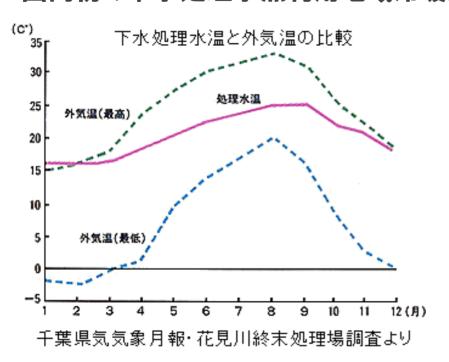
下水熱利用によるエコづくりワークショップ 浦安会場

建物・都市への下水熱エネルギーの利用

平成27年1月22日 清水建設株式会社 橘 雅哉


構成

- 1. 幕張ハイテクビジネス地区での実施例
- 2. 下水処理水の利用上の課題
- 3. 設計上のポイント
- 4. 今後の展開

1.幕張ハイテクビジネス地区での実施例(1)

立地と熱源・排熱源としての下水処理水

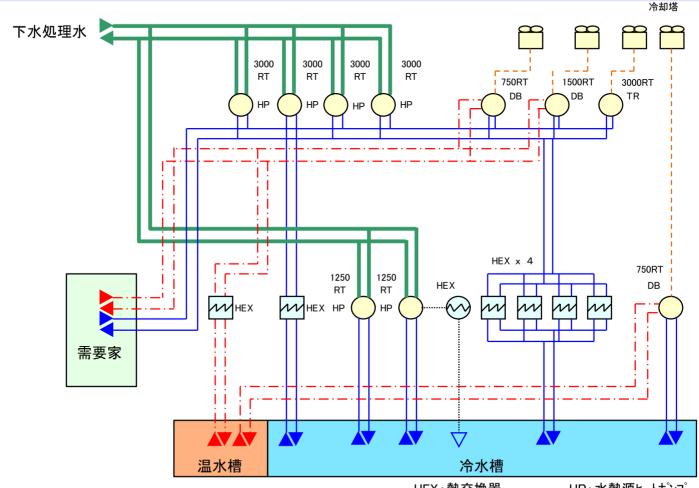
国内初の下水処理水熱利用地域冷暖房プラント

出展:一般社団法人日本熱供給事業協会HP

出展:千葉県HP

下水処理水:外気に比べ年間で安定した温度を維持ヒートポンプの熱源/排熱源として利用

1.幕張ハイテクビジネス地区での実施例(2)


下水処理水利用システム

出展: 千葉県HP 花見川下水処理場から花見側第2下水処理場へ移送する 下水2次処理水の温度を利用。

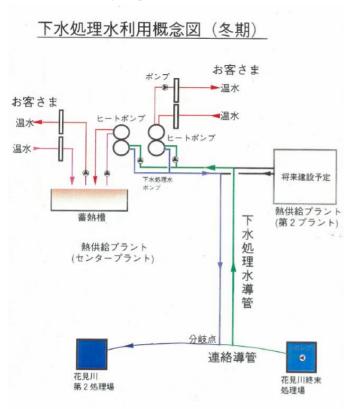
1. 幕張ハイテクビジネス地区での実施例(3)

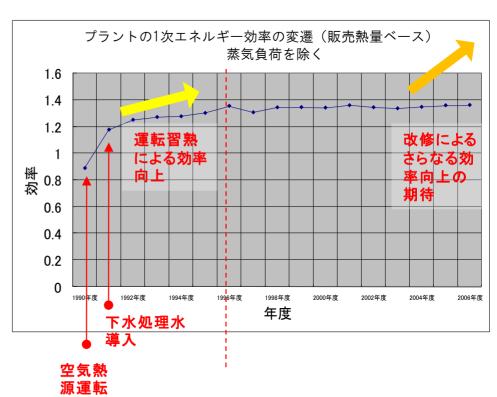
熱源システム

HEX:熱交換器

HP:水熱源ヒートポンプ

TR:ターボ冷凍機


DB:熱改修ヒートポンプ


下水処理水は6台のヒートポンプに供給され、冷水・温水製造用の排熱源・熱源として機能している。

1.幕張ハイテクビジネス地区での実施例(4)

