6. 一貫構造計算プログラムによる設計

6.1. 一貫構造計算プログラム

1次設計および保有水平耐力の検討は、市販の一貫計算ソフトを使用する。解析ソフトは、 SuperBuild/SS7(ユニオンシステム)を使用するものとし、1次設計の弾性解析モデルと保有水 平耐力時の荷重増分解析は、同じモデルを使用する。

図 6.1.1 解析モデル

6.2. モデル入力説明

6.2.1. 階高設定

ー貫構造計算に入力した建物の階高は、意匠階高を入力し、意匠上の FL より梁天端レベルまでのレベル差を考慮して入力をしている。

図 6.2.1.2 電算モデルと構造階高

困	RHL	階高	構造階高	梁のレベル調整			
旧	旧	(mm)	(mm)	押さえ	レベル(mm)		
RFL	5	3,650	3, 712	上面	-100		
5FL	4	3, 900	3, 900	上面	-100		
4FL	3	3, 900	3, 900	上面	-100		
3LF	2	3, 900	3, 900	上面	-100		
2FL	1	3, 900	4, 534	上面	-100		
1FL				上面	-200		

表 6.2.1.1 構造階高(電算入力・自動計算値)

6.2.2. 構造通り芯設定

構造通り芯は、X 方向 Y 方向ともに、建築通り芯=柱芯=構造芯=入力値としている。

図 6.2.2.1 電算モデルと構造芯

6.2.3. CLT 袖壁のモデル化

CLT 袖壁パネルのモデル化は、既往の文献 かを参考に、水平方向加力に対して CLT の隅角部を つなぐ斜め圧縮力によるストラット効果を期待した等価な X 形状の圧縮ブレースに加え、本設計 では鉛直方向の圧縮性能にも等価となるように、CLT 袖壁パネルの中心位置に鉛直要素の圧縮ト ラス柱を追加した"圧縮ブレース柱モデル(X形状)"とする。

図 6.2.3.1 CLT 袖壁パネルの圧縮ブレース柱モデル

下図に水平剛性算定モデル⁵⁰を示す。幅L(mm)、内法高さH(mm)、厚さt(mm)、ヤング係数 $E(N/mm^2)$ 、支圧剛性 $kc(N/mm^3)$ の CLT パネルの上下が剛体で拘束されているとき、水平力Qにより CLT パネルに θ_R の微小な回転、 ΔH の軸変形が生じ、幅xの範囲に支圧力が三角形分布で生じているものとする。圧縮ストラットによる支圧剛性、軸剛性による回転水平剛性 K_R、CLT パネルのせん断剛性 K_s(=G・t・L/H)、せん断接合部の水平剛性 K_Jとすると、それらの直列バネとすることで、CLT パネル全体の水平剛性 K が算出できる。

図 6.2.3.2 圧縮ストラットに期待した等価圧縮ブレースモデル 5)

参考文献

5) 福本晃治、五十田博:CLT を鉄骨造の耐震要素として用いたハイブリッド構造の接合部における支圧力の伝達に関する検討, 日本建築学会構造系論文集 第86巻第788号,1440-1451,2021.10

$$K_{R} = \frac{Q}{\delta_{R}} = \frac{k_{c} \cdot t \cdot x^{2} \cdot (L - \frac{2}{3}x)}{2H^{2}}$$

$$K = \frac{1}{\frac{1}{K_{R}} + \frac{1}{K_{S}} + \frac{2}{K_{I}}}$$

$$r \cdot \cdot \vec{x} 2$$

$$x = \frac{L}{2}(1 - \alpha)$$

$$\alpha = (1 + 2\beta) - 2\sqrt{\beta(1 + \beta)}$$

$$r \cdot \cdot \vec{x} 4$$

$$\beta = \frac{1}{k_c \cdot H} \qquad \cdots \quad x \downarrow b$$

ここで、本設計では CLT パネルと上下の RC 梁との境界部は摩擦による水平力伝達に主に期待を するため、せん断接合部の水平剛性 KJ は無視できるものとして十分に高い値を入れて評価する。 また、支圧剛性kc およびせん断弾性係数 G は文献 7) に準拠し kc=15.6(N/mm³)、G=500(N/mm²) とした。

次に、式2より得られる CLT パネルの水平剛性Kに対し、仮想仕事法により等価な水平剛性を 有する角度 θ_B の圧縮ブレースに置換する。電算モデルに入力するブレースの配置幅 LB は、CLT パネル端部に対する RC 梁の危険断面位置がやや内側になることを想定し LB=0.9L とする。圧縮 ブレースのヤング係数を EB とした場合の軸断面積 AB は下式により算定できる。本設計では便宜 上 EB=2.05×10⁵N/mm² として、必要な AB を算定した。

$$A_B = K \frac{L_B}{\cos^3 \theta_B} / E_B \qquad \cdot \cdot \cdot \vec{x} \ 6$$

式3により得られた支圧幅xと壁厚tから有効支圧面積Aeiを算出し、CLTパネルの圧縮強度 Fcを用いて支圧耐力Ccを以下のように算出する。

 $A_{e1} = x \cdot t \qquad \qquad \cdot \cdot \cdot \vec{x} \, 7$

 $C_c = Fc \cdot A_{e1} \qquad \cdot \cdot \cdot \vec{x} \, 8$

偶力モーメントの釣合いより、支圧耐力により決定される水平耐力 Qu を以下と算出する。

$$Qu \cdot H = Cc \cdot \left(L - \frac{2}{3}x\right) \quad \rightarrow \quad Qu = Cc \cdot \left(L - \frac{2}{3}x\right)/H \quad \cdot \cdot \cdot \neq 9$$

よって、角度θBの圧縮ブレースの終局軸力 BNu、短期許容軸力 BNa は以下となる。

$_BNu = Qu/\cos\theta_B$	•	•	•	式10)
$_{B}Na = _{B}Nu \cdot \frac{2}{3}$	•	•	•	式11	_

電算モデルでは、式 11 で得た短期許容軸力 BNa を、式 6 で得た入力断面積 AB で除した等価 F 値を入力することで電算アウトプットにおいても水平力に対する CLT 袖壁の断面検定を実施可 能となる。なお、式 9 による支圧耐力により決定される Qu に対して、CLT パネル母材のせん断 耐力は十分に高いことを別途確認する。

