令和元年度 建築基準整備促進事業

E12 エネルギー消費性能の評価の前提となる 気候条件の詳細化に向けた検討

地方独立行政法人 北海道立総合研究機構 建築研究本部 北方建築総合研究所・建築性能試験センター

鹿児島大学大学院 理工学研究科 二宮研究室

1.事業目的と概要

,背景

現在、建築関連分野で一般的に利用される気象データは 概ね21kmごとに設置される気象庁の観測データに基づいている

> 建設地の気候条件を加味した省エネ技術等を 適切に評価するためには不十分

- 目的

建設地の気候条件を考慮した省エネ評価に用いる 設計用気象データおよびポテンシャルマップを検討・提案する。

気温、湿度、日射量、風向、風速、地盤地中熱を対象に

期間:10年程度、間隔:1kmメッシュ程度の時刻別データを整備する

※R1年度は気温、湿度、日射量について実施

1.事業目的と概要

- 事業のフロー

<u>(イ)気候データの整理</u>

R1

- ①既存データの整理
 - ・既存データの調査
 - ・欠測/異常値の補間

- ②設計用気候データの作成
 - (温湿度、日射量)

結果を反映

- ・方法の検討
- ・プログラムの構築及び検証

R2

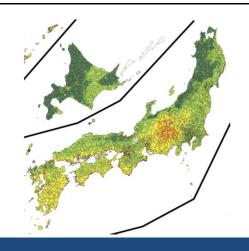
(風向、風速)

- ・地形等を考慮した風向、風速の推定
- ・プログラムの構築及び検証

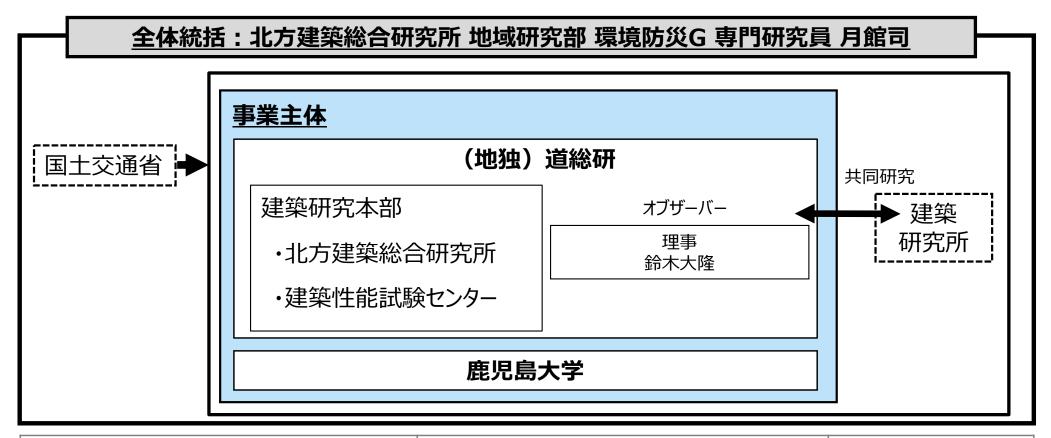
(地盤地中熱)

・積雪、蒸発を考慮した地中温度の推定

(ロ)ポテンシャルマップの作成


- ①作成すべきマップの検討
 - ・省エネで考慮すべき気候条件の整理

- ②プログラム開発
 - ・プログラムの検討



③ポテンシャルマップの作成

1.事業目的と概要

- 事業実施体制

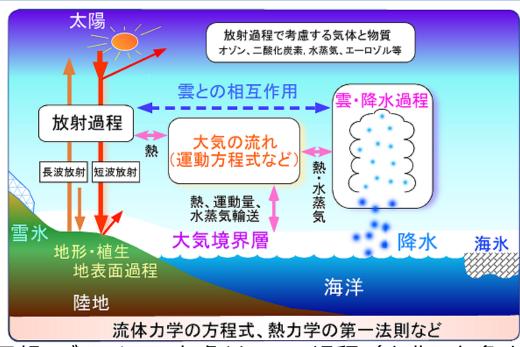
調査内容と分担業務の内容	(地独)北海道立総合研究機構 建築研究本部		
	北方建築総合研究所	建築性能試験センター	底况岛入子
(イ)気候データの整理			
(ロ) ポテンシャルマップの作成			

