## 平成30年度 建築基準整備促進事業

# S30.鉄筋コンクリート造の限界耐力計算における 応答変位の算定精度向上に向けた建築物の 振動減衰性状の評価方法の検討

- 事業主体名:株式会社 堀江建築工学研究所 国立大学法人 名古屋大学大学院 国立大学法人 東京大学地震研究所 国立大学法人 山口大学大学院 国立研究開発法人 防災科学技術研究所 ・兵庫耐震工学研究センター
- 共同研究 : 国立研究開発法人 建築研究所



第 I 編 総則

応答低減係数Fhの評価精度に大きな影響を及ぼす建築物の振 動減衰hの設定を精緻化する方法を提案する。

- (1)実験データを収集し、建築物の振動減衰hの設定方法にかかわる降伏点の評価を行うとともに、不足している実験因子に関する部材実験を実施する。
- (2)建築物モデル架構試験体の設計と解析を行う。
- (3)建築物モデル架構試験体の振動台実験による架構の応答 性状等の動的特性を取得する。
- (4)建築物の振動減衰を表す数値hの新たな設定方法の提案と 応答変形値推定精度の検証を行う。



|           | 配置予定者                                                                                                                     | 所属·役職                                                                                                                                                      | 担当する分担業務の内容                                                       |
|-----------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 管理<br>技術者 | <ol> <li>太田勤</li> <li>太田勤</li> <li>勅使川原正臣</li> <li>楠浩一</li> <li>稲井栄一</li> <li>丸山一平</li> <li>長江拓也</li> <li>梶原浩一</li> </ol> | 堀江建築工学研究所・取締役所長<br>名古屋大学大学院環境学研究科・教授<br>東京大学 地震研究所・教授<br>山口大学大学院創成科学研究科・教授<br>名古屋大学大学院環境学研究科・教授<br>名古屋大学減災連携研究センター・准教授<br>防災科学技術研究所・兵庫耐震工学研究<br>センター・センター長 | 実験計画<br>実験計画<br>データベース検討<br>評価方法の検討<br>データベース検討<br>実験実施<br>動的実験計画 |
| 技術<br>担当者 | <ol> <li>1 浅井 竜也</li> <li>2 清原 俊彦</li> <li>3 迫田 丈志</li> <li>④ 髙橋 愛</li> </ol>                                             | 名古屋大学 環境学研究科·助教<br>堀江建築工学研究所·設計部長<br>堀江建築工学研究所·企画開発部長<br>堀江建築工学研究所                                                                                         | 実験実施<br>試験体設計<br>架構解析<br>評価手法の検討                                  |

# 平成30年度の調査項目

- 降伏変形角 $R_y$ に着目し、直接的な評価方法の確立を試みる
    $R_y = R_b + R_s + R_x$   $R_b$ :曲げ変形、 $R_s$ :せん断変形、 $R_x$ :抜け出し変形他
   提案式の精度検証を実験データベースを用いて行う。
- ・ 部材実験の実施 提案式の精度検証において、不足する実験パラメータを抽出 高強度材料・軸力比・せん断スパン比が主要パラメータ 静的加力実験の実施
- 検討用鉄筋コンクリート造建物モデルの設計 モデル建物の動的性状を解析的に把握



| 調査検討項目                                                                                                                  | 平成30年度(2018年) |                            |   |   |               |   |    |    |          |   |   |          |
|-------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------|---|---|---------------|---|----|----|----------|---|---|----------|
|                                                                                                                         | 4             | 5                          | 6 | 7 | 8             | 9 | 10 | 11 | 12       | 1 | 2 | 3        |
| I)データベース検証<br>降伏変形の①モデル化,<br>②精度検証                                                                                      | *             |                            | 1 |   | <             | 2 |    |    |          |   |   |          |
| Ⅱ)部材実験<br>①設計, ②製作, ③加力                                                                                                 |               |                            |   | 1 | $\rightarrow$ | 2 |    | ←  | 3        |   |   |          |
| Ⅲ)建物モデル設計<br>①試設計, ②動的解析                                                                                                |               |                            |   |   |               |   | <  | 1  | <b>→</b> | 2 |   | <b>→</b> |
| <ul> <li>Ⅳ)架構全体の性能曲線<br/>のモデル化</li> <li>①検討対象架構の設計</li> <li>②性能曲線の作成</li> <li>③塑性率起点設定法</li> <li>④時刻歴応答解析と比較</li> </ul> | 平成31年度(2019年) |                            |   |   |               |   |    |    |          |   |   |          |
| V) 大型振動台での検証<br>設計, 製作, 加振                                                                                              |               | 平成31年度(2019年)~令和2年度(2020年) |   |   |               |   |    |    |          |   |   |          |