参考文献

^{7) 2016} 年版 CLT を用いた建築物の設計施工マニュアル、日本住宅・木材技術センター

次に、鉛直荷重に対して CLT 袖壁の軸耐力と等価となるような圧縮トラス柱を設定する。全圧 縮面積が有効と考えた場合の CLT 袖壁の軸耐力は以下となる。

$$Nu = Fc \cdot L \cdot t \qquad \cdot \cdot \cdot \vec{x} \, 12$$

圧縮ブレース2本分の鉛直成分の終局耐力は以下となる。

 $_{BV}Nu = 2 \cdot _{B}Nu \cdot \sin \theta_{B}$

・・式13

圧縮トラス柱の終局軸耐力は、式12で得た全圧縮耐力より式13の圧縮ブレースの鉛直成分を 差し引いた性能となる。

$$_{C}Nu = Nu - _{BV}Nu$$
 $\cdot \cdot \cdot \vec{x}$ 14

$$cNa = cNu \cdot \frac{2}{2} \qquad \cdot \cdot \cdot \vec{x} \, 15$$

また CLT 袖壁の全面圧縮耐力に対する圧縮トラス柱の終局軸耐力の割合から有効断面積を算 出する。圧縮トラス柱の軸剛性 cK は、有効断面の CLT 袖壁の母材軸剛性 cLrKe と、上下の支圧 剛性 Ke の直列バネとして算出する。ここで、EcLr は CLT 袖壁の鉛直方向の母材ヤング係数であ る。

$A_{Ce} = (L \cdot t) \frac{c^{Nu}}{Nu}$	・・式16
$_{CLT}Ke = \frac{A_{Ce} \cdot E_{CLT}}{H}$	・・式17
$Ke = \frac{A_{Ce} \cdot k_c}{2}$	・・式18
$cK = \frac{1}{\frac{1}{cLT^{K_e}} + \frac{1}{K_e}}$	・・式 19

圧縮トラス柱のヤング係数を Ec とした場合の軸断面積 Ac は下式により算定できる。本設計で は便宜上 Ec=2.05×10⁵N/mm² として、必要な Ac を算定した。

$$A_c = cK \cdot H/E_c \qquad \cdot \cdot \cdot \vec{x} \ 20$$

以上のように算出した CLT 袖壁パネルの圧縮ブレース柱モデルの諸元を次頁に示す。構造階高 の異なる1Fとその他2~4F、壁の幅の異なるX方向とY方向別に性能を算定する。いずれの要 素も長期荷重を負担しない圧縮専用トラス要素であり、CLTパネル工法の設計と同様に、終局強 度(支圧耐力)でバイリニアに折れる非線形性能とする。なお、本モデルの妥当性は8章におい て、既往の架構実験と照らし合わせることで確認している。

