港湾の施設の技術上の基準・同解説(H19.4) 改訂 新旧対比表

項目	現行	改訂
第3編 作用及び	〔解説〕	〔解説〕
材料強度条件編	(1)地震動を設定する深度	(1) 地震動を設定する深度
第4章 地震	レベルー地震動及びレベル二地震動の時刻歴波形を設定する深度を②で定める工学的基盤とする	レベルー地震動及びレベル二地震動の時刻歴波形
P.330	ことを標準とする。なお、技術基準対象施設の性能照査において工学的基盤以外の深度における地震	ることを標準とする。なお、技術基準対象施設の性能
	動の設定が必要な場合には、一次元の地震応答計算等の方法により工学的基盤における地震動に基づ	震動の設定が必要な場合には、一次元の地震応答計算
	いた当該深度における地震動を設定する。	づいた当該深度における地震動を設定する。
第3編 作用及び	(3) アスペリティ	(3) アスペリティ
材料強度条件編	大地震の震源断層面上のすべりは一様ではなく不均質であることが明らかにされてきている。震源断	大地震の震源断層面上のすべりは一様ではなく不均
第4章 地震	層面の中で特にすべりの大きい領域はアスペリティと呼ばれる。1995 年兵庫県南部地震の際に神戸市	
1.1.1 震源特性	内で観測されたような強い地震動を説明するためにはアスペリティを考慮することが必要である 4)。海	 庫県南部地震の際に神戸市内で観測されたような強い
P.333	溝型地震の場合、断層面上の同じ部分が繰り返しアスペリティとなっているとの考えが最近の研究で有	│ することが必要である ⁴ 。断層面上における最終滑り量
	力になってきている ¹¹⁾ 。活断層で発生する地震のアスペリティに再来性があるかについては十分に研	終滑り量を連続関数として表現するモデル(variable s
	究されていない。断層面上における最終滑り量の不均質な分布を表現するモデルとしては、最終滑り量	を複数配置し、その内部では滑り量などが一様である。
	を連続関数として表現するモデル(variable slip model)と、断層面上に矩形のアスペリティを複数配	し、海溝型巨大地震については、断層面上ですべりの大
	置し、その内部では滑り量などが一様であるとするモデル(特性化震源モデル)がある。	ことがわかってきている ¹¹⁾ 。
		また、2011 年東北地方太平洋沖地震を始めとする海
		期1~数秒程度のパルス状の地震動が数多く観測される
		性の高い周期帯域における波形の特徴を十分再現でき
		デルとして SPGA モデル ^{11-1) 11-2)} がある。これは、海洋
		Pulse Generation Area、強震動パルス生成域)と呼ば
		た震源モデルである。
第3編 作用及び	1.3.3 震源パラメータの設定	1.3.3 震源パラメータの設定
材料強度条件編	レベル2地震動の評価に必要な震源パラメータには巨視的震源パラメータ(基準点位置、走向、傾斜、	レベル2地震動の評価に必要な震源パラメータには
第4章 地震	長さ、幅、面積、地震モーメント)、微視的震源パラメータ(アスペリティの数、アスペリティの面積、	長さ、幅、面積、地震モーメント)、微視的震源パラメ
1.3.3 震源パラ	アスペリティの地震モーメント、ライズタイムなど)及びその他のパラメータ(破壊開始点、破壊伝播	ント、ライズタイムなど)及びその他のパラメータ(4)
メータの設定	速度、破壊伝播様式)がある。それらのパラメータの意味するところを図-1.3.3に示す。震源パラメ	る。それらのパラメータの意味するところを図-1.3.3
P.354~355	ータは、以下に示す標準的な設定方法に従って設定するか、もしくは別途詳細な調査を行って設定する。	な設定方法に従って設定するか、もしくは別途詳細な
		±
	地表面北	地表面北
	(百名) 走向 ク すべり 島・	值到 <i>5</i> 走向 Ø
	$= \frac{1}{2} $	最終すべり量 D_0
	最終すべり量D ₀	
	$\int f - f - f - f - f - f - f - f - f - f -$	
	断層面	断層面
	長さ <i>L</i> ライズタイム <i>T</i> , 時間	 長さL
	(a) 断層パラメータの説明(その1) (b) 断層パラメータの説明(その2)	(a) 断層パラメータの説明(その 1)
	図 100 豪游 パニン カの本叶	
	凶ー1.3.3 晨線ハフメータの意味	凶ー1.3.3 宸源ハフ.

