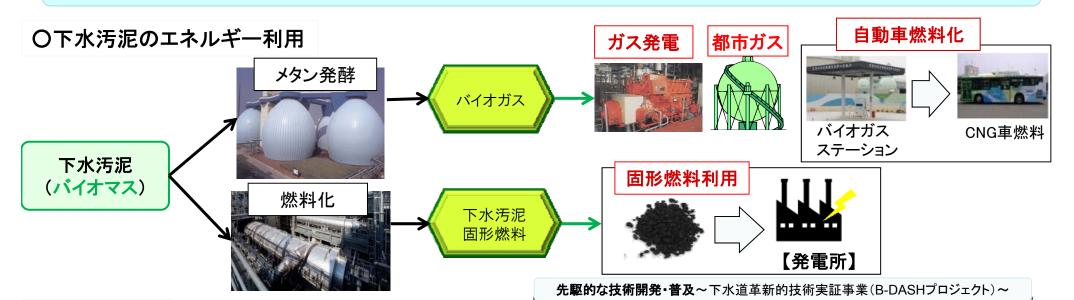


### 下水管路施設に起因する道路陥没件数の推移

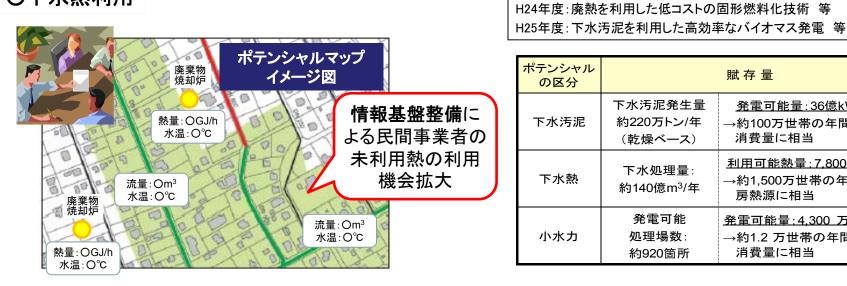





平成22年和歌山市



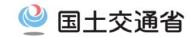

平成18年千葉市


# 2. 下水道の役割の高度化(下水道資源のエネルギー利用) 🔮 🖼 土交通省



## 下水道版スマートシティの実現 など




### 〇下水熱利用



| ポテンシャル<br>の区分 | 賦 存 量                            |                                                   | 利用状況※                            |
|---------------|----------------------------------|---------------------------------------------------|----------------------------------|
| 下水汚泥          | 下水汚泥発生量<br>約220万トン/年<br>(乾燥ベース)  | 発電可能量:36億kWh/年<br>→約100万世帯の年間電力<br>消費量に相当         | 下水汚泥のエネ<br>ルギー利用割合<br><u>約1割</u> |
| 下水熱           | 下水処理量:<br>約140億m <sup>3</sup> /年 | 利用可能熱量: 7,800 Gcal/h<br>→約1,500万世帯の年間冷暖<br>房熱源に相当 | 下水熱利用の<br>地域熱供給<br><u>3箇所</u>    |
| 小水力           | 発電可能<br>処理場数:<br>約920箇所          | 発電可能量:4,300 万kWh/年<br>→約1.2 万世帯の年間電力<br>消費量に相当    | 小水力発電<br>実施箇所<br><u>6箇所</u>      |

H23年度:高効率なバイオガス回収・利用技術 等

## 2. 下水道の役割の高度化(下水再生水の利用)



## 下水道版スマートシティの実現(再生水の地域最適利用・見える化 など)



屋上緑化や樹木の散水用として、 再牛水の用途が広がっています。

#### 河川維持用水 再生水給水のしくみ(西新宿・中野坂上地区の例) 供給対象ビル 高所 水槽 供給対象ビルなど 再生水 水道水 新宿国際ビル 洗面所) 新宿副都心 水リサイクルセンタ・ ○ ボンブ □ポンプ 電機室 ■■■● 受水槽 受水槽 (配水管) 再生水 配水池 < 音 落合水再生センター 再生水 (送水管) 処理施設 処理施設 清流復活事業 (城南三河川) 親水用水 落合水再生 センター内 せせらぎの

