

災害対応無人化システム研究開発プロジェクト 概要紹介

平成25年2月6日

独立行政法人 新エネルギー・産業技術総合開発機構 技術開発推進部

プロジェクト概要

1. 期 間: 平成24年2月23日~平成25年2月28日

2. 予 算: 9.96億円(平成23年度第3次補正予算)

委託(100%)事業

3. 趣 旨: 災害等によって家屋や産業施設等

* 作業員の立ち入りが困難となった状況において、

速やかに状況把握、機材等の運搬、復旧活動を

行うための災害対応無人化システムの研究開発

※原子力災害に特化した開発ではなく、自然災害や、産業施設全般の事故、災害等を想定したロボットの開発。

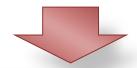
- 4. 今後の 予定等
- (1)プロジェクト終了後、被災現場作業員の訓練に供しつつ、 現場の状況に応じた改良等の実用性を高めるための課題 に事業者等が取り組む予定。
- (2)今年の夏季以降、プロジェクト成果を順次、被災現場に 投入できるよう、関係省庁、プロジェクト参加者等と協議中。₂

研究開発体制

プロジェクトリーダー | 淺間 一(東京大学大学院工学系研究科精密工学専攻教授) サブプロジェクトリーダー 佐藤 知正(東京大学大学院情報理工学系研究科知能機械情報学専攻教授)

委員

大道 武生(名城大学 理工学部 機械システム工学科 教授) 横小路 泰義(神戸大学大学院 工学研究科 教授) 神徳 徹雄(産業技術総合研究所 知能システム研究部門 統合知能研究グループ長) 高田 亮平(新鐵住金 設備・保全技術センター 機械技術部 機械開発室 主幹)


委託先

株式会社移動口ボット研究所 株式会社日立製作所 株式会社東芝 三菱重工業株式会社 学校法人千葉工業大学 CYBERDYNE株式会社

災害現場に導入可能な技術開発

これまでの特殊環境ロボットのプロジェクトでは、 基盤技術や要素技術開発(プロトタイプ開発) までに留まる。

現場での活用を前提とした開発

技術開発だけではなく、メンテナンス、教育・訓練、搬送・展開、継続まで考えたプロジェクト

コンソーシアムによる研究開発と既存技術の活用

コミュニティー コンソシアム(メーカー + 研究者) + ユーザー + お金の出し手

(株)移動ロボット研究所

(株)日立製作所

(株)東芝

三菱重工業(株)

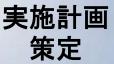
無人化施工技術

プラントメンテナンス技術

災害対応ロボット技術

Quince (先行調査用) 千葉工業大学

SWAN (小型軽作業用) 日立製作所


SMERT-K (作業監視支援用) 東芝

MARS-T (重量物運搬用) 三菱重工業

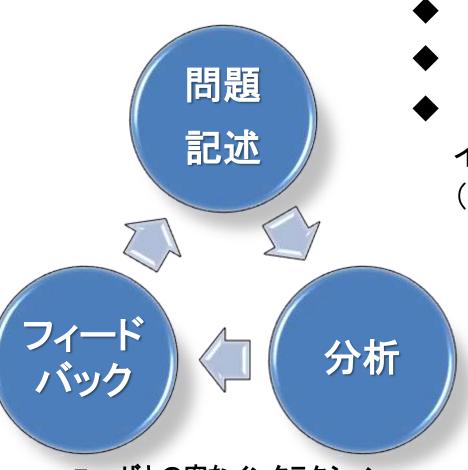
これまでの取り組み

評価

デザインレビュー

実用化評価・精査

現場のニーズに 基づいた実施計 画の策定


開発前から進捗 に合わせてデザ インレビューを 実施

ユーザーのニーズを基に、評価・デザインレビュー・ 実用化に向けた検証等を行い開発

プロジェクトの進め方

- ◆ デザインレビューの早期の実施
- ◆ 問題点の抽出と解決策の検討
- ◆ 頻度の高いフィードバック イタレーティブ問題記述解与 (TV会議)

- ユーザとの密なインタラクション
- ・早いフィードバック

プロジェクト概要(開発技術一覧)

