現行

/ (1.		72.4														
第4編 施設編	3. 7. 4	性能照査						3.7.	4	性能照査						
第 4 章 外郭施	施 (1) 滑動、転倒、基礎地盤の支持力破壊及び円弧すべりに対する性能照査及び部分係数						(1) 滑動、転倒、基礎地盤の支持力破壊及び円弧すべりに対する性能照査及び部分係数									
設	① 斜面型	型ケーソン堤の安定性の照査は、混成堤に準じること	だができる。	。ただし	、滑動、輻	5倒及び基	礎地盤	① 斜面型ケーソン堤の安定性の照査は、混成堤に準じることができる。ただし、滑動、転倒及び基礎地盤								
3.7.4 性能照査	の支持力破壊の照査に用いる標準的な部分係数については、以下に示す値を用いる必要がある。						の支持力破壊の照査に用いる標準的な部分係数については、以下に示す値を用いる必要がある。									
P.870	P.870 ② 部分係数					② 部分係数										
	(a) 斜面型ケーソン堤の直立部の滑動、転倒、基礎地盤の支持力破壊の標準的なシステム破壊確率は、					(a)	斜面	型ケーソン場	との直立部の滑動、転倒、基礎地盤の	支持力破壞	長の標準的	なシステ、	ム破壊確率及び			
	表一	3.7.1の数値を参照することができる。円弧すべりに	関する標準	準的な破場	要確率に 対	けする部分	係数に	部分係数は、表-3.7.1を参照することができる。円弧すべりに関する標準的な破壊確率に対する部分								
	つい	ては、混成堤に準じて、3.1.4 (7)滑動、転倒、	基礎地盤の	の支持力を	波壊及び円	別弧すべり	に対す	係数については、混成堤に準じて、3.1.4 (7)滑動、転倒、基礎地盤の支持力破壊及び円弧すべり								
る性能照査及び部分係数の表-3.1.1 を、また消波ブロックで被覆した斜面型ケーソン堤では、消波ブ					15	対す	る性能照査及	. <mark>び部分係数の表-3.1.1(b)</mark> を参照す.	ることがで	できる。 なこ	お、斜面型	ケーソン堤の直				
	ロック	ク被覆堤に準じて、 3.4.4(1)滑動、転倒、基礎	地盤の支持	持力破壊 及	及び円弧す	べりに対	する性	<u> </u>	部の	骨動、転倒、	基礎地盤の支持力破壊の標準的なシス	ステム破壊	確率は、泊	過去の設計	法による防波堤	
	能照	査及び部分係数の表ー3.4.1 を参照することができる。	。なお、弁	斜面型ケー	ーソン堤の	直立部の	滑動、	T)	平均	りな安全性が	準を信頼性理論により評価したもの	であり、詳	⊭細につい	ては、文献	献3)及び44)を参	
	転倒、	基礎地盤の支持力破壊の標準的なシステム破壊確率	は、過去の	の設計法に	こよる防波	5堤の平均	的な安	照	する	ことができる	0					
	全性	水準を信頼性理論により評価したものであり、詳細に	こついては	、文献3)	及び44)を	参照するこ	ことが	消波ブロックで被覆した斜面型ケーソンの直立部の滑動、転倒、基礎地盤の支持力破壊の標準的なシステム破壊確率及び部分係数は、表-3.7.2の数値を参照することができる52·1)。円弧すべりに関する標準的な破壊確率に対する部分係数については、消波ブロック被覆堤に準じて、3.								
	できん	5.														
	(b) 表	中 $lpha$, μ / X_k , V は、それぞれ設計因子の感度係数、平均	匀値の偏り	、変動係	数であり	、それらの)工学									
	的意	巖は 第2編第1章3 信頼性設計法 に示されるとおり	である。た	なお、表に	こ示す部分	係数は上	記(a)の	4. 4 (1)滑動、転倒、基礎地盤の支持力破壊及び円弧すべりに対する性能照査及び部分係数の								
	ようし	こ設定されたものであり、目標信頼性指標や確率変数	の従う確	率分布を	別途適切り	こ設定して	、部分	表-3.4.1(b)を参照することができる。								
