公共建築改修工事標準仕様書 (機械設備工事編) ^{令和7年版(修補版)}

令和7年11月5日 国営設第110号

この標準仕様書は、国土交通省官庁営繕部及び地方整備局等営繕部が官庁施設の営 繕を実施するための基準として制定したものです。また、この標準仕様書は、官庁営繕 関係基準類等の統一化に関する関係省庁連絡会議の決定に基づく統一基準です。

利用にあたっては、国土交通省ホームページのリンク・著作権・免責事項に関する利用ルール (http://www.mlit.go.jp/link.html) をご確認ください。

国土交通省大臣官房官庁営繕部

公共建築改修工事標準仕様書(機械設備工事編)令和7年版(修補版)

第1編 一般共通事項

第1章 一般事項

第1節 総則

1.1.1 適用

- (1) 公共建築改修工事標準仕様書(機械設備工事編)(以下「改修標準仕様書」という。) は、建築物等の改修及び修繕(以下「改修」という。)に係る機械設備工事に適用する。
- (2) 改修標準仕様書に規定されている事項は、別の定めがある場合を除き、受注者の責任において履行する。
- (3) 全ての設計図書は、相互に補完する。ただし、設計図書間に相違がある場合の適用の優先順位は、次の(ア)から(オ)までの順番のとおりとし、これにより難い場合は、1.1.8「疑義に対する協議等」による。
 - (ア) 質問回答書((イ)から(オ)までに対するもの)
 - (イ) 現場説明書
 - (ウ) 特記仕様
 - (エ) 図面
 - (オ) 改修標準仕様書

1.1.2 用語の定義

- (1) 改修標準仕様書の用語の意義は、次による。
 - (ア) 「監督職員」とは、契約書に基づく監督職員、監督員又は監督官をいう。
 - (4) 「受注者等」とは、当該工事請負契約の受注者又は契約書に基づく現場代理人をいう。
 - (ウ) 「監督職員の承諾」とは、受注者等が監督職員に対し、書面で申し出た事項について、 監督職員が書面をもって了解することをいう。
 - (エ) 「監督職員の指示」とは、監督職員が受注者等に対し、必要な事項を書面によって示すことをいう。
 - (オ) 「監督職員と協議」とは、監督職員と受注者等とが結論を得るために合議し、その結果を書面に残すことをいう。
 - (カ) 「監督職員の検査」とは、施工の各段階で、受注者等が確認した施工状況、機器及び 材料の試験結果等について、受注者等から提出された品質管理記録に基づき、監督職員 が設計図書との適否を判断することをいう。

なお、「品質管理記録」とは、品質管理として実施した項目、方法等について確認できる資料をいう。

- (キ) 「監督職員の立会い」とは、監督職員が臨場により、必要な指示、承諾、協議、検査及び調整を行うことをいう。
- (ク) 「監督職員に報告」とは、受注者等が監督職員に対し、工事の状況又は結果について 書面をもって知らせることをいう。
- (ケ) 「監督職員に提出」とは、受注者等が監督職員に対し、工事に関わる書面又はその他 の資料を説明し、差し出すことをいう。
- (2) 「品質計画」とは、設計図書で要求された品質を満たすために、受注者等が工事における工法等の精度等の目標、品質管理及び体制について具体的に示すことをいう。

- (サ) 「品質管理」とは、品質計画における目標を施工段階で実現するために行う管理の項目、方法等をいう。
- (シ) 「特記」とは、1.1.1「適用」(3)の(ア)から(エ)までに指定された事項をいう。
- (ス) 「書面」とは、発行年月日及び氏名が記載された文書をいう。
- (t) 「工事関係図書」とは、実施工程表、施工計画書、施工図等、工事写真その他これらに 類する施工、試験等の報告及び記録に関する図書をいう。
- (ツ) 「施工図等」とは、施工図、製作図、その他これらに類するもので、契約書に基づく 工事の施工のための詳細図等をいう。
- (タ) 「JIS」とは、産業標準化法(昭和24年法律第185号)に基づく日本産業規格をいう。
- (チ) 「JAS」とは、日本農林規格等に関する法律(昭和25年法律第175号)に基づく日本農林規格をいう。
- (ツ) 「一工程の施工」とは、施工の工程において、同一の材料を用い、同一の施工方法に より作業が行われる場合で、監督職員の承諾を受けたものをいう。
- (デ) 「工事検査」とは、契約書に基づく工事の完成の確認、部分払の請求に係る出来形部 分等の確認及び部分引渡しの指定部分に係る工事の完成の確認をするために発注者又は 検査職員が行う検査をいう。
- (ト) 「技術検査」とは、公共工事の品質確保の促進に関する法律(平成17年法律第18号)に基づき、工事中及び完成時の施工状況の確認及び評価をするために、発注者又は検査職員が行う検査をいう。
- (ナ) 「概成工期」とは、建築物等の使用を想定して総合試運転調整を行う上で、契約書に 基づく関連工事及び設計図書に明示された他の発注者の発注に係る工事を含めた各工事 が支障のない状態にまで完了しているべき期限をいう。
- (二) 「必要に応じて」とは、これに続く事項について、受注者等が施工上の措置を判断すべき場合においては、あらかじめ監督職員の承諾を受けて対処すべきことをいう。
- (ヌ) 「原則として」とは、これに続く事項について、受注者等が遵守すべきことをいうが、 あらかじめ監督職員の承諾を受けた場合又は「ただし書」のある場合は、他の手段によ ることができることをいう。
- (ネ) 「標準仕様書」とは、公共建築工事標準仕様書(機械設備工事編)をいう。
- (/) 「標準図」とは、公共建築設備工事標準図(機械設備工事編)をいう。

1.1.3 官公署その他への届出手続等

- (1) 工事の着手、施工及び完成に当たり、関係法令等に基づく官公署その他の関係機関への必要な届出手続等を遅滞なく行う。
- (2) (1)に規定する届出手続等を行うに当たり、届出内容について、あらかじめ監督職員に報告する。
- (3) 関係法令等に基づく官公署その他の関係機関の検査に必要な資機材、労務等を提供する。
- (4) 排煙設備、消火設備等の防災設備の改修を行う場合は、改修期間、改修範囲、改修内容 等を事前に関係官署と協議する。

なお、機能の停止ができない場合は、監督職員と協議する。

1.1.4 工事実績情報システム(コリンズ)への登録

(1) 工事実績情報システム (コリンズ) への登録が特記された場合は、登録内容について、 あらかじめ監督職員の確認を受けた後、次に示す期間内に登録機関へ登録申請を行う。た

だし、期間には、行政機関の休日に関する法律(昭和63年法律第91号)に定める行政機関の休日は含まない。

(7) 工事受注時 契約締結後 10 日以内

(イ) 登録内容の変更時 配置技術者の変更又は変更契約締結後 10 日以内

(ウ) 工事完成時 工事完成後 10 日以内

(2) 登録後は、登録されたことを証明する資料を、監督職員に提出する。 なお、変更時と工事完成時の間が10日に満たない場合は、変更時の登録されたことを証明する資料の提出を省略できる。

1.1.5 書面の書式及び取扱い

- (1) 書面を提出する場合の書式(提出部数を含む。)は、「公共建築工事標準書式」によるほか、監督職員と協議する。
- (2) 改修標準仕様書において書面により行わなければならないこととされている「監督職員の承諾」、「監督職員の指示」、「監督職員と協議」、「監督職員に報告」及び「監督職員に提出」については、電子メール、情報共有システム(情報通信技術を活用し、受発注者間など異なる組織間で情報を交換・共有することによって業務効率化を実現するシステムをいう。)等の情報通信の技術を利用する方法を用いて行うことができる。

なお、情報共有システムの適用及びシステム要件は、特記による。

(3) 施工体制台帳及び施工体系図については、建設業法(昭和24年法律第100号)及び公共工事の入札及び契約の適正化の促進に関する法律(平成12年法律第127号)に基づき作成し、写しを監督職員に提出する。

1.1.6 設計図書等の取扱い

- (1) 設計図書及び設計図書において適用される必要な図書を工事現場に備える。
- (2) 設計図書及び工事関係図書を、工事の施工の目的以外で第三者に使用又は閲覧させてはならない。また、その内容を漏洩してはならない。ただし、使用又は閲覧について、あらかじめ監督職員の承諾を受けた場合は、この限りでない。

1.1.7 関連工事等の調整

(1) 契約書に基づく関連工事及び設計図書に明示された他の発注者の発注に係る工事(以下「関連工事等」という。)について、監督職員が行う調整に協力し、当該工事関係者とともに、工事全体の円滑な施工に努める。

1.1.8 疑義に対する協議等

- (1) 設計図書に定められた内容に疑義が生じた場合又は現場の納まり、取合い等の関係で、設計図書によることが困難若しくは不都合が生じた場合は、監督職員と協議する。
- (2) (1)の協議を行った結果、設計図書の訂正又は変更を行う場合の措置は、契約書の規定による。
- (3) (1)の協議を行った結果、設計図書の訂正又は変更に至らない事項は、記録を整備する。

1.1.9 工事の一時中止に係る事項

- (1) 次のいずれかに該当し、工事の一時中止が必要となった場合は、直ちにその状況を監督 職員に報告する。
 - (ア) 埋蔵文化財調査の遅延又は埋蔵文化財が新たに発見された場合
 - (イ) 関連工事等の進捗が遅れた場合
 - (ウ) 工事の着手後、周辺環境問題等が発生した場合
 - (エ) 第三者又は工事関係者の安全を確保する場合

(オ) 暴風、豪雨、洪水、高潮、地震、地すべり、落盤、火災、騒乱、暴動その他の自然的又は人為的な事象で、受注者の責めに帰すことができない事由により、工事目的物等に損害を生じた場合又は工事現場の状態が変動した場合