2.既存データの整理

○全国の気象データを調査・整理

気象データセット (作成方法)	データの信頼性 ・精度	データの一般公開 (過去データの公開期 間)	空間的間隔	時間的間隔	気象要素 (○:あり、△:条件付、×:な し)			
(11 /20/3 /22)					外気温	湿度	日射量	風
気象庁による気象観測 (実測値)	測定機器補正や異常値 の検定の実施があり、 信頼性が高い	あり (昭和 49 年頃〜)	約21km間隔	1分~10分	0	△ 一部地点	△ 一部地点	0
国土交通省による気象観測 (実測値)	測定機器補正や異常値 の検定の有無は不明	リアルタイムデータのみ (直近約1時間分)	主要道路・河川 周辺のみ	1時間	0	△ 一部地点	×	0
環境省による気象観測 (実測値)	測定機器補正や異常値 の検定の有無は不明	あり (平成21年~)	都市部に多い	1時間	0	0	×	0
農業関係・消防署など による気象観測 (実測値)	測定機器の較正・設置 状態が不明な地点が多 い	一部地点で公開あり (観測地点により異なる)	不明	概ね1時間	観測地点により異なる			
メッシュ平年値 2000年版・2010年版 (推計値)	平均気温の RMSE=0.40℃	あり (30年平年値のみ)	1kmメッシュ	1か月	0	×	0	×
推計気象分布 (推計値)	平均気温の RMSE=1.19℃	リアルタイムデータのみ (直近約2日間分)	1kmメッシュ	1時間	0	×	×	×
数値予報モデル(MSM) (推計値)	平均気温のRMSE= 夏季約1.5℃ 冬季約2.4℃	あり (平成1 8 年3月~)	5kmメッシュ	1時間 (予報は3時間ご と)	0	0	△ H29年~	0
拡張アメダス気象データ (実測値、一部推計値)	気象庁による気象観測 データに基づく 一部補間値が含まれる	あり (昭和 56 年~)	約21km間隔	1時間	0	0	0	0
メッシュ農業気象 データシステム (推計値)	平均気温の RMSE=0.38℃	あり(要審査) (平成20年~)	1kmメッシュ	1日	0	0	0	△ 風速のみ

2. 既存データの整理


・数値予報モデル…いわゆる天気予報値

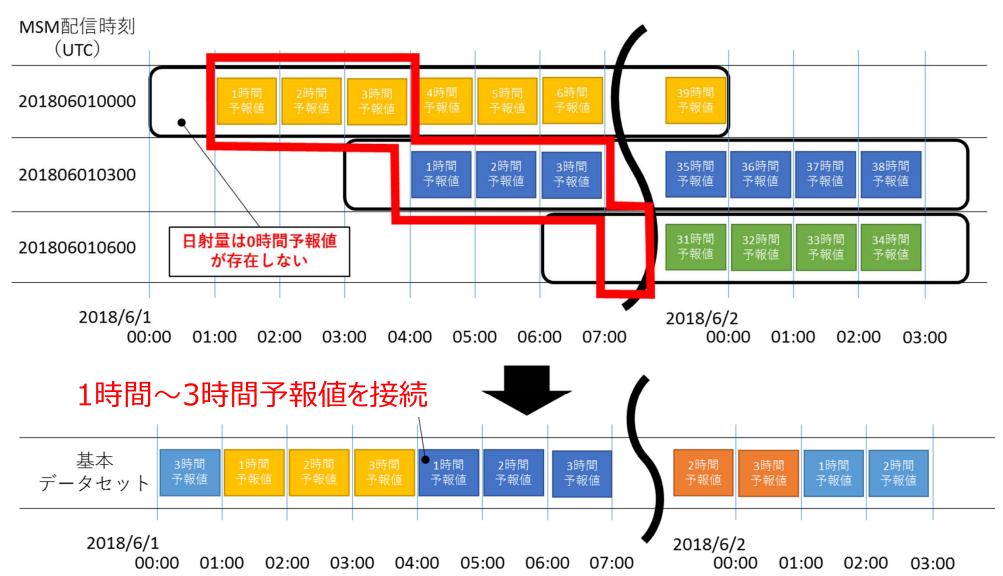
メソモデル(MSM):5kmメッシュ、1時間間隔で整備

対象の気象要素

※日射量は2017年12月5日から一般に提供開始

海面更正気圧、地上気圧、風ベクトル(U ,V)、**気温、相対湿度**、降水量、 全雲量、上層雲量、中層雲量、下層雲量、**日射量**[※]

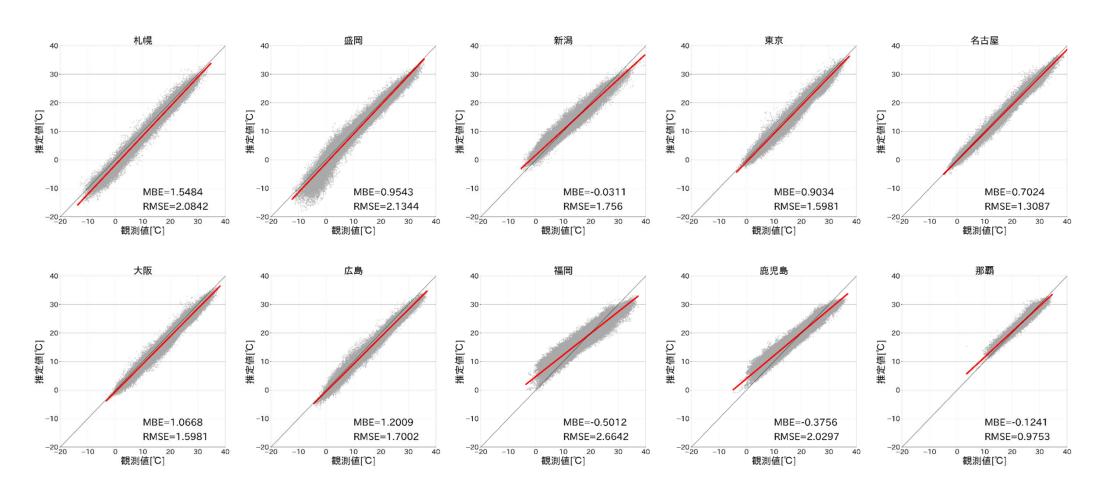
数値予報モデルにおいて考慮されている過程(出典:気象庁HP)


