Operational Support System for Sewage Treatment Plant with Activated Sludge Process

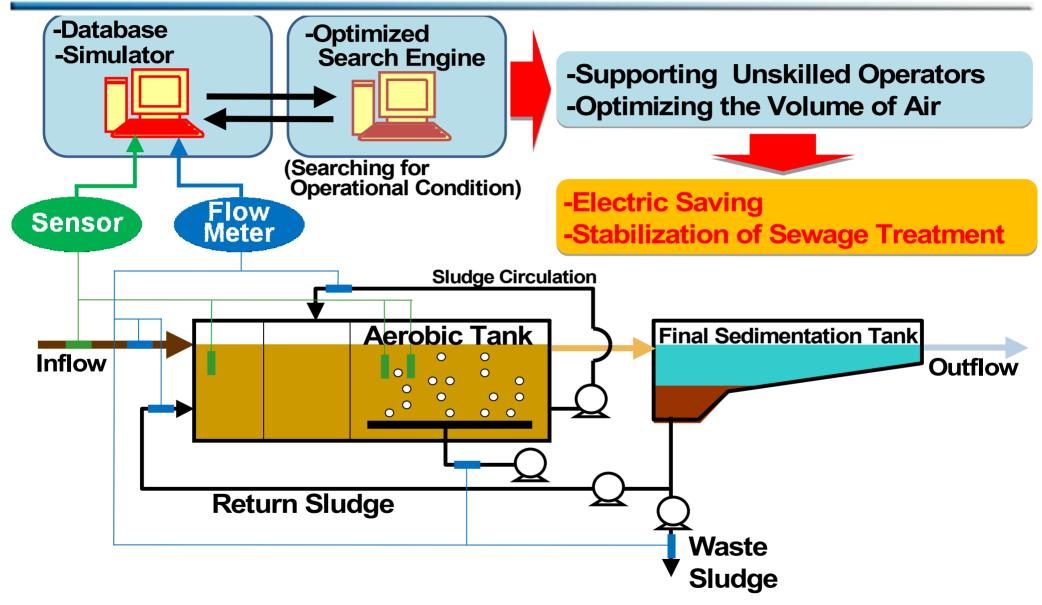


Figure 1: General Outline of the System

JFE Engineering Corporation

Water Infrastructure Business of Sumitomo Corporation

Feb. 14th, 2011

Sumitomo Corporation Water Utilities Investment Team

Business Organization (2011.1)

Sumitomo
Corporation

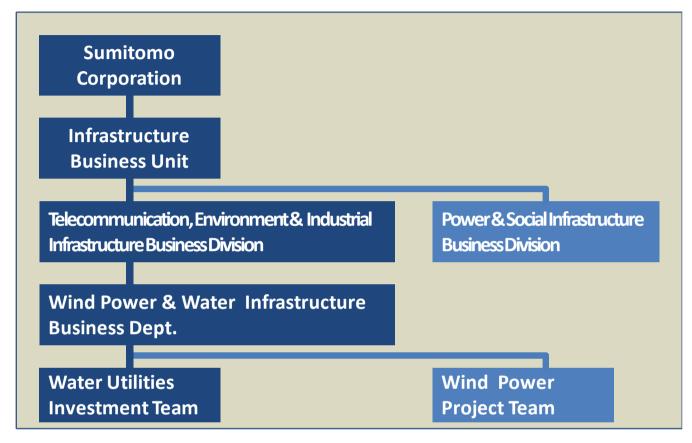
Wind Power & Water
Infrastructure Business
Dept.

2010.4~: Establishment

■ Tokyo HQ: 25 staffs~

Overseas : NY, Beijing, etc.