の清流 が復活

修景用水

### 水洗トイレの洗浄用水 目黒川



東京都庁舎をはじめ、多くのオフ ィスビル等のトイレの洗浄用水と して利用されています。

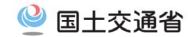
# 道路散水



都市の温暖化防止(ヒートアイラン ド対策) に向けた取組のひとつとし て、道路散水用水に、再生水が注目 されています。

### 清掃工場の冷却用水

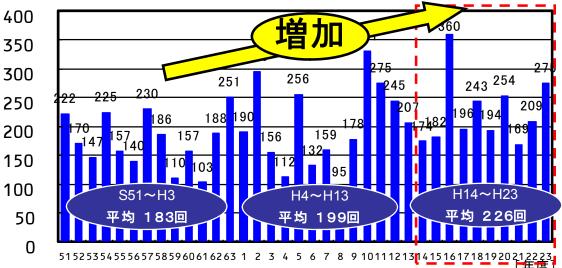



臨海副都心地区のごみを収集し焼 却している「有明清掃工場」の焼 却灰等の冷却用水に再生水が役立 っています。

里公苑

出典:東京都ホームページ

御成橋 からの 散水

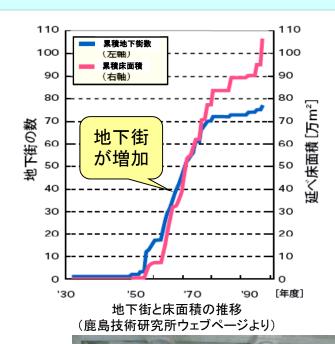

# 3. 災害対策の重要性(豪雨・浸水への備え)



- ・効果的な避難誘導システム・浸水対策施設の有効活用の必要性
- ・市民への自助活動に対する情報配信

### 【近年の降雨の状況】

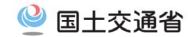
[回] 近年、1時間降水量50mm以上の降水の発生回数が増加




1時間降水量50mm以上の年間発生回数(気象庁資料より) (全国のアメダス地点より集計した1,000地点あたりの回数)

博多駅周辺の浸水被害状況







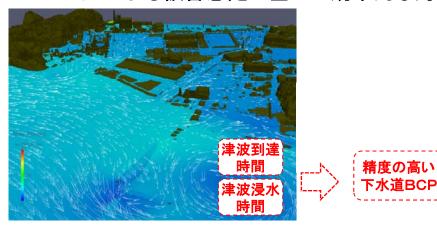





# 3. 災害対策の重要性(地震・津波への備え)



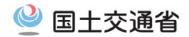
地震・津波に対する効果的な事前対策・BCPの必要性 (被災情報の迅速把握・代替施設の検索 など)


> 東日本大震災で津波被害を受けた 仙台市南蒲生浄化センター








【津波シミュレーションによる被害想定に基いた効率的な対策立案(事例)】



2次元非線形長波理論による数値解析

浸水深

## 4. 自治体の財政の逼迫(下水道経営の現状)



### 業務の効率化等による経営健全化の必要性

- 〇総事業費は約1.6兆円(平成22年度)
- 〇経営規模は約3.2兆円(平成22年度)、基準外繰出約0.5兆円(平成21年度)
  - •下水道債残高 約31兆円
- 下水道処理普及率(約76%(H23)) の向上につれて、事業費は減少。
- ・H22は約1.6兆円。 (うち補対事業費は約1.1兆円)
- ·下水道債の残高は、約31兆円(H22)。

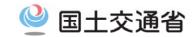
地方公営企業債全体の約58% 地方債全体の約16%

下水道インフラのストックの増大、 老朽化が進んでいるが、維持管理 費は横ばい。

### 【総事業費ベース(H22)】



### 【経営ベース(H22)】


<支出> <収入> 建設費地方債償還 一般会計繰出金 (元利償還) 約1.8 兆円 約2.3 兆円 ※ H21基準外繰出額 下水道使用料収入 維持管理費 約1.4%円 約0.9兆円