MSMを基に1kmメッシュに空間補間する手法を検討

○MSMデータを接続して基本となるデータセットを作成 (気温・湿度)

○MSMデータを接続して基本となるデータセットを作成 (日射量)

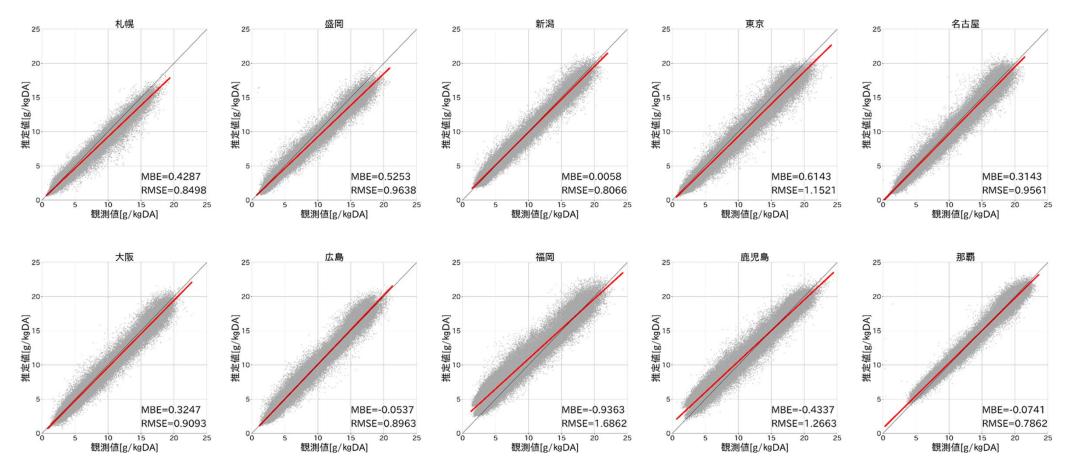
日射量は前1時間の積算値のため、0時間予報値が存在しない


○基本データセットと実測データを比較

比較対象とした気象官署

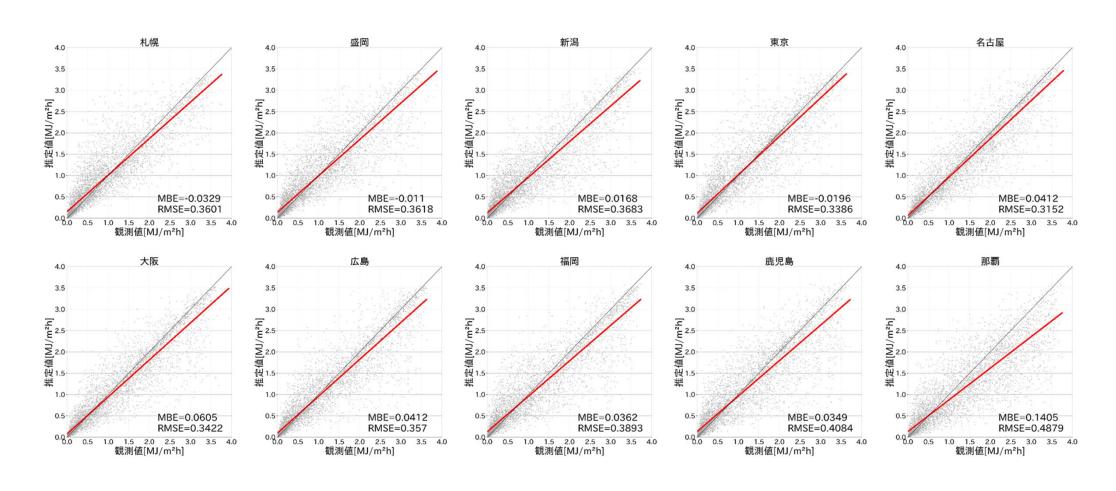
与负责器力	緯度,経度[°]			
気象官署名	気象観測地点	最寄りの格子点		
札幌	43.060 , 141.328	43.05 , 141.3125		
盛岡	39.698 , 141.165	39.70 , 141.1875		
新潟	37.893 , 139.018(2012年6月28日から) 37.913 , 139.049(2012年6月27日まで)	37.90 , 139.0000 37.90 , 139.0625		
東京	35.692 , 139.750(2014年12月3日から) 35.690 , 139.760(2014年12月2日まで)	35.70 , 139.7500 (移転後も変わらず)		
名古屋	35.167 , 136.965	35.15 , 136.9375		
大阪	34.682 , 135.518	34.70 , 135.5000		
広島	34.398 , 132.462	34.40 , 132.4375		
福岡	33.582 , 130.375	33.60 , 130.3750		
鹿児島	31.555 , 130.547	31.55 , 130.5625		
那覇	26.207 , 127.687	26.20 , 127.6875		

○基本データセットと実測データを比較


外気温の比較結果(2009/1/11:00~2019/1/10時)