	開発項目	委託先	概要
1	小型高踏破性 遠隔移動装置	移動ロボット研究所 (千葉エ大ベンチャー)	クインス後続機 (SAKURA、γカメラ搭載移動装置) ※日立γカメラ搭載
2	通信技術	日立製作所	共通基盤技術 NEDOプロ内の屋内通信仕様の統一
3	ヒューマンインタフェース	東芝	遠隔操作ヒューマン・インタフェース 操作画面、コントローラ、マスター アームの開発など
4	狭隘部遠隔重量物 荷揚/作業台車	三菱重工業	アーム付の中型作業台車。アタッチメント 交換で除染、漏えい箇所点検が可能
5	重量物ハンドリング 遠隔操作荷揚台車	東芝	スーパーリフター。建屋各階 (最上階30m)への機器搬入に利用
7	ガンマカメラ	日立製作所	小型遠隔移動装置に搭載より 高線量下での計測が可能
8	マッピング技術	千葉工大	放射線情報、構造物情報、 CAD情報を3次元統合表示
9	水陸両用移動装置	東芝	ガンマカメラを搭載して 水中調査
10	災害対策用 作業アシストロボット	Cyberdyne	脚力の増強スーツ タングステンベストで作業者の被ばく低減

1.小型高踏破性遠隔移動装置

SAKURA

概要

▶ 狭隘空間先行調査装置の開発

(株)移動ロボット研究所

基本機能

- ▶ 階段昇降角度:45°以上
- ▶ 最大積載荷重:30kg
- ▶ 遠隔操作可能距離:500m
- ➤ 稼働時間:3h
- ▶ 充電方式:プラグイン
- ▶ 長期間メンテナンスフリー
- 環境計測用三次元センサ、温度計、湿度計搭載可能

階段昇降角度52°

700mm幅での旋回

グレーチング走行・旋回

プラブイン充電

γカメラ搭載移動装置

概要

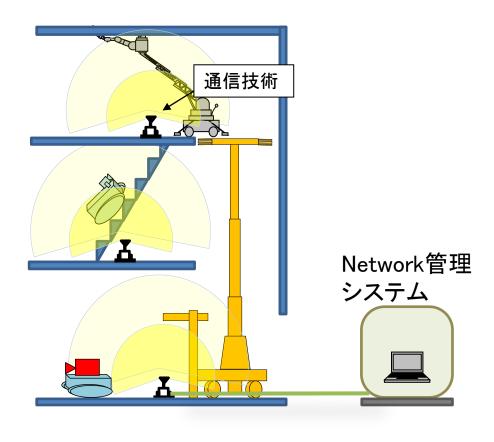
重量計測機器※搭載可能装置の開発

基本機能

- ▶ 階段昇降角度:45°
- ▶ 最大積載荷重:100kg
- ▶ 充電方式:プラグイン
- 長期間メンテナンスフリー
- ガンマカメラ、環境計測用三次元センサ、 温度計、湿度計搭載可能

(株)移動ロボット研究所

※ (株)日立製作所が製作が開発するガンマカメラを搭載する。


2.通信技術

概要

過酷環境下における遠隔操作装置等の通信技術の開発

基本機能

- ▶ 周波数帯の多重化(4.9GHz、 5.2GHz)
- 有線・無線を組み合わせたハイ ブリットシステム
- バッテリーによる電源断時の通信確保
- ▶ 操作室でのネットワーク管理(通 信異常診断・IP管理、バテリー監 視 他
- ▶ ロボットによる中継局(AP)の設置

(株)日立製作所

3.ヒューマンインタフェース

<u>概要</u>

遠隔操作移・作業動装置の ヒューマンインタフェースの 開発

基本機能

- ▶ ノートPC、ゲームパッド、大型画面、 緊急停止・選択SWによる遠隔操作
- ▶ アラウンドビュー表示
- ▶ 動的ガイド重畳による奥行き提示
- カメラ画像のノイズ除去
- ▶ 作業アーム用高機能デバイス