- 基準内繰出
  - 雨水処理費等は公費負担
- •基準外繰出
  - 汚水処理費の不足分

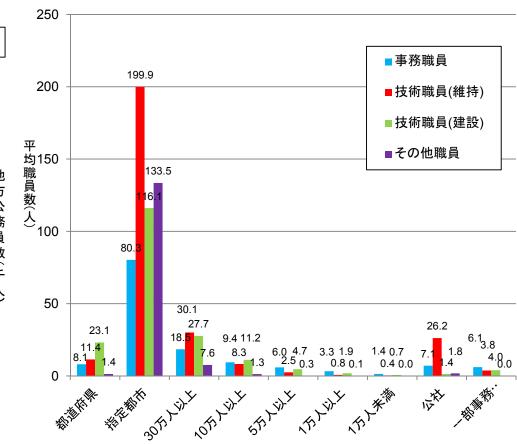
- •経費回収率(使用料収入/汚水 処理費用)は約77% (H22)。
- ・接続率は全体で約93%、 10年未満は約61%(H22)。

※予算概要(国土交通省)、地方公営企業決算の概況(総務省)、下水道統計(日本下水道協会)をもとに作成。

## 5. 人材不足・技術継承(下水道部局の職員数)

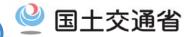


- ・効率的な下水道管理の必要性
- ・技術・ノウハウの継承の必要性


## 〇地方公共団体における下水道部局の職員数は減少傾向

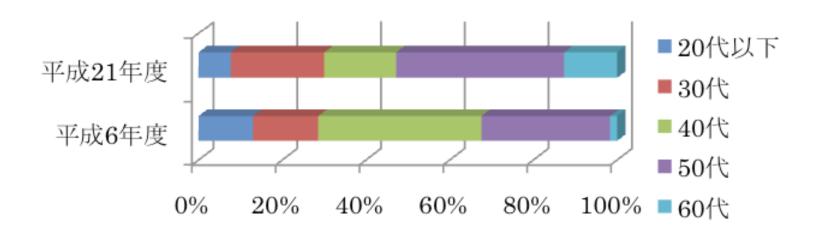
全国地方公務員数と下水道部署正規職員数の推移

#### 技術職員(維持) 事務職員 ■ 技術職員(建設) - その他職員 → 地方公務員数 3.500 50 45 3,000 40 下水道部正規職員数(千人) 2,500 35 方公務員数(千 30 2,000 1,500 15 1,000 13.8 13.8 13.5 12.9 10 \_11.2\_ -10.810.5 10.0 500 5 H16 H17 H18 H19


地方公務員数:「地方公務員給与実態調査」 下水道部署正規職員数:「下水道統計(日本下水道協会)」

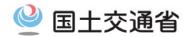
### 都市規模別の下水道部署平均職員数




「平成22年度版下水道統計」(日本下水道協会)より

# 5. 人材不足・技術継承(下水道部局の職員年齢構成(例))




〇少子化の進展に伴う若年労働力の減少や,技術・業務ノウハウを培ってきた ベテラン職員が今後大量に退職する見込みであるなど,厳しい状況に直面している。

## 【局職員の年齢別構成比の推移】



「経営計画2010(東京都下水道局)」より

# 6.広報・情報共有(情報の公開①)



広報、住民・企業等との情報共有の必要性 (経営状況、施設健全度等の見える化、住民理解の促進、意見の発信)

## 【下水道台帳図の公開事例】



### 【浸水想定区域図の公開事例】



出典:SEMISインターネット配信システム



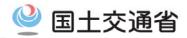
「水の天使」による広報活動

【広報活動の事例】



ネットワークを活かした各種展示会への出展(エコプロダクツへの出展等)




広報シンポジウム等の開催 (異分野・異業種の連携)



出典:大阪市防災マップ

出典:下水道広報プラットフォーム(GKP)ホームページ

# 6.広報・情報共有(情報の公開2)





### 【ポンプ場の運転状況】



出典:名古屋市下水道局 ホームページ (雨水(あまみず)情報)

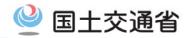
中川運河

電話: 052-381-9274

上下水道局南部宝神水処理事務所宝神水処理センター

放流先河川

備考


排水ポンプ管理部所名



1. 情報インフラの発達

- 2. 情報端末の高機能化・多様化
- 3. 情報技術の進歩
- 4. コストの低減

## 1. 情報インフラの発達(通信の高速化と普及)



### 動画等の大容量データを、無線でも通信できる環境が整備されている。

## 【無線(2Gまでは有線)】

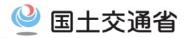
- ・1980年 56 Kbps 1G (アナログ (ファクシミリ) )
- ・1988年 64 Kbps 2G (デジタルISDN)
- ·2000年 384 Kbps 3G (WCDMA (CDMA2000))
- ·2006年 14 Mbps 3.5G (HSPA (EV-DO))
- ·2009年100 Mbps 3.9G (LTE (UMB) )
- · 2010年 1 Gbps 4G (LTE-advanced)