1.1.10 工期の変更に係る事項等

- (1) 次のいずれかに該当し、全体工程に影響を及ぼす場合は、監督職員に報告する。
 - (7) 設計図書の訂正又は変更による場合
 - (イ) 工事の全部又は一部の施工の一時中止による場合
 - (ウ) 著しい悪天候や気象状況により作業不能日が多く発生した場合
 - (エ) 資機材、労務の需給環境の変化が生じた場合
 - (オ) 関連工事等の調整への協力による場合
 - (カ) その他受注者の責めに帰すことができない事由が生じた場合
- (2) 契約書に基づく工期の変更についての発注者との協議に当たり、協議の対象となる事項について、必要とする変更日数の算出根拠、変更工程表その他の協議に必要な資料を、あらかじめ監督職員に提出する。

なお、提出にあたっては、協議に必要な資料が、(1)により報告した書面と同一の場合は、(1)の書面に代えることができる。

1.1.11 特許の出願等

(1) 工事の施工上の必要から材料、施工方法等を考案し、これに関する特許の出願等を行う場合は、あらかじめ発注者と協議する。

1.1.12 埋蔵文化財その他の物件

(1) 工事の施工に当たり、埋蔵文化財その他の物件を発見した場合は、直ちにその状況を監督職員に報告する。その後の措置については、監督職員の指示に従う。

なお、工事に関連した埋蔵文化財その他の物件の発見に係る権利は、発注者に帰属する。

1.1.13 関係法令等の遵守

(1) 工事の施工に当たり、関係法令等に基づき、工事の円滑な進行を図る。

1.1.14 遠隔臨場の実施

(1) 遠隔臨場(動画撮影用カメラ等と Web 会議システム等により映像と音声を配信し、監督 職員の立会い等を行うことをいう。)の適用及び実施内容は、特記による。

第2節 工事関係図書

1.2.1 実施工程表

- (1) 工事の着手に先立ち、実施工程表を作成し、監督職員の承諾を受ける。
- (2) 実施工程表の作成に当たり、関連工事等の関係者と調整の上、十分検討する。
- (3) 契約書に基づく条件変更等により、実施工程表を変更する必要が生じた場合は、施工等に支障がないよう実施工程表を直ちに変更し、当該部分の施工に先立ち、監督職員の承諾を受ける。
- (4) (3)によるほか、実施工程表の内容を変更する必要が生じた場合は、監督職員に報告するとともに、施工等に支障がないよう適切な措置を講ずる。
- (5) 監督職員の指示を受けた場合は、実施工程表の補足として、週間工程表、月間工程表、 工種別工程表等を作成し、監督職員に提出する。
- (6) 概成工期が特記された場合は、実施工程表等に概成工期、受電日、総合試運転調整等に 要する工程を明記する。

1.2.2 施工計画書

- (1) 工事の着手に先立ち、工事全般に関する総合的な計画をまとめた施工計画書(総合施工計画書)を作成し、監督職員に提出する。
- (2) 施工計画書の作成に当たり、関連工事等の関係者と調整の上、十分検討する。
- (3) 品質計画、施工の具体的な計画並びに一工程の施工の確認内容及びその確認を行う段階を定めた施工計画書(工種別施工計画書)を、工事の施工に先立ち作成し、監督職員に提出する。ただし、あらかじめ監督職員の承諾を受けた場合は、この限りでない。
- (4) (1)及び(3)の施工計画書のうち、品質計画に係る部分については、監督職員の承諾を受ける。また、品質計画に係る部分について変更が生じる場合は、監督職員の承諾を受ける。
- (5) 施工計画書の内容を変更する必要が生じた場合は、監督職員に報告するとともに、施工等に支障がないよう適切な措置を講ずる。

1.2.3 施工図等

- (1) 施工図等を工事の施工に先立ち作成し、監督職員の承諾を受ける。ただし、あらかじめ 監督職員の承諾を受けた場合は、この限りでない。
- (2) 施工図等の作成に当たり、関連工事等との納まり等について、当該工事関係者と調整の 上、十分検討する。
- (3) 施工図等の内容を変更する必要が生じた場合は、監督職員に報告するとともに、施工等に支障がないよう適切な措置を講じ、監督職員の承諾を受ける。

1.2.4 工事の記録等

- (1) 契約書に基づく履行報告に当たり、報告に用いる様式等は、特記による。
- (2) 監督職員の指示した事項及び監督職員と協議した結果について、記録を整備する。
- (3) 工事の施工に当たり、試験を行った場合は、直ちに記録を作成する。
- (4) 次のいずれかに該当する場合は、施工の記録、工事写真、見本等を整備する。
 - (ア) 設計図書に定められた施工の確認を行った場合
 - (イ) 工事の進捗により隠ぺい状態となるなど、後日の目視による検査が不可能又は容易でない部分の施工を行う場合
 - (ウ) 一工程の施工を完了した場合
 - (エ) 適切な施工であることの証明を監督職員から指示された場合
- (5) (2)から(4)までの記録等について、監督職員から請求されたときは、提示又は提出する。

第3節 工事現場管理

1.3.1 施工管理

- (1) 設計図書に適合する工事目的物を完成させるために、施工管理体制を確立し、品質、工程、安全等の施工管理を行う。
- (2) 工事の施工に携わる下請負人に、工事関係図書及び監督職員の指示の内容を周知徹底する。

1.3.2 電気保安技術者

- (1) 電気保安技術者は次により、配置は特記による。
 - (ア) 事業用電気工作物に係る工事の電気保安技術者は、その電気工作物の工事に必要な電 気主任技術者の資格を有する者又はこれと同等の知識及び経験を有する者とする。
 - (4) 一般用電気工作物に係る工事の電気保安技術者は、第一種電気工事士又は第二種電気 工事士の資格を有する者とする。

- (2) 電気保安技術者の資格等を証明する資料を提出し、監督職員の承諾を受ける。
- (3) 電気保安技術者は、監督職員の指示に従い、電気工作物の保安業務を行う。

1.3.3 施工条件

- (1) 施工日及び施工時間は、次による。
 - (ア) 行政機関の休日に関する法律に定める行政機関の休日は、施工しない。ただし、設計 図書に定めのある場合又はあらかじめ監督職員の承諾を受けた場合は、この限りでない。
 - (イ) 設計図書に施工日又は施工時間が定められ、これを変更する必要がある場合は、あらかじめ監督職員の承諾を受ける。
 - (ウ) 設計図書に施工時間等が定められていない場合で、夜間に施工する場合は、あらかじめ監督職員の承諾を受ける。
- (2) 工事期間中、施工場所の設備機能は、原則として、停止させる。ただし、設計図書に定めのある場合又は設備機能の停止が必要ない場合で、監督職員の承諾を受けた場合は、この限りでない。

なお、施工場所の設備機能の停止に伴い、非施工場所の機能が停止される場合の代替え 設備は特記による。

- (3) 天井内の機器、配管、ダクト等は、天井解体後施工を行うものとする。 なお、天井解体の条件は特記による。
- (4) 工事車両の駐車場所及び機材置場は、特記による。
- (5) 振動、騒音、臭気、粉じん等の発生する作業を行う場合は、あらかじめ監督職員の承諾を受ける。
- (6) (1)から(5)まで以外の施工条件は、特記による。

1.3.4 品質管理

- (1) 1.2.2「施工計画書」(3)による品質計画に基づき、適切な時期に、必要な品質管理を行う。
- (2) 必要に応じて、監督職員の検査を受ける。
- (3) 品質管理の結果、疑義が生じた場合は、監督職員と協議する。

1.3.5 施工中の安全確保

- (1) 建築基準法(昭和25年法律第201号)、労働安全衛生法(昭和47年法律第57号)その 他関係法令等に基づくほか、「建設工事公衆災害防止対策要綱(建築工事等編)」(令和 元年9月2日 国土交通省告示第496号)及び「建築工事安全施工技術指針」(平成7年 5月25日付け 建設省営監発第13号)を踏まえ、常に工事の安全に留意して、施工に伴 う災害及び事故の防止に努める。
- (2) 同一場所にて関連工事等が行われる場合で、監督職員から労働安全衛生法に基づく指名 を受けたときは、同法に基づく必要な措置を講ずる。
- (3) 工事の計画及び施工に当たり、施工範囲における工事管理区分を監督職員及び建物の管理者と事前打合せの上、工事に伴う事故防止や環境保全に留意し、必要な管理事項を定めてこれを行う。
- (4) 気象予報、警報等について、常に注意を払い、災害の予防に努める。
- (5) 工事の施工に当たり、工事箇所並びにその周辺にある地上及び地下の既設構造物、既設配管等に対して、支障をきたさないよう、施工方法等を定める。ただし、これにより難い場合は、監督職員と協議する。
- (6) 工事の施工に当たり、近隣等との折衝は、次による。また、その経過について記録し、

直ちに監督職員に報告する。

- (ア) 地域住民等と工事の施工上必要な折衝を行うものとし、あらかじめその概要を監督職員に報告する。
- (4) 工事に関して、第三者から説明の要求又は苦情があった場合は、誠意をもって対応する。ただし、緊急を要しない場合は、あらかじめその概要を監督職員に報告のうえ、対応を行う。
- (ウ) 大型機器等の搬出入において、第三者障害の防止の措置を講ずる必要がある場合は、 監督職員と協議する。
- (7) 工事の調査及び施工に当たり、暗渠内、ピット内、トレンチ内、シャフト内、排水槽内等で酸素欠乏、湿気、臭気、有毒ガス、粉じん、煙等が滞留又は発生するおそれのある場合は、酸素濃度等の確認を行い、作業者に工事作業の手順及び安全措置についての指示を行うとともに、十分な換気等の措置を講ずる。