支形を設定する深度を(2)で定める工学的基盤とす 性能照査において工学的基盤以外の深度における地 計算等の方法により工学的基盤における地震動に基

F均質であることが明らかにされてきている。内陸地 の大きい領域はアスペリティと呼ばれる。1995年兵 魚い地震動を説明するためにはアスペリティを考慮 り量の不均質な分布を表現するモデルとしては、最 ble slip model)と、断層面上に矩形のアスペリティ ちるとするモデル(特性化震源モデル)がある。ただ の大きい領域と強震動を生成する領域が一致しない

る海溝型地震では、震源付近の観測点において、周 れている¹¹⁻¹⁾¹¹⁻²⁾¹¹⁻³⁾。これらを含め、工学的に重要 できるように設定された海溝型地震のための震源モ 海溝型地震の断層面上に、SPGA(Strong-motion 呼ばれる一辺が数 km 程度の領域を(複数)配置し

こは巨視的震源パラメータ(基準点位置、走向、傾斜、 ラメータ(アスペリティ等の数、面積、地震モーメ マ(破壊開始点、破壊伝播速度、破壊伝播様式)があ .3.3に示す。震源パラメータは、以下に示す標準的 田な調査を行って設定する。

ペラメータの意味

(1) 過去に大きな被害をもたらした地震の再来を想定する場合

東南海・南海地震のように、過去に大きな被害をもたらした地震の再来を想定する場合には、過去に実際 に発生した地震(過去のイベントという)に関する資料を可能な限り活用することが望ましい。

巨視的震源パラメータについては、過去のイベントのパラメータが明らかにされている場合には、それらのパラメータを用いることができる。過去の多くの地震の巨視的震源パラメータについて文献 35)に記載がある。地震モーメント M₆と断層面積 Sのうち、一方のみが与えられ他方を推定しようとする場合には、次式⁵⁷⁾⁵⁸⁾により推定することができる(**式**(1.3.1)と Esherby⁵⁹⁾による円形クラックの式を組み合わせると断層面 全体の平均的な応力降下量は 3MPa となる。)。

 $S(\text{km}^2) = 1.88 \times 10^{-15} \times M_0^{2/3} (\text{dyne} \cdot \text{cm})$

(1.3.1)

微視的震源パラメータ(アスペリティ位置など)については、過去のイベント(地震)に関するデータの 多寡に応じて異なる対応が必要となる。まず、波形データ等に基づいて過去のイベントの微視的震源パラメ ータがよく調べられている場合には、それらのパラメータを用いることができる。例えば1923年関東地震 ⁶⁰⁾の再来や1968年十勝沖地震⁴⁴⁾の再来、1978年宮城県沖地震⁴⁴⁾の再来を考える場合がこれに相当する。次 に、過去のイベントの波形データは残されていない場合、歴史資料から各地の震度がわかっていれば、その 震度情報と整合するように設定された微視的震源パラメータを用いることができる。例えば宝永地震や安政 東海地震、安政南海地震の再来を考える場合がこれに相当する。各地の震度と整合するように定められた微 視的震源パラメータの一例として、中央防災会議⁶¹⁾による想定東南海・南海地震の微視的震源パラメータ(図 -1.3.4) がある。

その他のパラメータ(破壊開始点など)についても微視的震源パラメータと同様である。

活断層で発生する地震の場合、平均的な活動間隔が長いため、過去のイベントを参考にできないことがほ とんどであるが、例外として 1995 年兵庫県南部地震の再来を想定する場合などは、(2)活断層で発生する地 震を想定する場合によらず上記の考え方によることができる。

(1) 過去に大きな被害をもたらした地震の再来を想定する場合 海溝型地震などで、過去に大きな被害をもたらした地震の再来を想定する場合には、過去に実際に発生した地震(過去のイベントという)に関する資料を可能な限り活用することが望ましい。 巨視的震源パラメータについては、過去のイベントのパラメータが明らかにされている場合には、それらのパラメータを用いることができる。過去の多くの地震の巨視的震源パラメータについて文献 35)に記載がある。地震モーメント & と断層面積 S のうち、一方のみが与えられ他方を推定しようとする場合には、次式 ⁵⁷⁾⁵⁸⁾により推定することができる(式(1.3.1)と Esherby⁵⁹⁾による円形クラックの式を組み合わせると断層面 全体の平均的な応力降下量は 3MPa となる。)。