	等価F億	F(e)	N/met	122		等価F値	F(e)	N/mi 163	n.	等価F值	F(e)	N/mi	131			等価F值	F(e) N/mi 176		13 13 13 13	
	低液压縮 耐力	kCc	ks	1978.017		低减压缩 耐力	kCc	y ,	1978.017	低減圧縮 耐力	kCc	kN	2398.19			低减圧縮 耐力	kCc kN 2308 187	2398.187	1 電源人力 1 電源人力 ×	
	終局緩 せ ん断力		ξ¥.	1729.35		終局縦 せ ん断力		kN 1729.35		終局縦世 人断力		κ	1701			終局縦 ん断力	kN 1701		題調解力は	
	短期許容 せん断力		kN/m	129.094		短期許容 せん断力		kN/m 129.094	e	短期許容 せん断力		kN/m	158.06			短期許容 せん断力	kN/m 158.061	×.		
-	バネルの 考 せん断耐 自 力	8	KN .	3 567		バネルの オ せん断耐 香 力	8	kN 3 567	6 567	パネルの ポネルの 者 古	S	kN	680.4		1	バネルの 寺 せん時配 力	Qs kN 6 680.4	5 680.4		
	時水平朝力 支圧降伏B の水平荷直	8	Ş	193.6406 697.7348		母水半間刀 支圧降伏H の水平荷1	8	kN 193.6406	638.1024	時水平耐力 支圧降伏用 の水平荷1	ŝ,	kN	284.5 1038.8		诗水平耐力	支圧降伏B の水平荷I	Qy kN 284.5093 945.0950	945.0959	Address of the second s	
	支圧降伏 支圧降伏 荷重	S	kN	736.15225 2482.2		支圧降伏	8	kN 736.15225	2482.2	支圧降伏 支圧降伏 荷重	cc	КN	887.6 2978.6		支圧降伏	支圧降伏 荷重	Cc kN 887.60502 2078.64	2978.64	減齢にと	Ŕ
Ī	1-53性終 局荷重	õ	kN	531	-	h53柱降 伏荷重	ð	kN .	804	1-53柱降 伏荷重	IJ	N N	572			h7X柱降 伏荷重	kn ct	924	5月社置後 年日ブレー 4200	
	トラス柱支 圧部有効 面積	Ae2	mm2	44937.7		1-13.4住支 圧部有効 面積	Ae2	mm2	68018.7	ト55年支 正部有効 面積	Ae2	mm2	48428.8			ト7.4柱支 圧部有効 直積	Ae2 mm2 -	78159.9	正報理 000 0.9=90	ιΓ ΙΓ
	単 パレーン 第回通道	ö	KN -	2 - 2		「レー」	S	kN 861	0	藤 ブレー2 路伏荷重	S	ΚN	1236			「 」 」	kN kN	1	Xiaxin Xia	ý.
	全断面 儀 伏圧縮 重	CAel	×N ×N	- 00 2482.		全所面 诱 伏圧縮	CAe1	- kN	00 2482.	全断面	CAe1	Z KN	- 2978.			全所面 積 伏圧縮 重	Z KN	30 2978.6		ル
	第5年 演	A	n2 mm	2100		一 一 一 一 一 一 一 一 一 一 一 一 一	e e	n2 mm 80.2 -	2100	^{部有} 全断面	1 A	n2 mm	93 - 2520			強有全断面	a A mm 12 mm 13.5 -	2520	4634	Ϋ́
	(读) 一, ス が 世 が 世	(B Ae	um mm/	34.73 6226		(換 	KB	/mm mn .576 6228	-	(族 一、 加西 部性 加西	Ae	/mm/	34.39 750			(換 ス 部性	(B A /mm mn 5.83 7500	-		Ì
	が面積 置 酒ブ ブレ ース 軸	AB	nm2 kN	5421 120 1378 120		幼田焼 酒 一 ズ に 一 ス 植 一 ス 植	AB	mm2 kN	1794	対面領 電ブ プレ 約 一入 約 1 2 2 2 2 2 2 2 2 2 2 2 2 2	AB	mm2 kN	5292 119 1516			动画様 電子 プレ 指 プレ 地 一 ス 地	AB H mm2 kN, 1035 76	0602		レ
	が破壊	EB	N/mt r	02000		4 第 第 第 第 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	EB	N/mi r 05000 3	02000 3	た (中 (中 (中 (中 (中 (中 (中 (中 (中 (中	EB	N/mg L	05000 1			セング 45	EB IV/mit I	02000		陥縮
	置換ブ ノース軸	EB • AB	kN	282494 2		置換プ ベース軸 所面剛性	EB · AB	kN 721419 2	367799 2	置換プ マース軸 所面剛性	EB • AB	κN	310847 2			置扱ブ ノース軸 所面剛性	EB · AB kN 827097 2 428411 2	428411 2	う 後一 8 経入 の後期	直
		sin 8 B		0.981			sin 0 B	0.974			sin 0 B		0.973		澎	1	sin θ B 0.964		11.計量は2.3 11.計量は2.3 11.計量は2.3 11.1 1	た第
8	ta x	cos 0 B	0.002	0.195			cos θ B	0.225		÷.	cos 0 B		0.230		τ.	a	cos Ø B 0.267			も 手
	調抜 プレース 減合取	BB	mm	4622.46		「 プレース 対合長	DB	mm 4002.5		調波プレース対子内	DB	шш	4693.0			間後 プレース 対合成	DB mm 4046.78			三期
	н 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	뮉	mm	4534		표 장 장	HB	mm 3900	3900	K RE	뛰	шш	4567			지 문デル공 8	HB mm 3900	3900		Ĭ
	全 (東 (東) (東) (東) (東)	LB	uu uu	2 900		(来 世 来 一 二 二 二 二 二 二 二 二 二 二 二 二 二	LB	mm mm 2 900	~	 (実 大レー (実 配置) 	LB	mm mm	2 1080			 7倍< 6倍 (実 7レー (実 6回 6回 	an mm 2 1080	2	10590	л У
	ル金 パネリ 水平 開住 (約)	×	/m kN/	.336 15. 1057 15.		ル金 水平 (パネ) 水平 (茶の) 水平 圏性 (髪)	×	/m kN/ 336 15.	15. 15.	ル全 パネリ 水平 開性 1000	×	/mu kN/	LG 15. L1 15.		1	ル金 ル金 米平 一部在 1111 1111 1111 1111 1111 1111 1111	K KN/ /mm kN/ 671 15. 840 15	849 15.		<u>,</u>
	ペンパン パネ (新岡 体の) 生 副	KS	N/m kN	4262 9.11		 シレの パネ いた間 体の 性 副 	KS	N/m kN .4262 9.11	0.546 94.5	れたの べき いた が よ い で よ で よ で よ よ の の い ネ い で よ し の い た よ し の し い キ い の い た よ し の い た よ し し い た よ し の い た よ し の い た よ し の い た よ し の い た よ し の い た よ し の い た か し い う い た か い た か い た か い た か い た か い か し い か い た か い か し い か い の い か い か い か い か い い か い か い い か い い か い い か い い か い い い か い い か い い い い か い い い い い い い い い い い い い	KS	N/m kN	12:0 12		-	ネルの パネ (断回 体の 性 同	KS I N/m kN 42 14.5 42 14.5	9.647 109		縮
	142 回覧 中の	KR	kN/mm k	2.4252 34 5.7752 35		回 商 中 通 件	KR	kN/mm k 2.4252 34	14.695 53	(A) 回题 中/	KR	KN/mm k	22.4 4			回航 中 中 中	KR kN/mn k 2.3787 2.3787 5002 60	33.992 60		Ħ
	,	×	mm	297 1. 214 7		, ×	×	mm 1 297 1	324 1	, *	×	E	358 231			,	x x 1 mm 1 358 2 379 1	372 1	00	3. 3
	2	a		0.40686			a	0.40686		¢	α		0.40			3	α 0.40402		θ θ	5. 2.
	1	g		0.21618		e	8	0.21618		¢	β		0.22			3	β 0.21979			<u></u>
	支圧	ke	N/mk	15.6		支圧 剤性	ke	N/mit 15.6	15.6	支圧	ke	N/mg	15.6			支圧制性	ke N/mf 15.6	15.6		
	海 海道 東 東	Fk	N/writ	9.41910		隆福田朝	Fk	N/m	9.4191	· · · · · · · · · · · · · · · · · · ·	Fk	N/mi	- 95			確 屈 田 筆 強 度	Fk N/mf	9.51665		
	目前 一世ん勝 度	S.	n N/m	2 27		1 面内 10 一 面内 10 10 10 10 10 10 10 10 10 10	Fs	ni N/ni 12 2.7	2.7	目前 一面内 一面内 一面内	Fs	n/m/	2 2.7 2 2.7			1 世内 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Fs N/m/	27	#1/2	
	た 国内 道法 田藤県	P.	Int N/E	82 11.6 82 11.6		内 面片 通序	6 Fo	uri N/r 82 11.8	82 11.8	内 面内 田内	6 Fo	nef N/e	82 11.8 82 11.8			内面内	6 FG mf N/m 82 11.8 82 11.8	82 11.8		
	0語元 ん断 面 近後 曲げ	5	/## N/	00 11.		2諸元 ん断 面 に係数曲げ	5	/mf N/ 00 11.	00 11	2諸元 6時 面 6.係数 曲0 ⁵	5	/m4 N/	00 11.		に第0	ん断 面 (新数) 曲げ	G F N/	00 11	$x^{2} \tan \theta_{R}$ $x^{2} \tan \theta_{R}$ $= E \cdot e \cdot L$ $= E \cdot e \cdot L$	
	CLT 暦 0 CLT 暦 0 糸数 単位		V/mi N	5143 5		CL 1960 マング セ 系数 弾性	w	V/mi N 5143 5	5143 5	CLT壁の CLT壁の ビング せ 系数 弾信	ш	V/mi N	5143 5		CLT壁0.	ング 仕 系数 弾付	E V/mi N 5143 B 5143 B	5143 5	$= \frac{1}{c} k_c \cdot t$	
	\$ \$			9-7-7" E		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4 -7-7* E	-7-7"	\$~~		~	4-7-7" E			\$ *~	4 -7-7-A	.1-1-6	2 2000 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	80		=	06S" 0		812		т 100°	065. 0	85		F	0650			80 80	1 1 1 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 0 2 2 0	0		
	首	-	ω ω	21 21 21 21		E .	+ -	1m m 200 21	22	世	-	Ē	200 21			世	1 L L L L L L L L L L L L L L L L L L L	21	支正 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
	40 30	I	u mm	050 10 050 10	-	् २ अन्न	н	mm n 1050 10	10200	44 26	Ŧ	mm.	000 12 000 12	-		26 CF	H mm 2000 12 1000 12	3000 11	1 = 1	
、X方向	種別			7 L-X 5 F5X柱 3	~4F X方向	種別	×	- 1.2	Fix性 :	種別		~ r	7' 1-7 3 F5X柱 3	~4F Y方向		種別	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F3XE 5		
11					61	205	1	150	I.					2						