Under increasing staffs


Business Model

- Investment in overseas water infrastructure business
- Target : 20 million water supplied population
- To become an integrated Water business company
- M&A and Greenfield
- Sponsorship + O&M

Target Region

3 major markets

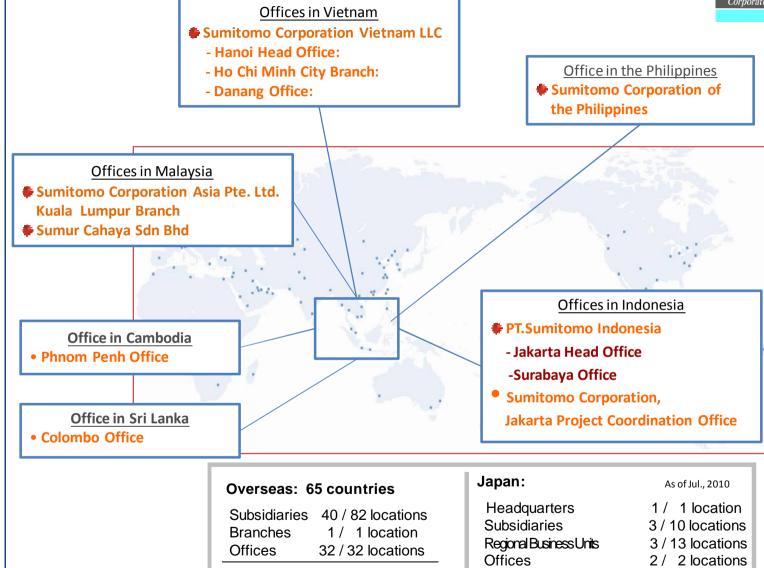
- -East Asia, incl. China & India
- the Middle East
- Latin America
- + Emerging market
 - Confidential -

Global Network

Sumitomo
Corporation

Sumitomo Corporation Global Network

Overseas: 65 countries, 115 locations


Engaged in infrastructure business such as power, telecommunications, or other industrial facilities for Asian countries; Malaysia, Indonesia, Vietnam, Philippines, etc.

Utilizing the experience through investments in infrastructure business.

Pursuing synergy with existing infrastructure business.

Developing new infrastructure business through public-private partnership.

115 locations

Total

Total

26 locations

Portfolio in Water Infrastructure Business

Business Strategy

Entry & expansion into water infrastructure business by the optimal partner & scheme in consideration of each country or region characteristic.

- -Expanding business base
- -Upgrading management function for business
- Differentiated by innovation

Entry to growing market & Obtaining the business base

CHINA: 2010 -

Alliance with <u>Beijing Capital Co., Ltd.</u>, the largest provider of water infrastructure in China.

- To expand TOT/BOT business through JV.
- To collaborate on other businesses such as waste & sludge treatment and other environment technologies.

Developing Public-Private Partnership

MALAYSIA: 2010 -

Organizing PPP scheme with <u>Tokyo</u> Metropolitan Government.

BAHRAIN / UAE (Middle East): 2005 -

IWPP business with <u>Suez</u>. (Desalination)

Expanding businesses deriving from IPP

INDIA: 2000 -

Alliance with <u>VA Tech Wabag Ltd.</u>, a leading multi national company in water treatment industry.

Foothold for growing market

Our Strategic Activities

Malaysia

Tokyo Metropolitan
Proven Technology

Master Plan

Key Challenges

Pollution

Advanced Treatment

& Knowhow

Expertise In Malaysia

Aging Water & Sewerage Assets

Upgrading Technologies

Experience In Water Businesses

High % of NRW

NRW Reduction Experience

Capabilities
Of Finance
Arrangement

Inefficient Operation

Water

Resource

Sewage

Treatment

Rationalization Knowhow

*[‡] Ch

Purification

China

Sumitomo Corporation

 Extensive Partnership with Japanese Manufacturers/Technology Providers

Beijing Capital Co., Ltd.

 Accumulated Knowhow & Business Network in Water Infrastructure Related Businesses in China

Technical Platform

Japanese Advanced
Technologies Related to
Water & Environment
Infrastructure

- Demonstration
- Model Project
- Localization
- Sales Promotion
- Local Production

Municipalities Commercial Entities In China

Successful Example of PPP (Manila Water Company)

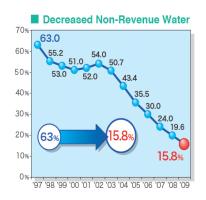
PPP in Metro Manila, Philippines

Provision for water and wastewater services in Metro Manila is divided into the East and the West Zones, following the 1997 PPP bids for 25-year concession contracts. Mitsubishi Corporation participated in the bid for the East Zone through Manila Water Company, Inc., which provides water and wastewater services to more than 6.1 million people.