 $S(\text{km}^2) = 1.88 \times 10^{-15} \times M_0^{2/3} (\text{dyne} \cdot \text{cm})$

微視的震源パラメータ(アスペリティ等の位置など)については、過去のイベント(地震)に関するデー タの多寡に応じて異なる対応が必要となる。まず、波形データ等に基づいて過去のイベントの微視的震源パ ラメータがよく調べられている場合には、それらのパラメータを用いることができる。例えば 1923 年関東 地震⁶⁰⁾の再来や1968年十勝沖地震⁴⁴⁾の再来、1978年宮城県沖地震⁴⁴⁾の再来を考える場合がこれに相当する。 次に、過去のイベントの波形データは残されていない場合、歴史資料から各地の震度がわかっていれば、そ の震度情報と整合するように設定された微視的震源パラメータを用いることができる。

その他のパラメータ(破壊開始点など)についても微視的震源パラメータと同様である。 活断層で発生する地震の場合、平均的な活動間隔が長いため、過去のイベントを参考にできないことがほ とんどであるが、例外として1995年兵庫県南部地震の再来を想定する場合などは、(2)活断層で発生する地 震を想定する場合によらず上記の考え方によることができる。 なお、海溝型地震を対象とする場合には、波形データまたは震度情報に適合させる震源モデルとして SPGA モデルを用いることができる。SPGA モデルの一例として、2011年東北地方太平洋沖地震の波形データに適 合するように設定された SPGA モデル¹¹⁻¹⁾¹¹⁻²⁾⁶¹⁻¹⁾⁶¹⁻²⁾を図-1.3.4 に示す。

(1.3.1)

subfault ij large event

(1, 3, 5)

(1, 3, 6)

生する地震による遠方での地震動を評価する場合、及び、それ以外の地震による地震動を評価する場合 には、地震動のエネルギーが水平2成分に等しく分配されると仮定してPRTITN=0.71とすることができ る。いずれにしても*PRTITN*は水平2成分の自乗和が1となるように設定する必要がある。表-1.3.1に **PRTITN**の標準値を示す。

表-1.3.1 PRTITNの標準値

	震源近傍	震源近傍以外	
海溝型地震	0.71	0.71	
内陸江縣屋地震	0.85(走向直交成分)	0.71	
的座佔例層地展	0.53(走行平行成分)	0.71	
M6.5の直下地震	0.71	0.71	

小地震の地震モーメントMaはアスペリティの地震モーメントをN3で除すことにより求めることが できる。小地震のコーナー周波数£はBrune76777の次式により求めることができる。

 $f_c = 0.66 V_s / \sqrt{S_e}$

ここに、

Se:小地震の破壊領域の面積

式(1.3.7)は「Brune の式(36)」⁷⁶⁾そのものである。式(1.3.7)とEsherby⁵⁹⁾による円形クラックの 式を組み合わせると、コーナー周波数を地震モーメントと応力降下量の関数として表現する著名な式を 導くことができる。式(1.3.6)において伝播経路における媒質のQ値は地域に応じて適切な値を用いる。 地域毎に推定されているQ値の例として、東日本の海溝型地震に対して推定78されているQ=114 f^{0.92}、 西日本の海溝型地震に対して推定 78)されている Q=152 f^{0.38}、東日本の内陸部に対して推定 78)されてい る Q=166 f^{0.76}、関西地方に対して推定 ⁷⁹⁾されている Q=63.8 f^{1.00}、鹿児島県・熊本県に対して推定 ⁸⁰⁾ されている *Q*=104 *f*^{0.63} 等がある。

以上により定まる地震基盤でのフーリエ振幅を満足するような波形をBoore⁷⁵⁾の方法又は野津・菅野 44)の方法で求め、これを地震基盤における統計的グリーン関数とする。