	係数	を設定することも可能である。この場合、表に示した	こなならびに	\subset , μ/X_k ,	V , 目標信	≢頼性指標	を用い	(b) 表中 α , μX_k , V は、それぞれ設計因子の感度係数、平均値の偏り、変動係数であり、それらの工学								
	て、	第2編第1章3 信頼性設計法に示されるとおり部分	係数を設定	設定してもよい。			的意義は 第2編第1章3 信頼性設計法 に示されるとおりである。なお、表に示す部分係数は上記(a)の									
								ように設定されたものであり、目標信頼性指標や確率変数の従う確率分布を別途適切に設定して、部分								
											も可能である。この場合、表に示した		•		f頼性指標を用い	
								7	、第		信頼性設計法に示されるとおり部分					
P.871		表-3.7.1 標準的な部分係数(波)	良に関する	る変動状態	態)						表-3.7.1 標準的な部分係数(波	浪に関す	る変動状態	生)		
		目標システム信頼性指標 β r		2.16				目標システム信頼性指標βr			2.16					
		目標システム破壊確率 $P_{ m f_T}$	1.5×10^{-2} 2.24					目標システム破壊確率 $P_{f_{\Gamma}}$			1.5×10^{-2}					
		γ の計算に用いる目標信頼性指標 $oldsymbol{eta}_{\Gamma}'$				γの計算に用いる目標信頼性指標 β r'				2.24						
			γ	α	μ / X_k	V						γ	α	μ / X_k	V	
		Y _f 摩擦係数	0.80	0.727	1.060	0.150				γ_f	摩擦係数	0.80	0.727	1.060	0.150	
		水深変化 緩 //P _H , <i>YP_U</i>	1.05	-0.670	0.777	0.232				γ_{P_H} , γ_{P_U}	水深変化 緩	1.05	-0.670	0.777	0.232	
		水深変化 急	1.19	0.010	0.868	0.243			=	, , , , , , , , , , , , , , , , , , ,	水深変化 急	1.19	0.010	0.868	0.243	
		<i>r</i> w⊏1.5	1.03		1.000	0.200					$r_w = 1.5$	1.03		1.000	0.200	
	滑動	γ_{wl} $r_w = 2.0, 2.5$	1.05	-0.058	1.000	0.400		Ì	滑動	γ_{wl}	$r_{W}=2.0, 2.5$	1.05	-0.058	1.000	0.400	
		H.H.W.L.	1.00			-					H.H.W.L.	1.00	-	-		
		アww. RC の単位体積重量	0.98	0.027	0.980	0.020				$\gamma_{W_{ m RC}}$	RC の単位体積重量	0.98	0.027	0.980	0.020	
		アw _{NC} NC の単位体積重量	1.02	0.031	1.020	0.020				$\gamma_{W_{ m NC}}$	NC の単位体積重量	1.02	0.031	1.020	0.020	
		アw _{sand} 中詰め砂の単位体積重量	1.01	0.128	1.020	0.040				$\gamma_{W_{ m SAND}}$	中詰め砂の単位体積重量	1.01	0.128	1.020	0.040	
	転	水深変化 緩	1.17	0.070	0.777	0.232			転	Vp. Vp.	水深変化 緩	1.17	0.070	0.777	0.232	
1		γ _{P_H} , γ _{P_U} ···································	1.33	-0.970	0.868	0.243			倒	γ_{P_H} , γ_{P_U}	水深変化 急	1.33	-0.970	0.868	0.243	

