
自動運転レベル3相当実証実験 結果報告

国土交通省航空局

令和3年9月22日

ランプバス

先進モビリティ株式会社 BOLDLY株式会社 全日本空輸株式会社

空港制限区域内における自動走行の実現に向けた実証実験

自動運転バス実証実験結果報告 (磁気マーカ・RFID)

2021年9月22日

先進モビリティ株式会社 BOLDLY株式会社 全日本空輸株式会社

実施計画概要

実施目的	自動運転バスに磁気マーカセンサーを装着し、羽田空港に埋設された磁気マーカを併用した自動運転の安定性や確実性を検証
実施日時	実験準備 2021年5月11日(火)~26日(水) 実証実験 2021年5月27日(水)~31日(月)
使用車両	BYD社製・K9RA(電動バス)
実施場所	羽田空港 制限区域内
走行ルート	磁気マーカが埋設された 第2ターミナル 建屋沿いの車両通行帯を8の字に走行
自動運転レベル	レベル3相当(運転手あり)
実施者	先進モビリティ株式会社、BOLDLY株式会社 全日本空輸株式会社

車両概要

使用車両	BYD社製・K9RA(電動バス)
乗車定員	57名(着席26名、立席31名)
全長/全幅/全高(m)	12.0/2.65/3.40
車両重量	13,820kg
ハンドル有無	有

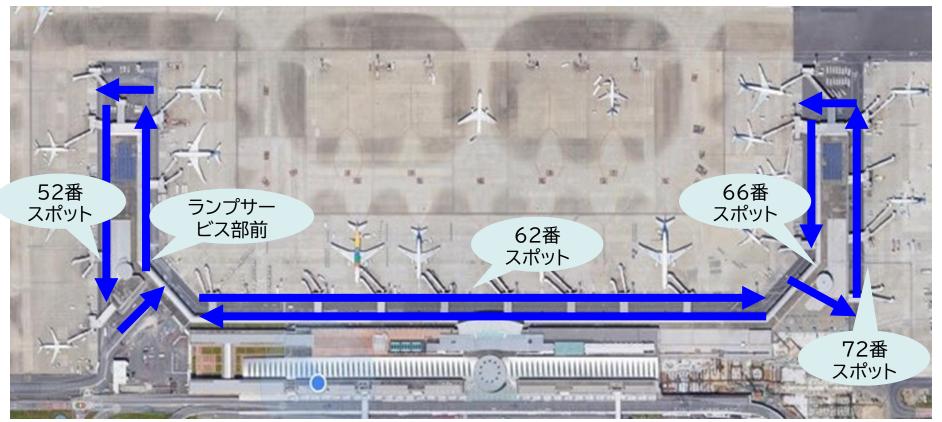
走行制御技術の概要

- 車両自律型、路車連携型
- GNSS、SLAM、磁気マーカ、慣性航法(ジャイロセンサ・ 車速)から自己位置を推定
- LiDAR、ミリ波レーダ、障害物検知カメラにより車両周 辺の障害物・車両・人を検知
- 遠隔による発車および緊急停止機能搭載

