
新たな国土交通省技術基本計画策定に向けた 検討の進め方について

国土交通省 令和 3年 3月17日

国土交通省技術基本計画の位置づけ

政府全体の 国土交通行政全体に係る計画 科学技術に係る計画 科学技術・イノベーション 社会資本整備重点計画 交通政策基本計画 基本計画 国土交通省技術基本計画 『国土交通省技術基本計画』 (第1~4期) 現計画の実績・課題 ・フォローアップ 国土交通省技術基本計画は、科学技術基本計画、社会資本整備重点計画、交通政策基本計画等の関連 •その後の取り組み 計画を踏まえ、持続可能な社会の実現のため、国土交通行政における事業・施策のより一層の効果・効率 を向上、国土交通技術が国内外において広く社会に貢献することを目的に、技術政策の基本方針を示し、 技術研究開発の推進、技術の効果的な活用、技術政策を支える人材の育成等の重要な取組を定めるもの である。 研究機関による計画、方針 事業・施策部局の計画、方針

第4期 国土交通省技術基本計画(H29-R3)の概要

国土交通省技術基本計画とは

国土交通省技術基本計画は、科学技術基本計画、社会資本整備重点計画、交通政策基本計画等の関連計画を踏まえ、持続可能な社会の実現のため、 国土交通行政における事業・施策のより一層の効果・効率を向上、国土交通技術が国内外において広く社会に貢献することを目的に、技術政策の基本 方針を示し、技術研究開発の推進、技術の効果的な活用、技術政策を支える人材の育成等の重要な取組を定めるものである。

第1章 技術政策の基本方針

ポイント1

1. 現状認識 ○社会経済の構造の変化

【科学技術の大きな変革】

【社会経済的課題】

- ・・IoT、AI、ビッグデータ等ICTの急激な リ・インフラ老朽化 ・切迫する巨大地震、激甚化する気象災害 ☆・少子高齢化社会、人口減少 ・地方の疲弊、厳しい財政状況
- ・「第4次産業革命」、「超スマート社会 !!・激化する国際競争・大規模災害からの復旧・復興
- __(Society5.0)」の取り組み _ _ _ _ _ i ・地球規模課題への対応 技術への信頼 _

2. 前計画の実績と課題

- 技術開発について他部局等との連携、 「見える化」は進展
- ・一方、技術開発をひとつの組織で生み 出すことが困難な社会となっており、 オープンイノベーションの推進が課題

3. 今後の技術政策の基本方針 〇本計画の3つの柱

- 人を主役としたIoT、AI、ビッグデータの活用
- 社会経済的課題への対応
- 好循環を実現する技術政策の推進

第2章 人を主役としたIoT、AI、ビッグデータの活用

ポイント2

新たな価値の創出と 生産性革命の推進

- 人の創造性とIoT、AI、ビッグデータ等の融合による新たな価値の創出 • IoT、AI、ビッグデータ等の徹底活用をすべての技術政策で検討
- 基準・制度等の見直し・整備
 - 人材強化・育成と 働き方改革
- 基準・制度等の見直し・整備、データ規格統一、共通プラットフォーム構築 ・コンカレントエンジニアリングやフロントローディング等全体最適の導入
- 科学技術の進展への対応、チャレンジ人材の育成、多様な技術の習得 等による仕事の変化への対応、多様な働き方の創出、働き方改革

第3章 社会経済的課題への対応

ポイント3

- ①安全・安心の確保
- ・防災・減災 ・安全・安心かつ安定な交通 ・戦略的なメンテナンス
- ②持続可能な成長と 地域の自律的な発展
- 競争力強化 ・持続可能な都市及び地域のための社会基盤の整備 地球温暖化対策等の推進
- ③基盤情報の整備
- 地理空間情報 · 地盤情報 · 気象情報
- ④生産性革命の推進
- i-Construction i-Shippingと i-Ocean IoT、AI、ビッグデータ等を活用 した「物流生産性革命」の推進・ビッグデータを活用した交通安全対策
- 自動運転技術に資する技術開発の促進 ・気象ビジネス市場の創出等

第4章 好循環を実現する技術政策の推進

1. 好循環を実現する環境の整備

ポイント4

オープンイノベーション・コンソーシアムの積極展開 の推進

- ・具体的なリクワイヤメントの提示
- 協調領域に係る産学官の連携
- 助成・補助制度の拡充

技術の効果的な活用 ・新たな公共調達方式

- 現場体制の整備拡充等
- 新たな技術評価の仕組み
- 研究開発の評価 地域とともにある技術

備の更新

- 新たな研究評価の仕組み
- 地域毎の産学官の連携の強化
- 老朽化した研究施設・設・研究施設・設備の老朽化対応

2. 我が国の技術の強みを活かした国際展開

- ・川上(案件形成)からの参画・情報発信
- ソフトインフラの展開
- 人材育成等人材面からの取組
- 中小企業等の海外展開支援

3. 技術政策を支える人材育成

- 行政部局における人材育成
- ・研究機関における人材育成
- 人材の多様性確保と流動化の促進

4. 技術に対する社会の信頼の確保

- 災害、事故等に対する迅速かつ的確な対応と防災・減災、未然防止
- ・事業・施策に対する理解の向上
- 伝わる広報の実現
- 技術の信頼の確保

5. 技術基本計画のフォローアップ

- フォローアップ対象の設定
- •フォローアップの実施方針の作成
- フォローアップの実施

あとがき

第1章 技術政策の基本方針(概要)