改訂

		r_{W} =1.5	1.04		1.000	0.200
	γ_{wl}	$r_{w}=2.0, 2.5$	1.09	1.09 -0.096		0.400
		H.H.W.L.	1.00		_	_
	$\gamma_{W_{ m RC}}$	RC の単位体積重量	0.98	0.045	0.980	0.020
	$\gamma_{W_{ m NC}}$	NC の単位体積重量	1.02	0.049	1.020	0.020
	$\gamma_{W_{ m SAND}}$	中詰め砂の単位体積重量	1.00	0.214	1.020	0.040
	γ_{P_H}	水深変化 緩 1.13		0.070	0.777	0.232
基	$/P_H$	水深変化 急	1.28	-0.872	0.868	0.243
基礎地	γ_q	分割細片の上載荷重	0.97	0.309	0.643	0.038
盤の	$\gamma_{w'}$	分割細片重量	1.00	0.038	1.000	0.030
支持	∕tan _ø ′	地盤強度: せん断抵抗角の正接	0.96	0.325	1.000	0.060
力	$\gamma_{c'}$	地盤強度:粘着力	0.99	0.076	1.000	0.060
	γa	構造解析係数	1.00	_	_	_

 $\chi = \chi \cdot \mathbb{R}$ (平均値/特性値)、 $\chi \cdot V \cdot \mathcal{L}$ 変動係数である。

※2: RC: 鉄筋コンクリート、NC: 無筋コンクリートである。

※3: 水深変化緩/急:海底勾配 1/30 未満/以上

**4: r_{wl} は既往最高潮位(H.H.W.L.)と朔望平均満潮位(H.W.L.)の比である。

%5: γ_q は、上載荷重の平均値に対して適用する。上載荷重の平均値は $\bar{q}=\sum \bar{V}/2b'$ より得る。

3.7.5 構造部材の性能照査

構造部材の性能照査にあたっては、本編第2章1 構造物の部材を参照することができる。

		$r_{\scriptscriptstyle W}\!\!=\!1.5$	1.04		1.000	0.200
	γ_{wl}	$r_{W} = 2.0, 2.5$	1.09	-0.096	1.000	0.400
		H.H.W.L.	1.00		_	_
	$\gamma_{W_{ m RC}}$	RC の単位体積重量	0.98	0.045	0.980	0.020
	$\gamma_{W_{ m NC}}$	NC の単位体積重量	1.02	0.049	1.020	0.020
	$\gamma_{W_{ m SAND}}$	中詰め砂の単位体積重量	1.00	0.214	1.020	0.040
	Vp	水深変化 緩	1.13	0.979	0.777	0.232
基	γ_{P_H}	水深変化 急	1.28	-0.872	0.868	0.243
基礎地	γ_q	分割細片の上載荷重	0.97	0.309	0.643	0.038
盤の	$\gamma_{w'}$	分割細片重量	1.00	0.038	1.000	0.030
支持	$\gamma_{ an_{m{\phi}'}}$	地盤強度: せん断抵抗角の正接	0.96	0.325	1.000	0.060
力	$\gamma_{c'}$	地盤強度:粘着力	0.99	0.076	1.000	0.060
	γ _a	構造解析係数	1.00			_

 χ 1: α : 感度係数、 μX_k : 平均値の偏り(平均値/特性値)、V: 変動係数である。

※2: RC: 鉄筋コンクリート、NC: 無筋コンクリートである。

※3: 水深変化緩/急:海底勾配 1/30 未満/以上

**4: r_{wl} は既往最高潮位(H.H.W.L.)と朔望平均満潮位(H.W.L.)の比である。

※5: γ_q は、上載荷重の平均値に対して適用する。上載荷重の平均値は $\bar{q} = \sum \bar{V}/2b'$ より得る。

表-3.7.2 消波ブロック被覆上部斜面提の部分係数(波浪に関する変動状態)

