

空の移動革命に向けた官民協議会

2023年3月31日 一般財団法人日本気象協会

会社紹介

<u>沿革</u>

1950年 創立2009年 一般財団法人へ移行

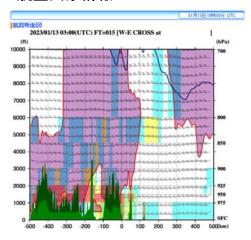
事業概要

気象情報提供、防災・環境・エネルギー等に関する調査・コンサルティング

職員数•技術者数

職員数 844名(気象予報士 351名,技術士 116名,博士 19名) 2022年7月1日現在

<u>所在地</u>

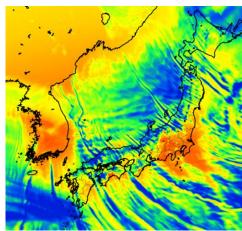

本社(東京都豊島区東池袋) 北海道支社(札幌),東北支社(仙台),中部支社(名古屋), 関西支社(大阪),九州支社(福岡)

会社紹介

事業概要

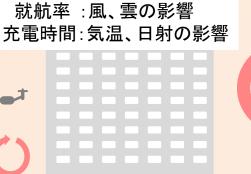
交通ソリューション事業 航空気象情報

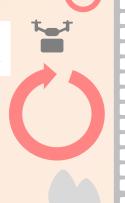
環境影響評価事業 風力発電の環境アセスメント



コンシューマ事業 Webメディア「tenki.jp」

エネルギー事業 太陽光発電の発電出力予測


空飛ぶクルマの気象による課題


- 低高度運航
 - ⇒ 飛行高度が低くいため、地形や建物の影響を大きく受ける (既存の気象情報が存在しない)
- 就航率
 - ⇒ 風や雲(視程)の影響を受けやすい
- バッテリーを用いた運航
 - ⇒気温や日射の影響を受けやすい

安全な飛行:複雑な風の影響 飛行時間:風、気温の影響

ドローン・空飛ぶクルマに関する取り組み

2018

2021~

2022~

2022~

気象情報提供 (研究開発)
国際標準化
ドローンポート (開発 気象分野)
社会実装に 向けて (実証事業)

気象観測ドローン

(研究開発)

カ・ファレ くしこ (大) テーの 4人 ラ 小丘 ケア			
	2014~	京都大学防災研究所と気象観測ドローンの開発 高層ゾンデ気象観測の代替	
	2017~	文科省 次世代火山研究・人材育成総合プロジェクト 桜島で気象観測ドローン(京都大学防災研究所と共同	研究)
	2017 ~ 2019	NEDO DRESSプロジェクト ドローン向け気象情報提供機能の研究開発 平地(一様な風)向け気象情報、情報提供機能の開発	

都市気象情報プラットフォーム研究

JST未来社会創造事業

2019 都市(<u>複雑な風</u>)向け気象情報 2020 NEDO DRESSプロジェクト ~ 地域特性を考慮したドローン気象情報提供機能の研究開発 2021 山間地、離島(複雑な風)向け気象情報、情報提供機能の改良

2021 ISO 23629-7 発行 ドローン運航管理のための地理空間情報データモデル ゼンリン

ブルーイノベーション 無人VTOL機による物資輸送プラットフォーム構築事業 長野県伊那市、川崎重工業

東京都、三菱総合研究所、佐川急便、イームズロボティクス、サンドラック

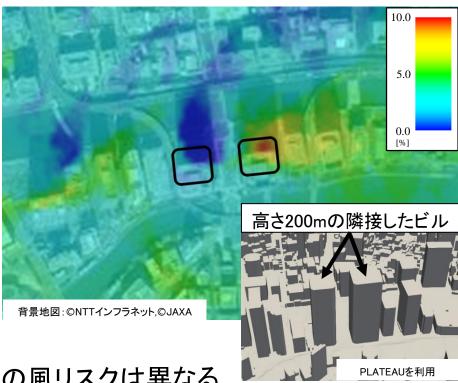
ドローンポート情報管理システムへの気象情報連携

山間地域の生活利便性向上に向けたドローン配送

センサーの 地点を観測

気象観測ドローン

風のリスクマップ


風況シミュレーションは、風向ごとの風のリスクを示すため、 実際の風のリスクを知ることができない

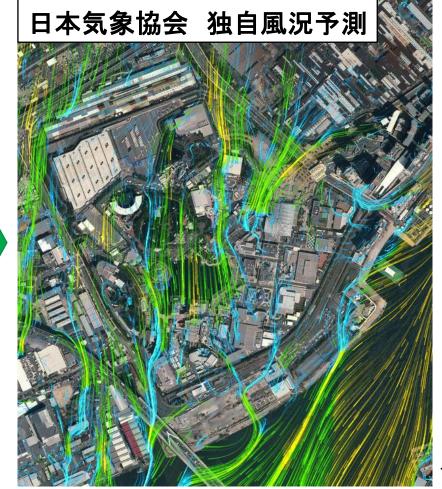
⇒ 風況シミュレーションと気象情報を組み合わせることにより、 **気象も考慮した**風のリスクマップを提供します

各時刻の最大瞬間風速(推定値) 高さ200m

(10.0 5.0 0.0 [m/s]

2021年5月 最大瞬間風速10m/sを越えた割合

隣接した似たビルでも、屋上の風リスクは異なる


風況シミュレーションを用いた独自の風況予測技術により、

建物も解像した風況の予測を提供します

⇒ 運航時の気象リスクの回避・低減

高度10mの水平風速

日本気象協会が貢献できること

気象解析、シミュレーション、観測技術で、空飛ぶクルマの安全運航を支え、

運航の効率化や就航検討を支援することにより、空飛ぶクルマ市場の拡大に貢献

事前検討

運航

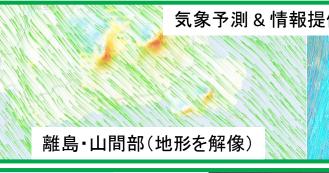
就航検討

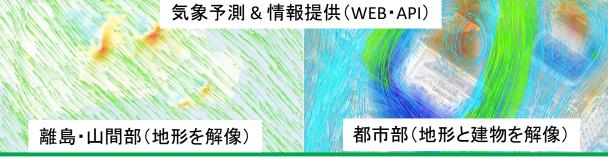
就航率向上

- 就航路線の選定
- ・ポートの適地選定
- 就航率の算定

安全運航

気象リスクの回避・低減


- •運航判断
- -離発着判断
- ・飛行ルート選定


運航の効率化

機体やポートの効率化

- ・バッテリー充電時間推定
- •飛行可能時間推定