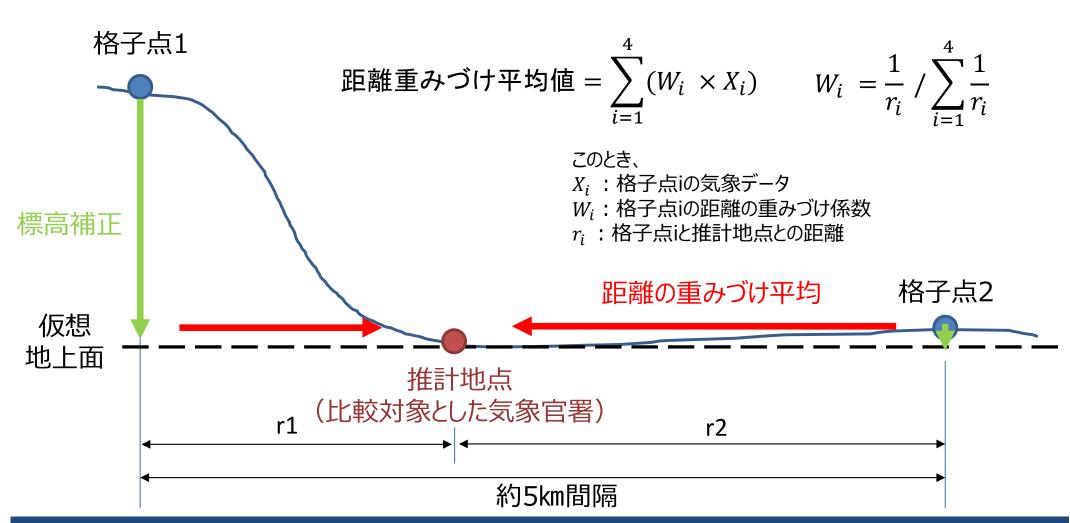
最寄りのMSMとの単純比較でRMSEが2.0℃程度

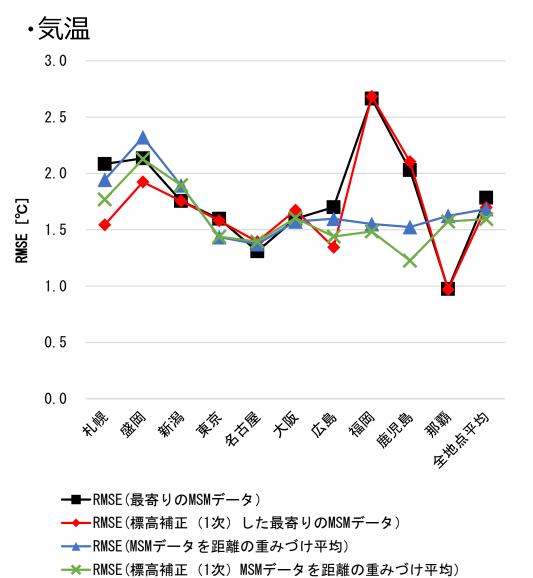
○基本データセットと実測データを比較

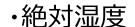

絶対湿度の比較結果(2009/1/1 1:00~2019/1/1 0時)

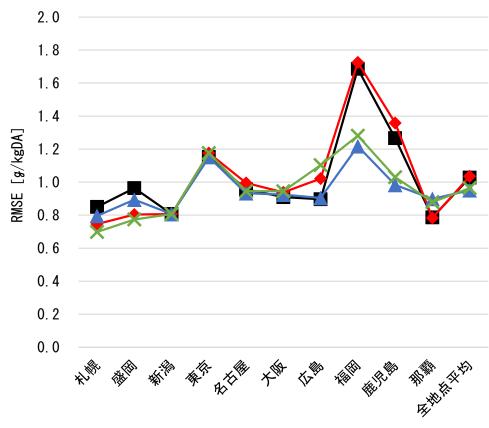
最寄りのMSMとの単純比較でRMSEが1.0g/kgDA程度

○基本データセットと実測データを比較


日射量の比較結果(2017/12/59:00~2019/1/10時)


最寄りのMSMとの単純比較でRMSEが0.4MJ/mh程度


- ○MSMを基に1kmメッシュに空間補間する手法を検討(気温・湿度)
 - ・気温:周囲4か所の格MSMデータを標高補正や距離の重みづけ平均
 - ・絶対湿度:標高補正後の飽和水蒸気量を限度とする(標高補正)


絶対湿度を距離で重みづけ平均(距離の重みづけ平均)

○気象官署の観測値と推定精度(RMSE)の関係(気温・湿度)

- ━━━ RMSE(最寄りのMSMデータ)
- → RMSE(標高補正 (1次) した最寄りのMSMデータ)
- → RMSE (MSMデータを距離の重みづけ平均)
- → RMSE(標高補正 (1次) MSMデータを距離の重みづけ平均)

気温、絶対湿度 ⇒ 標高補正+距離重みづけ平均の精度が高い

- ○平成29年12月5日以前の日射量を推計する(日射量)
- ・MSMの雲量(上層雲量、中層雲量、下層雲量)、 気温、湿度等から<u>日射量を推計する重回帰式</u>を提案

```
J_h/J_{0h} = a \times C_L + b \times C_M + c \times C_H + d \times m_{AM} + e \times T + f \times \varphi_R + gこのとき、
```

