インフラの維持管理、更新 に関わる話題

国土交通省

社会資本整備審議会 · 交通政策審議会技術部会_ 国土交通技術行政の基本政策懇談会(第四回)

2018年9月3日

藤野 陽三

横浜国立大学 先端科学高等研究院

Morandi Bridge 1967年 2018年8月14日崩壊

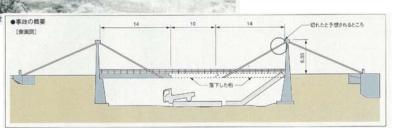
Morandi, Riccardo ローマ大学教授 1902-1989 著名な構造家

PCによる駅の屋根

海浜に近く、多量の飛来 塩分. それによるPC鋼材 の腐食 1990年から補修・補強 が行われていた. 2006年には再構築の警鐘 重要幹線 2500万台/年 事故当日はストームによる 強風.雷

Pumarejo bridge, Colombia, 1974

-1 久慈線小本川橋りょう


島田橋 岐阜県福岡町 1963年 事故1990年

日本にも似たような

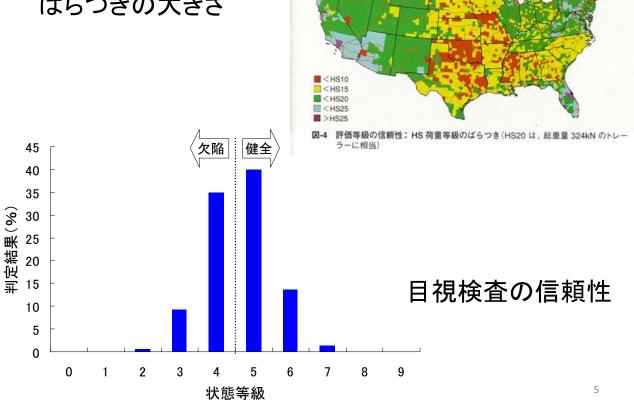
橋がある

Wadi el Kuf Bridge, Libya

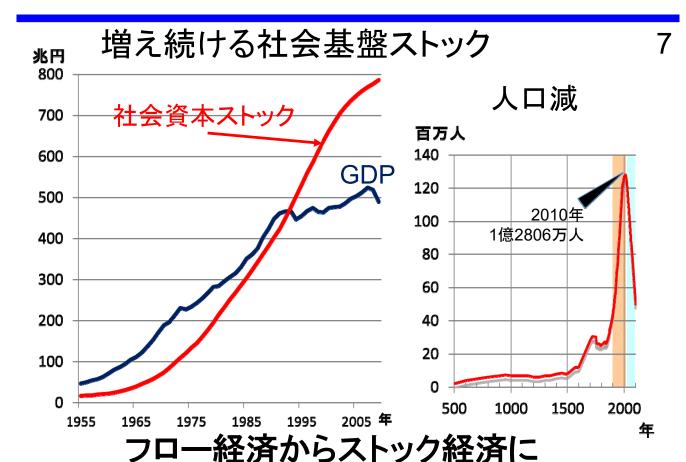
内部の可視化がポイント

アメリカの橋梁維持管理は この事故(1967年)がきっかけ 1970年代: 度重なる社会基盤 施設の事故

目視検査・統計データに基づく 経験的マネジメントシステムの 確立


シルバー橋 1928年 1967年崩壊 46名死者

人間の判断の ばらつきの大きさ



アメリカの次のステップ 長期橋梁性能プログラム(20年間) 2007年から

- ・ 点検・検査の定量化
- 継続的性能モニタリング
- 廃棄時の解剖的検査

日本は二周遅れ と当時、思った

野口悠紀雄「社会的共通資本」(宇沢弘文編)

首都高速一号羽田線 1964年完成

50年経ても現役 時とともに価値が上昇

維持管理時代の社会基盤マネジメント

アセットマネジメント

投資•資産活用効果

新設も含まれる

リスクマネジメント

事前:ハザード・脆弱性 事後:被害把握,緊急対応

有事 非常時 でも常日頃から

ストックマネジメント

点検/LCC/劣化予測/将来負担

平時 常時

どちらを優先するか?