Today, it has become one of the world's most successful examples of PPP. In fact, its Concession Agreement has been extended for an additional 15 years on top of the 25 years that have been previously granted.

Manila Water's achievements


Before Manila Water's entry in the industry in 1997, eastern Metro Manila suffered from various challenges such as insufficient infrastructure and environmental deterioration, accelerated by rapid population increase. Twenty-four-hour water supply was only available to 26% of the East Zone population due to leakages mainly caused by old water lines, meter tampering and illegal connections. In fact, non-revenue water (NRW) was at a record high of 63% at that time.


Under these circumstances, Manila Water prioritized improving water network efficiency to deliver recovered water to more customers. This was supplemented by organizational improvements, employee development and facility rehabilitation.

The remarkable results are as follows:

- 1) Increased billed volume (from 440,000 m³/day in 1997 to 1.10 million m³/day by the end of 2009)
- 2) Improved 24-hour potable water supply (from 1997's 26% to 2009's 99%)
- 3) Reduced NRW (from 1997's 63% to 2009's 15.8%)

In addition, Manila Water now supplies clean and potable water to more than 1.6 million residents in marginalized communities. Manila Water was also the first water and wastewater service provider to be listed in the Philippine Stock Exchange after a successful Initial Public Offering in 2005.

Name: MANILA WATER COMPANY, INC.

Establishment: January 6, 1997

Capital: 6.2 billion Pesos (USD135 million as of December 2009)

Total 2009 Sales: 9.5 billion Pesos

(USD205 million as of December 2009)

Employee: 1,583 (as of December 2009)

東京都の水インフラに関する取組 ー上水道ー

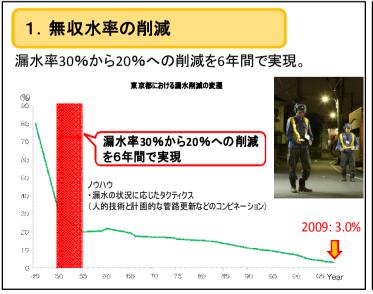
東京水道の概要

東京水道は、東京都水道局と東京水道サービス㈱(TSS)が一体となり、1,260万の人々に安全な水の安定した給水を実現しています。

_	1 >>4	
東京水道		
基本指標		
事業開始	1898.12.1	
供給区域面積	1,223km ²	
給水人口	12.6 million	
無収水率	4.4 %	
配水管延長	25,969 km	
	(half way of the globe)	
稼働能力	6.9 million m3/day	
	0.5 million m5/day	
一日平均供給量	4.3 million m3/day	
供給時間	24時間365日	

優れた技術と国際貢献ビジネスの取組

世界で最も進んだ浄水技術などの先進的・複合的な技術を有し、新たな国際貢献の取組を進めています。


1 優れた技術など

- (1) どのような水質にも対応できる浄水処理技術と高度な水質管理技術 高度浄水処理やTOKYO高度品質プログラムなど
- (2)漏水防止技術 水資源の有効利用、経営効率の向上。漏水率 21年度3.0%
- (3) 危機管理・安定給水 水運用センターによる一元管理など
- (4)料金徴収 徴収率 21年度99.9%
- 2 東京水道国際展開ミッション団の派遣

平成22年度に、マレーシア、ベトナム、インドネシア、インド、モルディブ に調査団を派遣

(平成22年度から24年度の3年間で10カ国程度派遣予定)

東京水道の主な実績

東京都の水インフラに関する取組 一下水道一

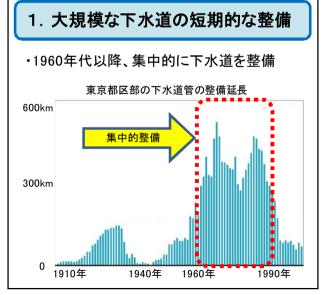
東京下水道の概要

大規模な下水道システムを効率的に運営し、安定的な下水道サービスを提供しています。

東京下水道 基本指標				
事業開始	1884年			
下水処理区域面積	963km2			
下水道普及人口 (下水道普及率)	12.1 百万人 (99.7 %)			
管渠管理延長	16,062 km			
処理能力 (水再生センター数)	7.7 百万 m3/日 (20か所)			
一日平均処理量	5.6百万m3/日			
一日平均脱水汚泥発生量	3,291 t/日			