表 6.2.3.1 CLT 袖壁パネルの圧縮ブレース柱モデルの諸元

6.2.4. RC 梁端部のパンチング耐力の設定

RC 梁端部のRC 柱フェイス位置では、CLT 袖壁から伝達される鉛直方向の圧縮力負担によって、せん断力が局所的に大きくなる。文献 ®に示されるパンチング耐力を算定し、RC 梁に作用するせん断力に対して十分な耐力を有するように設計する。

${}_{b}Q_{pu} = K_{av} \cdot {}_{b}\tau_{0} \cdot {}_{b}b_{e} \cdot D_{b}$		••	 ・式21
$K_{av} = 0.58 / (0.76 + a_b / D_b)$		••	 式 22
$_{b}\tau_{0} = 0.98 + 0.1_{c}F_{c} + 0.85\sigma_{b}$	$(0 \le \sigma_b \le 0.33_c F_c - 2.75 \mathcal{O}$ 時)		
$_{b}\tau_{0} = 0.22_{c}F_{c} + 0.49\min(0.66_{c}F_{c},\sigma_{b})$	$(0.33_cF_c - 2.75 < \sigma_b $ の時)	•••	・式 23

ここで、 bQ_{pu} : RC 梁のパンチングシア耐力、bbe: パンチングを受けるRC 梁の直交材を考慮した有効幅でRC 梁の幅 (mm)、Db: パンチングを受けるRC 梁のせい (mm)、ab: CLT 袖壁からRC 梁に伝達される鉛直せん断力が集中的に作用すると仮定した場合の作用点から鉛直断面までの距離でab/Db=1/3とする、cFc: コンクリートの設計基準強度 (N/mm2)、 σb : $bpgb\sigmay$ 、

bpg:bbeDbに対する梁の全主筋断面積の比,boy:RC はり主筋の降伏強度(N/mm2)である。

図 6.2.4.1 RC 梁端部のパンチング耐力の検討箇所

	î	守合		(G1,G2,G3,0	G4			G1	1,G12,G13	,G14	
C 101040		階	1FL	2FL	3FL	4FL	5FL	1FL	2FL	3FL	4FL	5FL
幅	В	mm	550	500	500	500	450	550	500	500	500	450
せい	D	mm	1910	850	850	850	850	1910	900	900	900	900
CLT袖壁からRC梁に	а	mm	637	283	283	283	283	637	300	300	300	300
コンクリート強度	Fc	N/mm2	30	30	30	30	30	30	30	30	30	30
全主筋断面積	Ag	mm2	8112	6084	5070	4056	4056	9126	9126	9126	8112	6084
主筋降伏強度	σу	N/mm2	345	345	345	345	345	345	345	345	345	345
主筋断面積比	pg	-	0.0077	0.0143	0.0119	0.0095	0.0106	0.0087	0.0203	0.0203	0.0180	0.0150
	$\sigma = pg \cdot \sigma y$	N/mm2	2.66	4.94	4.12	3.29	3.66	3.00	7.00	7.00	6.22	5.18
基本せん断強度	το	N/mm2	6.24	8.18	7.48	6.78	7.09	6.53	9.93	9.93	9.27	8.39
	Kave	-	0.530	0.530	0.530	0.530	0.530	0.530	0.530	0.530	0.530	0.530
パンチングシア耐力	pQ	kN	3480	1844	1686	1528	1439	3638	2370	2370	2212	1802
		電算入力pQ→	3400	1800	1600	1500	1400	3600	2300	2300	2200	1800

表 6.2.4.1 パンチング耐力評価

参考文献

8) 既存鉄筋コンクリート造建築物の耐震診断基準・耐震改修設計指針・同解説,日本建築防災協会 2017

6.3. プログラム対応外部分の設計

6.3.1. 1次設計時の CLT 袖壁の設計

6.2.3 で示した CLT 袖壁の圧縮ブレース柱モデルに発生する各要素の負担軸力より、CLT パネルに発生する水平せん断力、鉛直せん断力、圧縮軸力を下図のように算出し、圧縮ストラットとして抵抗する CLT 袖壁の断面算定を行う。

図 6.3.1.1 圧縮ブレース柱モデルに生じる軸力 → CLT パネルの設計用応力への変換

<CLT 袖壁の短期設計>

"水平(横)せん断力"に対して、

- ・CLT パネルの短期許容水平せん断耐力以内であること確認する
- ・支圧で決まる水平せん断耐力以内であることを確認する
- ・摩擦耐力 Q=発生軸力 N×摩擦係数 μ (=0.4)以内であることを確認する。