## 第Ⅱ編 降伏点変形角の評価方法の提案とデータベースによる検証

抜け出しによる変形角R<sub>x</sub>



提案式: $R_y = R_x + R_s + R_b$ せん断による変形角 $R_s$  $R_s = \frac{\kappa Q}{\beta_s GA}$ 

$$Q = \beta_s \frac{GA}{\kappa L} \delta_s = \beta_s \frac{GA}{\kappa} R_s$$

剛性低下率 $\beta_s = 1/3$ と仮定



曲げ降伏による変形角R<sub>h</sub>

- 検証に用いた実験データベース:曲げ 降伏を生じた梁部材の構造性能実験デ ータベース。条件により除外して、検 討に採用した試験体は、全239体中、79 体である。
- 実験データベースから荷重変形曲線を
   三折れ線モデル化し降伏点を抽出



(荷重-変形図デジタル化と三折れ線モデル化一例)

①抜け出しによる変形角算出時の定着長 $d_p$ 4ケース:  $d_p = 7d_b$ 、 $d_p = 40d_b$ 、 $d_p = 20d_b$ 、  $d_p = \frac{\sigma_y A}{f_b \phi}$ 

抜け出しによる変形角の定着長は20dと仮定し た場合に実験結果との整合がよい

②曲げ変形による変形角のヒンジ領域βD



異なる定着長における $R_{y_{-} \equiv ffn_{k}}/R_{y_{-}}$ 計算値の統計結果

| 定着長  | 7d     | 20d    | 40d    | 付着割裂強度による |
|------|--------|--------|--------|-----------|
|      |        |        |        | 定着長       |
| 平均值  | 1.6276 | 1.1046 | 0.7451 | 0.6188    |
| 標準偏差 | 0.4678 | 0.3235 | 0.2281 | 0.2382    |



20d

菅野式による計算結果

試験体番号

剛性低下率による結果との比較

計算変形角

剛性低下率を用いて計算した変 形角は、定着長を20dとして計算し た結果と最も対応している

## 実験概要一試験体

- •6層建物の設計例\*1の柱を1/2に縮小した試験体。
- 反曲点位置までを再現し片持ち形式で加力。



第Ⅲ編 部材実験

負加力 正加力

\*1 国土技術政策総合研究所:災害拠点建築物の設計ガイドライン(案),2018



・試験体の諸元。

| 試験体No. | 1                    | 2                           | 3   | 4                                                                    | 5    |  |  |  |  |  |
|--------|----------------------|-----------------------------|-----|----------------------------------------------------------------------|------|--|--|--|--|--|
| 断面     |                      |                             | 612 | 708<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |      |  |  |  |  |  |
| 断面積    | 2500 cm <sup>2</sup> |                             |     |                                                                      |      |  |  |  |  |  |
| 配筋     | É                    | 主筋:20-D16 せん断補強筋:3-D10@55mm |     |                                                                      |      |  |  |  |  |  |
| 引張鉄筋比  |                      | 0.48 %                      |     |                                                                      |      |  |  |  |  |  |
| 扁平比    | 1.0                  | 1.0 1.0                     |     | 2.0                                                                  | 2.0  |  |  |  |  |  |
| 軸力比    | 0.25                 | 0.25 0.4                    |     | 0.25                                                                 | 0.25 |  |  |  |  |  |
| M⁄QD   | 3.0                  | 3.0                         | 3.0 | 2.6                                                                  | 3.0  |  |  |  |  |  |

# 実験概要一試験体

- •試験体の材料強度。
  - 鉄筋

| 「「「「」」 | ╅╋┍╌  | 降伏強度                 | 降伏歪  | ヤング係数                |
|--------|-------|----------------------|------|----------------------|
| 呼び名    | 例頁    | [N/mm <sup>2</sup> ] | [µ]  | [N/mm <sup>2</sup> ] |
| D10    | SD345 | 360                  | 2053 | 175476               |
| D16    | SD345 | 393                  | 2067 | 189966               |

- コンクリート

## 鉄筋の降伏・コンクリートの圧壊の判定に使用

|      | 圧縮強度                 | 強度時歪 | 割裂強度                 | ヤング係数                |
|------|----------------------|------|----------------------|----------------------|
|      | [N/mm <sup>2</sup> ] | [μ]  | [N/mm <sup>2</sup> ] | [N/mm <sup>2</sup> ] |
| 試験体1 | 23.5                 | 1803 | 2.04                 | 23683                |
| 試験体2 | 25.4                 | 1990 | 1.75                 | 23436                |
| 試験体3 | 28.1                 | 1923 | 2.13                 | 23701                |
| 試験体4 | 27.6                 | 2122 | 2.32                 | 22581                |
| 試験体5 | 28.2                 | 2469 | 2.06                 | 23350                |