なお、作業時は、必ず複数の作業員で行い、監視人を配置して安全確保に努める。

(8) 工事中、バルブ等の必要箇所に「作業中」、「操作厳禁」等の表示を行い、誤操作による事故の防止に努める。

1.3.6 火気の取扱い

- (1) 建物内の火気の使用は、原則として、行わない。ただし、やむを得ず火気の使用又は作業で火花等が発生する場合は、火気の取扱い、火花等の飛散に十分注意するとともに、次に示す火災防止の措置を講ずる。
 - (ア) 使用する火気に適した種類及び容量の消火器及び消火バケツを準備する。
 - (4) 火気の使用箇所付近に可燃性のものや危険性のあるものは、置かない。
 - (ウ) 火気の使用箇所付近は、防炎シート等による養生及び火花の飛散防止措置を講ずる。
 - (エ) 作業終了後は、十分に点検を行い、異常のないことを確認する。

1.3.7 交通安全管理

(1) 工事材料、土砂等の搬送計画及び通行経路の選定その他車両の通行に関する事項について、関係機関と調整の上、交通安全の確保に努める。

1.3.8 災害等発生時の安全確保

(1) 災害及び事故が発生した場合は、人命の安全確保を全てに優先させるとともに、二次災害が発生しないよう工事現場の安全確保に努め、直ちにその経緯を監督職員に報告する。

1.3.9 施工中の環境保全等

- (1) 建築基準法、建設工事に係る資材の再資源化等に関する法律(平成12年法律第104号。以下「建設リサイクル法」という。)、環境基本法(平成5年法律第91号)、騒音規制法(昭和43年法律第98号)、振動規制法(昭和51年法律第64号)、大気汚染防止法(昭和43年法律第97号)、水質汚濁防止法(昭和45年法律第138号)、廃棄物の処理及び清掃に関する法律(昭和45年法律第137号。以下「廃棄物処理法」という。)、土壌汚染対策法(平成14年法律第53号)、資源の有効な利用の促進に関する法律(平成3年法律第48号。以下「資源有効利用促進法」という。)、プラスチックに係る資源循環の促進等に関する法律(令和3年法律第60号)、宅地造成及び特定盛土等規制法(昭和36年法律第191号)その他関係法令等に基づくほか、「建設副産物適正処理推進要綱」(平成5年1月12日付け建設省経建発第3号)を踏まえ、工事の施工の各段階において、騒音、振動、粉じん、臭気、大気汚染、水質汚濁等の影響が生じないよう、周辺の環境保全に努める。
- (2) 塗料、シーリング材、接着剤その他の化学製品の取扱いに当たり、当該製品の製造所が

作成した JIS Z 7253「GHSに基づく化学品の危険有害性情報の伝達方法ーラベル,作業場内の表示及び安全データシート(SDS)」による安全データシート(SDS)を常備し、記載内容の周知徹底を図るため、ラベル等により、取り扱う化学品の情報を作業場内に表示し、作業者の健康、安全の確保及び環境保全に努める。

- (3) 工事の施工に当たり、発生材の抑制及び再資源化や廃棄物の適正処理に努める。
- (4) 工事期間中は、作業環境の改善、工事現場の美化等に努める。

1.3.10 既存部分等への処置

- (1) 工事目的物の施工済み部分等については、汚損しないよう適切な養生を行う。
- (2) 既存部分の養生は、第3章「養生」による。
- (3) 工事施工に当たり、既存部分を汚損した場合は、監督職員に報告するとともに、承諾を受けて原状に準じて補修する。

1.3.11 後片付け

- (1) 作業終了時には、適切な後片付け及び清掃を行う。
- (2) 工事の完成に当たり、当該工事に関する部分の後片付け及び清掃を行う。

第4節 機器及び材料

1.4.1 環境への配慮

- (1) 使用する機器及び材料(以下「機材」という。)は、国等による環境物品等の調達の推進等に関する法律(平成12年法律第100号。以下「グリーン購入法」という。)に基づき、環境負荷を低減できる機材の選定に努める。
- (2) 使用する機材は、揮発性有機化合物の放散による健康への影響に配慮し、かつ、石綿を含有しないものとする。

1.4.2 機材の品質等

(1) 使用する機材は、設計図書に定める品質及び性能を有する新品とする。ただし、仮設に使用する機材は、新品に限らない。

なお、「新品」とは、品質及び性能が製造所から出荷された状態であるものを指し、製造者による使用期限等の定めがある場合を除き、製造後一定期間内であることを条件とするものではない。

- (2) 給水設備、給湯設備等に使用する機材は、「給水装置の構造及び材質の基準に関する省令」(平成9年厚生省令第14号)に適合するものとする。
- (3) 使用する機材が、設計図書に定める品質及び性能を有することの証明となる資料を、監督職員に提出する。ただし、設計図書において JIS、JAS 又は「給水装置の構造及び材質の基準に関する省令」によると指定された機材で、JIS マーク、JAS マーク又は「給水装置の構造及び材質の基準に関する省令」に適合することを示す認証機関のマークのある機材を使用する場合及びあらかじめ監督職員の承諾を受けた場合は、資料の提出を省略することができる。
- (4) (3)の資料は、機材の試験結果(試験成績書)のほか、製造者が有する実験値等に基づく性能表・能力計算書等の性能を証明するものとしてもよい。

なお、表 1.1.1 に示す機材の資料は、同表の試験項目に掲げる内容を含むものとする。

(5) 工事現場施工のコンクリート工事に使用するせき板の材料として合板を使用する場合は、 グリーン購入法の基本方針の判断の基準に従い、「木材・木材製品の合法性、持続可能性の 証明のためのガイドライン」(平成 18 年 2 月 15 日 林野庁)に準拠した内容の板面表示等 により合法性を確認し、監督職員に報告する。

- (6) 調合を要する材料は、調合表等を監督職員に提出する。
- (7) 設計図書に定める機材の見本を提示又は提出し、材質、仕上げの程度、色合、柄等について、監督職員の承諾を受ける。
- (8) 各編で使用する鋼材、ステンレス鋼材、アルミニウム材等の材料の呼称、規格等は、第 2編1.1.2「材料・機材等の呼称及び規格」による。
- (9) 設計図書に定める規格等が改正された場合は、1.1.8「疑義に対する協議等」による。

表 1.1.1 機材の試験

LAIA		衣 1.1.1 機例の武装
機	材(標準仕様書の各編による。)	試験項目
	· 気調和設備工事	
1.1.6	ボ イ ラ ー	加熱能力、水圧
1.2.5	温水発生機	加熱能力、気密又は満水、水圧
1.3.7	空気熱源ヒートポンプユニット	冷凍能力、加熱能力、耐圧及び気密、騒音
1.3.7	水冷チリングユニット	冷凍能力、加熱能力、耐圧及び気密
1.3.7	遠 心 冷 凍 機	冷凍能力、耐圧及び気密
1.3.7	吸 収 冷 凍 機	冷凍能力、水圧及び気密
1.3.7	吸 収 冷 温 水 機	冷凍能力、加熱能力、気密及び水圧
1.3.7	吸収冷温水機ユニット	冷凍能力、加熱能力、気密及び水圧
1.4.16	コージェネレーション装置	JIS B 8122「コージェネレーションシステムの性能試験方法」等
1.5.11	氷 蓄 熱 ユ ニ ッ ト	JIS B 8625「空気調和用氷蓄熱ユニットー試験方法」等
1.6.9	冷 却 塔	冷却能力及び騒音
1.7.8	ユニット形空気調和機	冷房能力、暖房能力、風量、静圧、運転電流、振動、騒音及び耐圧
1.7.8	コンパクト形空気調和機	冷房能力、暖房能力、風量、静圧、運転電流、振動、騒音及び耐圧
1.7.8	ファンコイルユニット	冷房能力、暖房能力、風量、消費電力、損失水頭及び騒音
1.7.8	パッケージ形空気調和機	冷房能力、暖房能力、風量、静圧、運転電流、振動、騒音、耐圧及び気密
1.7.8	マルチパッケージ形空気調和機	冷房能力、暖房能力、風量、電流値、振動、騒音、耐圧及び気密
1.7.8	ガスエンジンヒートポンプ式空気調和機	冷房能力、暖房能力、風量、電流値、振動、騒音、耐圧及び気密
1.9.4	回転形全熱交換器	全熱の交換効率及び圧力損失
1.9.4	全熱交換ユニット	全熱の交換効率及び騒音
1. 10. 11	ファンコンベクター	暖房能力、風量、消費電力、騒音及び耐圧
1.10.11	コンベクター	耐圧
1.10.11	パネルラジェーター	耐圧
1.10.11	ユニットヒーター	暖房能力、風量、騒音及び耐圧
1.10.11	床暖房	水圧試験又は空気圧試験、導体抵抗検査等
1.10.11	ガス温水熱源機	加熱能力及び水圧
1.11.5	遠 心 送 風 機	風量、静圧、回転速度及び騒音
1.11.5	軸流送風機及び斜流送風機	風量、静圧、回転速度及び騒音
1.12.6	空調用ポンプ	揚水量、揚程、電流値及び水圧
-		