次に、地表における小地震波形(地表における統計的グリーン関数)を求める。その際、堆積層が地 震動の振幅と位相の双方に及ぼす影響(サイト特性)を考慮する。具体的には以下の方法74)で算定する ことができる。先に述べたように、一般に地震動の振幅は震源特性・伝播経路特性・サイト特性の積で、 地震動の群遅延時間は震源特性・伝播経路特性・サイト特性の和で与えられる1)。

O(f) = S(f)P(f)G(f)	(1.1.1参照)
$t_{gr}^{O}(f) = t_{gr}^{S}(f) + t_{gr}^{P}(f) + t_{gr}^{G}(f)$	(1.1.2参照)

いま、規模と震源距離の十分に小さな地震が対象サイトで観測されている場合、その記録の群遅延時 間は、時間軸上での平行移動の分を除けば、ほぼ式(1.1.2)の右辺第三項、すなわちサイト特性を表現 していると考えられる。そこで、先に求めた地震基盤での統計的グリーン関数をいったんフーリエ変換 し、振幅をG(f)倍し、さらに、上記の条件を満足する記録を周波数領域で振幅1に調整して乗じ、フー

生する地震による遠方での地震動を評価する場合、及び、それ以外の地震による地震動を評価する場合 には、地震動のエネルギーが水平2成分に等しく分配されると仮定してPRTITN=0.71とすることができ る。いずれにしても*PRTITN*は水平2成分の自乗和が1となるように設定する必要がある。表-1.3.1に **PRTITN**の標準値を示す。

表一	1.	3.	1	PR'
	•••	•••		

		震源近傍	震源近傍以外
	海溝型地震	0.71	0.71
	古际江底园市雪	0.85(走向直交成分)	0.71
	的座佔阿眉地展	0.53(走行平行成分)	0.71
	M6.5の直下地震	0.71	0.71

ができる。小地震のコーナー周波数f,はBrune⁷⁶⁾⁷⁷⁾の次式により求めることができる。

 $f_c = 0.66 V_s / \sqrt{S_e}$

ここに、

(1, 3, 7)

Se:小地震の破壊領域の面積

式(1.3.7)は「Bruneの式(36)」⁷⁶⁾そのものである。式(1.3.7)とEsherby⁵⁹⁾による円形クラックの 式を組み合わせると、コーナー周波数を地震モーメントと応力降下量の関数として表現する著名な式を 導くことができる。式(1.3.6)において伝播経路における媒質のQ値は地域に応じて適切な値を用いる。 地域毎に推定されている Q値の例として、東日本の海溝型地震に対して推定 78 されている Q=114 f^{0.92}、 西日本の海溝型地震に対して推定⁷⁸⁾されている Q=152 f^{0.38}、東日本の内陸部に対して推定⁷⁸⁾されてい る Q=166 f^{0.76}、関西地方に対して推定 ⁷⁹されている Q=63.8 f^{1.00}、鹿児島県・熊本県に対して推定 ⁸⁰ されている *Q*=104 *f*^{0.63} 等がある。

以上により定まる地震基盤でのフーリエ振幅を満足するような波形をBoore⁷⁵⁾の方法又は野津・菅野 44)の方法で求め、これを地震基盤における統計的グリーン関数とする。

次に、地表における小地震波形(地表における統計的グリーン関数)を求める。その際、堆積層が地 震動の振幅と位相の双方に及ぼす影響(サイト特性)を考慮する。具体的には以下の方法74)で算定する ことができる。先に述べたように、一般に地震動の振幅は震源特性・伝播経路特性・サイト特性の積で、 地震動の群遅延時間は震源特性・伝播経路特性・サイト特性の和で与えられる1)。

> O(f) = S(f)P(f)G(f) $t_{or}^{O}(f) = t_{or}^{S}(f) + t_{or}^{P}(f) + t_{or}^{G}(f)$

いま、規模と震源距離の十分に小さな地震が対象サイトで観測されている場合、その記録の群遅延時 間は、時間軸上での平行移動の分を除けば、ほぼ式(1.1.2)の右辺第三項、すなわちサイト特性を表現 していると考えられる。そこで、先に求めた地震基盤での統計的グリーン関数をいったんフーリエ変換 し、振幅をG(f)倍し、さらに、上記の条件を満足する記録を周波数領域で振幅1に調整して乗じ、フー