	目標システム信頼性指標 β r			2.38						
	目標システム破壊確率 $P_{ m f_T}$			0.0087						
	γの計算	に用いる目標信頼性指標 β τ'		2.	46					
			γ	α	$\mu \!\! / \!\! \! / \!\! \! \! \! \! \! \! \! \! \! \! \! \!$	V				
	$\gamma_{\scriptscriptstyle f}$	摩擦係数	0.74	0.812	1.060	0.150				
	γ_{P_H} , γ_{P_U}	水深変化 緩	0.93	-0 5 <i>cc</i>	0.737	0.187				
	$/P_H$, $/P_U$	水深変化 急	1.04	1.04		0.201				
		$r_w = 1.5$	1.03	1.03		0.200				
滑動	γ_{wl}	$r_{w} = 2.0, 2.5$	1.05	-0.055	1.000	0.400				
257		H.H.W.L.	1.00	1.00		-				
	$\gamma_{W_{ m RC}}$	RC の単位体積重量	0.98	0.025	0.980	0.020				
	$\gamma_{W_{ m NC}}$	NC の単位体積重量	1.02	0.031	1.020	0.020				
	$\gamma_{W_{ m SAND}}$	中詰め砂の単位体積重量	1.01	0.124	1.020	0.040				
	γ_{P_H} , γ_{P_U}	水深変化 緩	1.06	-0.957	0.737	0.187				
	P_H , P_U	水深変化 急	1.20	-0.997	0.813	0.201				
転倒		$r_{w} = 1.5$	1.06	1.06		0.200				
倒	γ_{wI}	$r_{w} = 2.0, 2.5$	1.11	-0.113	1.000	0.400				
		H.H.W.L.	1.00	1.00		_				
	$\gamma_{W_{ m RC}}$	RC の単位体積重量	0.98	0.053	0.980	0.020				

		$\gamma_{W_{ m NC}}$	NC の単位体積重量	1.02	0.058	1.020	0.020	
		$\gamma_{W_{ m SAND}}$	中詰め砂の単位体積重量	1.00	0.254	1.020	0.040	
		1/2	水深変化 緩	1.02	0.000	0.737	0.187	
	基礎	γ_{P_H}	水深変化 急	1.15	-0.826	0.813	0.201	
	礎 地	γ_q	分割細片の上載荷重	0.98	0.098	0.459	0.036	
	盤の	$\gamma_{w'}$	分割細片重量	1.00	0.048	1.000	0.030	
	支持	∕⁄tan _ø ′	地盤強度:せん断抵抗角の正接	0.94	0.373	1.000	0.066	
	力	γ _{c'}	地盤強度:粘着力	0.99	0.080	1.000	0.066	
		γa	構造解析係数	0.81	_	_	_	
	※ 1:	α:感度係	系数、 $\mu \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	寺性値)、	V: 変動 [/]		<u></u> る。	
	※ 2:	RC:鉄館	デコンクリート、NC:無筋コンクリ [、]	ートであ	る。			
	※ 3:	水深変化	緩/急:海底勾配 1/30 未満/以上					
	※ 4:	r_{wl} は既往	- - - - - - - - - - - - - - - - - - -	詩潮位(F	I.W.L.) 6	の比である	5 .	
	※ 5:	γ_q は、上	載荷重の平均値に対して適用する。	上載荷重	の平均値	$l \ddagger \overline{q} = \sum \overline{V}$	ァ̄/ <u>2b′</u> より徨	导る。
3. 7. 構造部		構造部材の 性能照査に	性能照査 あたっては、 本編第2章1 構造物の	部材を参	≒照するこ	.とができ	る。	

P.886

- 51)佐藤孝夫,山縣延文,古川正美,高橋重雄,細山田得三:消波ブロック被覆上部斜面堤の水理特性-那覇港大水深域における新構造防波堤の開発-,海岸工学論文集第39巻,pp.556~560,1992
- 52)中田邦夫,池田龍彦,岩崎三日子,北野雅三,藤田隆:上部斜面堤の現地建設に伴う水理模型実験,第 30 回海岸工学講演会論文集,pp.313~316,1983
- 53)林泰造, 狩野徳太郎, 白井増次郎, 服部昌太郎: 筒型透過性防波堤の水理特性について, 第 12 回海岸工学 講演会講演集, pp.193~197, 1965
- 54)永井荘七郎, 久保直, 時川和夫: 鋼管防波堤に関する基礎的研究(第1報), 第12回海岸工学講演会講演集, pp.209~218, 1965
- 55)中村孝幸,神川裕美,河野徹,槇本一徳:透過波と反射波の低減を可能にするカーテン防波堤の構造形式 について,海洋工学論文集,第46巻,pp.786~790,1999
- 56) 興野俊也, 榊山勉, 柴田学, 中野修, 大熊義夫:下部透過式カーテンウォール構造物に作用する波力特性 について, 海洋工学論文集, 第46巻, pp.791~795, 1999
- 57)森平倫生, 柿崎秀作, 合田良実: カーテン防波堤とその特性について, 港湾技術研究所報告 Vol.3 No.1, 1964
- 58)国土交通省九州地方整備局下関港湾空港技術調査事務所ホームページ: 軟弱地盤着底式防波堤の設計マニュアル (案), http://www.gityo.go.jp/, 2005
- 59)伊藤喜行, 千葉繁: 浮防波堤の水理に関する近似理論と応用, 港湾技術研究所報告 Vol.11 No.2, pp.43~77, 1972
- 60)井島武士,田淵幹修,湯村やす:有限水深の波による矩形断面物体の運動と波の変形,土木学会論文報告 集第 202 号,pp.33~48,1972
- 61)国際海洋科学技術協会:浮防波堤-現状と課題-,1987