 J_h :水平面全天日射量 [MJ/m²h]、 J_{0h} :大気外水平面日射量[MJ/m²h]注

 C_L :下層雲量[-]、 C_M :中層雲量[-]、 C_H :上層雲量[-]、 m_{AM} :エアマス[-] $^{\dot{\Xi}}$

T: 外気温度[℃]、 φ_R : 相対湿度[%]、a,b,c,d,e,f,g: 係数[-]

注)大気外水平面日射量、エアマスは計算値

・重回帰分析の対象とした気象官署

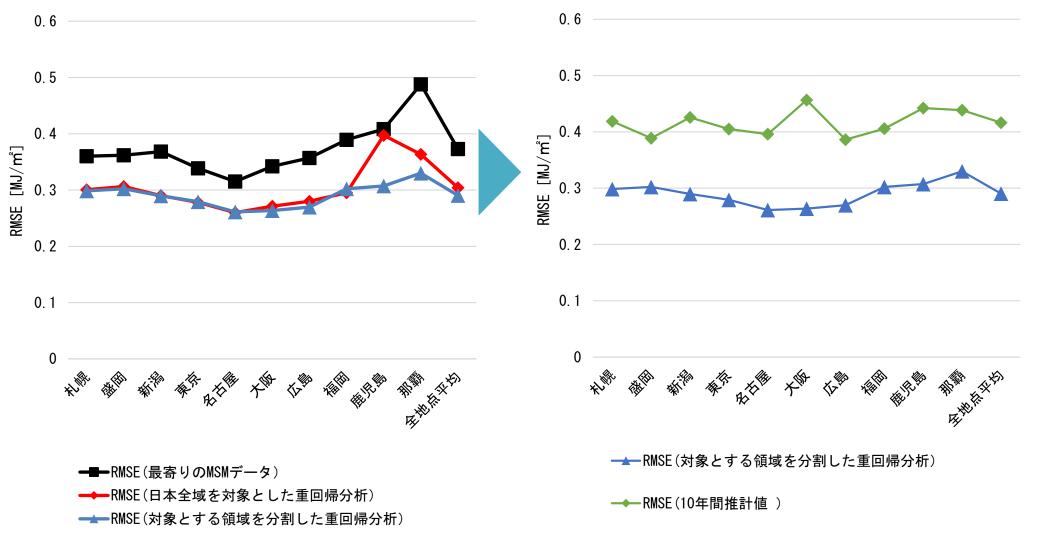
旭川、札幌、青森、秋田、盛岡、福島、長野、新潟、福井、館野、東京、静岡、 名古屋、彦根、奈良、大阪、松江、広島、下関、高知、福岡、熊本、宮崎、鹿児 島、那覇、南大東島、宮古島、石垣島

- ○平成29年12月5日以前の日射量を推計する(日射量)
- ・ 重回帰分析の対象領域を分割

島嶼部(特に低緯度地域)では、その他の地域とは雲の生じ方が異なると仮定

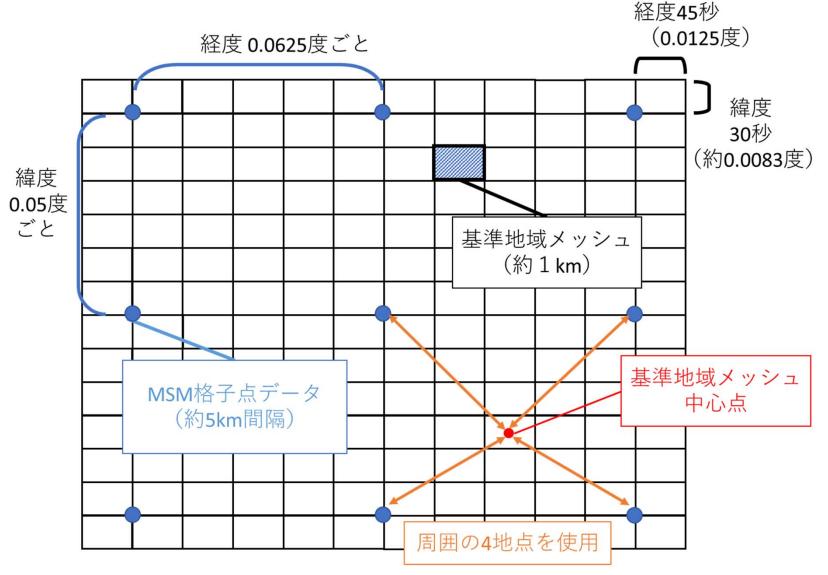
低緯度の島嶼部等地域	那覇、南大東島、宮古島、石垣島
その他の地域	旭川、札幌、青森、秋田、盛岡、福島、長野、新潟、福井、館野、東京、静岡、名古屋、彦根、奈良、大阪、松江、広島、下関、高知、福岡、熊本、宮崎、鹿児島