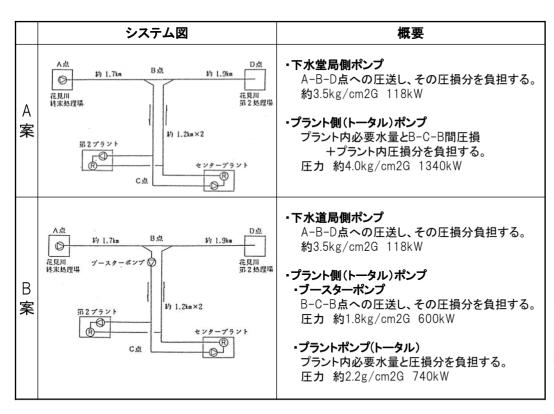
センタープラント1次エネルギー効率の変遷

プラント効率

竣工当初下水処理水配管が完成していなかったため、空気熱源ヒートポンプによる運転となっていた。

1年後下水処理水供給により、プラントエネルギー効率はアップした。

その後約5年間運転の習熟により効率は暫時じょうしょうし、その後現在にいたるまで安定して高いエネルギー効率の運転を続けている。

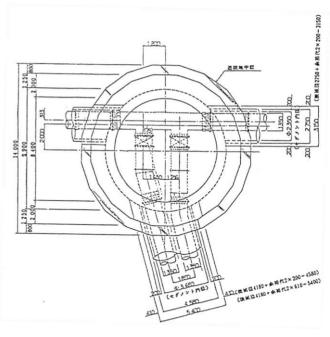
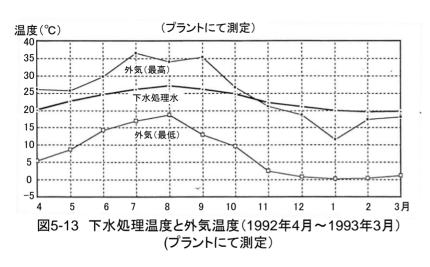
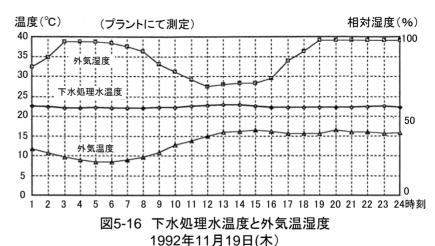

1.幕張ハイテクビジネス地区での実施例(5)

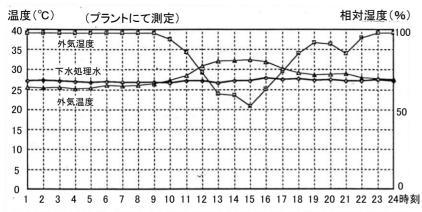
機器構成

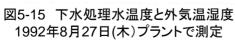
熱 源 設 備	単 位	能力および台数	
下水処理水熱源ヒートポンプ	冷却MJ/h (RT) 加熱MJ/h (Mcal/h)	37,976 (3,000) ×4台 15,823 (1,250) ×2台 39,809 (9,510)	
空気熱源ヒートポンプ (熱回収型)	冷却MJ/h (RT) 加熱MJ/h (Mcal/h)	18,988 (1,500) ×1台 9,494 (750) ×2台 20,863 (4,984) ×1台 11,499 (2,747)	
冷 凍 機	冷却MJ/h (RT)	37,976 (3,000)×1台	
電気式蒸気ボイラー	蒸気発生量kg/h	1,690×2台 700×1台	
冷 熱 合 計	MJ/h (RT)	259,502 (20,500)	
温熱合計	MJ/h (Mcal/h)	238,921 (57,076)	
蒸 気 合 計	kg/h	4,080	
■蓄熱槽			
冷 水	槽	250m³	
温水	槽	220m³	
冷温水	槽	3,990m³	
蓄熱槽台	計	4,460m³	

1.幕張ハイテクビジネス地区での実施例(6)

下水処理水配管システム


図5-3 分岐部配管図


1.幕張ハイテクビジネス地区での実施例(7)

下水処理水温度変化

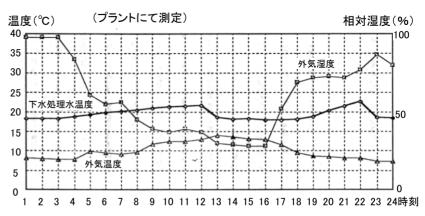


図5-17 下水処理水温度と外気温湿度 1993年2月18日(木)

1.幕張ハイテクビジネス地区での実施例(8)