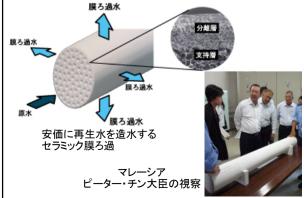
優れた技術と国際展開の基本的考え方

東京下水道の優れた技術やノウハウなどの強みを活かし、国際展開を進めています。


1 優れた技術

- (1) 過密な大都市の中で短期間・集中的に下水道管から処理場まで整備した技術
- (2) 大規模で高度な下水道システムを総合的に運営・管理する技術
- (3) 再生水造水や高度処理技術
- (4) 炭化炉、ガス化炉など先進的・実用的な技術 ※特許等の件数 約250件

2 国際展開の基本的考え方


- ○水・衛生問題に直面する国や地域の発展に寄与
- ○下水道関連企業の海外展開を後押しすることで、産業力の強化に貢献
 - ・監理団体(東京都下水道サービス㈱)と一体的に対応
 - ・下水道グローバルセンター(GCUS)等とも連携
- ※具体的な事例 ①SPR工法を海外展開中
 - ②水面制御装置のライセンス契約をドイツや韓国の企業と締結済

東京下水道の主な実績

2. 再生水の有効活用

・貴重な水資源として、高度処理した再生水を オフィスビルのトイレ用水等に活用

3. 老朽化した下水道管の更生(SPR工法)

- ・老朽化施設を効率的に再構築
- ・SPR工法は、国内で600km以上、アジア、北米、欧州など国外で30km以上の施工実績

施工中

施工後

Measures on Water Infrastructure by Tokyo Metropolitan Government -Water Supply-

Tokyo Waterworks Summary

Tokyo Waterworks has integrated the Tokyo Metropolitan Government (TMG) Bureau of Waterworks and Tokyo Suido Services Co., Ltd. (TSS), and steadily supplies safe water to 12.6 million people.

Tokyo Waterworks Fundamental Indicators		
Start of Service	December 1, 1898	
Service Area	1,223 km ²	
Population Served	12.6 million	
Non Revenue Water	4.4%	
Total Length of Pipes	25,969 km (half way round the Earth)	
Capacity of Water Supply Facilities	6.9 million m ³ /day	
Average Daily Water Supply	4.3 million m ³ /day	
Water Availability	24 hours 365days	

Tokyo Waterworks Major Achievements

Advanced Technologies and Tokyo's Water Business –International Projects and Cooperation -

Using the most advanced comprehensive water-related technologies, Tokyo Waterworks actively carries out international contribution projects.

- 1 Tokyo Waterworks' advanced technologies, etc.
 - (1) Advanced water quality control and water treatment technologies suitable for any water quality

Tokyo Waterworks' advanced water treatment technologies, Tokyo High Quality Management Program, etc, contributes to stable water quality.

(2) Leakage prevention technology

Tokyo Waterworks' technology contributes to efficient use of water resources and improves management efficiency. In 2009, Tokyo Waterworks' Leakage Rate was 3.0%.

(3)Crisis prevention/stable water supply

Vertical management by Water Supply Operation Center ensures stable water supply in addition to prevention of emergencies.

(4)Tariff collection

The collection rate in 2009 was 99.9%

2 Tokyo delegation for overseas waterworks development

In 2010, Tokyo Waterworks sent its delegation team to Malaysia, Vietnam, Indonesia, India and the Maldives. Tokyo Waterworks plans to send its delegation to approximately 10 countries from 2010 to 2012.

1.Reduction of NRW Rate A reduction in the leakage rate from 30% to 20% was achieved in 6 years History of Leakage Rates in Tokyo (%) !!!!: A reduction in the leakage rate from 30% to 20% was achieved in 6 vears 880 TO 60 en. 40 · Tactics according to status of leakage (Combination of human technology and planned pipe renewals) 30 20 2009: 3.0% 10

2.Skills in Efficient Operation We provides multiple services on a one-stop basis, from water resources and water treatment plants to end supplies and faucets. Water Resource Facilities Water Treatment Plants Purification plant and Water supply station Distribution mains Automatic Water Quality meter Water Supply Station End supply

Measures on Water Infrastructure by Tokyo Metropolitan Government -Sewerage-

Tokyo Sewerage Systems Summary

Tokyo Sewerage operates large-scale sewerage systems efficiently, and offers stable sewerage service.