- 51)佐藤孝夫,山縣延文,古川正美,高橋重雄,細山田得三:消波ブロック被覆上部斜面堤の水理特性-那覇港大水深域における新構造防波堤の開発-,海岸工学論文集第39巻,pp.556~560,1992
- 52)中田邦夫,池田龍彦,岩崎三日子,北野雅三,藤田隆:上部斜面堤の現地建設に伴う水理模型実験,第 30 回海岸工学講演会論文集,pp.313~316,1983
- 52-1)宮脇周作,長尾毅:複数の構造的特徴を有する重力式防波堤の部分係数設定方法に関する研究ー消波ブロック被覆上部斜面提を例としてー,国土技術政策総合研究所資料 第 350 号,2006
- 53)林泰造, 狩野徳太郎, 白井増次郎, 服部昌太郎: 筒型透過性防波堤の水理特性について, 第 12 回海岸工学 講演会講演集, pp.193~197, 1965
- 54)永井荘七郎, 久保直, 時川和夫: 鋼管防波堤に関する基礎的研究 (第 1 報), 第 12 回海岸工学講演会講演集, pp.209~218, 1965
- 55)中村孝幸,神川裕美,河野徹,槇本一徳:透過波と反射波の低減を可能にするカーテン防波堤の構造形式 について,海洋工学論文集,第46巻,pp.786~790,1999
- 56) 興野俊也, 榊山勉, 柴田学, 中野修, 大熊義夫:下部透過式カーテンウォール構造物に作用する波力特性 について, 海洋工学論文集, 第46巻, pp.791~795, 1999
- 57)森平倫生, 柿崎秀作, 合田良実: カーテン防波堤とその特性について, 港湾技術研究所報告 Vol.3 No.1, 1964 58)国土交通省九州地方整備局下関港湾空港技術調査事務所ホームページ: 軟弱地盤着底式防波堤の設計マニュアル (案), http://www.gityo.go.jp/, 2005
- 59)伊藤喜行, 千葉繁: 浮防波堤の水理に関する近似理論と応用, 港湾技術研究所報告 Vol.11 No.2, pp.43~77, 1972
- 60)井島武士,田淵幹修,湯村やす:有限水深の波による矩形断面物体の運動と波の変形,土木学会論文報告

62)土木学会:海洋構造物設計指針(案)解説,1973		集第 202 号,pp.33~48,1972
63)上田茂,白石悟,甲斐一夫:箱形浮体の波浪による	せん断力と縦曲げモーメントの計算法について、港湾	61)国際海洋科学技術協会:浮防波堤-現状と課題-,1987
技研資料 No.505,p.27,1984		62)土木学会:海洋構造物設計指針(案)解説,1973
64)大串雅信:理論船舶工学,海文堂,1973		63)上田茂,白石悟,甲斐一夫:箱形浮体の波浪によるせん断力と縦曲げモーメントの計算法について,港湾
		技研資料 No.505,p.27,1984
		64)大串雅信:理論船舶工学,海文堂,1973