"鉛直(縦)せん断力"に対して、

・CLT パネルの短期許容鉛直せん断耐力以内であること確認する

鉛直(縦)方向の短期許容鉛直せん断耐力は CLT パネルの短期許容せん断応力度に 鉛直せん断面積を乗じて算出する

"圧縮軸力"に対して、

・CLT パネルの短期許容座屈耐力以内であること確認する

次項に CLT パネルの断面算定結果一覧を示す。 【データ省略】

6.3.2. 2次設計時の CLT 袖壁の設計(CLT 袖壁の保証設計)

大地震に対する CLT 袖壁の保証設計として、Ds 算定時の応力に対して検定を行う。圧縮ブレ ース柱モデルの各要素の軸力より、下図に示す CLT 袖壁が負担する応力を算定する。保証設計と して応力割増 1.25 倍の応力に対して、CLT 母材が基準強度以内であることを確認する。

図 6.3.2.1 圧縮ブレース柱モデルに生じる軸カ → CLT パネルの設計用応力への変換

<CLT 袖壁の保証設計>

応力割増を考慮した"水平(横)せん断力"に対して、

- ・CLT パネルの終局水平せん断耐力以内であること確認する
- ・接合金物の終局せん断耐力以内であることを確認する。

応力割増を考慮した"鉛直(縦)せん断力"に対して、

- ・CLT パネルの終局鉛直せん断耐力以内であること確認する
 - 鉛直(縦)方向の終局鉛直せん断耐力は CLT パネルの終局せん断応力度に

鉛直せん断面積を乗じて算出する

応力割増を考慮した"圧縮軸力"に対して、

・CLT パネルの終局座屈耐力以内であること確認する

次項に CLT パネルの保証設計検討一覧を示す。 【データ省略】

6.3.3. CLT 袖壁の接合金物の設計

前述の保証設計で示したように、RC 梁と CLT 袖壁間の接合部に発生するせん断力に対しては、 中地震には摩擦力、大地震には接合金物により応力伝達できることを確認したが、ここでは接合 金物の設計、せん断耐力の算定を行う。また、面外方向には脱落防止として面外振れ止めを設け る。

図 6.3.3.1 CLT 袖壁 接合金物

<検討用せん断力__面内> 支圧で決まる終局せん断力=285kN(Y方向の1.2m幅の壁より) 応力割増=1.25 $\therefore 285 \times 1.25 = 357 \rightarrow 360$ kN <せん断耐力の算定> ① CLT パネルの弱軸支圧耐力【S90-7-7、t=210】 Qu1=Fc (弱軸) × t × h = 8.87×210×200/1000=372kN 鋼材のウェブせん断耐力【SM490】 $Qu2=F/\sqrt{3} \times t \times B=325/\sqrt{3} \times 19 \times 250/1000=891 \text{kN}$ ③ アンカーボルトのせん断耐力【4-M27(SNR490)】 $Qu4=F/\sqrt{3} \times Ab = 325/\sqrt{3} \times 1.1 \times 485 \times 4/1000 = 400.4 kN$ ④ 支圧版の面外曲げ耐力【SM490、t=28】 二辺固定二辺自由スラブの計算図表を用いて計算する λ=200/150=1.33 → 計算図表より 係数 k=0.36 $Z = 28^2/6 = 131 \text{ mm}^3$ Fb1=1.5×325/1.3×1.1=412.5N/mm2 Ma=Z • Fb1=131×412. 5=54037N • mm $\omega = Ma/(k \cdot 1x^2) = 54037/(0.36 \times 150^2) = 6.65 N/mm^2$ $A=200 \times 300 = 60000$ mm 2 $Qu4=A \times \omega = 60000 \times 6.65/1000 = 399$ kN

<検定>

Qu = MIN (Qu1, Qu2, Qu3, Qu4) $= \underline{372kN} > 360 \text{ k N}$ OK

次に、架構が構面外方向に変形する場合に対して、CLT 袖壁パネルの面外脱落防止の検討を行 う。電算モデル上は、CLT 袖壁パネルは面外方向に抵抗しないものとしているが、ここでは、面 内方向と同様に面外方向にも CLT パネルの圧縮ストラットによる水平抵抗力が発生する場合を考 え、CLT 袖壁パネルの上下の支圧力により決まる面外せん断力に対して、面外拘束接合部の設計 を行う。

<検討用せん断力_面外> 支圧で決まる終局せん断力=51.1kN(Y方向の1.2m幅の壁より) ∴51.1 → 55kN

表 6.3.3.1 面外方向検討用せん断力(CLT 袖壁パネルの面外方向の圧縮ストラット抵抗)

			CLT	壁の諸元				計		支圧降伏時水平耐力		
種別	高さ	厚さ	幅	等級	ヤング 係数	面内 圧縮強度	-	_	-	支圧部有 効面積	支圧降伏 荷重	支圧降伏 時の水平 荷重
-	н	t	L		E	Fc	β	α	х	Ae	Сс	Qy
-	mm	mm	mm		N/mm²	N/mm²			mm	mm2	kN	kN
面外	3050	210	1200	"S90A-7-7"	6402	11.82	0.27	0.37	66.2	79454	939.1	51.1

※各パラメータの説明はp6-4~6を参照

<せん断耐力の算定>

- CLT パネルの面外めり込み耐力【S90-7-7、t=210】
 Qu1=Fcv(めり込み)×B×h=8.1×250×(100-30)/1000=141kN
- ② リブのウェブせん断耐力【SS400】
 Qu2=F/√3×t×B=235/√3×9×60/1000=73kN
- ③ アンカーボルトのせん断耐力【3-M16(SNR490)】
 Qu4=F/√3×Ab=325/√3×1.1×3×166/1000=102.7kN
- ④ 支圧版の面外曲げ耐力【SS400、t=12】 二辺固定二辺自由スラブの計算図表を用いて計算する $\lambda = 125/100 = 1.25 \rightarrow 計算図表より 係数 k=0.35$ $Z = 13^2/6 = 28.1 \text{mm}^3$ Fb1=1.5×235/1.3×1.1=298N/mm2 Ma=Z・Fb1=28.1×298=8393N・mm $\omega = \text{Ma}/(\text{k} \cdot 1\text{x}^2) = 8393/(0.35 \times 100^2) = 2.39\text{N/mm2}$ A=250×100=25000mm2 Qu4=A× ω =25000×2.39/1000=59.9kN
- ⑤ アンカーボルトの側面コーン状破壊【3-M16(SNR490)】 $_{c}\sigma_{t}=0.31\sqrt{(Fc)}=0.31\times\sqrt{(30)}=1.698N/mm2$ Qu5= $_{c}\sigma_{t}\times Apc=1.698\times 39390.5mm2/1000=66.8kN$