TITNの標準値

小地震の地震モーメントMaはアスペリティ等の地震モーメントをN 3で除すことにより求めること

(1, 3, 7)

(1.1.1参照) (1.1.2参照) リエ逆変換したものを地表における統計的グリーン関数とする。このことを具体的に式で書くと次のよ うになる。 うい

$$A(f) = A_b(f) G(f) \frac{O_s(f)}{|O_s(f)|}$$

ここに、

A(*f*):地表における統計的グリーン関数のフーリエ変換(複素数)

Ab(f): 地震基盤における統計的グリーン関数のフーリエ変換(複素数)

G(f): サイト増幅特性(地震基盤~地表)(実数)

Os(f):対象地点で得られた中小地震記録のフーリエ変換(複素数)

なお、このとき用いる対象地点の中小地震記録は、対象サイトへの入射角ができるだけ対象地震と類 似したものを用いることが望ましい。それにより、堆積層が地震動の位相に及ぼす影響をより適切に考 慮できるためである。

以上の方法で地表における統計的グリーン関数を評価する場合、あらかじめサイト増幅特性*G(f)*を評価しておく必要がある。サイト増幅特性を求めるにあたって主に二つの考え方がある。一つは観測された地震動から何らかの方法でS波部分を抜き出し、その増幅特性を求める考え方である¹⁸⁾。もう一つは、S波だけでなく表面波も解析対象として、波形後半まで含めたフーリエスペクトルの増幅特性を求める考え方である²³⁾。いずれの立場をとるかは目的にもよるが、S波のみならず表面波の寄与も考慮して強震動予測を行う場合には後者の立場をとる必要がある。特に、上述の方法を用いることを前提に考えると、現地で取得された中小地震記録の群遅延時間にはS波の寄与と表面波の寄与が渾然一体となっていることから、振幅についても両者の寄与を考えることが必要となる。

アスペリティからの地震動は、地表における統計的グリーン関数を次式⁸¹⁾により重ね合わせることで 算定できる(図-1.3.6)。この重ね合わせを行うことにより、破壊伝播方向で揺れの強い指向性の効果 が考慮される。

$$U(t) = \sum_{i=1}^{N} \sum_{j=1}^{N} \left(r/r_{ij} \right) f(t) * u(t - t_{ij})$$
(1.3.9)

$$f(t) = \delta(t) + \left\{ \frac{1}{n'} / \left(1 - e^{-1}\right) \right\} \sum_{k=1}^{(N-1)n'} \left[e^{-(k-1)/(N-1)/n'} \delta\left\{ t - \frac{(k-1)\tau}{(N-1)/n'} \right\} \right]$$
(1.3.10)

$$t_{ij} = (r_{ij} - r_0) / V_S + \xi_{ij} / V_r$$
(1.3.11)

ここに、

U(t):アスペリティからの地震動

- u(t):地表における統計的グリーン関数
- f(t):大地震と小地震の滑り速度時間関数の違いを補正するための関数

r:小地震の震源距離

- rij:ij要素から対象地点までの距離
- N:分割数(図-1.3.6)

n': 波形の重ね合わせの際に現れる見かけの周期性を除去するための整数

リエ逆変換したものを地表における統計的グリーン うになる。

$$A(f) = A_b(f) G(f) \frac{O_S(f)}{|O_S(f)|}$$

ここに、

(1, 3, 8)

A(f):地表における統計的グリーン関数のフーリエ変換(複素数)
 A_b(f):地震基盤における統計的グリーン関数のフーリエ変換(複素数)
 G(f):サイト増幅特性(地震基盤〜地表)(実数)
 O_s(f):対象地点で得られた中小地震記録のフーリエ変換(複素数)

なお、このとき用いる対象地点の中小地震記録は、対象サイトへの入射角ができるだけ対象地震と類 似したものを用いることが望ましい。それにより、堆積層が地震動の位相に及ぼす影響をより適切に考 慮できるためである。