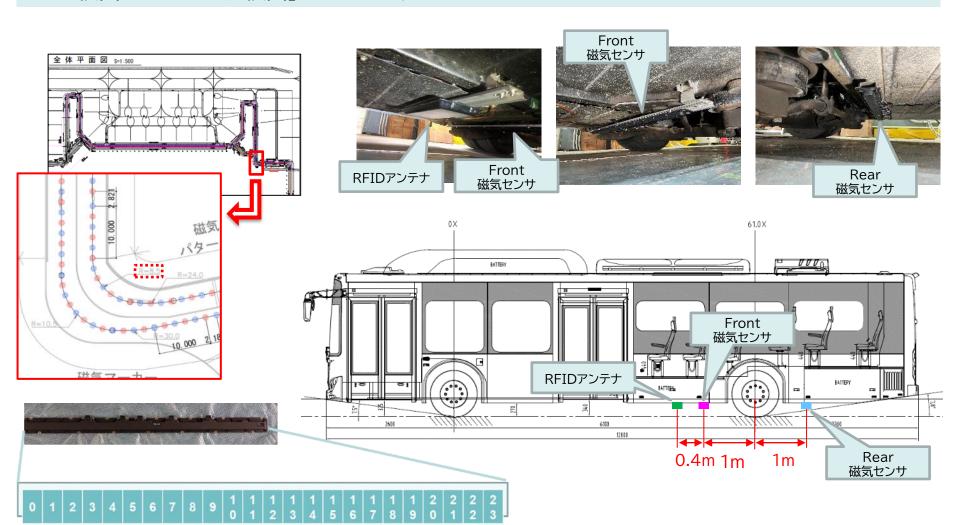
<センサー等の配置>

波レーダー

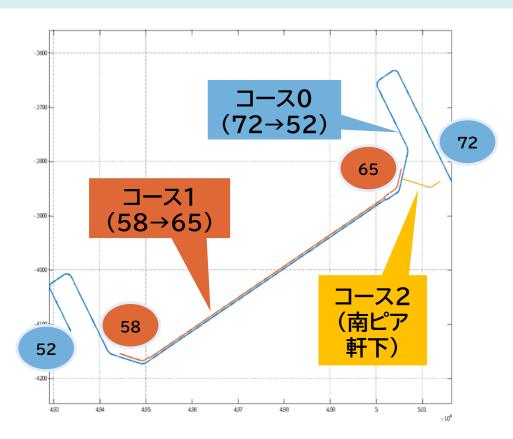
遠隔監視用カメラ

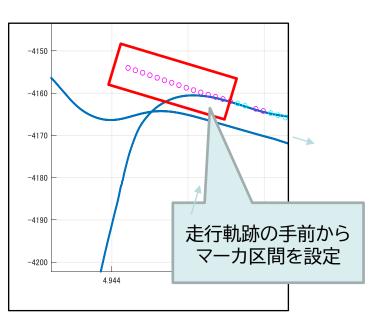


走行ルート


実施日時	2021年5月27日~31日 10時~18時
実施場所	羽田空港 制限区域内
走行ルート	第2ターミナル建屋沿いの車両通行帯を8の字 に走行(2021年2月従業員向けの試験運用と 同じルートを磁気マーカを併用して走行)
走行距離(自動)	93.6km

磁気マーカセンサー

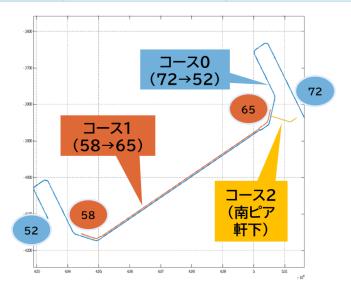

✓ 後輪の前後に磁気センサー、前にRFIDアンテナを配置。前後の両センサーが同時に磁気マーカ を検出したときに、「検出」としている。



磁気センサーは24個のセンサで構成

コース設定

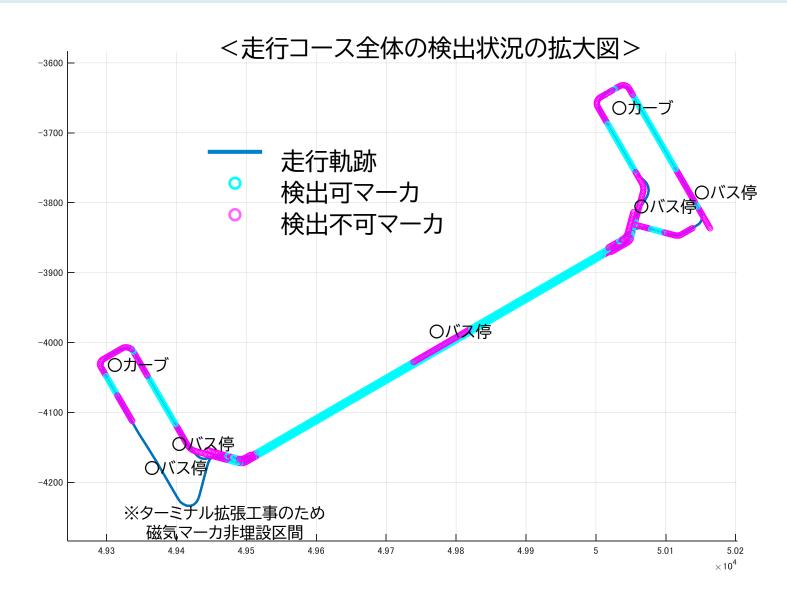
- ✓ 2021年2月従業員向け試験運用時と同じルートをGNSS、SLAM、磁気マーカを併用した自動走行を実施。
- ✓ 埋設されている磁気マーカおよびRFIDを検出し、便宜的にコース0~2とした。(交差点等で 分岐しているため複数コースに分割)
- ✓ 各コースの前後は設定に多少余裕を持たせているため、交差点等は合流手前からのマーカ区間として設定としている。
- ✓ また、目視にて大まかに直線部と曲線部に切り分け、直線部と曲線部それぞれの検出率を算出した。