1.8

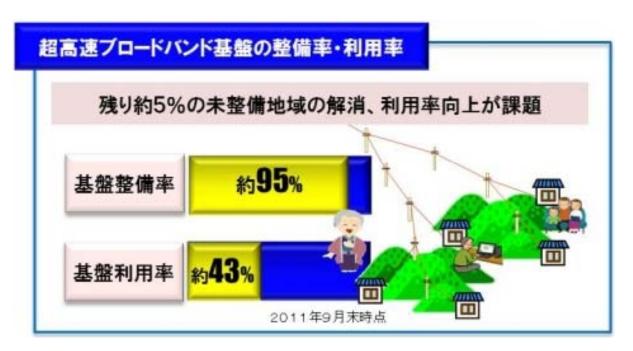
×10<sup>4</sup>倍

## 【有線】




| 00   | 7412         | 7058  | 670.5       | DSL           | 7289  |
|------|--------------|-------|-------------|---------------|-------|
|      |              |       | 0703        | 634 A         | 604.5 |
| 00   | •            | 590.9 | / 591.D     | 595.8         | 5983  |
| 00 - | 577.9        |       | インターネット     | //            | 1     |
| 00   |              |       | 3.9世代携帯電話バケ | ット通信サービス 3617 | 4013  |
| 00   |              |       | 230 A       | 304           | MA.   |
| 00   | 124 <i>A</i> | 169.7 | 229.7       |               |       |
| 00   | 38.9         | 0.9   |             |               | 0.9   |
| 0    | 1.0          | 1112  | 1.0         |               | 12.09 |
|      |              |       |             |               |       |

## 3. 9世代携帯電話サービス (LTE)が急増


| 1) SI 1/1/17 4 TO IN A | 電話回線(メタル回線)でネットワークに接続するアクセス<br>サービス(ADSL等)                  |
|------------------------|-------------------------------------------------------------|
| [[A][V][A][A][H—[][A]  | ケーブルテレビ回線でネットワークに接続するアクセス<br>サービス                           |
| FWAアクセスサービス            | 固定された利用者端末を無線でネットワークに接続するア<br>クセスサービス                       |
| BWAアクセスサービス            | 2.5GHz帯を使用する広帯域移動無線アクセスシステム<br>(WiMAX等)でネットワークに接続するアクセスサービス |
|                        | 携帯電話等を用いて3.9世代移動通信システム(LTE)で<br>ネットワークに接続するアクセスサービス         |

出典:総務省ホームページー部加工

## 1. 情報インフラの発達(高速通信エリアの拡大)



超高速ブロードバンド基盤の整備率は95%に達し、広域で高速通信が可能となっている。

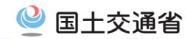


超高速ブロードバンド: FTTH及び下り伝送速度30Mbps 以上のケーブルインターネット

出典:総務省ホームページ

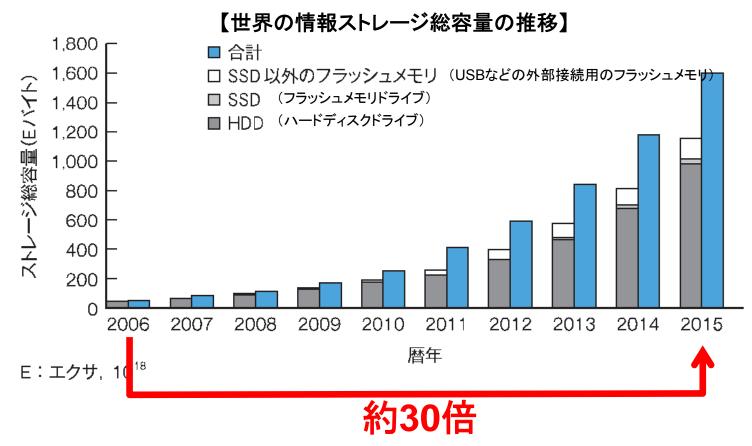
# 1. 情報インフラの発達(下水道管理用光ファイバーの整備状況) [

## 下水道においては、光ファイバーの整備が進んでおり、安定的な通信手段として利用されている。


- ・下水道管理用光ファイバーの整備状況は平成22年度時点で2,162kmに達し、整備地区は 全国22都道府県(43箇所)である。
- ・平成8年の下水道法改正により、民間事業者が下水道管渠内に通信用光ファイバーを設置できるよう規制緩和がなされており、下水道光ファイバーの民間開放が進んでいる。
- ・東日本大震災でも地中配線は被害が少なかった。(BCP計画としての自前の光ファイバー網の重要性(通信手段の複数化))