<用途先> 株式会社東芝

- ・NEDO・スーパーリフター
- ·NEDO·水陸両用移動装置
 - *その他の予定: 除染作業ロボット等

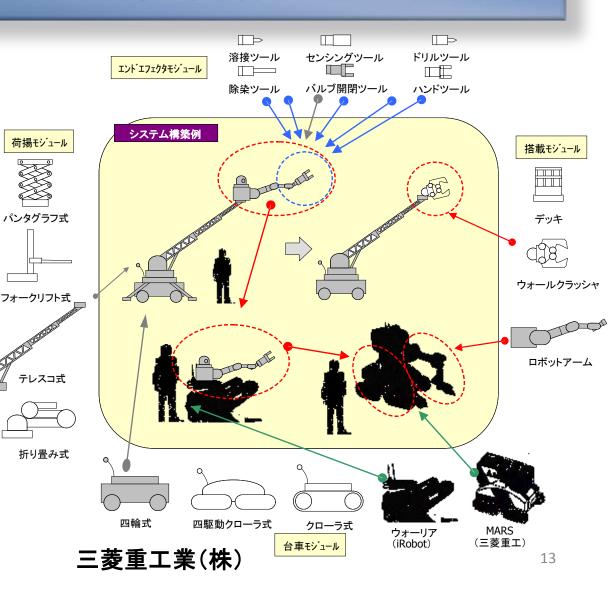
三菱重工業株式会社

- •移動・作業ロボット
- 移動ロボット研究所/千葉工業大学
 - 移動ロボット

株式会社日立製作所

・電波状態表示、画像表示に関し連携

マスターアーム


4. 狭隘部遠隔重量物荷揚/作業台車

<u>概要</u>

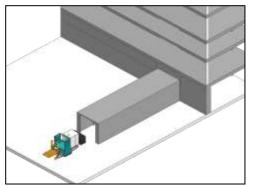
▶ 遠隔操作による高所の モニタリング、作業等が 可能な装置の開発

基本機能

- ▶ アクセス高さ:0~8 [m]
- 7軸ロボットアーム取扱質量:20 [kg]
- ▶ 4輪駆動4輪操舵
- ▶ 転倒防止インターロック
- ➤ モジュール化による 機能拡張可能

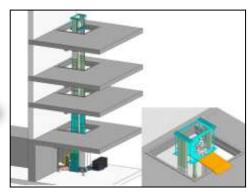
(NEDO

5.重量物ハンドリング遠隔操作荷揚台車


概要

▶ 遠隔操作による重量物、装置等の高所搬送装置の開発

基本機能

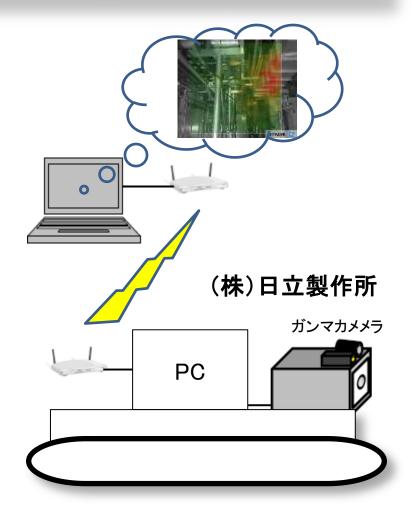

- ▶ 最大積載荷重:4t
- ▶ 最大地上荷揚高さ(有効):30m
- ▶ 最大積載寸法(予定): 約2.0m(長さ)×約1.6m(幅)×約2.0m(高さ)
- ▶ 駆動走行方式:クローラ式

建屋入り口へ自走

狭隘部での昇降

(株)東芝

6. ガンマカメラ


概要

▶ 過酷環境下での遠隔操作による放射線 の線源位置や線量率等の環境調査のた めのガンマカメラの開発

基本機能

- ガンマ線計数分布、計数率、エネルギースペクトル等の線量率分布算出
- ▶ 計測結果と光学カメラ画像の重ね合せ表示

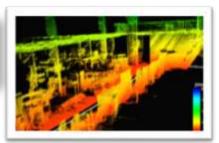
※小型高踏破性遠隔移動装置Bに搭載

7. マッピング技術

概要

三次元測位置データと γ カメラからの データを統合して、汚染状況の三次元 表示を行うシステムの開発

基本機能


- ▶ データ収集
 - ・ロボットの移動軌跡
 - •3Dスキャナーデータ
 - ・ガンマカメラ等のデータ
- ▶ オフライン処理
 - ·3D点群生成
 - ・走行軌跡リファイン
 - ボクセルデータ構築
 - •イメージデータ投影
- ▶ 出力
 - -3Dインタラクチブ、2D投影図