実験結果-水平力-水平変形関係



# 実験結果一損傷状況

- •ひび割れ図
  - 左:1/200サイクル終了後
  - ⇒圧壊開始程度では剥落は生じていない。
  - 右:最終サイクル終了後
  - ⇒圧壊部が大きく剥落。





負加力 正加力

試験体 1

試験体 2



試験体 3

試験体4

試験体5

## 実験結果一降伏時のひずみ分布

コンクリート圧壊時(主筋降伏に先行)の結果を示す。



# 各変形成分の算定

- •曲げ変形
  - 試験体左右の鉛直変位計計測値を 用いて算定。
  - なお,以下のスタブ内の回転分は除く。
- •スタブ内の回転による変形
  - 歪ゲージ計測値からスタブ内における主筋の 合計変位量を求め、その圧縮側・引張側の 値より算出。



## 【鉛直変位計の設置位置】



- せん断変形
  - 全体変形から上記二つの変形を差し引くことで算定。





スタブ内の回転による変形は2~3割程度を占める。

# スタブ内の回転による変形の推定

スタブ内で主筋に応力が生じている距離がわかれば、スタブ内の回転による変形を推定可能。



スタブ内で応力が生じている距離は25d~30d程度。 ⇒この値を用いることでスタブ内の回転による変形を推定可能。

# せん断変形の推定

•既往の提案モデル\*1と実験結果を比較。



計算値は実験値の差は小さくないものの, その差は全体の変形の1割に満たない。

\*1日本建築学会:壁式鉄筋コンクリート造設計・計算規準・同解説, 2015

- ・柱部材の降伏変形の推定精度向上を目的とし、扁平比、軸力 比、シアスパン比をパラメータとした計5体の加力実験を行った。
  - いずれもコンクリートの圧壊が主筋降伏に先行し、この時を降伏点と定義。
  - 降伏点では平面保持仮定が概ね成立しており,曲げ変形はファイバーモ デルを用いた曲げ断面解析により精度良く推定可能。
  - スタブ内の回転による変形は、スタブ内で主筋に応力が生じている距離 (25d~30d程度)を用いることにより推定可能。
  - せん断変形は,既往のせん断ひずみ一せん断応力度モデルによる評価 結果との差は全体変形の1割に満たない。

## 第Ⅳ編 試設計建物 8階建て鉄筋コンクリート造庁舎の試設計

地震地域係数 Z=1 簡易第2種地盤 高い剛性と耐力を確保するため、外フレーム に扁平柱とせいの大きな梁を採用



# 8階建て鉄筋コンクリート造庁舎の試設計



#### 大梁リスト

| 符号      |        | GX1             |        |           | GX3            |                   |
|---------|--------|-----------------|--------|-----------|----------------|-------------------|
|         | 外端     | <u>中央</u>       | 内端     | <u>外端</u> | <u>中央</u>      | <u>内端</u>         |
| Z 2     |        |                 |        |           |                | 131133213<br><br> |
| Dx × Dy | 80     | $0 \times 1, 8$ | 00     | 1,        | $100 \times 9$ | 00                |
| 上端筋     | 12-D32 | 12-D32          | 18-D32 | 16-D32    | 16-D32         | 20-D32            |
| 下端筋     | 12-D32 | 12-D32          | 18-D32 | 16-D32    | 16-D32         | 20-D32            |
| スタラッフ゜  | 6      | -S13 @15        | 0      | 6         | -S13 @15       | 0                 |
| 腹筋      |        | 8 - D10         |        |           | 4 - D10        |                   |

#### 代表的な柱・梁断面



解析モデル:立体フレーム(剛域モデル)

### 限界耐力計算

- ・外力分布はBsi分布
- ・減衰は建物全体で与え、下式を使用 h=0.25(1−1/vµ)+0.05
- ・塑性率µ算出のための降伏変位は、応答 点までの特性曲線を等価バイリニアに置



- ・ランダム位相の模擬地震動25沥 (継続時間120秒)
- ・柱・梁部材の履歴モデルはTAKEDAモデル
- 初期周期に対して5%の瞬間剛性比例型の粘性減衰を仮定