1.12.6	ボイラー給水ポンプ	水圧
1. 13. 10	多管形熱交換器	水圧
1. 13. 10	プレート形熱交換器	水圧
1. 13. 10	開放形態張タンク	内部防錆皮膜(エポキシ樹脂ライニングされたものに限る)
1. 13. 10	空調用密閉形隔膜式膨張タンク	水圧又は気密
1. 13. 10	鋼製強化プラスチック製二重殼タンク	水圧(消防法による完成検査前検査の検査済証がある場合を除く)
1. 13. 10	地下オイルタンク	水圧(消防法による完成検査前検査の検査済証がある場合を除く)
1. 13. 10	ヘッダー	水圧及びめっき(冷温水用に限る)
第4編 自動制御設備工事		
1.6.1	自動制御設備工事	外観及び性能
第5編 給	排水衛生設備工事	
1.1.13	衛生器具ユニット	漏水、排水勾配
1.2.9	揚水用ポンプ	揚水量、揚程、電流値及び水圧
1.2.9	小形給水ポンプユニット	揚水量、揚程、電流値及び水圧
1.2.9	水道用直結加圧形ポンプユニット	水圧
1.2.9	給湯用循環ポンプ	揚水量、揚程、電流値及び水圧
1.3.13	真空温水発生機	加熱能力、気密又は満水、水圧
1.3.13	無圧式温水発生機	加熱能力、気密又は満水、水圧
1.3.13	木質バイオマスボイラー(真空式温水発生機)	加熱能力、気密又は満水、水圧
1.3.13	木質バイオマスボイラー(無圧式温水発生機)	加熱能力、気密又は満水、水圧
1.3.13	瞬 間 湯 沸 器	水圧
1.4.7	鋼板製一体形タンク	内部防錆皮膜
1.4.7	消防用充水タンク	内部防錆皮膜(エポキシ樹脂ライニングされたものに限る)
1.4.7	給湯用膨張・補給水タンク	内部防錆皮膜(エポキシ樹脂ライニングされたものに限る)
1.4.7	給湯用密閉形隔膜式膨張タンク	水圧又は気密
1.4.7	貯 湯 タ ン ク	水圧
	l .	I

1.4.3 再使用品

- (1) 取外しを行い再使用する機材は、次による。
 - (ア) 取外し前に状態及び性能・機能の確認を行い、機材に損傷を与えないように取外す。 なお、確認する状態及び性能・機能は特記による。特記がない場合は、監督職員と協 議する。
 - (4) 状態及び性能・機能の確認の結果、修理等の必要が生じた場合は、監督職員と協議する。
 - (ウ) 取外し後、機材の清掃、洗浄等を行い、再取付け後は、状態、機材の性能・機能確認 を行う。

なお、機材の分解・整備等による特別な清掃を行う場合は特記による。

(エ) 取外し後、再取付けまでの間は、機器の性能・機能に支障がないよう適切に養生を行い、保管する。

なお、保管場所は、監督職員と協議する。

- (オ) 既存の機器に配管を接続する場合は、機器接続部分の清掃を行った後に行う。
- (2) 再使用できない機器類は、監督職員と協議する。
- (3) 衛生器具を再使用する場合は、写真等で取外し前の状況を監督職員に報告する。
- (4) 衛生器具を再使用する場合、ボルト及びパッキン類は新品とする。
- (5) 再使用する衛生器具は、取外しの前後で洗浄及び消毒を行った後、養生を行う。また、 取外し及び再取付け時には、ひび割れ、傷等の確認を行う。

なお、ひび割れ、傷等を確認した場合は、監督職員に報告する。

- (6) 飲料用タンク及びその他の器具を再利用する場合、清掃及び消毒を行い、水質検査結果 を監督職員に提出する。
- (7) 既設の消火機器の型式が失効している場合は、不活性ガス消火設備等の容器弁の点検時期を確認し、監督職員に報告する。

1.4.4 機材の搬入

(1) 工事現場へ機材を搬入するごとに、品質及び性能を確認し、監督職員に報告する。ただし、あらかじめ監督職員の承諾を受けた場合は、この限りでない。

1.4.5 機材の検査等

- (1) 工事現場に搬入した機材は、種別ごとに監督職員の検査を受ける。ただし、あらかじめ 監督職員の承諾を受けた場合は、この限りでない。
- (2) (1)による検査の結果、合格した機材と同じ種別の機材は、以後、抽出検査とすることができる。ただし、監督職員の指示を受けた場合は、この限りでない。
- (3) (1)による検査の結果、不合格となった機材は、直ちに工事現場外に搬出する。

1.4.6 機材の検査に伴う試験

- (1) 試験は、次の場合に行う。
 - (ア) 設計図書に定められた場合
 - (4) 試験によらなければ、設計図書に定められた条件に適合することが証明できない場合
- (2) 試験方法は、建築基準法、JIS、SHASE-S((公社)空気調和・衛生工学会規格)等の法規 又は規格に定めのある場合は、これによる。
- (3) 確認が完了したときは、その試験成績書等を監督職員に提出する。

1.4.7 機材の保管

(1) 搬入した機材は、工事に使用するまで、破損、変質等がないよう保管する。 なお、搬入した機材のうち、破損、変質等により工事に使用することが適当でないと監 督職員の指示を受けたものは、直ちに工事現場外に搬出する。

第5節 施工調查

1.5.1 石綿を含有する資材等の調査

- (1) あらかじめ関係法令等に基づき、次により、石綿を含有する資材等の事前調査を行う。
 - (7) 事前調査は、既存の設計図書、石綿を含有する資材等の調査報告書等の書面調査及び 現地での目視調査により確認し、調査結果を取りまとめ、監督職員に提出するとともに、 その写しを工事の現場に備え置く。また、関係法令等に基づき、官公署へ報告を行う。
 - (イ) 分析調査は、特記による。

なお、分析調査を行う場合は「建材中の石綿含有率の分析方法について」(平成 18 年 8 月 21 日基発第 0821002 号、最終改正 令和 3 年 12 月 22 日基発 1222 第 17 号)に基づ

き、定性分析又は定量分析を行う。

- (ウ) (ア)の事前調査及び(イ)の分析調査は、それぞれ厚生労働大臣が定める者が行う。
- (エ) 調査の結果、設計図書と異なる場合は、監督職員と協議する。

1.5.2 施工計画調査

- (1) 工事の着手に先立ち、実施工程表及び施工計画書作成のための調査、打合せを行う。
- (2) 消火設備等を改修するに当たっては、現行法令に適合しない箇所が確認された場合は、監督職員と協議する。

1.5.3 事前調査

(1) 工事の施工に先立ち、設計図書に定められた調査を行い、監督職員に報告する。

1.5.4 事前打合せ

- (1) 事前打合せでは、次の関係各署と打合せを行う。
 - (ア) 入居官署
 - (イ) 所轄の消防署
 - (ウ) 特定行政庁・建築主事
 - (工) 保守管理会社
 - (オ) その他必要な関係官公署

第6節 施工

1.6.1 施工

(1) 施工は、設計図書、実施工程表、施工計画書、施工図等に基づき行う。

1.6.2 技能士

- (1) 技能士は、職業能力開発促進法(昭和44年法律第64号)による一級技能士又は単一等級の資格を有する技能士をいい、適用する技能検定の職種及び作業の種別は特記による。
- (2) 技能士は、適用する工事作業中、1名以上の者が自ら作業をするとともに、他の作業従事者に対して、施工品質の向上を図るための作業指導を行う。
- (3) 技能士の資格を証明する資料を、監督職員に提出する。

1.6.3 一工程の施工の事前確認

- (1) 一工程の施工に先立ち、次の項目について監督職員に報告する。
 - (ア) 施工前の調査の期間及びその時間帯
 - (イ) 工種別又は部位別の施工順序及び施工可能時間帯
 - (ウ) 工種別又は部位別の足場その他仮設物の設置範囲及びその期間

1.6.4 一工程の施工の確認及び報告

(1) 一工程の施工を完了したとき又は工程の途中において監督職員の指示を受けた場合は、その施工が設計図書に適合することを確認し、適時、監督職員に報告する。

なお、確認及び報告は、監督職員の承諾を受けた者が行う。

1.6.5 施工の検査等

- (1) 設計図書に定められた場合又は 1.6.4「一工程の施工の確認及び報告」により報告した場合は、監督職員の検査を受ける。
- (2) (1)による検査の結果、合格した工程と同じ機材及び工法により施工した部分は、以後、抽出検査とすることができる。ただし、監督職員の指示を受けた場合は、この限りでない。
- (3) 見本施工の実施が特記された場合は、仕上り程度等が判断できる見本施工を行い、監督

職員の承諾を受ける。

1.6.6 施工の検査に伴う試験

- (1) 試験は、次の場合に行う。
 - (ア) 設計図書に定められた場合
 - (4) 試験によらなければ、設計図書に定められた条件に適合することが証明できない場合
- (2) 試験が完了したときは、その試験成績書を監督職員に提出する。

1.6.7 総合試運転調整等

1.6.7.1 一般事項

(1) 総合試運転調整に先立ち、調整方法、調整時期、日程、人員及び安全対策を含む総合試運転調整計画書を監督職員に提出し、品質計画にかかる部分について承諾を受ける。

1.6.7.2 各機器の個別運転調整

(1) 総合試運転調整に先立ち、各機器の個別運転調整を行う。

1.6.7.3 総合試運転調整

- (1) 各設備における装置全体が設計図書の意図した機能を満足することを確認することを目的とし、各設備における装置全体の施工完了時に、設計図書に示された目標値等と照合しながら、各機器相互間の総合試運転調整を行う。
- (2) 総合試運転調整の項目は、次によるものとし、適用は特記による。
 - (ア) 風量調整
 - (イ) 水量調整
 - (ウ) 室内外空気の温湿度の測定
 - (エ) 室内気流及びじんあいの測定
 - (オ) 騒音の測定
 - (カ) 飲料水の水質の測定(水道法施行規則(昭和32年厚生省令第45号)第10条による水質検査とする。ただし、水道法第3条第6項に規定する専用水道に該当しないものは除くものとするが、地方公共団体の条例等の定めがある場合は、その定めによる。)
 - (キ) 雑用水の水質の測定 (建築物における衛生的環境の確保に関する法律施行令第2条の「建築物環境衛生管理基準」による。)

1.6.7.4 測定報告書

(1) 総合試運転調整完了後、機器等の運転状態の記録表及び系統ごとに各測定結果をまとめた測定報告書を監督職員に提出する。測定報告書には、測定器名、測定日時及び測定者名を記入し、測定点を示した図面を添付する。