磁気マーカ検出率

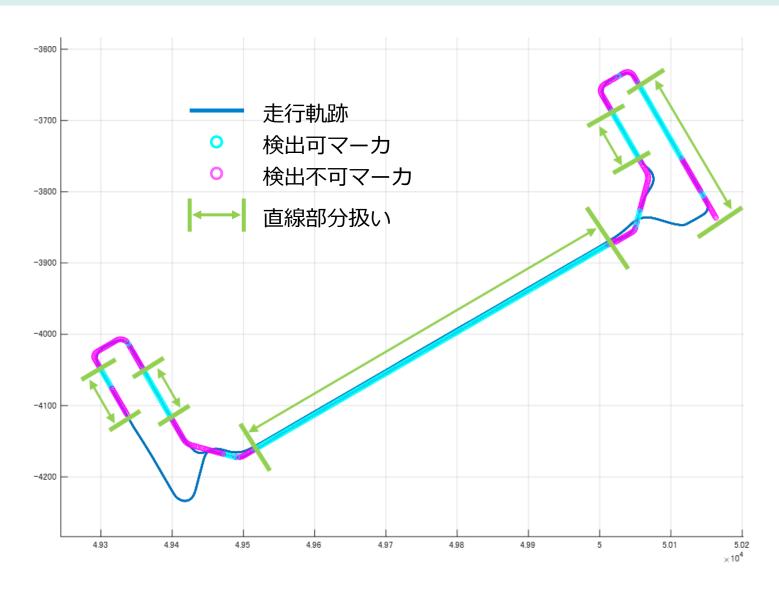
- ✓ 大型バスは車体が長いため、直線部では高い検出率となるものの、大型バス特有の走行軌跡 から、特にカーブの部分などでは検出率が低下する。
- ✓ 2021年2月の従業員向け試験運用のルートを使用したため、バス停停車時にはマーカ埋設部分から大きく逸れる軌跡であり検出率が低下する。
- ✓ 磁気マーカが検出できない場合においても、他の自己位置推定技術であるGNSSやSLAMを 使用した走行が可能なため、自動走行に影響はなかった。

	マーカ総数	検出率(%)	未検	出(%)
	マーカで教	快山平(70)	踏み外し	RFID紐づけ失敗
コース0	765	61.7%	26.7%	11.5%
コース1	361	70.1%	21.1%	8.9%
コース2	43	23.3%	48.8%	27.9%



※踏み外し そもそもマーカ上を通過できていない (前後両方のセンサで読み取らないと検出にはならない)

※RFID紐づけ失敗 マーカは踏めたもののRFIDを検出できず、マーカを 特定できていない (センサの位置が違うため検出できないことがある)


自動走行軌跡とマーカの検出の有無

✓ 直線部では高い検出率(水色)、カーブ・バス停付近では検出率が低下(紫色)

直線部と曲線部の定義

✓ 以下の図のように直線部と曲線部に分け、直線部と曲線部それぞれの検出率を算出

直線部と曲線部のマーカの検出率

- ✓ コース0・1・2の合計となるトータルの磁気マーカ検出率は62.9%(直線部86.0%、曲線部9.3%)。磁気マーカ未検出の場合でも、オドメトリ、GNSS、SLAMの他の自己位置推定により自動走行の継続は十分可能なレベル。
- ✓ 長車長のバスは、内輪差の関係から曲線部の検出率が低下するが、センサ増設やロジック変更により認識率向上は可能。なお、トーイングトラクターの様な短車長(内輪差小)の車両では、曲線部も検出率が高くなる見込み。