【科学技術の大きな変革】

- IoT、AI、ビッグデータ等ICTの急 激な進展
- サイバー空間の攻撃の激化
- ロボットやAIの活用は、雇用への 影響の可能性の指摘もある
- 第4次産業革命

日本再興戦略2016(平成28年6月2日)において、 今後の生産性革命を主導する最大の鍵は、IoT (Internet of Things)、ビッグデータ、人工知能、ロ ボット・センサーの技術的ブレークスルーを活用す る「第4次産業革命」である。

「超スマート社会」の実現 第5期科学技術基本計画(平成28年1月22日)にお いて、世界に先駆けた「超スマート社会」(Society 5.0) を実現していく。

【社会経済的課題】

- インフラ老朽化
- 切迫する巨大地震、激甚化する 気象災害
- 少子高龄化社会、人口減少
- 地方の疲弊、厳しい財政状況
- 激化する国際競争
- 大規模災害からの復旧・復興
- 地球規模課題への対応
- 技術への信頼

ポイント1

【前計画の課題】

- 技術開発をひとつの組織で生み 出すことが困難な社会となってお り、オープンイノベーションの推進 が課題
- オープンデータ化の取組を一層 強化することで、データを自由に 活用し新たな施策の立案や新規 産業分野の構築につなげること が課題

(イノベーションを巡るグローバルな競争が激化して いる中、組織内外の知識や技術を総動員するオープ ンイノベーションの手法が重要視されている)

◆人を主役としたIoT、AI、

ビッグデータの活用

▶社会経済的課題への対応

第2章関連

- 新たな価値の創出
- 基準・制度等の見直し・整備
- 人材の強化·育成

第3章関連

- 安全・安心の確保
- 持続可能な成長と地域の自律的 な発展
- 基盤情報の整備
- 生産性革命の推進

●好循環を実現する 技術政策の推進

第4章関連

- オープンイノベーションの推進
- 技術の効果的な活用
- 研究開発の評価
- 地域とともにある技術
- 研究施設・設備の老朽化対応

ポイント2

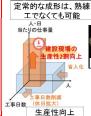
(新たな価値の創造と生産性革命の推進、規制・基準の見直し、人材強化・育成と働き方改革)

「人を主役とした」とは:IoT、AI、ビッグデータと人の創造性を融合し、常に人を中心に考え、人の力を高め、新たな価値を創出し、人や社会に役立つこと また、すべての技術政策にIoT、AI、ビッグデータ等の徹底活用を検討し、技術を賢く活用する

IoT、AI、ビッグデータ

融合•経験

•知見 • 創造性


さらに、センサー、インターフェース、 素材、新技術等の活用も検討

「新たな価値」(の創出で実現されるもの)とは:サービスの改善、新たなサービス・ビジネス 市場の創出、生産性革命、競争力の強化、多様な働き方の創出、ライフスタイルの変化等

i-Constructionにおける「新たな価値」の創出(例)

- 若手 i-Constructionに魅力を感じ建設業への就業が進む 定常的な成形は、熟練工でなくても可能になる
- 熟練工 熟練工でしかできない工事や若手の指導に専念できる
- 工事事故 重機と人との接触が大幅に軽減される
- 建設現場の生産性2割向上、現場の賃金UP、休日拡大 生産性
- i-Constructionという新たな市場が形成される 市場 世界 グローバルな競争の中で国際優位性をもつ

これまでの情

i-Constructionの市場 Nッケージ化し海外展開

• 基準・制度等の見直し・整備、 規 データの規格統一、流通 制 共通プラットフォーム構築等

全体最適の導入

(コンカレントエンジニアリング) フロントローディング²等)