1.6.8 関連工事等との総合試運転調整

- (1) 関連工事等との総合試運転調整を行う場合は、次による。
 - (ア) 空気調和設備、消火設備、昇降機設備等について関連する機器と連動させ、設計図書 の意図した機能を満たすことを確認する。
 - (4) その他の事項については、監督職員と協議する。

1.6.9 施工の立会い

- (1) 次の場合は、監督職員の立会いを受ける。ただし、これによることが困難な場合は、別に指示を受ける。
 - (ア) 設計図書に定められた場合
 - (イ) 主要機器を設置する場合
 - (ウ) 施工後に検査が困難な箇所を施工する場合

- (エ) 総合試運転調整を行う場合
- (オ) 監督職員が特に指示する場合
- (2) 監督職員の立会いが指定されている場合は、適切な時期に監督職員に対して立会いの請求を行うものとし、立会いの日時について監督職員の指示を受ける。
- (3) 監督職員の立会いに必要な資機材、労務等を提供する。

1.6.10 工法等の提案

- (1) 設計図書に定められた工法等以外について、次の提案がある場合は、監督職員と協議する。
 - (ア) 所定の品質及び性能の確保が可能な工法等の提案
 - (イ) 環境の保全に有効な工法等の提案
 - (ウ) 生産性向上に有効な工法等の提案

1.6.11 化学物質の濃度測定

- (1) 建築物の室内空気中に含まれる化学物質の濃度測定の実施は、特記による。
- (2) 測定時期、測定対象化学物質、測定方法、測定対象室、測定箇所数等は、特記による。
- (3) 測定結果は、監督職員に提出する。

第7節 工事検査及び技術検査

1.7.1 工事検査

- (1) 契約書に基づく工事を完成したときの通知は、次の(ア)及び(イ)に示す要件の全てを満たす場合に、監督職員に提出することができる。
 - (ア) 監督職員の指示を受けた事項が全て完了していること。
 - (イ) 設計図書に定められた工事関係図書の整備が全て完了していること。
- (2) 契約書に基づく部分払を請求する場合は、当該請求に係る出来形部分等の算出方法について監督職員の指示を受けるものとし、当該請求部分に係る工事について、(1)の要件を満たすものとする。
- (3) (1)の通知又は(2)の請求に基づく検査は、発注者から通知された検査日に受ける。
- (4) 工事検査に必要な資機材、労務等を提供する。

1.7.2 技術検査

- (1) 公共工事の品質確保の促進に関する法律に基づく技術検査を行う時期は、次による。
 - (ア) 1.7.1「工事検査」の(1)及び(2)に示す工事検査を行うとき。
 - (イ) 工事施工途中における技術検査(中間技術検査)の実施回数及び実施する段階が特記された場合、その実施する段階に到達したとき。
 - (ウ) 発注者が特に必要と認めたとき。
- (2) 技術検査は、発注者から通知された検査日に受ける。
- (3) 技術検査に必要な資機材、労務等を提供する。

第8節 完成図等

1.8.1 完成図の作成範囲

(1) 完成図の作成範囲は、原則として、施工範囲とするほか、必要に応じて監督職員と協議する。

1.8.2 完成時の提出図書

(1) 工事完成時の提出図書は特記による。特記がなければ、1.8.3「完成図」及び1.8.4「保 全に関する資料」による。

1.8.3 完成図

- (1) 完成図は、工事目的物の完成時の状態を表現したものとする。
 - (ア) 図面の種類は特記による。特記がなければ、次による。
 - (a) 屋外配管図
 - (b) 各階平面図及び図示記号
 - (c) 主要機械室平面図及び断面図
 - (d) 便所詳細図
 - (e) 各種系統図
 - (f) 主要機器一覧表(品名、製造者名、形状、容量又は出力、数量等)
 - (g) 浄化槽設備、昇降機設備、機械式駐車設備及び医療ガス設備の図
 - (イ) 記載する寸法、縮尺、文字、図示記号等は、設計図書に準ずるとし、記載内容の詳細 は監督職員との協議による。

1.8.4 保全に関する資料

- (1) 保全に関する資料は次による。
 - (ア) 建築物等の利用に関する説明書
 - (イ) 機器取扱い説明書
 - (ウ) 機器性能試験成績書
 - (工) 官公署届出書類
 - (オ) 総合試運転調整報告書
- (2) (1)の資料の作成に当たり、監督職員と記載事項に関する協議を行う。

1.8.5 標識その他

- (1) 消防法(昭和23年法律第186号)等に定めるところによる標識(危険物表示板、機械室等の出入口の立入禁止表示、火気厳禁の標識等)を設置する。
- (2) 機器には、名称及び記号を表示する。
- (3) 配管、弁及びダクトには、次の識別を行う。

なお、配管の識別は、原則として、JIS Z 9102「配管系の識別表示」によるものとし、 識別方法及び色合いは監督職員の指示による。

- (ア) 配管及びダクトには、用途及び流れの方向を表示する。
- (イ) 弁には、弁の開閉を表示する。

1.8.6 保守工具

(1) 当該工事のうちポンプ、送風機、吹出口、衛生器具、桝等の保守点検に必要な工具一式を監督職員に提出する。

第2章 仮設工事

第1節 一般事項

2.1.1 仮設の材料

(1) 仮設等に使用する材料は、使用上差し支えのないものとする。

第2節 足場その他

2.2.1 足場

- (1) 足場、作業構台、仮囲い等は、建築基準法、労働安全衛生法、「建設工事公衆災害防止 対策要綱 建築工事編」その他関係法令等に従い、適切な材料及び構造のものとし、適正 な保守管理を行う。
- (2) 関連工事の関係者が定置する足場、作業構台の類は、無償で使用できるものとする。
- (3) 足場は、作業場所ごとに、その都度、組立て解体を行うものとする。
- (4) 内部足場及び外部足場は、表 1.2.1 により、設置は特記による。 なお、特記がなければ、脚立、可搬式作業台等による。

表1.2.1 内部足場及び外部足場等			
種別	足場等の種類		
	単管足場		
定置する足場	くさび緊結式足場		
	枠組足場		
	脚立、可搬式作業台		
その他	移動式足場 (ローリングタワー)		
(移動足場等)	移動式昇降足場		
	高所作業車		

- (5) 外部足場の防護シート等の設置及び範囲は、特記による。
- (6) 外部足場の壁つなぎ材の施工は、撤去後、補修が少ない位置とし、壁つなぎ材を撤去し た後、原状に復旧する。
- (7) 足場を設ける場合には、「手すり先行工法に関するガイドライン」について」(厚生労働 省 令和 5 年 12 月 26 日)の「手すり先行工法等に関するガイドライン」によるものとし、 足場の組立、解体、変更の作業時及び使用時には、常時、全ての作業床において手すり、 中さん及び幅木の機能を有するものを設置しなければならない。

2.2.2 工事用電力等

- (1) 工事用の電力及び水の使用料は、受注者の負担とする。
- (2) 工事用電力は、原則として、既存設備に電力量計を設けて、仮設配電盤を設置し、使用
- (3) 既存のコンセントから直接電力を使用する場合は、監督職員と協議する。
- (4) 工事用水は、既存設備に量水器を設けて、仮設配管を施し使用する。
- (5) 既存設備の水栓等から直接水を使用する場合は、監督職員と協議する。
- (6) 工事用電源を既存建築物から分岐する場合は、原則として、既設分電盤の共用回路のコ ンセントからとする。

なお、接続する回路の負荷状態等を確認し、既設負荷への波及がないようにする。また、 漏電遮断器付コンセント等を使用し、安全の確保を図る。

2.2.3 仮設間仕切り

(1) 屋内に仮設間仕切りを設ける場合は、表 1.2.3 によるものとし、種別は特記による。特記がなければ、C種とする。

なお、A種及びB種の塗装等仕上げを行う場合は特記による。

種 別 仮 設 間 仕 切 り
 A 種 軽量鉄骨材等により支柱を組み、両面に厚さ9mmの合板張り又は厚さ9.5mmのせっこうボード張りを行い、内部にグラスウール等の充塡を行う。
 B 種 軽量鉄骨材等により支柱を組み、片面に厚さ9mmの合板張り又は厚さ9.5mmのせっこうボード張りを行う。
 C 種 単管下地等を組み、全面シート張りを行う。

表1.2.3 仮設間仕切りの種別

第3節 監督職員事務所、機材置場、その他の仮設物

2.3.1 監督職員事務所

- (1) 監督職員事務所の設置は特記による。
- (2) 監督職員事務所の位置は、次のいずれかによるものとし、適用は特記による。
 - (ア) 既存建物内の一部を使用する。
 - (イ) 構内に設置する。
 - (ウ) 構外に設置する。
- (3) 監督職員事務所の備品等は、次による。
 - (ア) 監督職員事務所には、監督職員の指示により、電灯、給排水その他の設備を設ける。 なお、設置する備品等の種類及び数量は特記による。
 - (4) 監督職員事務所の光熱水費、通信費、消耗品等は、受注者の負担とする。

2.3.2 受注者事務所その他

- (1) 受注者事務所、作業員休憩所、便所等は、関係法令等に従って設ける。
- (2) 作業員宿舎は、構内に設けない。
- (3) 工事現場の適切な場所に、工事名称、発注者等を示す表示板を設ける。

2.3.3 機材置場等

(1) 機材置場等は、使用機材に適した場所とし、施設の使用及び工事に支障とならず機材に 損傷を与えるおそれのない場所とする。

2.3.4 危険物貯蔵所

(1) 塗料、油類等の引火性材料の貯蔵所は、関係法令等に従い、建築物、下小屋、他の機材置き場等から隔離した場所に設け、屋根、壁等を不燃材料で覆い、出入口には鍵を付け、「火気厳禁」の表示を行い、消火器を設置する。