・重回帰分析の場合分けの条件

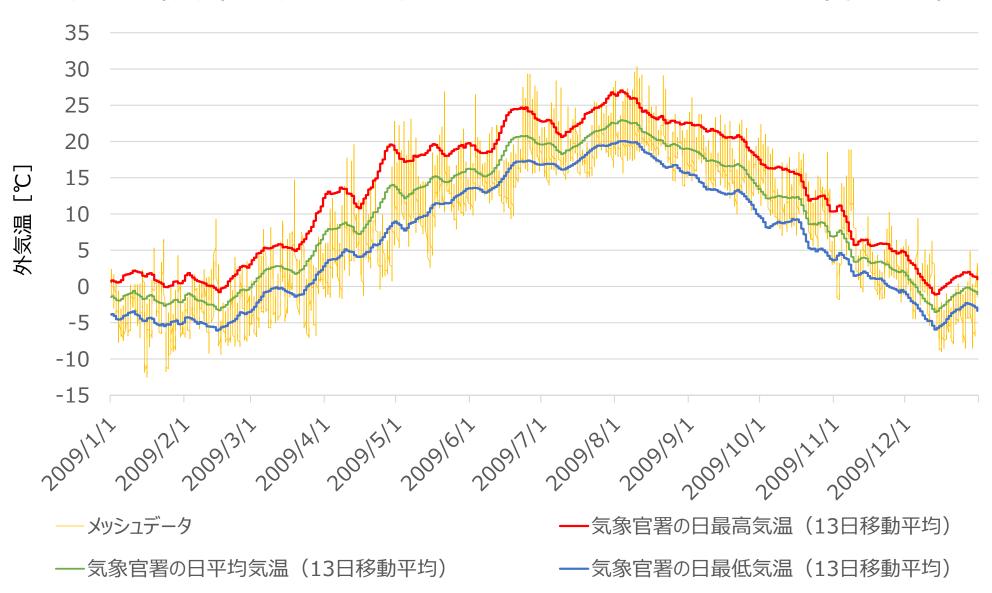

エアマスのクラスによる場合分け

クラス	エアマス(m_{AM})の値
AM1	$0 \le m_{AM} < 1.5$
AM2	$1.5 \le m_{AM} < 2.0$
AM3	$2.0 \leq m_{AM}$

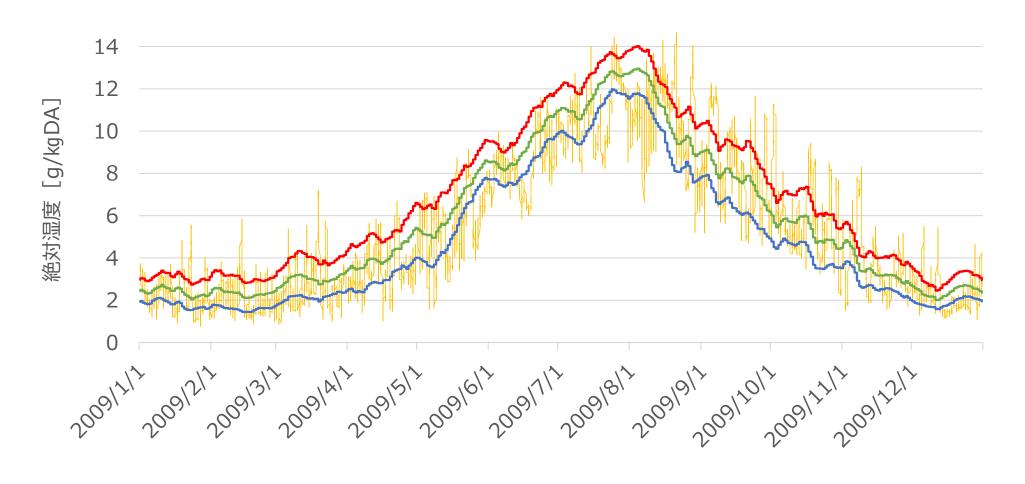
全雲量のクラスによる場合分け


島嶼部等	クラス	全雲量(C _{ALL})の値
	CC1	$0 \le C_{ALL} < 0.2$
	CC2	$0.2 \le C_{ALL} < 5.0$
	CC3	$5.0 \le C_{ALL} < 9.8$
	CC4	$9.8 \le C_{ALL}$
その他	クラス	全雲量(C _{ALL})の値
	CC1	$0 \le C_{ALL} < 0.2$
	CC2	$0.2 \le C_{ALL} < 9.8$
	CC3	$9.8 \le C_{ALL}$

- ○気象官署の観測値と推定精度(RMSE)の関係
- ・日射量(データの存在する約1年間)
- ・日射量(データのない9年間を含む10年間)