バランスよく

担う人材の育成、技術の開発・継承

首都高速道路構造物の 大規模更新のあり方に関する 調查研究委員会

首都高速道路の 更新, 改築, 改修

報告書

高速道路資産の 長期保全及び更新のあり方に関する 技術検討委員会

ネクスコ系高速道路 の更新,改築,改修

平成26年 1月22日

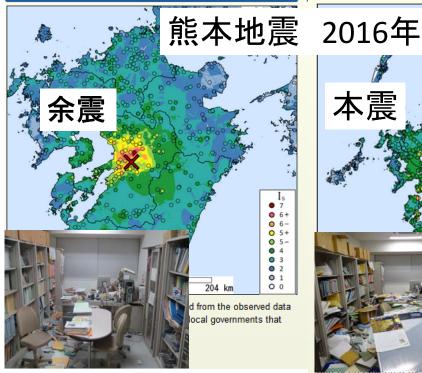
平成 25 年 1 月 15 日

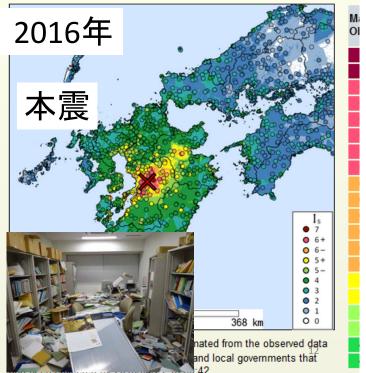
阪神高速道路, 本四高速道路の構造物の大規模更新・補修のあり方も 続いて

ネクスコ系の大規模更新・大規模修繕 今後15年間に3兆円 その半分以上 はRC床版の取り替え

		項目	主な対策	延長※1		概算事業費※2
大規模更新	橋梁	床版	床版取替	約	230km	約16,500億円
		桁	桁の架替	約	10km	約 1,000億円
	小計			約	240km	約17,600億円
大規模修繕	橋梁	床版	高性能床版防水 など	約	360km	約 1,600億円
		桁	桁補強 など	約	150km	約 2,600億円
	土構造物	盛土・切土	グラウンドアンカー 水抜きボーリング など	約	1,230km	約 4,800億円
	トンネル	本体·覆工	インバート など	約	130km	約 3,600億円
		小	計	約	1,870km	約12,600億円
合 計				約	2,110km	約30,200億円

クラックの入った床版


盲点, 想定外


橋面に関わる工事 (床版取り換えなど) は新設工事の5倍-10倍かかる.

11

4月14日夜9時26分の 地震, M=6.4 ² 誰もが本震と思ったが. .

4月16日夜中1時26分の 地震, M=7.1 これが本震

府領跨道橋(九州縱貫道) 数万台/日

■ 前震と本震による被災状況の違い 橋梁(ロッキング橋脚)★

高速道路

〇4月14日 21時26分(前震) 益城町で震度7を観測

〇4月14日 21時28分~ 142kmが通行止め

○4月15日 22時30分 20kmまで通行止め縮小

高速道路のオーバーパス跨道橋の抱える課題

- ネクスコ系 東1900橋, 中980橋, 西1400橋
- 落ちれば, 凶器に

- 設計施工はネクスコ, あとは地方
- 自治体に移管
- 点検・維持管理・耐震補強は自治体の責任
- 点検・補修工事は高速道路の交通規制を伴うので高額に
- 点検・補修補強工事をネクスコが請負うケースも多いようで
- あるが、負担は大きい
- 結果的に、すべてが先送りになっているケースが多い と聞く

内閣府総合科学技術・イノベーション会議(安倍晋三議長)

戦略的イノベーション創造プログラム(SIP)

平成22年12月

内閣府 PDプログラムディレクター 藤野 陽三

平成26年度(2014年)から年間30億円あまり 5年間 今年が最終年度

戦略的イノベーション創造プログラム(SIP)の対象課題

革新的燃焼技術 (配分額 19.0億円)

杉山雅則 トヨタ自動車 エンジン技術領域 領域長

乗用車用内燃機関の最大熱効率を50%に向上する革新的燃焼 技術(現在は40%程度)を持続的な産学連携体制の構築により実 現し、世界トップクラスの内燃機関研究者の育成、省エネ、CO。削 減及び産業競争力の強化に寄与。

岸 輝雄 東京大学名誉教授、物質・材料研究機構顧問

軽量で耐熱・耐環境性等に優れた画期的な材料の開発及び航 空機等への実機適用を加速し、省エネ、CO。削減に寄与。併せ て、日本の部素材産業の競争力を維持・強化。

次世代海洋資源調査技術 (配分額 45.6億円)

浦辺徹郎 東京大学名誉教授、国際資源開発研修センター 顧問

銅、亜鉛、レアメタル等を含む、海底熱水鉱床、コバルトリッチク ラスト等の海洋資源を高効率に調査する技術を世界に先駆けて 確立し、海洋資源調査産業を創出。

・フラ維持管理・更新・マネジメント技術 (配分額 31.0億円) 藤野陽三 横浜国立大学 先端科学高等研究院 上席特別教授

インフラ高齢化による重大事故リスクの顕在化・維持費用の不足 が懸念される中、予防保全による維持管理水準の向上を低コストで 実現。併せて、継続的な維持管理市場を創造するとともに、海外展