第4節 仮設物撤去その他

2.4.1 仮設物撤去その他

- (1) 工事の進捗上又は構内建築物等の使用上、仮設物が障害となる場合は、監督職員と協議する。
- (2) 仮設物を移転する場所がない場合は、監督職員の承諾を受けて、工事目的物の一部を使用することができる。

(3) 工事完成までに、工事用仮設物を撤去し、撤去跡及び付近の清掃、地均し等を行い、原状に復旧する。

第3章 養生

第1節 一般事項

3.1.1 養生範囲

(1) 既存部分の養生範囲は特記による。

なお、特記がなく、工事後に使用される建築物、設備、備品等で、工事中の汚損、変色等が、工事前の状態と異なるおそれがある箇所は、養生を行うものとし、養生範囲は監督職員と協議する。

第2節 既存部分の養生

3.2.1 養生方法及び清掃

- (1) 養生の方法は、特記による。特記がなければ、ビニルシート、合板等の適切な方法で行う。
- (2) 固定された備品、机、ロッカー等の移動は特記による。
- (3) 仮設間仕切り等により施工作業範囲が定められた場合は、施工作業範囲外にじんあい等が飛散しないように養生する。
- (4) 機材搬入通路及び撤去機材搬出通路の養生は特記による。特記がなければ、原則として、 床面等に合板、ビニルシート等の適切な方法で養生を行う。
- (5) 作業通路、搬入通路等に隣接して、盤等のスイッチ類がある場合は、誤操作しないよう 養生する。
- (6) 工事に既設エレベーターを使用する場合は、合板等で養生を行い、エレベーターに損傷を与えないようにする。また、台車を使用する場合等、積載方法に応じた許容荷重を確認する。

なお、使用後は、原状に復旧する。

(7) やむを得ず切断溶接作業を行う場合は、防炎シート等で養生する。

3.2.2 養生材撤去

(1) 養生材の処理は、第5章第1節「発生材の処理」による。

第4章 撤去

第1節 一般事項

4.1.1 共通事項

- (1) 撤去場所の作業環境は、1.3.5「施工中の安全確保」及び1.3.9「施工中の環境保全等」による。
- (2) 撤去工事は、1.3.3「施工条件」による施工時間とする。
- (3) 撤去前に内容物(冷媒・吸収液・廃油等)の回収を要する機器・配管は、特記による。
- (4) (1)から(3)までによるほか、各機器、配管及びダクトの撤去に関しては、各編の当該事項による。

4.1.2 撤去作業の安全対策

- (1) 撤去作業に伴う安全対策は、1.3.5「施工中の安全確保」及び1.3.9「施工中の環境保全等」によるほか、次による。
 - (ア) 粉じん及びほこりが発生するおそれのある撤去作業には、監督職員と協議して有効な 換気装置等を設置する。
 - (イ) 石綿の撤去は、特記による。
 - (ウ) 油関係の設備及びガス関係の設備の撤去には、火気を使用してはならない。

第2節 施工

4.2.1 有害物質を含む撤去

(1) 撤去部に石綿、鉛、PFOS 等の有害物質を含む材料が使用されている場合は、監督職員と 協議する。

4.2.2 石綿含有パッキンの撤去

(1) ダクトのフランジ又は配管のフランジの接合部に、石綿含有パッキンを使用している場合は、労働安全衛生法、大気汚染防止法又はこれらに基づく命令若しくは地方公共団体の条例に基づき、撤去する。

なお、撤去するフランジ箇所は特記によるものとし、関係法令等に基づく官公署その他の関係機関への確認は、施工前に行う。

- (2) 施工の手順は特記による、特記がなければ次による。
 - (ア) フランジ部を湿潤化のうえテープを巻き、施工中の石綿の飛散を防止する。
 - (イ) ダクトまたは配管を、フランジ部から適切に離れた箇所で切断する。
 - (ウ) 撤去したフランジ部は、石綿含有物であることが分かる袋に封入したうえで、搬出まで工事関係者以外が立ち入れない箇所に保管する。

4.2.3 既存間仕切壁の撤去

(1) 既存間仕切壁の撤去は、「公共建築改修工事標準仕様書(建築工事編)」(以下「改修標準仕様書(建築工事編)」という。)6章「内装改修工事」3節「既存壁の撤去及び下地補修」による。

4.2.4 既存天井の撤去

(1) 既存天井の撤去は、改修標準仕様書(建築工事編)6章「内装改修工事」4節「既存天井の撤去及び下地補修」による。

4.2.5 撤去跡の補修及び復旧

(1) 壁付け機器、床置き機器、天井付け機器撤去跡の取付ボルト孔及び壁面、天井面の変色等の補修並びに床補修等は特記による。特記がなければ、監督職員と協議する。

(2) 床、壁、天井等の撤去後の開口部の補修の方法及び仕上げの仕様は特記による。特記がなければ、監督職員と協議する。

第5章 発生材の処理等

第1節 発生材の処理

5.1.1 一般事項

- (1) 発生材の抑制、再利用及び再資源化並びに再生資源の積極的活用に努める。 なお、設計図書に定められた以外に、発生材の再利用、再資源化及び再生資源の活用を 行う場合は、監督職員と協議する。
- (2) 発生材の処理は、次による。
 - (ア) 発生材のうち、発注者に引渡しを要するものは、特記による。 なお、引渡しを要するものは、監督職員の指示を受けた場所に保管する。また、保管 したものの調書を作成し、監督職員に提出する。
 - (イ) 発生材のうち、工事現場において再利用を図るもの及び再資源化を図るものは、特記による。

なお、再資源化を図るものと指定されたものは、分別を行い、所定の再資源化施設等 に搬入した後、調書を作成し、監督職員に提出する。

- (ウ) 発生材は、金属(鉄、アルミニウム、ステンレス等)、樹脂(プラスチック、ビニル管等)、保温材(ロックウール、グラスウール、ポリスチレンフォーム等)、その他(コンクリート破片等)等に分けて分別収集する。
- (エ) (ア)及び(イ)以外のものは、全て工事現場外に搬出し、建設リサイクル法、資源有効利用促進法、廃棄物処理法、宅地造成等規制法、その他関係法令等に定めるところによるほか、「建設副産物適正処理推進要綱」に従い適切に処理し、監督職員に報告する。

5.1.2 産業廃棄物等

- (1) 産業廃棄物の処理は、収集から最終処分までをマニフェスト交付を経て適正に処理する。
- (2) 特別管理産業廃棄物の有無及び処理は特記による。
- (3) フロン系冷媒は、第3編2.4.3「冷媒の回収方法等」による。
- (4) オイルタンク、オイルサービスタンク、油管等の廃油は、関係法令に従い、専門業者により適正に処理する。
- (5) 吸収冷凍機、吸収冷温水機等の臭化リチウム水溶液等は、関係法令に従い、専門業者により中和処理、焼却処分又は中間処理施設で再生処理とする。
- (6) 冷凍機用ブライン液は、関係法令に従い、専門業者により適正に処理する。
- (7) 泡消火設備の薬剤及び水溶液は、関係法令に従い、専門業者により適正に処理する。

第2編 共通工事

第1章 一般共通事項

第1節 一般事項

- 1.1.1 引用規格等
 - (1) 引用規格、機材、施工方法等は、標準仕様書によるほか、各編による。
- 1.1.2 材料・機材等の呼称及び規格
 - (1) 材料・機材等の呼称及び規格は、標準仕様書によるほか、各編による。

第2節 機器及び機器附属盤

1.2.1 一般事項

- (1) 機器及び機器附属盤は、標準仕様書第2編「共通工事」の当該事項によるほか、次による。
- (2) 機器の搬入又は移設に伴う、機器の分割は、特記による。

第2章 配管工事

第1節 配管材料

2.1.1 一般事項

- (1) 配管材料は、標準仕様書第2編「共通工事」の当該事項及び次によるほか、特記による。
- (2) 給水に使用する鋳鉄管は、JIS G 5526「ダクタイル鋳鉄管」による3種管、JIS G 5527 「ダクタイル鋳鉄異形管」、JWWA G 113「水道用ダクタイル鋳鉄管」による3種管又は JWWA G 114「水道用ダクタイル鋳鉄異形管」とする。
- (3) 二酸化炭素消火配管に使用する管材は、JIS G 3454「圧力配管用炭素鋼鋼管」による STPG370の Sch 80(白管)とし、継目無鋼管とする。
- (4) 二酸化炭素消火設備用配管に用いる鋼管継手は、使用する管と同等以上の材質及び強度を有するもので、亜鉛めっきを施したものとする。
- (5) 既存配管との取合い部分等で、(1)によらない継手を使用する場合は、監督職員と協議する。

第2節 配管附属品

2.2.1 一般事項

(1) 配管附属品は、標準仕様書第2編「共通工事」の当該事項による

第3節 計器その他

2.3.1 一般事項

(1) 計器その他は、標準仕様書第2編「共通工事」の当該事項による

第4節 配管施工の一般事項

2.4.1 一般事項

- (1) 配管の施工に先立ち、他の設備配管類及び機器との関連事項、維持管理性を詳細に検討し、勾配を考慮して、その位置を正確に決定する。
- (2) 配管を建築物内に施工する場合には、工事の進捗に伴う吊り金物、支持金物等の取付け及びスリーブの埋込みを遅滞なく行う。
- (3) 配管のスリーブに紙製等の仮枠を使用した部分は、配管施工前に必ず仮枠を取外し、配