オフライン 処理

(学)千葉工業大学

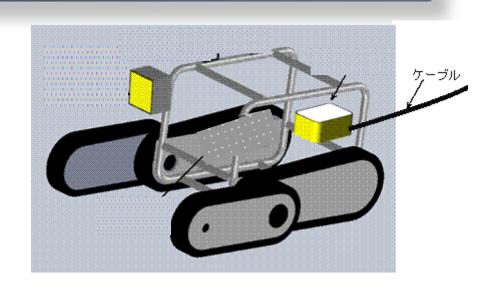
8. 水陸両用移動装置

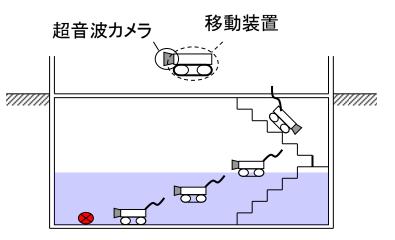
概要

▶ 有線による水陸走行と超音波カメラによる環境計測

基本機能

陸上

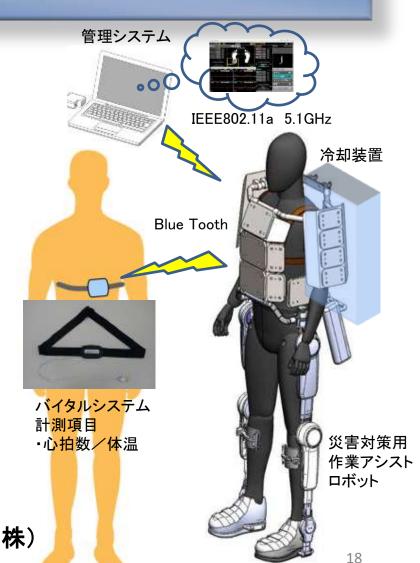

- ▶ 階段昇降角度:最大43°
- ▶ 段差乗り越え高さ:最大220mm
- ➤ 連続稼働時間:3h以上


水中

- ▶ 階段昇降角度:最大43°
- > 段差乗り越え高さ:最大220mm
- ➤ 連続稼働時間:3h以上
- ➤ 耐水圧:20m相当

超音波カメラ

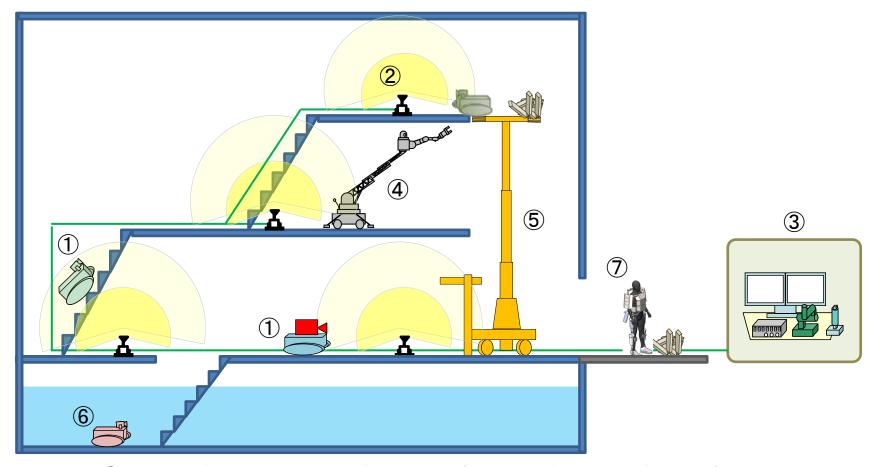
> 16ch測定による3面表示


9. 災害対策用作業アシストロボット

概要

過酷環境下での作業者の負担軽減と体調管理を行う装置の開発

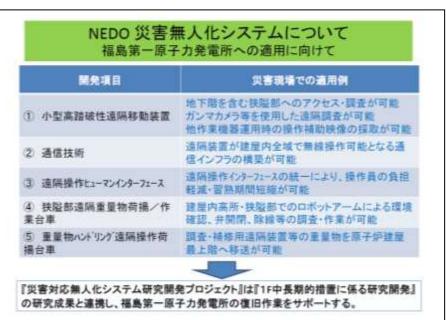
基本機能


- 重量:約20kg(バッテリーパックを除く)
- 搭載重量:80kg(60kg放射線防護装備 +20kgクールングシステム)
- ▶ 動力(電気):充電用100Vバッテリー駆
- > 稼働時間:約2時間(動作及び装備に よって変動)
- ▶ 動作: 立ち上がり、座り、歩行、階段昇降、臥位から立位など

CYBERDYNE(株)

災害現場への適用例




- ① 先行調査:各種機器を搭載して環境計測(温度、ガンマ線)、映像取得等、構造物の3Dデータ等
- ② 無線通信:汎用周波数帯の使用により各種機器の接続
- ③ ヒューマンインタフェース:遠隔操作共通技術
- ④ 高所作業:手先のモジュール交換によりバルブ開閉、把持、切断、モニタリング等
- ⑤ 高所搬送:ロボット、計測器、各種機材の搬送
- ⑥ 水中調査:超音波センサによる水中調査
- (7) 作業者への負担軽減:防塵、放射線被ばく軽減

関連情報

9月24日 政府·東京電力中長期対策会議運営会議(第10回会合)

出所:政府•東京電力中長期対策会議運営会議

http://www.meti.go.jp/earthquake/nuclear/20120924 01.html

ご清聴ありがとうございました。

※研究開発の進行に伴い、予告なく仕様が変更となる場合があります。