関を推進 重要インプラ等におけるサイバーセキュリティの確保(配分額 25.0億円) 後藤厚宏 情報セキュリティ大学院大学 研究科長・教授

制御・通信機器(真体性) 日本 大阪 認 五面 を含めた動作監視・解析技術とは対象の 完成 フェラ 東 アンラ産業の国際競争 認 するを含めた動作監視・ 力強化と2020年東京オリンピック・パラリンピック競技大会の安定的 運営に貢献。

に向けて発信。

エネルギーキャリア (配分額 34.9億円)

村木 茂 東京ガス 常勤顧問

世界シェアを拡大。

自動走行システム (配分額 26.2億円) 葛巻清吾 トヨタ自動車 CSTO(Chief Safety Technology Officer)補佐 高度な自動走行システムの実現に向け、産学官共同で取り組 むべき課題につき、研究開発を推進。関係者と連携し、高齢者な ど交通制約者に優しい公共バスシステム等を確立。事故や渋滞

を抜本的に削減、移動の利便性を飛躍的に向上。 レジリエントな防災・減災機能の強化 (配分額 21.1億円)

次世代パワーエレクトロニクス (配分額 23.0億円)

SiC、GaN等の次世代材料によって、現行パワーエレクトロニク

スの性能の大幅な向上(損出1/2、体積1/4)を図り、省エネ、再生

可能エネルギーの導入拡大に寄与。併せて、大規模市場を創出、

再生可能エネルギー等を起源とする電気・水素等により、クリー

ンかつ経済的でセキュリティーレベルも高い社会を構築し、世界

大森達夫 三菱電機 開発本部 役員技監

中島正愛 京都大学防災研究所 教授

大地震・津波、豪雨・竜巻等の自然災害に備え、官民挙げて災害情報をリアルタイムで共有するとは、または第二人に共享を表現して、 の向上と対応力の強化を実現。現在は堀宗朗PD

次世代農林水産業創造技術 (配分額 26.6億円)

西尾 健 法政大学 生命科学部 教授

農政改革と一体的に、革新的生産システム、新たな育種・植物 保護、新機能開拓を実現し、新規就農者、農業・農村の所得の増 大に寄与。併せて、生活の質の向上、関連産業の拡大、世界的 食料問題に貢献。

革新的設計生産技術 (配分額 21.9億円)

佐々木直哉 日立製作所 研究制

地域の企業や個人のアイデアや ほとんどが大企業主導の先端分野 的制約を打破する新たなものづく ほとんどが大企業主導の先端分野 ザニーズに迅速に応える高付加価になる品以

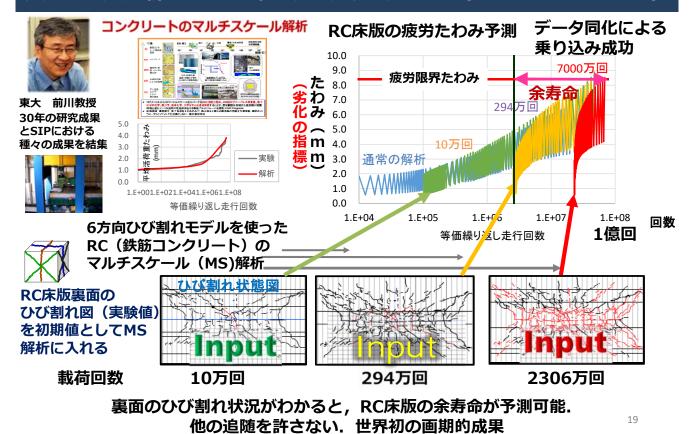
産業・地域の競争力を強化。

総合科学技術・イノベーション会議

Council for Science, Technology and Innovation

6

SIPインフラの4年間(1) スタート時の構想


土木インフラ以外からの多数の参加 60課題 1000名を超す

インフラストラクチャ

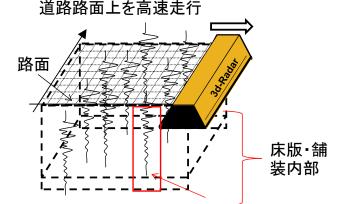
道路, 鉄道, 港湾, 空港, 農業水利施設, 上水道(地下構造物) 河川堤防, のり面・斜面, ダム

データ同化を使ったRC (鉄筋コンクリート) 床版のマル -ル解析による余寿命予測システムの確立(東大ァセットMグループ)

床版や舗装の簡易・高速での状態評価技術の必要性

長さ15m以上の道路橋の総数:約16万橋

車載型地中探査レーダーの床版 内部探査への応用(東大生研)



時速80kmの高速で地中からの 反射波の非接触計測が可能.