Tokyo Sewerage Fundamental Indicators		
Start of Service	1884	
Service Area	963km2	
Sewered Population (%)	12.1 million (99.7 %)	
Total Length of Pipes	16,062 km	
Treatment Capacity (Number of Water Reclamation Centers)	7.7 million m3/day (20)	
Average Daily Treated Effluent	5.6million m3/day	
Average Daily Amount of Dewatered Sludge	3,291 t/day	

Tokyo Sewerage's Major Achievements

Advanced Technologies and Basic Policy for International Activities

We are positively working on international activities making use of various technologies and know-how Tokyo Sewerage posses.

- 1 Advanced Technologies
 - (1) Technologies of building-up sewer pipes and Water Reclamation Centers intensively under overcrowded city in a short period of time.
 - (2) Technologies of operating and managing large and highly advanced sewerage systems comprehensively.
 - (3) Technologies of utilizing reclaimed water and advanced treatment.
 - (4) Advanced and practical Technologies such as sludge Carbonization and Gasification. %number of patents: approx. 250
- 2 Basic Policy for International Activities
 - O Contribute to the development of countries and regions facing water and hygiene problems
 - O Advance the overseas development of sewerage related companies, and thereby contribute to stimulation of sewerage business and strengthening industrial abilities in Tokyo and Japan
 - Closely cooperate with Tokyo Metropolitan Sewerage Service Corporation(TGS).
 - · Cooperate with the Global Center for Urban Sanitation (GCUS) etc.
 - *For Example 1) Disseminating Sewerage Pipe Renewal (SPR) Method overseas
 - ②Concluded a license contract of "water surface control device" with a German company and a South Korean one

1.Construction of large scale of Sewerage System in a short period Construction of sewer pipes intensively after the 1960s. Intensive construction O 1910 1940 1960 1990

Utilize reclaimed water for non-potable use such as toilet flushing in office buildings. filtered water filtered water filtered water A ceramic membrane filtration that produces reclaimed water at low cost Demonstration to the minister of Malaysia, Datuk Peter Chin

2.Utilization of reclaimed water

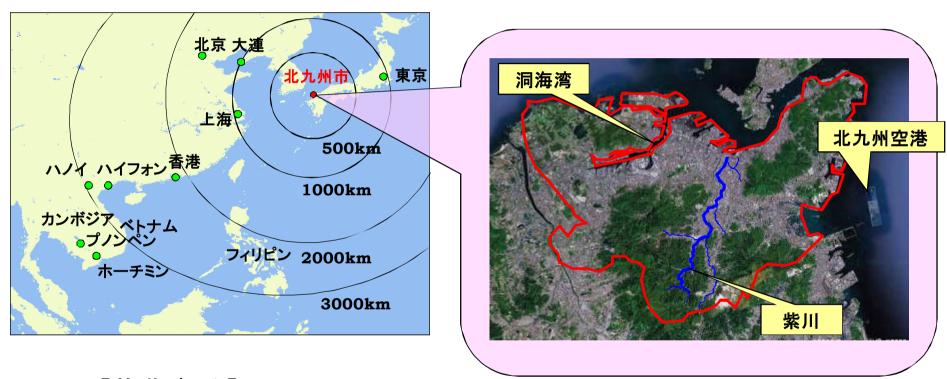
3. Reconstruction of deteriorated pipes

Reconstruct deteriorated facilities efficiently. Construction results of SPR-Method exceed 600km domestically, and 30km in overseas including Asia, North America, and Europe.

under construction

after construction

北九州市の海外水インフラの取り組み


FEB. 14, 2011

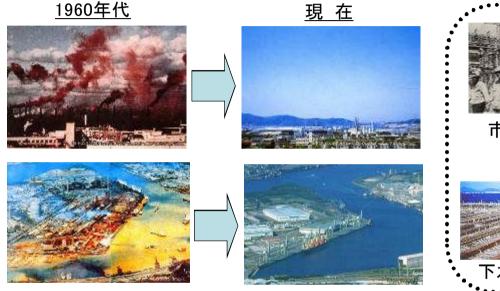
Kunio OHARA
Chief Executive, Construction Bureau