1)設計から製造まですべての部門が集まり、諸問題 を討議しながら協調して作業に当たる生産方式

2)初期工程において、後工程で生じそうな仕様の変 更を集中的に検討し品質向上等を図る方式

直ちに15基準の見直等 3次元データによるシームレスなつながり 設計/設計 i-Constructionstructi測h量 Rib. I 施工

コンクリートエの規格の標準化等

プレキャスト 現場打ちの の進化 効率化

部材の規格 (例) 鉄筋の (サイズ等)の標準化 や全体最適 設計の導入 用

などにより

コンクリ

ートエの生

産性向上を

目指す。

プレハブ 化、埋設 型枠の活

©三井住友建設

施工

(例) 定型部

材を組み

合わせた

科学技術の進展へ対応、チャレンジする人材、多様な技術の習得、科学的な育成等 ⇒ 多様な人材の確保、多様な働き方の創出、働き方改革

多様な技術の習得

働材 強 き方改革 化 育成

生産性革命の推進新たな価値の創出と

準等

め

莧

首

整

科学技術の進展への対応

これまでに全国で約32,000人に実施 i-Construction研修

チャレンジする人材育成

優秀な技術者の表彰 適切なリスク分担等

産官連携による技能の習得 科学的な人材育成

OR OR OR OR OR OR MIR OOI 001

準備期間の見直し等

適正工期の設定に よる休日の拡大

テレワーク

第3章 社会経済的課題への対応(概要)

ポイント3

(4つの分野の推進)

安 (全•安 心 の 確

保

地 ②

域持

はの自律的な発展は続可能な成長と

防災減災

(地震・津波、大規模噴火、気象災害)

河川水位の高精度リア ルタイムの把握・予測 噴火警報等の高度化

安全・安心かつ効率的、円滑な交通 (道路、鉄道、海上、航空)

科学的に交通安全対策

軌道ベース運用(TBO)への 移行を中核とする8つの変革

戦略的なメンテナンス

(メンテナンスサイクル、技術向上、産業強化)

社会資本情報プラットフォーム

水中検査ロボット

インフラメンテナンス

国民会議

大規模災害発生直後に 被災状況を瞬時に把握

災害直後、多数のCCTV

画像の中からAIを用い画

像を比較しスピード処理

競争力強化

(ストック効果の最大化、国際競争力強化、新市場創出等)

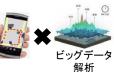
荷役システムの効率化によ る港湾機能の強化

新しい木質材料等を活 用した混構造建築物

▶ データ活用等 クルーズ船の需要分析 ストック効果の見える化

▶ ビッグデータを活

用した利用状況


の可視化・分析

ストック効果の把

アーカイブ化

握、蓄積、事例の

持続可能な都市及び地域のための社会基盤の整備 (コンパクトな集積拠点の形成、コミュニティー構築等)

利用者の利便性と事 業者の事業活動を最 適化する立地計画

スマートプランニング

既存建築物の活用促進 用途規制の合理化

統合された管制情報処理シ

公的賃貸住宅団地 の再生・福祉拠点化

地球温暖化対策等の推進

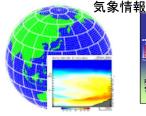
次世代大 型車の開 発促進

B-DASH:地產地消型 ---- (Mappings) エネルギーシステムの構築

(3) 報

絶対座標 相対座標 港湾区域 • 航路情報 海業権情報 A社 B社 C社 D社 .. 航路標識 潮汐情報 自動運転 3次元デ 背景図 (ベースマップ) の集約・流通

海域の地理空間情報の整備提供

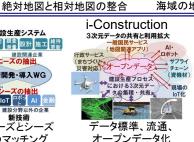


地盤データの集約、提供

液状化などの地盤の 安全対策の検討

船舶

数値予報モデルの高度化


数時間先までの局 地的大雨等に対応

4 の推進 命

の

のマッチング

船舶(海洋開発)の設計、建造から運航(操業)まで競争力向上

	見込まれる技術	政府の役割
2020 年まで	高速道路におけるハン ドルの自動操作	ハンドルの自動操作に 関する国際基準の策定
	限定地域における無人 自動走行移動サービス	技術レベルに応じた安 全確保措置の検討
2025 年目処	完全自動走行	完全自動走行車に対応 した制度の整備 5
	年まで 2025	高速道路におけるハンドルの自動操作 限定地域における無人自動走行移動サービス 2025 完全自動走行

第4章 好循環を実現する技術政策の推進(概要)

第4期国土交通省技術基本計画(参考資料)

ポイント4

(技術開発⇒技術活用⇒技術評価⇒技術開発(改良)が連続し、国民に成果が還元されるイノベーションのスパイラルアップ)

ォ ブ 推 進べ ョン

ニーズ、リクワイヤメントの提示

民間技術開発の促進のため、本省が中心 となり技術開発目標の提示、公募

・要求水準(強度、耐久性、施工性、サイズ等)