# 8階建て鉄筋コンクリート造庁舎の試設計



# 8階建て鉄筋コンクリート造庁舎の試設計





## 第V編 振動試験体の基本検討



## 保有水平耐力計算による検討

Q (kN)

試験体の総重量は6100kN(基礎込み),上部重量は4500kN

梁端の曲げ降伏による全体崩壊形とし,保有水平耐力(1/100)時のC<sub>B</sub>=0.6相当

Z06 1610 Step-4 **1**286 25 3000 435 295 668 (保有 Step-47 2230 810 Z05 236 15 1690 45 🖨 Step-47 539 647 728 320 2000 1260 3040 1880 Step-47 137 47 704 -123015 -1230 15\_\_2040 54 621 2470 2040 3680 1000 Step-47 107 Z03 41 669 1530 11 -38 🗳 395 728 489 2430 4590 3050 48£ Z02 1860 15 43 20 \_\_\_\_2650 1/200 1/100 1/66 66 1⁄50 0 変形角 276 212 ХX 地震力: X方向 左→右加力 ЖЖ Ds算定時:指定重心層間変形角(1/50)に達した。最終STEP=47 保有水平耐力時 間変形角(1/100)に達した。 STEP = 42指定重心 4190 4670 2690 主体構造 Qud Ds值 Fes値 Qun Qu Qu/Qun 層間変位 層間変形角 腔 11851 43 • 39 1335 1335 423. 9 741. 4 998. 9 842.3 1473.1 1984.8 0.964 1.967 2.824 RC造 0. 30 0. 30 1.000 1.000 1.98 1.98 332 163 1413.0 OK OK OK OK 1/ 820 1/ 1/ 18Q 1320 -4240 5740 RC造 2471.3 476-1661 344. 9RY 4 820 -295. 9RY -334. 1RX 772 287 0.30 1.000 1.98 113 RC造 3329.6 1822. 9RY 2399.3 1/ 3.185 100 RC造 4025.0 0.30 1.000 1207.5 1.98 -334, 1RX -334, 1R) RC造 4578.2 0.30 1.000 1373.4 2729.1 1.98 2.524 152 Qud, Ds値 Fes値において(\*1:直接入力 \*2:0.05割増し \*3: ランク IV \*4: 柱脚による割増し) 600 600 Qu/Qunにおいて (\*1:Qu/Qun≧1.1で判定) X1 X2 Х3 e s値には雑壁の有無の不利な方を採用する

## 限界耐力計算による検討

安全限界時Ts0.728s, Mus395t, Mus/M=0.85, Qs2644kN, Cb0.578, *△*s9cm Fh0.55, h0.173, Df3.89, Qd1028kN, *△*d0.90cm, H11.565m, Gs1.707 安全限界応答値はQspi2629kN, *△*sp8.82cm, R=1/102 柱塑性率1.14, 梁塑性率1.63(損傷限界はC<sub>B</sub>=0.2)



| J | 00.1 | 00.1   | 1.029  | 100. Z | 100. Z  | 139.4   | 739.4 1.000  | 1.000 | UΝ | 0.011  | 11.0042 1/ | 014 |
|---|------|--------|--------|--------|---------|---------|--------------|-------|----|--------|------------|-----|
| 4 | 95.4 | 179.1  | 1.155  | 726. 4 | 1459.6  | 1472. 3 | 1472.3 1.000 | 1.009 | 0K | 0. 578 | 10.4990 1/ | 165 |
| 3 | 95.4 | 274. 5 | 0.915  | 575.4  | 2035. 1 | 2053. 1 | 2053.1 1.000 | 1.009 | 0K | 0. 578 | 8.5631 1/  | 111 |
| 2 | 95.4 | 369.9  | 0. 625 | 393. 4 | 2428. 5 | 2450. 1 | 2450.1 1.000 | 1.009 | 0K | 0. 578 | 5.6788 1/  | 100 |
| 1 | 96.8 | 466.8  | 0. 301 | 192.6  | 2621.2  | 2644. 4 | 2644.4 1.000 | 1.009 | 0K | 0. 578 | 2.4786 1/  | 155 |

【応答値】 Qsp 2629.0

0 ⊿sp 8.8203



## 第VI編 調査事項に対する提案

降伏変形の算定式を提案し、部材実験・データベースにより検討した。また、試設計建物により降伏点と応答について検討した。

 今後は,架構全体の性能曲線のモデル化を提案するため,検 討対象架構の設計,性能曲線の作成,塑性率起点設定法の 提案,時刻歴応答解析との比較を行う。

•また,実大5層試験体を設計・製作し,大型振動台による加振 実験を行い,提案する評価方法を検証する。