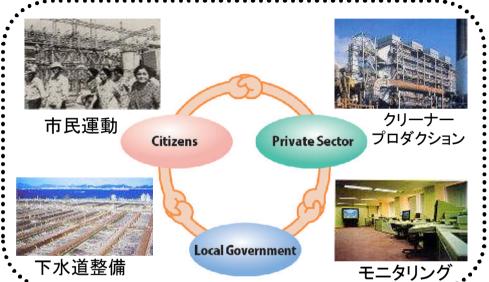
北九州市の概要

- ●日本列島の西端、九州の最北端に位置 ⇒ アジアのゲートウェイ
- ●産業集積と技術力を誇るモノづくりのまち ⇒ 鉄鋼、化学、機械、窯業、IC等
- ●豊かな自然にも恵まれたまち ⇒ 210kmの海岸線、市域約40%が森林

【基礎データ】

•面積:約488km²、人口:約98万人


•平均気温 :約16℃


•年間降水量:約1,600mm

環境再生の成果、国際技術協力の実績

■ 環境再生(公害克服)の成果、成功体験がある

市民の力を行政が支え、「ばい煙」の空、「死の海」から復活

■ 国際技術協力の豊富な経験、実績がある

環境再生の技術やノウハウを海外へ移転

○技術者育成 (上下水道分野 1990~2009年度)

·専門家派遣:12ヵ国、126人

·研修員受入:100ヵ国以上、約2,500人

〇市民力向上:環境教育

中国、インドネシアなど

技術協力の成果(水道分野)

1993年	プノンペンの飛躍的改善	2006年
25%	行政区域内水道普及率	90%
10h	給水時間	24h
72%	無収水量率	8%

2005年5月飲用可能宣言

水インフラの海外輸出のために

<北九州市の取り組み>

■ 官民による支援体制が整っている

民間企業85社、国の機関(JICA、JBIC、GCUS他)などとともに、「北九州市海外水ビジネス推進協議会」を設立

・民間:コンサルティング、素材供給、プラント建設、金融支援など

・官側:政策立案の支援、自治体ノウハウの提供など

■ 施設の計画、建設、維持管理から事業経営まで、 上下水道事業の全般にわたる支援ができる

北九州市は、自治体のノウハウと民間の技術で、 水に関する多様なニーズにお応えします

- ◆最適施設計画を提案
- ◆健全な事業経営を支援(料金設定、市民対応等)
- ◆人材を育成(研修、技術指導)

具体的な取組内容


<下水道分野>

- ◆ベトナム・ハイフォン市との技術交流
- ◆中国・大連市の調査、事業提案
- ◆サウジアラビア向け案件形成への参画(GCUS)
- ◆バラスト水への下水処理水活用の具体化
- ◆最新技術拠点の開設(ウォータープラザ)
- ◆カンボジアでの水環境改善の啓発

<水道分野>

- ◆技術協力と人材育成 カンボジア(1999~)、中国・大連市(2000~)、 ベトナム・ハイフォン市(2010~)
- ◆現地ニーズの調査 カンボジア、ベトナム・ハイフォン市
- ◆カンボジア国の水の安全供給を促進
- ◆ベトナム・ハイフォン市へミッション団派遣、 水道展へ出展、技術提案

ベトナム水道展へ出展(ハイフォン市)

技術の普及・展開

代表的な取組事例

- ベトナム国ハイフォン市との技術交流(下水道分野)
 - ・ハイフォン下水道排水公社と「覚書」締結(2010年11月26日)
 - ・今後、現地調査のうえ施設計画、事業経営や人材育成の方策などを提案

両市副市長の交流

調印式

技術協議

- カンボジア国の水道安定供給を支援(水道分野)
 - ・カンボジア鉱工業エネルギー省と厚生労働省が「覚書」締結(2011年1月6日)
 - 日本の経験、カンボジアの先進的取組みを全域に活用する方策検討
 - 両国産業界の有する技術力の活用方策検討
 - 官民による現地調査の実施
 - 両国の事業者と産業界との連携、協力の促進
 - ・今後、両者及び北九州市が具体的な活動内容を調整し、策定

調印式

ご清聴ありがとうございました

是非一度、北九州市にお越しください!