		マーカ総数	検出率	備考
	直線部	515	87.0%	各バス停部分で経路からそれる部分、また南ピア 高架下先の部で多少手前からマーカ区間を設定し ているため、若干検出率が下がっている
コース0	曲線部	250	9.6%	
	総数	765	61.7%	
	直線部	291	83.8%	66番バス停部分で経路からそれるため、若干検出率が下がっている
コース1	曲線部	70	12.9%	
	総数	361	70.1%	
	直線部	10	100.0%	南ピア軒下は直線部が少ないため、検出個数は少ない
コース2	曲線部	33	0.0%	
	総数	43	23.3%	
	直線部	816	86.0%	
Total	曲線部	353	9.3%	
	総数	1169	62.9%	

11

実証実験結果・今後の対応

検証内容	検証結果·技術的課題	今後の対応
磁気マーカを併 用した自動走行	・GNSS、SLAMに加え、磁気マーカを併用することにより、自己位置推定精度が増し、自動走行の安定性や確実性は更に向上・実証期間中、直進時のズレや車線逸脱等は一度も発生していない	・8の字ルートの実証は終了 ・トーイングトラクターでの磁 気マーカ検証を予定
気象条件による 影響	・強雨時においても安定した自動走行ができることを確認 (参考)水たまりや大粒の水滴に障害物検知が反応	・障害物検知システム改修によ り誤検知改善

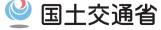
強雨時に雨樋から 落ちてくる 大粒の水滴に 障害物検知が反応

水たまりに反射した光を 三角コーンと認識

まとめ・今後の課題

磁気マーカまとめ

- 磁気マーカを併用することにより、自己位置推定精度は向上し、GNSSが受信し にくいPBB下や軒下等においても、更に安定した自動走行が可能となった
- 磁気マーカは汎用性が高く、共通インフラとして他の自動運転車両も使用可能
- 一方、磁気マーカは3D/2Dマップと比較するとコストが高く、空港全体への埋設は慎重に検討する必要がある
- 他の自己位置推定技術が使用できないトンネル等に磁気マーカを埋設することで、 全てのエリアの自動走行が可能となる


自動走行の実現に向け、今後実験を通じて検証が必要な事項

【自動走行レベル4に向けた課題】

- 交通量が多い場所での自動でのT字合流や車線変更
- 誘導路横断時等の航空機認識(管制情報との連携など)

自動走行の実現に向け、今後委員会・WG等で検討が必要な事項

- 空港内の運用ルール(自動運転表示、駐停車、優先の考え方など)
- 共通インフラ整備(地図、トンネル内のマーカ、充電施設など)

トーイングトラクター

株式会社豊田自動織機 全日本空輸株式会社

空港制限区域内における自動走行の実現に向けた実証実験

自動運転トーイングトラクター 実証実験結果報告(羽田貨物地区)

2021年9月22日

株式会社豊田自動織機 全日本空輸株式会社

実施計画概要

実施目的	2021年10月以降に予定している羽田空港での実証実験に向け、制限区域内における非専有空間にて、以下の評価を実施 ①技術的課題 :大規模空港かつ混雑環境下での自動走行 ②自動運転車両への理解:自動走行車両の表示方法・内容も含め た受容性に対する課題整理							
実施日時	実験準備:2021年3月08日~3月26日 実証実験:2021年3月29日~4月02日							
使用車両	豊田自動織機が開発したトーイングトラクター (ベース車両:3TE25)							
実施場所	羽田空港 制限区域内							
走行ルート	国内貨物地区(西貨物上屋前~407番スポット)							
自動運転レベル	レベル3相当(運転手あり)							
実施者	株式会社豊田自動織機、全日本空輸株式会社							