下水処理水水質対策

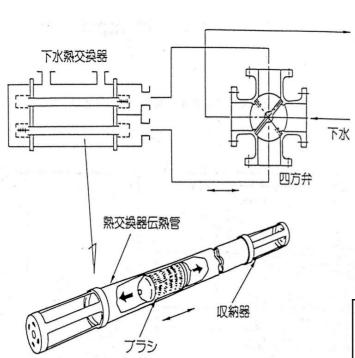


図5-10 チューブ自動洗浄装置

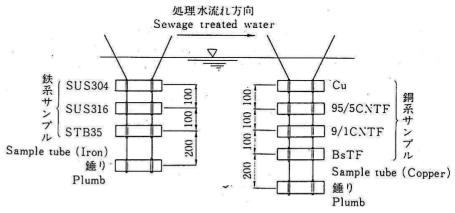
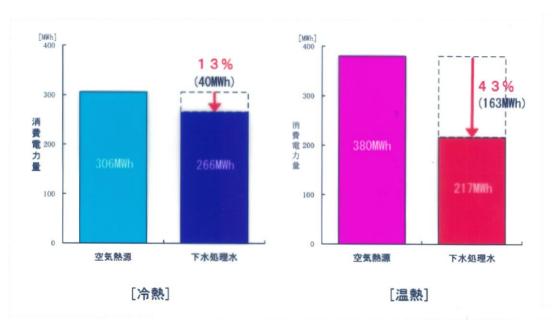
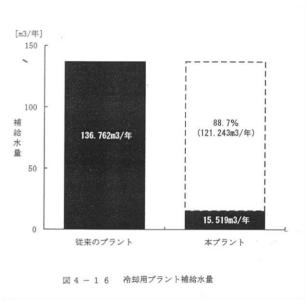


図5-7 サンプルチューブの浸清テスト方法


表5-2 表面計上測定器による最深部の浸食深さ 測定結果及び年間浸食どの予測値(2次処理水の場合)


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	最深部の浸食深さmm Max.erosion depth	年間浸食度の予測値mm/年 Yearly erosion depth estimated
BsTF	0.006	0.024
95/5CNTF	0.010	0.040
9/1CNTF	0.070	0.028
DCuT	0.002	0.008
STB35	0.035	0.140

1.幕張ハイテクビジネス地区での実施例(9)

下水処理水利用効果

下水処理水利用効果

2. 下水処理水の利用上の課題

搬送

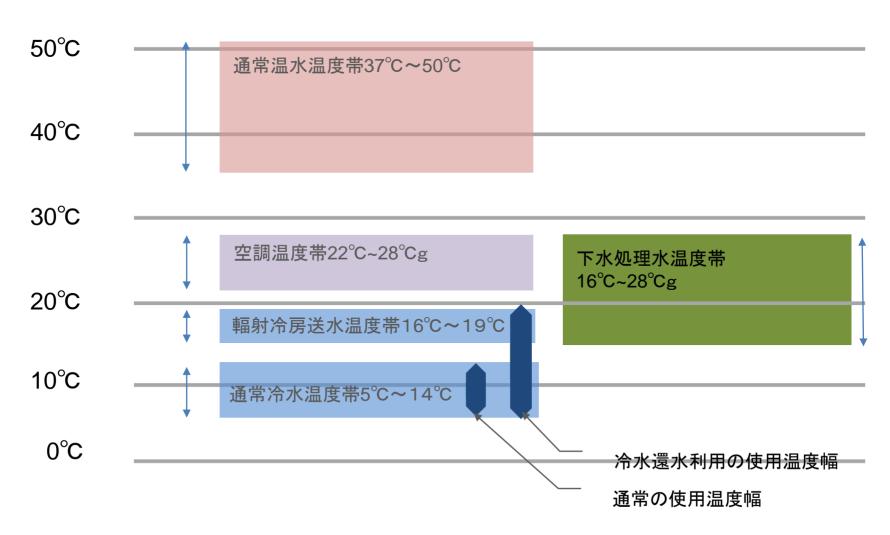
- ・一般に低温下水処理水が得られる場とエネルギーを 利用する場所が離れている場合が多い
- ・どのように未利用エネルギーを搬送するかが計画上のポイントとなる

機器・配管 材質

- ・下水処理水は水質の面で配管・ヒートポンプ等に影響を与えることが 懸念される
- ・機器の材質の選定には注意を要する

利用温度差

- ・下水処理水は、使用後は温度変化を伴った形で、 河川、海等へ放流される
- ・この利用温度差が大きい場合、生態系等への影響も考えられる
- ・生態系等への利用温度差の制限を受ける場合が多い


3. 設計上のポイント

設計上考慮すべき項目

項目			
設備関係	取水部	仕様 	
	取水管	配管材質・埋設方法	
	オートストレーナー	型式・仕様	
	熱源機内熱交換器	型式・仕様	
	熱交換器	型式・仕様	
	取水ポンプ	型式・仕様	
	生物付着防止装置•薬品	型式・仕様	
	バックアップシステム	型式•仕様	
運用関係	熱源機	運転方法等	
	熱交換器	清掃・メンテナンス	
	オートストレーナー	清掃・メンテナンス	
	取水部	清掃・メンテナンス	
	取水ポンプ	清掃・メンテナンス	
その他	取水実績		
	水撃について		
	水利用に関わる行政手続き等		
	生物(ユスリカ 等)	発生状況	
	· ·	対策	
	耐震方法		
	プラント運転		

4. 今後の展開

空調に必要な温度レベルとの関係

END