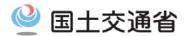
### 【下水道管理用光ファイバーの整備状況】




出典:新たなICTを用いた情報管理における下水道光ファイバーの活用検討会報告書(2012年8月) 社団法人日本下水道光ファイバー技術協会

## 1. 情報インフラの発達(情報保存容量の拡大)



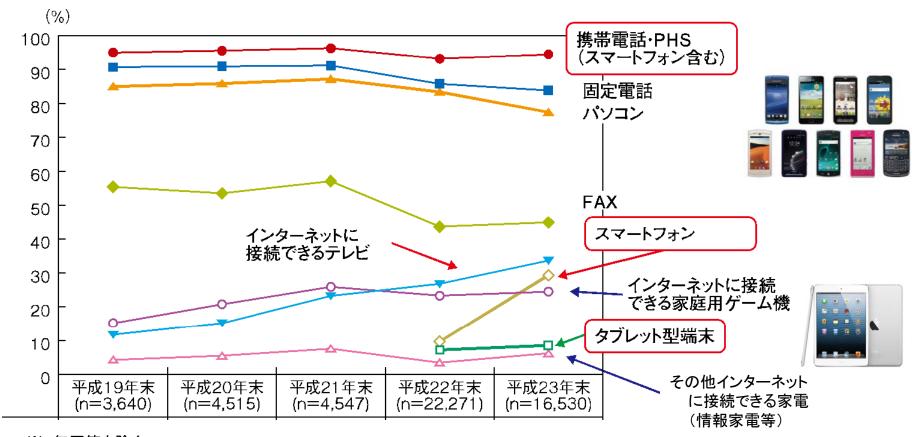

## データ保存容量増大により、大量なデータの保存・蓄積が可能となっている。

・インターネット及びクラウドコンピューティングの普及により、情報保存容量は年率約40%で増大し続けている。



出典: HDD,ODD,及びSSDの技術動向(服部正勝、鈴木博、菅谷誠一)(東芝レビューVol66 No.8 2011) 一部加筆 19

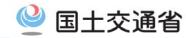
## 1. 情報インフラの発達(クラウドサービスの普及)



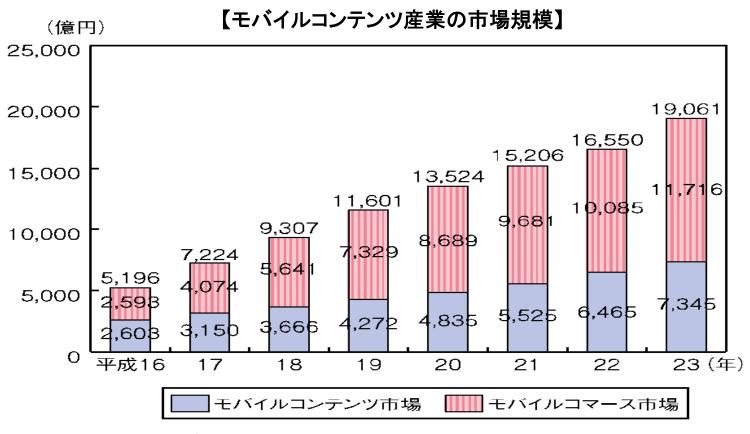

クラウドサービスの普及により、 どこからでも、必要な情報を必要なだけ利用することが可能になってきている。



# 2. 情報端末の多様化(モバイル情報端末の多様化、普及・拡発)国土交通省

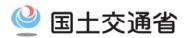

- ・モバイル端末の普及により、場所を選ばず、情報ネットワークにアクセス可能になってきている。
- 用途に応じて、様々な端末を選択することができる。
  - ・スマートフォン、タブレット型端末が登場、躍進している。