以上の方法で地表における統計的グリーン関数を評価する場合、あらかじめサイト増幅特性*G*(*f*)を評価しておく必要がある。サイト増幅特性を求めるにあたって主に二つの考え方がある。一つは観測された地震動から何らかの方法でS波部分を抜き出し、その増幅特性を求める考え方である¹⁸⁾。もう一つは、S波だけでなく表面波も解析対象として、波形後半まで含めたフーリエスペクトルの増幅特性を求める考え方である²³⁾。いずれの立場をとるかは目的にもよるが、S波のみならず表面波の寄与も考慮して強震動予測を行う場合には後者の立場をとる必要がある。特に、上述の方法を用いることを前提に考えると、現地で取得された中小地震記録の群遅延時間にはS波の寄与と表面波の寄与が渾然一体となっていることから、振幅についても両者の寄与を考えることが必要となる。

アスペリティ等からの地震動は、地表における統計的グリーン関数を次式⁸¹⁾により重ね合わせること で算定できる(図-1.3.6)。この重ね合わせを行うことにより、破壊伝播方向で揺れの強い指向性の効 果が考慮される。

$$U(t) = \sum_{i=1}^{N} \sum_{j=1}^{N} (r/r_{ij}) f(t) * u(t - t_{ij})$$
$$f(t) = \delta(t) + \left\{ \frac{1}{n'} / (1 - e^{-1}) \right\} \sum_{k=1}^{(N-1)n'} \left[e^{-(k-1)/(N-1)} t_{ij} - (r_{ij} - r_0) \right] / V_S + \xi_{ij} / V_r$$

ここに、

U(t): アスペリティ等からの地震動
 u(t): 地表における統計的グリーン関数
 f(t): 大地震と小地震の滑り速度時間関数の違いを補正するための関数
 r: 小地震の震源距離
 rij: ij要素から対象地点までの距離
 N: 分割数 (図-1.3.6)
 τ: ライズタイム
 n': 波形の重ね合わせの際に現れる見かけの周期性を除去するための整数

リエ逆変換したものを地表における統計的グリーン関数とする。このことを具体的に式で書くと次のよ

(1.3.8)

(1.3.9)

 $\frac{1}{n'}\delta\{t-(k-1)\tau/(N-1)/n'\}$ (1.3.10)

(1.3.11)

n:アスペリティの破壊開始点から対象地点までの距離

Eii: 破壊開始点から ii 要素までの距離

- *Vs*: 地震基盤のS波速度
- Vr:破壊伝播速度

アスペリティが複数あるときには、各アスペリティについて同様の作業を行い、各アスペリティから の寄与を加え合わせることにより、地表における(線形時の)レベル2地震動を算定する。最後に、表 層地盤の地震応答計算により、工学的基盤におけるレベル2地震動(2E波)を算定する。背景領域か らの寄与は一般的な港湾施設の性能照査が目的の場合には無視しても差し支えない。

上記の算定の過程で、いったん地表における(線形時の)レベル2地震動が算定されるが、これは大 地震時の表層地盤の非線形挙動の影響を含まないため、一般には過大評価となっていることに注意が必 要である。本来の地表におけるレベル2地震動を算定するためには、いったん工学的基盤におけるレベ ル2 地震動を求めた後で、表層地盤の非線形挙動を考慮した地震応答計算により、あらためて求めるこ とが一般的である。

なお、ここで述べた強震波形計算手法により既往の大地震記録の再現を試みた事例が文献 44)で紹介 されている。また、ここで述べた強震波形計算手法による計算プログラムが CD-ROM⁴⁴⁾で公開されて いる。

(3) 経験的グリーン関数法

経験的グリーン関数法は、対象地震の震源断層のそばで発生した小地震の記録が対象地点で取得でき ている場合に、これを重ね合わせることにより、大地震による対象地点の揺れを評価する方法である。 このとき重ね合わせに用いられる小地震記録は経験的グリーン関数と呼ばれる。対象地点で取得された 記録には伝播経路特性とサイト特性の影響が自然に含まれているため、それらに関する評価を行うこと 無しに、大地震による揺れを精度良く評価できる点が大きな特徴であるが、対象地点で適切な小地震記 録が取得できていない場合には適用できない。また、以下に述べるように、やや専門的配慮を必要とす る事項もある。

波形の重ね合わせには、統計的グリーン関数法の式(1.3.9)~式(1.3.11)をほぼそのまま用いること ができる。ただし式(1.3.9)については、小地震の特性を適切に反映できるよう、補正係数 Cを含む次 式に置き換える必要がある⁸¹⁾。