• 評価方法等

人・知・財の結集

コンソーシアムの積極展開

マッチング、気づき、データ流通、資金、普及

例) i-Construction推進コンソーシアム インフラメンテナンス国民会議

協調領域の拡大に対応した産学官の連携 自動走行ビジネス検討会

V.機能安全等 I .地図

Ⅱ.通信 VI.セキュリティ Ⅷ.認識技術 Ⅲ.社会受容性

Ⅳ.人間工学

競争領域と協調領域 を分け、協調領域に ついて産学官の連携 し、取組を進める。

Ⅷ.判断技術

開発に係る助成・補助制度の拡充

IoT技術やAI等を活用した造船現場 i-Constructionやi-Shipping等 の助成・補助の拡大

技術 の 効 果 的 な 活

循

環を実現する

環境

の

整

現場体制等の整備・拡充等

- 新技術に係る活用体制について、各 地整等の本局、技術事務所、事務所 に整備・拡充
- 新技術等の活用について、現場の 職員が困らないよう、事務所毎、業 務毎に作成していた比較表を全国レ ベルで整備

新たな公共調達方式

新たな入札契約方式

革新的技術の初期段階に直面す る課題である脆弱な価格競争力 に対応した調達方式の検討

【新技術導入促進型】の導入

ECI*積極活用(ガイドライン改正)

*)アーリー・コントラクター・インボルブメント

新たな技術評価の仕組み

技術開発制度とNETISとの連携、開発者による試験が可能な仕組み

備老地研 の朽域究 ع もの 研に評 究あ品 施設技

研究開発の評価(新たな研究評価の仕組み)

プログラム評価の推進 研究成果の社会への実装を一 層進めるため、研究開発当初か ら社会への実装までを仮説提示 する「道筋」を設定

の施策と表表の

研究者評価の拡大

研究実績以外の評価社会貢献、 基準化、政策・施策寄与等を追加

災害時、研究者が首長に助言

地域とともにある技術

地域毎の産学官の連携を強化 研究機関の集積による相乗効果の活用等

老朽化した研究施設・設備の更新

試験走路(38年経過)

災害対応

実大トンネル実験施設(40年経過

頼技 育技 活我 の術成術かが 政し国 保対 策たの スを支え! 国際展開 技術のお 国技 社 開強 る

人材

の

信

我が国の技術の強みを活かした国際展開 川上(案件形成)か

らの参画・情報発信

ソフトインフラの展開

米国運輸省長官のリニア試乗
カンボジアとの包括的協力覚書

人材育成

相手国政府アピール 相手国における我が国の技 相手国自身でインフラの 術、システム、基準等の導入 運営等ができる人材育成

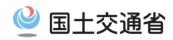
技術政策を支える 人材育成

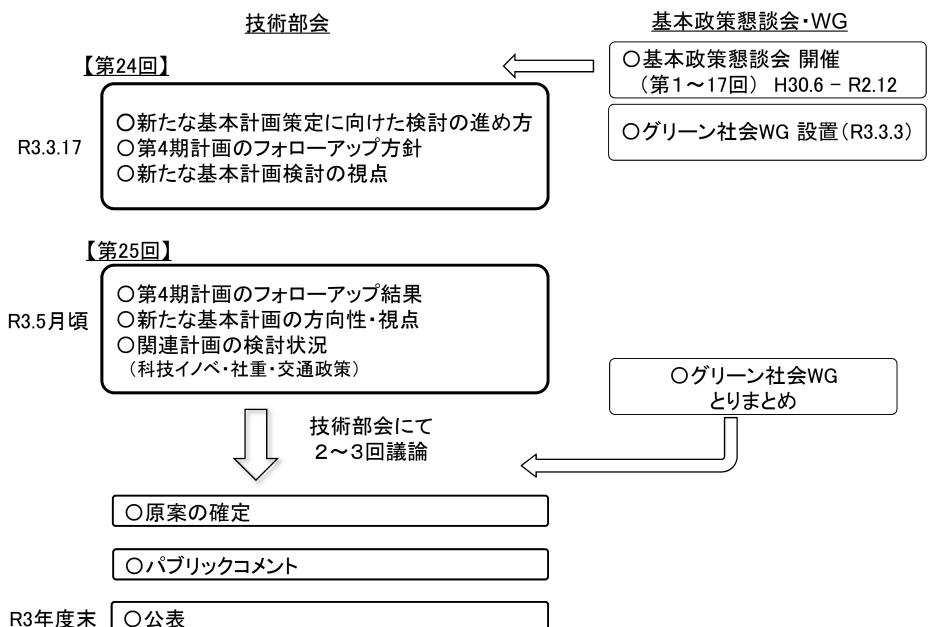
科学技術の進展への対応等

新技術の講習 技術者資格制度の充実等

技術に対する社会の信頼の確保

災害·事故対応 理解の向上 技術の信頼の確保 TEC-FORCE Technical Emergency 伝わる広報


多様な検査 見えないところを見る 抜き打ち検査 第3者検査


インフラセキュリティ

事故対応

新たな計画策定に向けた今後の進め方(案)