度の島嶼部等地域を分けた重回帰分析の精度が高い

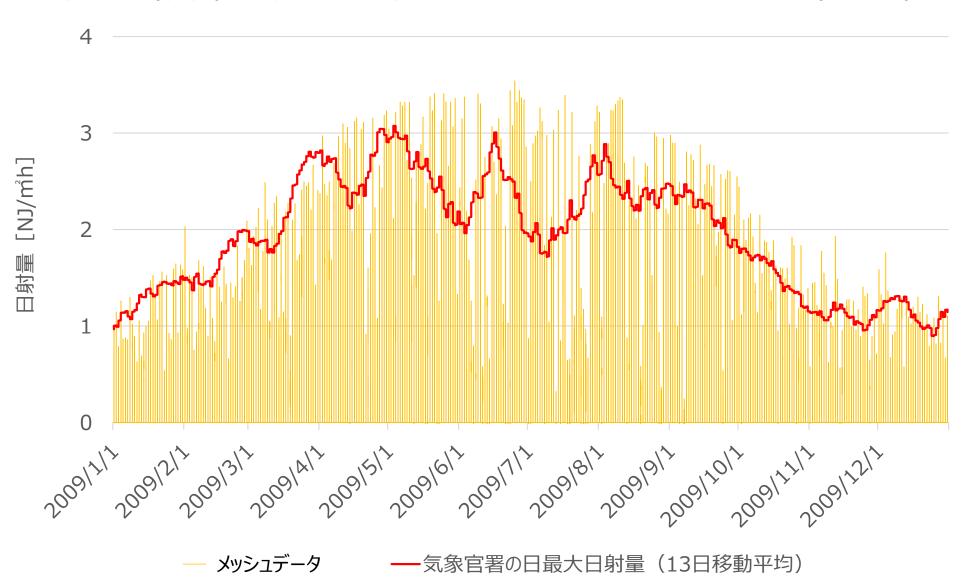
○基準地域メッシュ(3次メッシュ)単位で気象データを計算



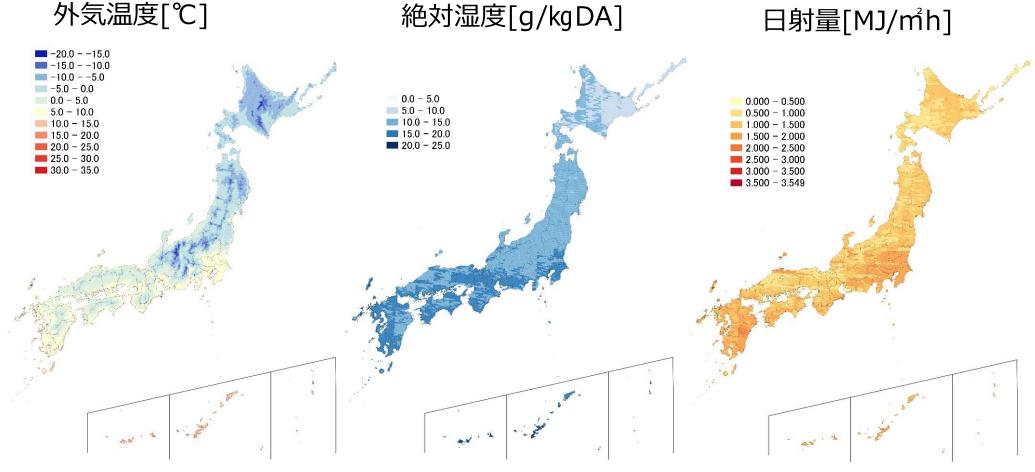
補間計算に使用するMSM格子点データと基準地域メッシュの関係

- ○基準地域メッシュ(3次メッシュ)単位で気象データを計算
 - ・気象官署(札幌)の観測値と気象官署が含まれるメッシュの推計値の例(外気温度)

- ○基準地域メッシュ(3次メッシュ)単位で気象データを計算
 - ・気象官署(札幌)の観測値と気象官署が含まれるメッシュの推計値の例(絶対湿度)



---- 気象官署の日平均絶対湿度(13日移動平均)


ーメッシュデータ

- ― 気象官署の日最高絶対湿度(13日移動平均)
- ― 気象官署の日最低絶対湿度(13日移動平均)

- ○基準地域メッシュ(3次メッシュ)単位で気象データを計算
 - ・気象官署(札幌)の観測値と気象官署が含まれるメッシュの推計値の例(日射量)

- ○基準地域メッシュ(3次メッシュ)単位で気象データを計算
 - ・推計値の例(2009/12/21 12:00のメッシュデータ)

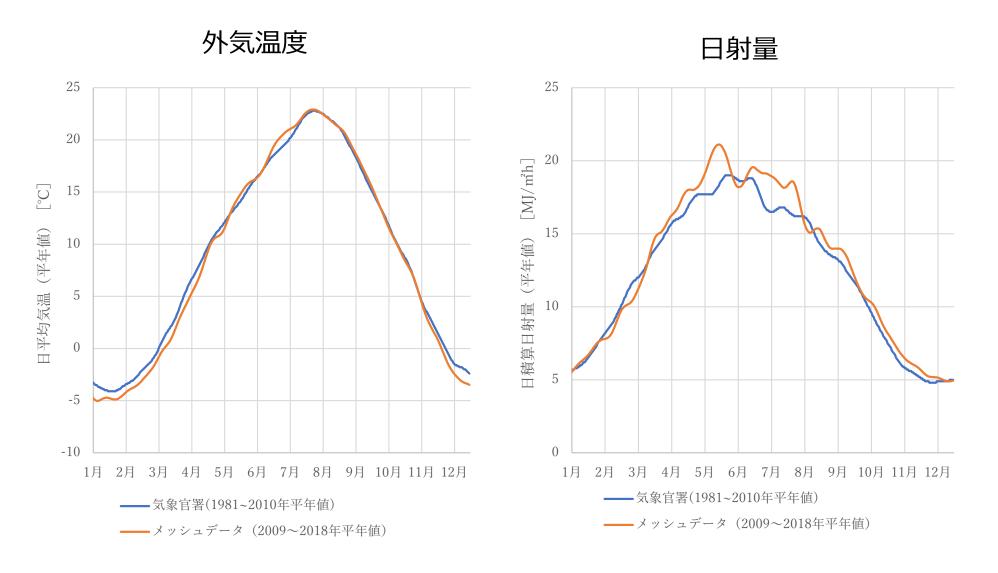
絶対湿度・日射量:補間計算手法に依存するデータの境界線

メッシュデータの空間的細かさ(解像度)の向上が課題

6.設計用気象データセットの構築(設計用気候データの作成4)