管施工後にモルタル、ロックウール等で充塡する。

なお、ロックウールを充塡する場合は、脱落防止の処置を施す。

- (4) 分岐又は合流する場合は、クロス継手を使用せず、必ずT継手を使用するものとするが、 1つのT継手で相対する2方向への分岐又は相対する2方向からの合流に用いてはならない。ただし、通気及びスプリンクラー消火配管を除く。
- (5) 建築物導入部配管で不等沈下のおそれがある場合は、特記により、標準図(建築物導入部の変位吸収配管要領(一))のフレキシブルジョイントを使用した方法で施工する。ただし、排水及び通気配管を除く。
- (6) 建築物エキスパンションジョイント部の配管要領は、標準図 (建築物エキスパンション ジョイント部配管要領)による。
- (7) 伸縮管継手を設ける配管には、その伸縮の起点として有効な箇所に、標準図(伸縮管継 手の固定及びガイド・座屈防止用形鋼振れ止め支持施工要領)による固定及びガイドを設 ける。
- (8) 給水、給湯、開放系の冷温水及び冷却水配管で、機器接続部の金属材料と配管材料のイオン化傾向が大きく異なる場合(鋼とステンレス、鋼と銅)は、絶縁継手を使用し絶縁を行うものとする。

なお、設置箇所及び絶縁継手の仕様は特記による。

- (9) 塩ビライニング鋼管、耐熱性ライニング鋼管及びポリ粉体鋼管と給水栓、銅合金製配管 附属品等との接続で、絶縁を要する場合の継手は、JPF MP 003「水道用ライニング鋼管用 ねじ込み式管端防食管継手」及び JPF MP 005「耐熱性硬質塩化ビニルライニング鋼管用ね じ込み式管端防食管継手」に規定する器具接続用管端防食管継手を用いる。
- (10) 配管に取付ける計器取付用短管(タッピング等)は、配管材料と同材質とする。
- (11) 配管完了後、管内の洗浄を十分行う。 なお、飲料水管の場合は、末端部において遊離残留塩素が 0.2mg/L 以上検出されるまで 消毒を行う。
- (12) 揚水ポンプ、消火ポンプ、冷却水ポンプ及び冷温水ポンプに取付ける呼び径 50 以下の逆止弁には、呼び径 15 以上のバイパス管及び弁を取付ける。ただし、バイパス弁内蔵形は除く。
- (13) 銅管(呼び径32以下)をはんだ付けしたときは、フラックスを除去するため、速やかに 水による管内の洗浄を行う。
- (14) 飲料水以外の給水管を設ける場合は、飲料水管との識別を行い誤接続がないこととする。
- (15) 改修時の既設配管との接続等は、次による。
 - (ア) 配管の施工に先立ち、第1編1.5.3「事前調査」を十分に行い、既設設備との関連事項及び維持管理性を詳細に検討し、勾配、接続位置等を考慮してその他への影響を及ぼさないよう施工する。
 - (イ) 既設配管との接続に際しては、事前に既設配管の系統及び流体の種別について確認を 行う。
 - (ウ) 既設配管からの分岐取出し位置は、他系統への影響や水量バランス等を十分に検討する。
 - (エ) 給水及び給湯系統の配管は、切断面からの水質汚染に十分注意する。

2.4.2 冷温水、ブライン及び冷却水配管

(1) 冷温水、ブライン及び冷却水管の主管の曲部は、原則として、ベンド又はロングエルボ

を使用する。

- (2) 冷凍機の冷水及びブライン管の入口側には、ストレーナを設ける。また、冷水、ブライン及び冷却水管の出口側には、瞬間流量計を設け、出入口側には、圧力計、温度計及び防振継手を取付ける。ただし、吸収冷凍機、吸収冷温水機及び吸収冷温水機ユニットにおいては、防振継手を除く。
- (3) 冷却塔廻りの配管は、その荷重が直接冷却塔本体にかからないよう十分に支持するもの とし、冷却水の出入口側及び補給水管の入口側には、合成ゴム製のフレキシブルジョイン トを設け、冷却水の出口側にはストレーナを取付ける。
- (4) 冷温水コイルの冷温水出入口側配管(ファンコイルユニット及び天井内設置のコイルを 除く。)には、圧力計及び温度計を取付ける。
- (5) 冷水、ブライン及び冷温水配管の吊りバンド等の支持部は、合成樹脂製の支持受けを使用する。
- (6) ファンコイルユニットと冷温水管の接続部には、ファンコイルユニット用ボール弁を取付ける。

なお、流量調整弁又は定流量弁の適用は特記による。

- (7) ファンコイルユニットと冷温水管及びファンコンベクターと温水管との接続には、フレキシブルチューブを使用してもよい。
- (8) 熱交換器の冷温水及びブライン出入口側配管には、圧力計及び温度計を取付ける。
- (9) 冷温水ヘッダーの往ヘッダー及び各返り配管には、温度計を取付ける。
- (10) ドレン管は、2.4.8「排水及び通気配管」による。
- (11) 次の機器廻り配管要領は、標準図による。
 - (ア) 空気調和機(冷温水コイル及び加湿器)
 - (イ) 鋳鉄製温水ボイラー
 - (ウ) 水冷チリングユニット及び遠心冷凍機
 - (エ) 吸収冷温水機及び吸収冷温水機ユニット
 - (オ) 真空式温水発生機及び無圧式温水発生機
 - (カ) 冷却塔
 - (キ) 空調ポンプ (冷水ポンプ、冷温水ポンプ、温水ポンプ及び冷却水ポンプ)
 - (ク) 多管形熱交換器及びプレート形熱交換器
 - (ケ) ファンコイルユニット
 - (コ) 膨張タンク及び密閉形隔膜式膨張タンク
- (12) 冷温水主管よりの立上り、立下り分岐配管要領等は、標準図 (蒸気及び冷温水管の配管 要領)による。

2.4.3 蒸気配管

- (1) 蒸気管の施工は、全て管の温度変化による伸縮を考慮して行い、膨張時に配管の各部に 過大な応力がかからないように、かつ、配管の勾配が確保できるように行う。
- (2) 横走り順勾配配管で、径の異なる管を接続する場合には、偏心径違い継手を用いる。 なお、接続要領は、標準図(蒸気及び冷温水管の配管要領)による。
- (3) 主管の曲部は、原則として、ベンド又はロングエルボを使用する。
- (4) 主管は約15m以内に、また、立上り底部その他各種装置の取付け両端等必要な箇所に、 それぞれフランジ継手を挿入し、管及び機器類の取外しを容易にする。

なお、呼び径 25 以下の見え掛り横走り配管には、JIS B 2301「ねじ込み式可鍛鋳鉄製管

継手」に規定するフランジを使用してもよい。

- (5) 室内に露出する管の壁面よりの間隔は、裸管、被覆管とも 40mm 以上とする。暖房用立上り裸管は、原則として、ソケット及びフランジ継手を使用しない。
- (6) 加熱コイル廻り配管要領及び主管より放熱器又は立上り管への分岐配管要領は、標準図 (蒸気及び冷温水管の配管要領、蒸気加熱コイル廻り配管要領)による。
- (7) 真空還水式暖房の立上り還水管には、リフト継手を使用する。リフト継手の吸上げ1段の高さは、原則として、真空ポンプ直前では1,200mm、その他の箇所では600mmとし、その取付要領は、標準図(蒸気及び冷温水管の配管要領)による。
- (8) ボイラーのブロー管は、缶ごとに所定の排水桝に導き、いかなる場合でも排水管系に圧力を加えるような連結をしてはならない。
- (9) 安全弁の吹出管は、単独で、かつ、安全を十分考慮して開放する。
- (10) トラップ装置、減圧装置及び温度調整装置の組立要領は、標準図(トラップ装置組立て 要領、減圧装置・温度調整装置組立て要領)による。
- (11) 蒸気管の塗装は、3.2.1.4「塗装箇所の塗料の種別及び塗り回数」による。

2.4.4 油配管

(1) 屋内オイルタンク及びオイルサービスタンクの給油管、返油管及び送油管には、フレキシブルジョイントを取付ける。

なお、オイルサービスタンク廻りの配管要領は、標準図(オイルサービスタンク廻り配 管要領)による。

(2) 油管の塗装は、3.2.1.4「塗装箇所の塗料の種別及び塗り回数」による。

2.4.5 高温水配管

- (1) 高温水管は、次によるほか、2.4.3「蒸気配管」の当該事項による。
 - (ア) フランジ継手は、弁廻り、器具廻り及び施工上やむを得ない箇所に使用してもよい。
 - (イ) 横引き配管の下流側の末端、その他必要と認められる箇所には必ず空気抜き弁を設ける。

なお、空気抜き弁は手動とし、呼び径15の玉形弁を2個直列に設け危険を防止する。

(ウ) 配管末端及び底部その他配管中のドレンは、呼び径 32 にて立ち下げ、最寄の雑排水系統へ放流する。

なお、ドレン管には、水抜き弁として仕切弁又は玉形弁を2個直列に設ける。

- (エ) 配管完了後は、配管の洗浄を常温にて2回行う。
- (オ) 昇温は全系統を数回の温度差により行う。この場合、各昇温回数ごとの各部点検を行う。

2.4.6 冷媒配管

- (1) 冷媒管は、冷媒及び潤滑油循環が正常な運転に支障のないよう施工する。
- (2) 銅管材質 1/2H 材は、専用工具を用いて曲げ加工としてもよい。ただし、曲げ半径は管径の 4 倍以上とする。
- (3) 冷媒管の支持受け材として保護プレートを、断熱材被覆銅管と吊り金物、支持金物又は固定金物との間に設け、自重による断熱材の食込みを防止する。
- (4) 冷媒管の継手は、保守点検できる位置に設ける。
- (5) 配管完了後、気密試験及び真空脱気し、冷媒の充填作業を行う。
- (6) 保温工事は、気密試験完了後に行う。また、液管とガス管は共巻きしてはならない。ただし、断熱材被覆銅管の場合を除く。