Contact

Water Environmental Division, Construction Bureau E-mail: ken-mizukankyou@city.kitakyushu.lg.jp

参考資料

環境再生の国際的評価

■1990年:国連環境計画(UNEP)から「グローバル500」受賞(日本の自治体初)

-1992年:リオ・サミットで「国連地方自治体表彰」受賞(日本の自治体で唯一)

■2000年:北九州市で国連ESCAP環境大臣会議を開催 (ESCAP:アジア太平洋経済社会委員会)

■2006年:米国NPOウォーターフロントセンターより「クリアーウォーター賞」受賞

•2007年:同じく「エクセレンス·オン·ザ·ウォーターフロント賞」受賞

ウォーターフロントセンター表彰

<u>国連表彰</u>

※2008年、国内では、「環境モデル都市」 に選定(全国で6箇所)

環境モデル都市選定

習近平中国副主席来訪

北九州市の下水道概要

【経緯】

·1963年 2月 北九州市誕生 ⇒ 本格的に整備着手

・1963年 7月 皇后崎浄化センター運転開始

•1977年 3月 下水道普及率 50%達成

•1982年 1月 管渠布設延長 2,000km達成

•2005年 3月 管渠布設延長 4,000km達成

-2006年 3月 下水道普及率 99.8%達成(汚水整備概成)

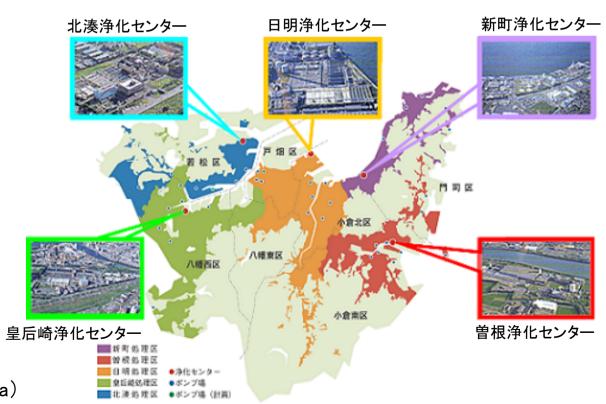
【主な下水道施設】

・<u>浄化センター 5箇所</u>(処理能力 621,000m³/日)

・ポンプ場 36箇所

·管渠 4, 324km

 汚水
 3, 172km


 雨水
 312km

 合流
 840km

【処理区域面積】

•16, 164ha

(うち合流区域面積:3,422ha)

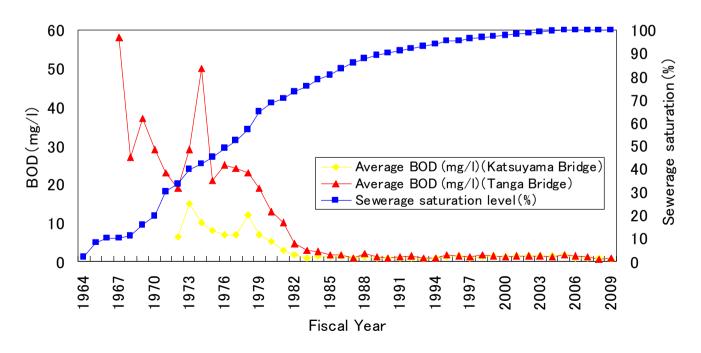
約40年間で、6.000億円を超える

建設事業費を投資

下水道整備の効果

◆約40年をかけて、行政と市民が一体となって下水道整備を推進

行政:下水処理場や管渠の整備


•市民:水洗化(下水道への接続)の徹底

戻ってきた清流に棲む魚:アユ

※下水道の普及とともに、紫川の水質が飛躍的に改善

北九州市で様々な技術をご覧いただけます

【計画から建設、維持管理まで】

下水処理場:5箇所 ポンプ場:36箇所 管渠:4,324km

下水処理場

パイプライニング

【汚泥の有効利用】

セメント原料化

ごみ焼却工場で発電

【最新技術】

〇下水の持つエネルギーと自然エネルギーの活用

消化ガス発電

太陽光発電