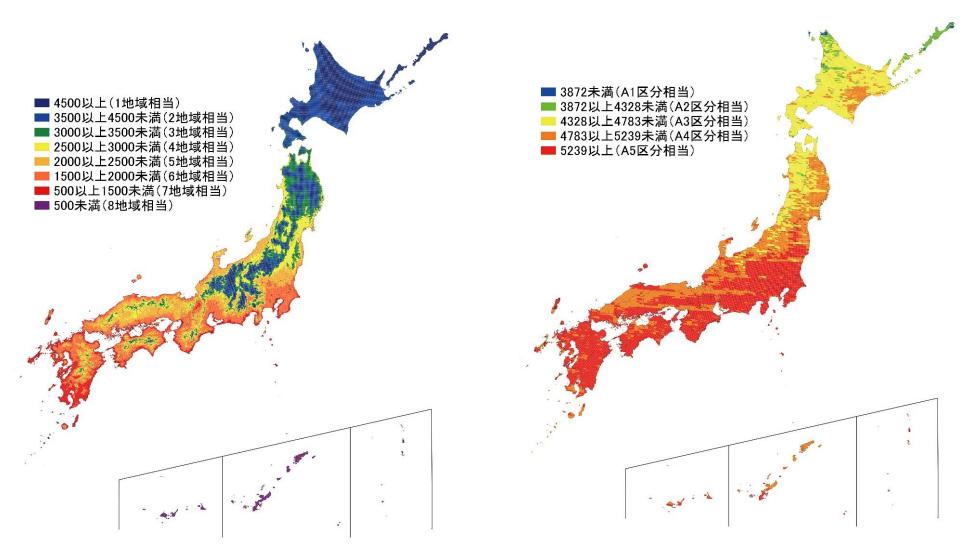
- ○外気温、絶対湿度、日射量のみから作成可能な日別平年値を作成
 - ・気象庁の方法に基づいて算出

1/1~12/31について統計期間の日別平均値を算出


$$ar{X} = rac{X_1 + X_2 + \dots + X_{n-1} + X_n}{n} = rac{1}{n} \sum_{i=1}^n X_i$$
 このとき、日別平年値 $ar{X}:$ 日別平均値、 $X_1 + X_2 + \dots + X_{n-1} + X_n:$ 各年の値

日別平均値に9日間移動平均を3回繰り返す処理(KZフィルタ)を行う

日別平年値


6.設計用気象データセットの構築(設計用気候データの作成4)

- ○外気温、絶対湿度、日射量のみから作成可能な日別平年値を作成
 - ・気象官署と気象官署が含まれるメッシュの平年値の例(札幌)

7. ポテンシャルマップの作成

- ○外気温、絶対湿度、日射量のみから作成可能な指標を試作
- ・暖房度日D18-18[℃・日]に基づく区分 ・年間合計全天日射量[MJ/㎡・年]に基づく区分

※現行の建築物省エネ法における地域の区分とは異なる

8.まとめ

- R1年度の成果①
 - ・MSMを接続した基本となるデータセット(2009~2018年の時別値、5kmメッシュ)

対象の気象要素

※日射量は2017年12月5日から

海面更正気圧、地上気圧、風ベクトル(U,V)、気温、相対湿度、降水量、 全雲量、上層雲量、中層雲量、下層雲量、日射量[※]

・MSMに基づく気象データセット(2009~2018年の時別値、1kmメッシュ)

対象の気象要素

気温、絶対湿度、日射量

・設計用気象データセット (2009~2018年の統計値、1kmメッシュ)

対象の気象要素

日平均気温、日平均絶対湿度、日積算日射量の10年平年値

8.まとめ

· R1年度の成果②

・ポテンシャルマップ

対象の気象要素

暖房度日D18-18に基づく区分、年間合計全天日射量に基づく区分

・R1年度の課題

絶対湿度、日射量に<u>補間計算に依存すると考えられる</u> データの境界線が見られた

メッシュデータの空間的細かさ(解像度)の向上手法を次年度検討

8.まとめ

・R2年度の実施内容

・MSMに基づく気象データセット (2009~2018年の時別値、<u>1kmメッシュ</u>) 気温 ⇒ 作成済 絶対湿度、日射量 ⇒ 解像度向上のための追加検討 風向、風速、地盤地中熱 ⇒ 新たに作成

・10年平年値、<u>設計用気象データ</u>(1kmメッシュ)の作成

例えば・・・

空調設計用気象データ ⇒ 過酷気象 標準年気象データ ⇒ 単純平均ではなく、使用目的に応じて作成

・ポテンシャルマップ 再生可能エネルギーの賦存量マップ、省エネに資する気候区分図など