> $U(t) = \sum_{i=1}^{N} \sum_{j=1}^{N} \left(r/r_{ij} \right) f(t) * \left(Cu(t - t_{ij}) \right)$ (1, 3, 12)

重ね合わせに関連するパラメータ $N \geq C$ は次式を満足するように定める。

 $M_{0a}/M_{0a} = CN^3$ (1, 3, 13) $S_a/S_e = N^2$

ここに、 *M*_{0a}:アスペリティの地震モーメント n: アスペリティ等の破壊開始点から対象地点までの距離 *とii*:破壊開始点から*ii*要素までの距離 *Vs*: 地震基盤のS波速度

V_r:破壞伝播速度

アスペリティ等が複数あるときには、各アスペリティ等について同様の作業を行い、各アスペリティ 等からの寄与を加え合わせることにより、地表における(線形時の)レベル2地震動を算定する。最後 に、表層地盤の地震応答計算により、工学的基盤におけるレベル2地震動(2E波)を算定する。背景 領域からの寄与は一般的な港湾施設の性能照査が目的の場合には無視しても差し支えない。

上記の算定の過程で、いったん地表における(線形時の)レベル2地震動が算定されるが、これは大 地震時の表層地盤の非線形挙動の影響を含まないため、一般には過大評価となっていることに注意が必 要である。本来の地表におけるレベル2地震動を算定するためには、いったん工学的基盤におけるレベ ル2 地震動を求めた後で、表層地盤の非線形挙動を考慮した地震応答計算により、あらためて求めるこ とが一般的である。

なお、ここで述べた強震波形計算手法により既往の大地震記録の再現を試みた事例が文献 44)で紹介 されている。また、ここで述べた強震波形計算手法による計算プログラムが CD-ROM⁴⁴⁾で公開されて いる。

(3) 経験的グリーン関数法

経験的グリーン関数法は、対象地震の震源断層のそばで発生した小地震の記録が対象地点で取得でき ている場合に、これを重ね合わせることにより、大地震による対象地点の揺れを評価する方法である。 このとき重ね合わせに用いられる小地震記録は経験的グリーン関数と呼ばれる。対象地点で取得された 記録には伝播経路特性とサイト特性の影響が自然に含まれているため、それらに関する評価を行うこと 無しに、大地震による揺れを精度良く評価できる点が大きな特徴であるが、対象地点で適切な小地震記 録が取得できていない場合には適用できない。また、以下に述べるように、やや専門的配慮を必要とす る事項もある。

波形の重ね合わせには、統計的グリーン関数法の式(1.3.9)~式(1.3.11)をほぼそのまま用いること ができる。ただし式(1.3.9)については、小地震の特性を適切に反映できるよう、補正係数 Cを含む次 式に置き換える必要がある⁸¹⁾。

$$U(t) = \sum_{i=1}^{N} \sum_{j=1}^{N} (r/r_{ij}) f(t) * (Cu(t - t_{ij}))$$

重ね合わせに関連するパラメータ $N \geq C$ は次式を満足するように定める。

 $M_{0a}/M_{0a} = CN^3$ $S_a/S_a = N^2$

ここに、 *M*_{0a}: アスペリティ等の地震モーメント

(1, 3, 12)

(1, 3, 13)