※ 無回答を除く

出典:総務省「平成23年通信利用動向調査」

# 3. 情報技術の進歩(モバイル市場の拡大)




携帯電話の普及、端末の高機能化等により、様々なサービス、ビジネスが生まれている。



(出典) 総務省 [モバイルコンテンツ産業の現状と課題等に関する調査研究]

# 3. 情報技術の進歩(センサーネットワーク例)



## センサーをネットワークに接続することで、リアルタイムのモニタリングが可能となっている。

#### ○自動販売機の遠隔モニタリングの例







自動販売機の各種データ収集 (機器の状態、在庫状況、売上状況)

- 販売不能、温度異常、システム異常などの情報に基づく、 迅速な故障回復
- 在庫状況に基づく、商品配送のコスト削減
- 売上状況に基づく、マーケティング、販売計画への反映 及び廃棄処分品の最小限化

### ○エレベーターの遠隔モニタリングの例







センサー モジュール エレベーターの各種 データ収集 (機器の状態)

エレベーターのシステム異常などの情報に 基づく、迅速な機器復旧及び人命救助

### ○プラント設備異常モニタリングの例



工場の操業に関する各種データ収集 (設備の状態、周囲環境)

### ○作業機械の遠隔モニタリングの例



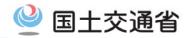
作業機械の各種データ収集 (機器の状態、位置情報、稼働状況) 建物等構造物の異常データを収集 (構造物の状態)

火災検知、有毒ガス漏れ検知、立入禁止 区域への侵入者等を検知し、災害や事故 を未然に防止

#### ● 消耗部品の状態や負荷情報に基づく、故障の予防保全

- 運転内容や負荷情報、燃料消費量、CO₂排出量に基づく、 省エネ運転支援
- 位置情報、稼働状況に基づく、盗難防止のための遠隔ロック




### ○構造物劣化モニタリングの例



● 構造物のひび割れ、異常な歪み 等の危険を検知し、事前のメンテ ナンスと事故を防止

(出典)情報通信審議会 ICT 基本戦略ボード資料

# 3. 情報技術の進歩(情報活用の可能性)



ビッグデータの活用、2次利用により、新たな価値の創出が期待できる。

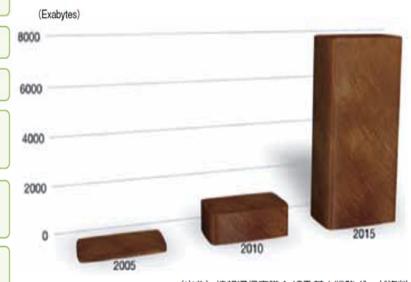
### 【ビッグデータの定量的価値】

#### いわゆる「ビッグデータ」の定量的価値(例)

50億台の携帯電話が使用(2010年)

300億のコンテンツが毎月Facebook上で共有

IT費用の5%増加で、年間40%増のデータ創出


米国のヘルスケアでは**年間3000億ドルの価値 創出**が期待(スペインの年間ヘルスケアコストの2倍)

EUの公共セクターでは年間2500億ユーロの価値創出が期待(ギリシアのGDPを超える)

個人の位置情報データを活用することで年間 6000億ドルの消費者価値創出が期待

小売の営業利益に60%改善の見込み

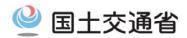
### 10年間のデジタルデータの成長



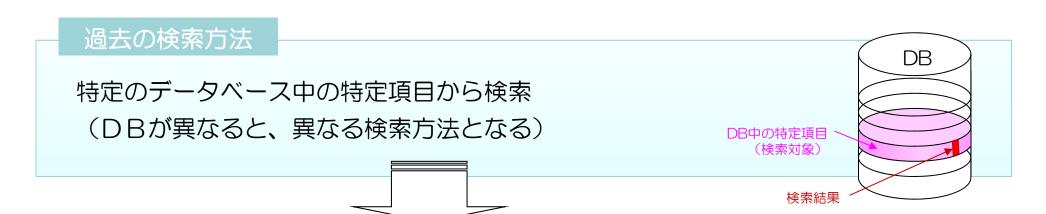
(出典) 情報通信審議会 ICT 基本戦略ボード資料 (「2011 Digital Universe Study:Extracting Value from Chaos」 (IDC/2011.6),「Big data:The next frontier for innovation,competition,and productivity」 (McKinsey Global Institute/2011.5) により作成)