車両概要

項目		内容						
自動走行性能	能	最高速度 15km/h						
乗車定員		2名						
	全長	3,680 mm						
	全幅	1,793 mm						
構造	全高	2,394 mm						
	重量	5,260 kg						
	車輪	4						
牽引タイプ		一般型						
ドアの有無		有(左右に各1枚)						
ハンドルの有	無	有						
緊急時の操作	乍	ドライバのブレーキオーバーライドによる車両停止 もしくは、車両に具備する非常停止スイッチの押下による車両停止						
ブレーキの有	無	有						
走行制御の	既要	路面パターンマッチング(RANGER)、RTK-GNSS、車速センサ等から得られるセンサ情報を統合し、自車両の位置、方向を推定。決められた経路上を指定の速度で走行						
安全対策の概要		✓ 車両周囲の障害物、車両、人をセンサで検知し、自車両の走行経路上およびその近傍に障害物・人がある場合は指定の車間距離で停止(走行経路上から取り除かれるまで停止継続)✓ 非常時については、上述の「緊急時の操作」により車両を停止 ※同時に自動走行状態は解除						
センサー等の概要		自車両の位置・姿勢認識用:カメラ、RTK-GNSS、車速センサ 障害物検知用:LiDAR(車両前方) 2Dレーザスキャナ(車両前方、左右)						
利用する技術	桁	車両自律型技術						
その他		車両の運転状態をLEDで表示						

走行ルート

国内貨物の運搬経路である西貨物上屋と407番スポットの往復3km(18分)を走行

【走行経路の主な特徴】

- ①特徴物少
- ②路面凹凸大
- ③GNSS精度悪化懸念

羽田空港全体図

②路面凹凸大

・・・ 滑走路横ゃスポット

- ・・・ グレーチング敷設路
 - ・・ PBB※下 ※PBB: Passenger Boarding Bridge (搭乗橋) 以降はPBBと省略表記します

①特徴物少

③GNSS精度悪化懸念

検証項目

(1)実施条件

実際の手荷物搬送のオペレーション環境を想定し実施するため、6台ドーリーを使用 また、各ドーリーにはコンテナ(LD3)をセットし、コンテナ内にはダミーの重量物を複数搭載

ار <u>ح</u> جا	有無	あり
ドーリー牽引	台数	6台×1セット
コンニ+(1 D2)	有無	あり
コンテナ(LD3)	台数	6台
荷の有無		あり(コンテナ1個当たり200kgのウェイトを搭載)
天候などの気象条件		風及び雷:空港内オペレーション基準に準ずる

(2)検証内容

検証項目	確認事項	検証方法			
自動走行に必要な要素技術が、 空港内を走行するのに必要十分であること	屋内・屋外、天候等の条件によらず 安定して自己位置を認識できるか	実走行(自動運転)により検証			
	片側2車線・他車両混在の複雑な 走行環境下で安全に自動走行ができるか	実走行(自動運転)により検証			
空港内で自動走行車両を走行させたときに、 他作業者が違和感なく受け入れられること	他事業者からの理解・受容性	ヒアリング等で自動運転車両が 混在する中での課題・改善点など を確認			

実証実験結果報告①

(1)実証実験は5日間(事前調整~追加調査期間を含めた全期間:20日)

(2)実証実験期間中、稼働停止なく、52.5kmを自動走行

☀: **11, •**: **6, ⊼**: **3**

			3,	月									4	4月					
22	23	24	25	26	29	30	31	1	2	5	6	7	8	9	12	13	14	15	16
月	火	水	木	金	月	火	水	木	金	月	火	水	木	金	月	火	水	木	金
•		-	>	*	*		*	*		7	•	*	*	*	-	•	>	-	
	事	前調	整			実証実験					自動走行エリア拡大のための追加調査								

総走行距離	112 km
自動運転走行距離	52.5 km
往復回数	17.5 🗉
コースアウト(誘導性能)	0 🗈
自己位置推定ロスト(走行に支障)	0 🗈
障害物検知での停止	10 回※

※10回のうち5回は正常検知(P14)、5回は誤検知(P15)

けん引重量:7.6tで走行 (200kg*1ウェイト搭載ドーリー×6両*2)