<検定>

Qu=MIN (Qu1, Qu2, Qu3, Qu4, Qu5) =59.9kN > 55 kN OK

6.3.4. 構造特性係数 Ds の設定

構造特性係数 Ds の設定の考え方を示す。まず、CLT 袖壁と RC 柱は独立した収まりとなるため、CLT 袖壁を RC 耐震壁とみなした場合で考える。RC フレームを FA ランクで構成し、かつ、 CLT 袖壁の部材種別判定として Ds 算定時の軸力及びせん断力に対して、応力割増 1.25 倍を考慮 した応力に対して CLT 基準強度以内であることを確認することで CLT 袖壁の脆性破壊を防止し た保証設計【6.3.2 章】とみなし WA と評価する。

図 6.3.4.1 Ds 算定時の応力から算出した部材種別図(X 方向正加力)

図 6.3.4.2 Ds 算定時の応力から算出した部材種別図(Y方向正加力)

柱及びはりの区分											
部 材	柱及びはり			柱		はり	柱及びは りの種別				
条 件	破壊の形式	h ₀ /Dの 数値	の/Fcの 数値	prの 数値	τ_u/F_c の 数値	<i>τu/Fc</i> の 数値					
	せん断破壊,付着割裂 破壊及び圧縮破壊その2.5以上0.35以下0.8以下0.1以下0.15以下他の構造耐力上支障の </td										
	他の構造耐力上支障の ある急激な耐力の低下 のおそれのある破壊を	2.0以上	0.45以下	1.0以下	0.125以下	0.2以下	FB				
	生じないこと。		0.55以下	-	0.15以下	-	FC				
	FA, FB 又はFC のいずれ	にも該当し	ない場合				FD				
ー か D の P F て 一 明 こ す	この表において, ho, D, o 柱の内のり高さ(単位) 柱の幅(単位 センチ o Dsを算定しようとす。 平方ミリメートルにつき a 引張り鉄筋比(単位 c コンクリートの設計基 a Dsを算定しようとする 度(単位 1平方ミリメ 柱の上端又は下端に接着 らかな場合にあっては, この場合において, Mは f つ場合の当該柱の最大せ	の、F6、メメ メロトル)壊い スローマンド ない、 、 、 、 、 、 の、F6、メメ ストル) 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	<pre>か及びtuは, 一トル) 形に達する からに達する のに を たる場 のに なる のに なる の に あっ の に を で た の の の の の の の の の の の の の の の の の の</pre>	それぞれ次	の数値を表す 所面に生ずる いにつきニュー はりの断面に る場合に塑性 を用いること 曲げモーメン	ーものとする。 軸方向応力度 ートン) 生ずる平均 ができるもの トを, Qは見	, 度(単位1 まん断応力 ずることが のとする。 崩壊形に達				

表 6.3.4.1 RC 柱及び梁の部材種別

CLT 袖壁の Ds 算定時点の水平力分担率を以下に示す。X 方向で約 11~23%、Y 方向で約 12~24%となる架構であることから、告示昭 55 建告第 1792 号第 1・第 4 で示される鉄筋コンクリート構造の Ds 値から設定すると、各方向 Ds 値は 0.30 となる。

Ds 算定時の変形及びヒンジ図を次項に示す。崩壊形は RC 純ラーメンの場合と同様に RC 梁の 曲げ降伏を主とした全体崩壊形であることが確認できる。よって CLT 袖壁の水平力負担率からみ て、Ds=0.30 は概ね問題ない Ds 値であると考えられる。また、既往の実験²⁻⁴⁾において CLT 袖 壁を設置した架構の載荷実験の結果、層間変形角は 1/25rad に達しても脆性的な破壊を生じてい ないことが確認されており、純 RC ラーメン架構と変形性能は概ね同程度であることが確認され ている。

表 6.3.4.2 Ds 算定時における CLT 袖壁の水平力分担率βu

構造特	性係数:	結果3 <x方< th=""><th>向正加</th><th>コカ></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></x方<>	向正加	コカ>							
階	主体構造	柱・梁郡	佯	耐震壁種	眻	ブレース	群	0(合計)	βu	Ds	備考
		Q	Q 種別 Q		種別	Q	種別				
		kN		kN		kN		kN			
5F	RC	2306.0	A	0.0	-			2306.0	0.000	0.30	
4F	RC	7328.6	A	0.0	-	2128.7	A	9457.2	0. 226	0.35*	
3F	RC	12334.4	A	0.0	-	2495.7	Α	14830.1	0.169	0.35*	
2F	RC	15837.8	A	0.0	-	3166.0	A	19003. 7	0.167	0.35*	
1F	RC	19374.3	A	0.0	-	2523.6	Α	21897.8	0.116	0.35*	

構造特性係数:結果3 <X方向正加力>

構造特性係数:結果3 <X方向負加力>

10,02,14											
階	主体構造	柱・梁郡	¥	耐震壁郡	¥	ブレース	群	Q(合計)	βu	Ds	備考
		Q	種別	Q	種別	Q	種別				
		kN		kN		kN		kN			
5F	RC	2315.0	Α	0.0	-			2315.0	0.000	0.30	
4F	RC	7349.7	Α	0.0	-	2144.7	Α	9494. 4	0.226	0.35*	
3F	RC	12354.7	Α	0.0	-	2533.7	A	14888. 3	0.171	0.35*	
2F	RC	15890.8	Α	0.0	-	3187.6	A	19078.4	0.168	0.35*	
1F	RC	19459.4	Α	0.0	-	2524.6	Α	21983. 9	0.115	0.35*	