	M_{0e} :小地震の地震モーメント S_a :アスペリティの面積 S_e :小地震の破壊領域の面積	M _{0e} :小地震の地震モーメント S _a :アスペリティ等の面積 S _e :小地震の破壊領域の面積
	以上からわかるように、経験的グリーン関数法の適用にあたっては、小地震のパラメータを適切に見 積もる必要がある。小地震の地震モーメント Moeについては CMT 解 20)(例えば防災科学技術研究所 の F-net によるもの)を参考にすることができる。小地震の破壊領域の面積 Set、小地震のコーナー 周波数 &から式(1.3.7)により求めることができる。小地震のコーナー周波数を求めるには、近傍で発 生した規模の異なる地震とのスペクトル比をとる方法 80を用いることができる。 経験的グリーン関数法を適用する際の他の注意点としてラディエーション係数の問題がある。震源か らの地震波のラディエーション係数は理論上方位依存性があり 20)83)、小地震のメカニズム(走向・傾 斜・滑り角)によっては、観測点がたまたまラディエーション係数の谷に相当していることも考えられ る。その場合、得られた記録をそのまま重ね合わせると、大地震による揺れを過小評価してしまう可能 性がある。したがって、採用する小地震のメカニズムには十分に注意を払う必要がある。 以上のように、経験的グリーン関数法による地震動の評価には専門的な判断を要する部分も少なくな いため注意が必要である。	以上からわかるように、経験的グリーン関数法の通 積もる必要がある。小地震の地震モーメント Moeに の F-net によるもの)を参考にすることができる。 周波数 £から式(1.3.7)により求めることができる。 生した規模の異なる地震とのスペクトル比をとる方 経験的グリーン関数法を適用する際の他の注意点 らの地震波のラディエーション係数は理論上方位依 斜・滑り角)によっては、観測点がたまたまラディエ る。その場合、得られた記録をそのまま重ね合わせる 性がある。したがって、採用する小地震のメカニズ、 以上のように、経験的グリーン関数法による地震動 いため注意が必要である。
第3編 作用及び	[参考文献]	[参考文献]
材料強度条件編 第4章 地震 1 地震動 P.364-1	11)菊地正幸,山中佳子:既往大地震の破壊過程=アスペリティの同定,サイスモ,5(7),pp.6~7,2001	 11)Lay, T., H. Kanamori, C.J. Ammon, K.D. Koper, Depth-varying rupture properties of subduction zo B04311, 2012 11-1) 野津厚,山田雅行,長尾毅,入倉孝次郎:海溝型 域のスケーリング,日本地震工学会論文集,Vol.12, 11-2) 野津厚,長尾毅:海溝型巨大地震による地震動の ルスの生成に着目して一,港湾空港技術研究所資料 11-3)Kurahashi, S. and K. Irikura: Short-period souc Tohoku earthquake, Bull. Seism. Soc. Am., Vol.10
P.365	61)中央防災会議:東南海・南海地震等に関する専門調査会(第7回)図表集,2002	 61) 野津厚:東北地方太平洋沖地震を対象とするスー/ 文集 Vol.12, No.2, pp.21-40, 2012 61-1) 野津厚,若井淳:強震動を対象とした 2011 年東 研究所報告 Vo.51, No.1, pp.23-53, 2012 65-1) 野津厚:南海トラフの地震(M_w9.0)を対象とし 論文集 A1(構造・地震工学) Vol.69, No.4, pp. 65-2) 野津厚,若井淳:南海トラフの地震(M_w9.0)を 港湾空港技術研究所資料 No.1271, 2013 65-3) 内閣府南海トラフの巨大地震モデル検討会:南港 て(第一次報告), http://www.bousai.go.jp/jishin/c 65-4) 野津厚,若井淳,長坂陽介:表層地盤の非線形著

適用にあたっては、小地震のパラメータを適切に見 ついては CMT 解 ²⁰⁾(例えば防災科学技術研究所 小地震の破壊領域の面積 Seは、小地震のコーナー 小地震のコーナー周波数を求めるには、近傍で発 法 ⁸²⁾を用いることができる。

としてラディエーション係数の問題がある。震源か 存性があり²⁰⁾⁸³⁾、小地震のメカニズム(走向・傾 エーション係数の谷に相当していることも考えられ ると、大地震による揺れを過小評価してしまう可能 ムには十分に注意を払う必要がある。

めの評価には専門的な判断を要する部分も少なくな

, A.R. Hutko, L. Ye, H. Yue and T.M. Rushing: one megathrust faults, *J. Geophys. Res.*, Vol.117,

型巨大地震における強震動パルスの生成とその生成
No.4, pp.209-228, 2012
D予測のための震源パラメターの経験式−強震動パ
No.1257, 2012
ce model of the 2011 Mw9.0 off the Pacific coast of
03, pp.1373~1393, 2013

パーアスペリティモデルの提案, 日本地震工学会論

夏北地方太平洋沖地震の震源モデル、港湾空港技術

した SPGA モデルによる強震動評価事例,土木学会 D.I_872·I_888, 2013 と対象とした強震動評価への SPGA モデルの適用,

海トラフの巨大地震による震度分布・津波高につい /chubou/nankai_trough/1st_report.pdf, 2012 挙動を考慮した 2011 年東北地方太平洋沖地震の強 No.1284, 2014