※1:ドーリの平均的な運搬重量

※2:お客様要望連結数

ドーリ重量:960kg 空コンテナ重量:100kg

実証実験結果報告②

(1) 走行制御·自己位置認識

走行経路全域に渡り、問題なく自動走行を実施

実証実験結果報告③

(2) 障害物検知での停止(正常検知)

様々な対象物・状況で適切に障害物を検知して減速停止

○:OK △:課題あり

г			·				○:OK △:課題	
	場所	対象	検知 必要		検知 不要		停止時の対象までの距離	雜
	本線	①停車車両	本線内	0	本線外	0	3m手前で停止	0
		②人	飛び出し	0	路側帯歩行者	0	停止に至る検知無	-
		③対向車	はみ出し	0	大型車両	0	3m手前で停止	0
		④並走車	追い越し	0	追い抜き	0		-
	スポット	⑤停車車両	経路内	0	経路外	0	3m手前で停止	

実証実験結果報告4

(2) 障害物検知での停止(誤検知)

夕方の西日・雨天走行時、障害物誤検知発生(合計5回) 【対策】センサ変更で照度耐性を向上、ひさし設置を検討

実証実験結果報告⑤

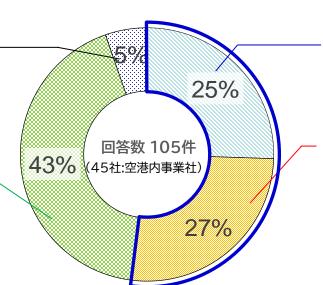
(3) 受容性

自動運転中表示は空港内事業者アンケートで半数以上が認識可と回答 今後、国交省・他航空会社と協議し、表示方法の空港統一ルール策定を進めたい

- ① 状態表示
 - i. 高輝度LED灯で車両状態を通知

高輝度LED灯表示パターン

異常 自動運転 有人運転


ii. 空港内事業者アンケート結果

音声を追加

●表示だけでなく、アナウンス等の 音声があると良い

文字表示を追加

- ◆ 文字表示も併用してほしい (英語併記も望ましい)
- 行先の表示が欲しい

表示方法に問題なし

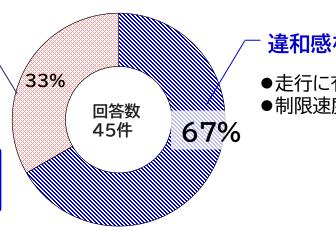
● 誰がみても明瞭

LEDは見やすい 但し、色・配置等は再考要

- 配色は空港内統一ルールであるべき
- 黄色だとウィンカーと誤認の可能性あり

実証実験結果報告⑥

② 他車への影響

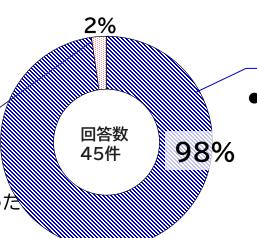

空港内事業者アンケート(全45社)を実施 約7割が違和感なく自動走行できていた / 約9割は実作業にも影響なしと回答

i. 自動走行動作に対する印象

不安・ストレスを感じた

- ●制限速度を遵守しており、遅く感じた
- 車両通行帯のないスポット内での 動きが予測できない

【対応】表示方法の空港統一ルール制定と 合わせて協議


違和感なし

- ●走行に有人車両との違いは感じなかった
- ●制限速度を守り、安全に走行していた

ii. 実作業への影響

実作業が阻害された

●航空機周辺寄り付き時に 車両が停車しており、作業の邪魔になった

影響なし

●動きが有人車と差がなく普通

今後の課題等

自動走行の実現に向け、今後実験を通じて検証が必要な事項

【自動走行レベル4に向けた課題】

- ・交通量が多い場所での自動でのT字合流や車線変更
- ・手荷物仕分け場構内の自動走行
- ・スポット近辺における他GSE車両との干渉
- ・誘導路横断時等の航空機認識
- ・障害物検知の誤検知改善(雨天時、西日)

自動走行の実現に向け、今後委員会・WG等で検討が必要な事項

- ・空港内の運用ルール(自動運転表示、駐停車、優先の考え方など)
- ・共通インフラ整備(地図、トンネル内のマーカ、充電施設など)

その他