構造特性係数:結果3 <Y方向正加力>

階	主体構造	柱・梁郡	详	耐震壁群		ブレース	群	Q(合計)	βu	Ds	備考
		Q	種別	Q	種別	Q	種別				
		kN		kN		kN		kN			
5F	RC	2550.9	A	0.0	-			2550. 9	0.000	0.30	
4F	RC	8127.0	A	0.0	-	2334.6	A	10461.6	0. 224	0.35*	
3F	RC	13448.3	A	0.0	-	2956.7	A	16405.0	0. 181	0.35*	
2F	RC	17090.1	A	0.0	-	3931.8	A	21021.8	0. 188	0.35*	
1F	RC	20949.9	A	0.0	-	3273.5	A	24223. 3	0.136	0.35*	

構造特性係数:結果3〈Y方向負加力〉

111775113	121/12/11										
階	主体構造	柱・梁郡	洋	耐震壁郡	眻	ブレース	.群	Q(合計)	βu	Ds	備考
		Q	種別	Q	種別	Q	種別				
		kN		kN		kN		kN			
5F	RC	2597.5	A	0.0	-			2597.5	0.000	0.30	
4F	RC	8158.2	A	0.0	-	2494.7	A	10652.8	0.235	0.35*	
3F	RC	13689.1	A	0.0	-	3015.8	A	16704. 9	0. 181	0.35*	
2F	RC	17432.5	A	0.0	-	3973.6	A	21406.1	0. 186	0.35*	
1F	RC	21589.3	A	0.0	-	3076.9	A	24666. 1	0.125	0.35*	

表 6.3.4.3 RC 造のラーメンと耐力壁を併用した場合の構造特性係数

ハ 剛節架構と耐力壁を併用した場合にあっては、前号の規定により定めた当該階の柱及びはり並びに 筋かいの部材群としての種別に応じ、次の表に掲げる数値以上の数値とする。

			柱及びはりの部材群としての種別			
			А	В	С	D
耐力壁の	А	0<βu≦0.3の場合	0.3	0.35	0.4	0.45
部材群と		0.3<βu≦0.7の場合	0.35	0.4	0.45	0.5
別	e	<i>βu</i> >0.7の場合	0.4	0.45	0.45	0.55
	В	0<βu≦0.3の場合	0.35	0.35	0.4	0.45
		0.3<βu≦0.7の場合	0.4	0.4	0.45	0.5
		βu>0.7の場合	0.45	0.45	0.5	0. 55
	С	0<βu≦0.3の場合	0.35	0.35	0.4	0.45
		0.3<βu≦0.7の場合	0.4	0.45	0.45	0.5
		<i>β</i> u>0.7の場合	0.5	0.5	0.5	0.55
	D	0<βu≦0.3の場合	0.4	0.4	0.45	0.45
		0.3<βu≦0.7の場合	0.45	0.5	0.5	0.5
		<i>β</i> u>0.7の場合	0.55	0.55	0.55	0.55
この表において, βuは, 耐力壁(筋かいを含む。)の水平耐力の和を保有水平耐力の数値で除 した数値を表すものとする。						

図 6.3.4.3 Ds 算定時のヒンジ図及び変形図(X方向正加力_Y1通り)

パネル 降伏

図 6.3.4.4 Ds 算定時のヒンジ図及び変形図(Y方向正加力_X1通り)

ー方で、架構によっては、CLT 袖壁付加によるヒンジリロケーションにより、そのフレームの RC 梁の部材回転角は大きくなり、建物自体の終局変形性能は純 RC ラーメンより若干低下するこ とも考えられる。そこで、塑性化を許容する RC 部材の曲げ終局変形角を、既往文献のを参考に 0.025rad と設定し、RC 純ラーメン架構の場合と、CLT 袖壁付加した架構それぞれに対していず れかの RC 部材の塑性曲げ変形角が 0.025rad に達するまでの荷重増分解析を実施する。そして、 限界耐力計算による手法として等価一自由度系に縮約した Q δ 関係より面積等価な完全弾塑性置 換から建物の塑性率 μ を算出し、Ds=1/ $\sqrt{(2\mu-1)}$ より計算上の Ds をそれぞれ算出する。RC 純 ラーメン架構の計算 Ds に対する、CLT 袖壁を付加した架構の計算 Ds の比率を、元の Ds0.3 に 乗じることで本架構の Ds を評価する。

図 6.3.4.7 塑性部材回転角 0.025rad 時のヒンジ図及び変形図 RC ラーメン+CLT 袖壁モデル(Y 方向正加力_X6 通り)

図 6.3.4.8 塑性部材回転角 0.025rad 時の荷重変形関係 RC 純ラーメンモデル

図 6.3.4.10 塑性部材回転角 0.025rad 時のヒンジ図及び変形図 RC 純ラーメンモデル(Y 方向正加力__X6 通り)

図 6.3.4.12 等価1自由度縮約Qると塑性率及び計算Ds RC 純ラーメンモデル

<Ds 比率の算定>

X方向 0.423/0.396≒1.07

∴Ds 分析値 = 純ラーメンの告示 Ds 値(=0.3) ×1.07=0.321

Y方向 0.445/0.422≒1.06

∴Ds 分析値 = 純ラーメンの告示 Ds 値 (=0.3) ×1.06=0.318

計算 Ds の比率は X 方向 1.07、 Y 方向 1.06 となり、最大でも Ds= $0.3 \times 1.07 = 0.321$ と算出さ れる。以上より、純 RC ラーメンに対して CLT 袖壁付加による変形性能の低下割合は少なく、同 程度の変形性能を有していることが確認された。よって採用 Ds 値はこれらの検討結果より安全 側に設定し、各方向ともに Ds=0.35を採用する。

6.3.5. 保証設計

鉄筋コンクリート造部材のせん断破壊の防止の観点より、告示平 19 国交告第 594 号第 4 に準拠し、Ds 算定時の応力に対して、以下の応力割増を考慮した各部位について検討を行う。検討は 一貫構造計算プログラムで実施する。