平成24年版 情報通信白書

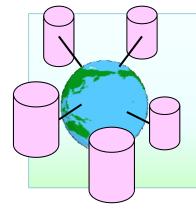
### 【下水道事業における主なデータ】


|        | -                                              |
|--------|------------------------------------------------|
| 下水道台帳  | 管渠緒元(管径·延長·<br>位置情報等)<br>設備機器緒元(寸法·<br>出力·仕様等) |
| 工事台帳   | 工事金額<br>工事担当者 など                               |
| 維持管理台帳 | 点検日<br>異常報告 など                                 |
| 運転管理情報 | 運転時間<br>異常値 など                                 |
| 計測データ  | 水位・流量・降雨量<br>水質・水温 など                          |
| 画像データ  | ITVカメラ・WEBカメラ<br>現場写真 など                       |
| 固定資産台帳 | 資産価値<br>残存価格 など                                |
| 経営情報   | 資産状況<br>賃借対照表 など                               |
| 道路台帳   | 道路線形<br>下水管の位置 など                              |
| 顧客情報   | 氏名・住所<br>家屋位置<br>料金支払状況 など                     |

ビッグデータ:事業に役立つ知見を導出するためのデータ


ビッグデータビジネス:ビッグデータを用いて社会・経済の問題解決や、業務の付加価値向上を行う、あるいは支援する事業 ※鈴木良介著「ビッグデータビジネスの時代」(平成23 年11 月)p.14 参照

# 3. 情報技術の進歩(検索技術の進歩)


+You 検索 画像 地図 Play YouTube ニュース Gmail もっと見る 🕶



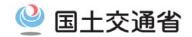
検索技術は進歩しており、大量かつ多様な情報の効果的・効率的取得が可能となっている。



## Web検索






大量かつ多様な情報を横断的に検索し、 必要な情報をキャッチする

## 【全国の図書館蔵書の横断検索サイト】

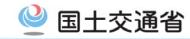


異なるフォーマットのデータベースにも対応

## 3. 情報技術の進歩(情報を活用したサービスの多様化)



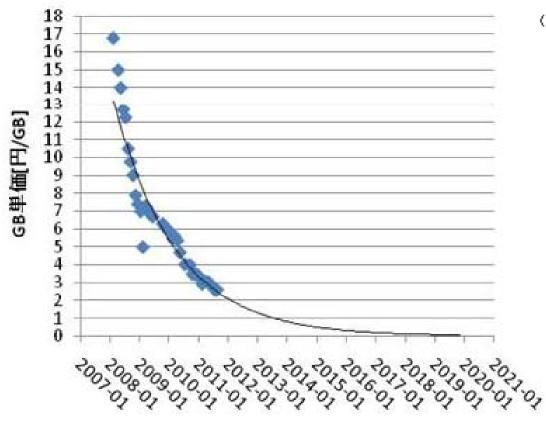
受け手に合わせた情報提供など、データを活用した新たなサービスも生まれている。


## 【書籍の購入に関する事例】

【トイレの水の流れ先を検索するサービス事例】



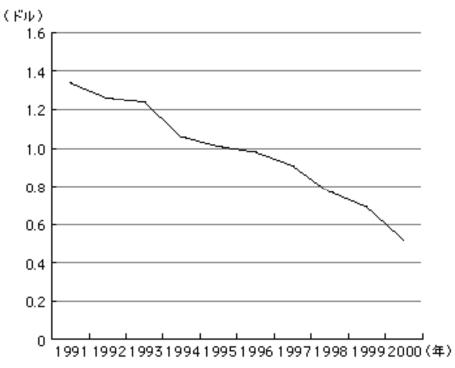



## 4. コストの低減(情報ストレージコスト・通信コストの低減)



## コストの低減により、ICT活用コストは低減している。

・情報ストレージは1年ごとに 約半額程度となる傾向にある。


### 【HDDの1GB当り単価の推移】



参考: AKIBA PC Hotline!

・通信コストは、10年で約4割程度まで低減し、 現在も低減傾向にある。

### 【OECD諸国のピーク時1分当たり平均通信料金の推移】



出典:「OECD通信白書」から作成