人力での打音試 験により異常箇 所を特定

車線規制+打音試験 → 膨大な時間とコスト

床版・舗装内部からの反射波を計測 高度は波形高速処理

腐食による減肉

錆びの上からも 水中でも

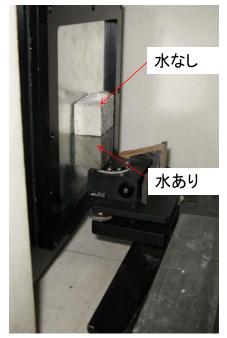
膜の上からもき裂も検出

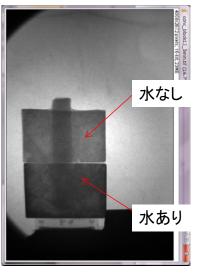
地中でも

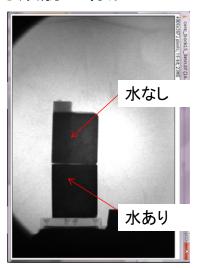
医用電子技術を活用

高速中性子による橋梁等非破壊観察

理化学研究所 大竹淑恵研究員 土研との共同研究

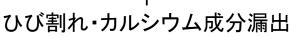




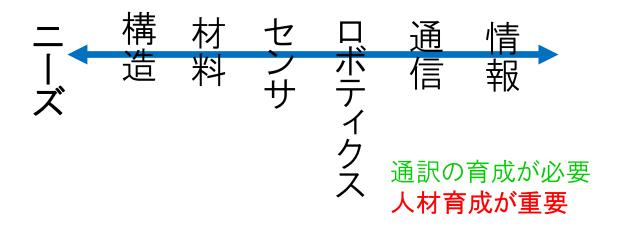

高速中性子 (>1MeV) 30cm コンクリート 可視化

水の有無+鉄筋有無に対する中性子線の有効性

水の影響に対する鉄筋の有無

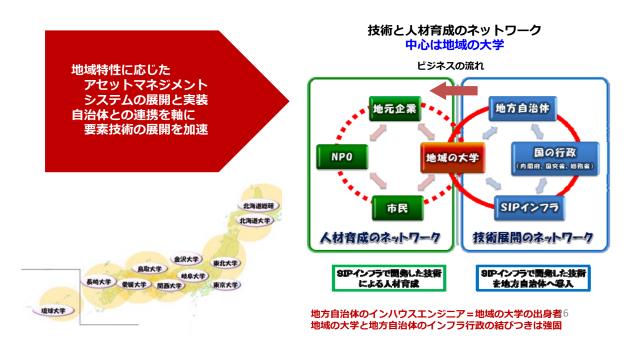

23

東大原子力チームと土研との共同研究 コンクリート橋T字桁ウェブ内部の 可視化


現場での撮影風景

↑健全

異分野協働が不可欠


ニーズを理解し、シーズ技術を横串しに

使いたくなる技術・システムをつくる それができれば"イノベーション"

地域実装支援の体制

インフラの長寿命化・高耐久化を実現するアセットマネジメントシステムに基づく、地域が主役となる新たなインフラとの共存社会の提案

「近接目視」がきわめて難しい「橋」への挑戦=ドローンによる点検

27

土木学会年次大会(北大) 研究討論会 研-07 (SIPインフラ連携委員会) 2018, 8, 29 (Wed)

維持管理・更新・マネジメントに関わる 新技術の開発と活用拡大を考える

長 話題提供者 藤野 陽三 SIPインフラPD、横浜国立大学

田崎 忠行 SIPインフラ連携委員会委員長、 日本建設機械施工協会

岡田 有策 SIPインフラ サブPD、慶應義塾大学

黒田 保 鳥取大学 下里 哲弘 琉球大学

高松 泰 北海道大学

手塚 寛之 国土交通省

新田 恭士 土木研究所

横田 弘 北海道大学 六郷 恵哲 岐阜大学

若原 敏裕 SIPインフラ サブPD、清水建設28

終わりに

- 画期的な技術の開発は、他分野との協働研究がキー
- 省庁連携を促進する内閣府SIPファンドがあったからできたこと. ポストSIPインフラが不安. 国交省も十分は研究開発予算を国に主張し, 獲得し, 国研, 大学を巻き込んで横断研究を
- 新しい技術を取り込みやすい環境の整備を
- 新しい技術を使ったメリハリのある点検,調査,診断の確立を
- ・ 地域のインフラ維持管理は地域連携, 官学民の共同作業で