表 6.3.5.1 RC 造柱梁の保証設計用応力割増

(告示 平19国交告第594号第4

第4 保有水平耐力の計算方法

- ー・二 (略)
- 三 構造耐力上主要な部分である柱,はり若しくは壁又はこれらの接合部について,第一号における架構の 崩壊状態の確認に当たっては,局部座屈,せん断破壊等による構造耐力上支障のある急激な耐力の低下が 生ずるおそれのないことを,次のイからニまでに掲げる方法その他特別な調査又は研究の結果に基づき適 切であることが確かめられた方法によるものとする。
 - イ・ロ (略)
 - ハ 鉄筋コンクリート造の架構にあっては、使用する部分及び第一号の計算を行う場合における部材(せん断破壊を生じないものとした部材に限る。)の状態に応じ、次の表の式によって構造耐力上主要な部分にせん断破壊を生じないことを確かめること。ただし、特別な調査又は研究の結果に基づき、構造耐力上主要な部分にせん断破壊を生じないことが確かめられた場合にあっては、この限りでない。

	(い)欄に掲げる状態以外の状態第一号の計算を行う場合における部材の状態		
使用する部分	(レ٦)	(ろ)	
	部材の両端にヒンジが生ずる状態	(い)欄に掲げる状態以外の状態	
はり	$Q_b \ge Q_0 + 1.1 Q_M$	$Q_b \ge Q_0 + 1.2 Q_M$	
柱	$Q_c \ge 1.1 Q_M$	$Q_c \ge 1.25 Q_M$	
耐力壁	_	$Q_w \ge 1.25 Q_M$	

CLT 袖壁パネルの母材の保証設計は、6.3.2 で示したように、上記の耐力壁を参考に応力割増 1.25 を考慮した保証設計を別途検討している。

6.4. 計算メッセージに対するコメント

一貫構造計算プログラムにおける計算メッセージに対するコメントを示す。

§3 プログラムの使用状況

3.1 メッセージー覧

- 【記号説明】
 - ₩:警告 検討を要する処理が成されました。構造計算書にコメントが必要です。
 - C:注意 注意を要する処理が成されました。
 - X:計算不可 計算続行が不可能となり建物の解析を中断しました。
 - N:検定不可 計算続行が不可能となり断面検定を中断しました。建物の解析は続行します。

(1) 架構認識

No.	メッセージ
W0017	混合構造となっています。
C0039	強度直接入力した鉄骨材料を使用しています。

(2) 剛性計算

No.	メッセージ
C0213	断面性能を直接入力した鋼材を用いた部材があります。
C0225	剛度増減率が直接入力されています。
C0233	支点の状態を指定しています。

メッセージ

メッセージ

メッセージ

メッヤージ

(3) 荷重計算

C0334	積載荷重	"なし"	が指定されています。	

(4) 応力解析(一次)

No.	メッセージ
W0426	一次設計で弾塑性解析を行っています。
C0420	初期応力でひび割れが発生したため、ひび割れ後の剛性を初期剛性として解析を続行します。

(7) 断面算定

INO.	メッセーン
N0691	S柱で断面性能直接入力の鋼材を使用しているため断面検定できません。

(9) ルート判定

C1902 偏心率が 0.15 を超えています。

(10) 耐力計算

No

______ C1022 部材終局耐力が直接入力されています。

(11) 応力解析(二次)

C0420 初期応力でひび割れが発生したため、ひび割れ後の剛性を初期剛性として解析を続行します。

(12) 必要保有水平耐力

INO.	メッセーシ
W1175	大梁で付着割裂破壊の検定を満足していません。
C1193	部材種別が直接入力されています。
C1196	Ds値が直接入力されています。

【設計者としての考え方】

【架構認識】 W0017 混合構造となっています。

→CLT袖壁パネルを電算上、鉄骨材料を利用して、「圧縮ブレース柱モデル」として入力している。

C0039 強度直接入力した鉄骨材料を使用しています。 →CLT袖壁パネルを電算上、鉄骨材料を利用して、「圧縮ブレース柱モデル」として入力しています。CLTのブレース要素性能に対応するF値を別途算 定し入力している。

【剛性計算】 C0213 断面性能を直接入力した鋼材を用いた部材があります。 →CLT袖壁パネルを電算上入力するため。

```
C0225
    剛度増減率が直接入力されています。
→圧縮トラス柱要素の長期荷重の負担を削除するため別途指定している。
    支点の状態を指定しています。
C0233
→圧縮トラス柱と基礎梁の交点は支点がないものと設定している。
【荷重計算】
00334 積載荷重"なし"が指定されています。
→庇部分は積載荷重は考慮しない
【応力解析(一次)】
W0426 一次設計で弾塑性解析を行っています。
→RCフレームとCLT袖壁の剛性差を評価するため、1次設計においてもRCフレームのひび割れ剛性低下を考慮した非線形解析とする。
C0420
    初期応力でひび割れが発生したため、ひび割れ後の剛性を初期剛性として解析を続行します。
→上記の理由により問題ない
【断面検定】
N0691 S柱で断面性能直接入力の鋼材を使用しているため断面検定できません。
→「圧縮ブレース柱モデル」として入力している要素であり、別途断面検定を行っている。(6.3.1)
【ルート判定】
C1902 偏心率が 0.15 を超えています。
→ルート3でありFsを考慮している。
【耐力計算】
C1022
    部材終局耐力が直接入力されています。
→「圧縮ブレース柱モデル」の終局圧縮耐力を入力している
→要素長の短いRC梁端部のせん断耐力に別途算定したパンチング耐力を入力(6.2.4)
【保有水平耐力】
C0420
    初期応力でひび割れが発生したため、ひび割れ後の剛性を初期剛性として解析を続行します。
→同上
【必要保有水平耐力】
W1175 大梁で付着割裂破壊の検定を満足していません。
→いずれも基礎梁FG1であり、「圧縮ブレース柱モデル」の入力に伴い部材長が分割されているためのワーニングであり、実際には通し配筋にしてお
り問題ない
C1193
    部材種別が直接入力されています。
→「圧縮ブレース柱モデル」について別途入力しているが、Ds算定は別途検討しているため問題ない
C1196
     Ds値が直接入力されています。
→6.3.4で別途Dsを算定し入力(いずれの方向も0.35とした)
```