- (7) 屋内機と屋外機の連絡配線は、電気容量に対して十分適合するものを用いる。冷媒管と 共巻きする場合は、冷媒管の保温施工後に共巻きする。また、屋内機と屋外機の専用配線 部品等は、製造者の標準仕様としてもよい。
- (8) 断熱材被覆銅管の断熱材の接合部は、以下により、すき間が生じないよう施工する。
 - (ア) 断熱粘着テープは、伸縮量を考慮して、断熱材の継目部に 1/2 重ね巻きとする。
 - (イ) 冷媒用断熱材接続テープは、断熱材表面に密着し、端部はテープが重なるように巻き付ける。
- (9) 冷媒管の立て管は、2.6.2「吊り及び支持」の当該事項によるものとし、管の熱伸縮量を 頂部及び最下部において吸収する措置を講ずる。
- (10) 改修時の冷媒配管の接合は、原則として、ろう付けとし、次の(ア)による。 なお、フランジ継手又はメカニカル継手を使用する場合は次の(イ)及び(ウ)による。ただ し、微燃性冷媒を使用する場合は、特記による。
 - (ア) 冷媒管のろう付け及び溶接作業は、配管内に不活性ガスを通しながら行う等の酸化防 止措置を講ずる。
 - (イ) フランジ接合の場合は、JIS B 8602「冷媒用管フランジ」によるものとし、管とフランジの接合は、ろう付け又は溶接とする。
 - (ウ) メカニカル継手による接合は、JCDA0012「冷媒用銅及び銅合金管に用いる機械的管継手」による。

2.4.7 給水配管

- (1) 給水管の主配管には、適切な箇所にフランジ継手を挿入し、取外しを容易にする。 なお、呼び径 25 以下の見え掛り配管には、ユニオンを使用してもよい。
- (2) 水栓類は、ねじにテープシール材を適数回巻きしてから適正トルクでねじ込む。
- (3) 配管中の空気だまりには、エア抜弁又は吸排気弁を設ける。
- (4) 揚水ポンプ廻り配管要領は、標準図(揚水ポンプ(横形)廻り配管要領、揚水ポンプ(立 形)廻り配管要領)による。
- (5) タンク廻りの配管は、次による。
 - (ア) 各接続管の荷重が直接タンク本体にかからないように支持する。
 - (4) 受水タンク及び高置タンクの排水及び通気管を除く各接続管には、鋼板製タンク及び ステンレス鋼板製タンクにあってはベローズ形フレキシブルジョイントを、FRP 製タン クにあっては合成ゴム製フレキシブルジョイントを取付ける。
 - (ウ) FRP 製タンクのオーバーフロー管は、JIS K 6741「硬質ポリ塩化ビニル管」又は JIS K 9798「リサイクル硬質ポリ塩化ビニル発泡三層管」とする。
 - (エ) 配管要領は、標準図 (機器廻り配管吊り及び支持要領 (二)、受水タンク廻り配管要領)による。

2.4.8 排水及び通気配管

- (1) ドレン管を除き、排水横枝管等が合流する場合は、必ず 45°以内の鋭角をもって水平に 近く合流させる。
- (2) 次のものからの排水は、間接排水とする。
 - (ア) 食品冷蔵容器、厨房用機器、洗濯用機器(業務用)、医療用機器及び水飲器
 - (4) 冷凍機及び冷却塔並びに冷媒又は熱媒として水を使用する装置
 - (ウ) 空気調和用機器
 - (エ) 水用タンク、貯湯タンク、熱交換器その他これに類する機器

- (オ) 給湯及び水用各種ポンプ装置その他同種機器
- (3) 間接排水管は、水受器その他のあふれ縁よりその排水管径の2倍以上の空間(飲料用の 貯水槽の場合は最小150mm以上)を保持して開口しなければならない。また、水が飛散し 支障がある場合は、それに適応した防護方法を講ずる。
- (4) 排水立て管の最下部は、必要に応じて、標準図(立て管の床固定要領)により、支持台を設け固定する。
- (5) 3階以上にわたる排水立て管には、各階ごとに満水試験継手を取付ける。
- (6) ユニット形空気調和機、コンパクト形空気調和機、パッケージ形空気調和機、マルチパッケージ形空気調和機及びガスエンジンヒートポンプ式空気調和機のドレン管には、送風機の全静圧以上の落差をとった空調機用トラップを設けるものとし、空調機用トラップの形式は特記による。
- (7) 厨房排水及び厨房排水用通気の継手に排水鋼管用可とう継手を使用する場合は、JPF MDJ 004「ちゅう房排水用可とう継手」を使用する。
- (8) 水中ポンプの吐出管は、ポンプ本体に荷重がかからないように、かつ、地震動に対して も堅固に支持する。
 - なお、ポンプを引き上げられるように、吐出管はフランジ接合とし、かつ、逆流を防ぐような立上り部分を設ける。
- (9) 通気管は、排水横枝管等より垂直ないし 45°以内の角度で取出し、水平に取出してはならない。
- (10) 各階の通気管を通気立て管に連結する場合は、その階の器具のあふれ縁より 150mm 以上の所で連結する。

なお、通気立て管を伸頂通気管に連結する場合もこれによる。

(11) 排水及び通気配管要領は、標準図(排水・通気配管の正しいとり方)による。

2.4.9 給湯配管

- (1) 給湯管は、次によるほか、2.4.7「給水配管」の当該事項による。
 - (ア) 配管は、管の伸縮を妨げないようにし、均整な勾配を保ち、逆勾配、空気だまり等循環を阻害するおそれのある配管をしてはならない。
 - (4) 湯沸器と給水管及び給湯管の接続は、銅製又はステンレス鋼製のフレキシブルチューブ((公社)日本水道協会認証品)を使用してもよい。

2.4.10 消火配管

- (1) 消火管は、次によるほか、2.4.7「給水配管」の当該事項による。
 - (ア) 主配管には、適切な箇所にフランジ継手を挿入し、取外しを容易にする。
 - (イ) 消火ポンプユニット廻りの配管要領は、標準図 (消火ポンプユニット廻り配管要領) による。
 - (ウ) 天井隠ぺい配管の場合、スプリンクラーヘッド取付部の巻き出し管は、地震時の変位 を吸収する可とう性のもの(消防法令に適合するものとする。)で主配管の材質に適し たものを使用し、ヘッドの直近で専用金物を用いて、天井下地材に固定する。

2.4.11 既設配管の再生を行う場合の留意事項

(1) 改修時に、既設配管の再生を行う工法は、再生し使用する既設配管の肉厚等を十分に調査し、対応可能なものとする。

なお、適用は特記による。

(2) 施工に先立ち、既設配管までの劣化状態を調査確認し、記録する。また、配管のサンプ

リングを行い内部の状態について記録し、写真等を監督職員に提出する。

- (ア) 調査箇所及びサンプリング個数は特記による。
- (イ) 調査により、工法や施工範囲を変更する場合は、監督職員と協議する。
- (3) 作業機器の据付場所は、騒音の防止、仮設給排水の確保、じんあいの飛散防止等を検討し、監督職員の承諾を受ける。
- (4) 既設配管のさびコブ除去、管内清掃、防錆のライニングの確認、作業後の試験等については、採用した工法の規定による。
- (5) 作業に伴い、既設配管より取外した弁、衛生器具等は、作業終了後に原状復旧し、開閉 操作等の機能確認を行う。

なお、老朽化等の理由で再使用が不可能な場合は、監督職員と協議する。

(6) 作業後、管内の洗浄及び消毒を行い、通水後、末端部の水栓等より採水し、水質検査を 行い、監督職員に提出する。

なお、水質検査の適用は特記による。

第5節 管の接合

2.5.1 一般事項

- (1) 管は、全て、その断面が変形しないよう管軸心に対して直角に切断し、その切り口は平滑に仕上げる。
- (2) 塩ビライニング鋼管、耐熱性ライニング鋼管、ポリ粉体鋼管及び外面被覆鋼管は、帯の こ盤又はねじ切機搭載形自動丸のこ機等で切断し、パイプカッターによる切断は禁止する。 また、切断後、適正な内面の面取りを施す。
- (3) 地中配管用の塩ビライニング鋼管、ポリ粉体鋼管及び外面被覆鋼管のねじ加工及びねじ 込み作業は、外面被覆材に適した専用工具を使用し、適正トルクで行う。チャック損傷部 分は、プラスチックテープ 2 回巻きとする。
- (4) ねじ加工機は、自動定寸装置付きとする。また、ねじ加工に際しては、ねじゲージを使用して、JIS B 0203「管用テーパねじ」に規定するねじが適正に加工されているか確認する。
- (5) 塩ビライニング鋼管等の防食措置を施した配管と管端防食管継手との接続部は、切削ねじ接合とする。ただし、呼び径50以下のポリ粉体鋼管は、転造ねじ接合としてもよい。
- (6) 接合する前に、切りくず、ごみ等を十分除去し、管の内部に異物のないことを確かめて から接合する。
- (7) 配管の施工を一時休止する場合等は、その管内に異物が入らないように養生する。
- (8) 配管加工を工事現場以外で行い、配管に曲がり等がある場合は、搬入及び保管時に、端部や接合部等に荷重が集中しないように養生する。
- (9) 改修時の既設配管との接続等は、次による。
 - (ア) 既設配管との接続方法は、原則として、2.5.2「鋼管」以降により、継手は新品(既設配管に溶接されたフランジを除く。)とする。

なお、これによることができない場合は、監督職員と協議する。

- (イ) 既設配管との接続がねじ接合による場合は、既設配管のねじ部の肉厚及びねじ山が適 正であることを確認し、十分清掃の後に接続する。
- (ウ) 既設配管との接続がフランジの場合は、既設フランジ面を平滑に清掃を行った後に接続する。

なお、ボルト及びナット並びにガスケットは、新品とする。

(エ) 既設配管と溶接接合する場合は、既設配管及び継手の接合部分の肉厚を確認の上、接続する。また、接続されている機器や保温材等に、熱による影響を及ぼさないように十分検討する。

2.5.2 鋼管

2.5.2.1 一般事項

- (1) 排水及び通気管を除く水配管の場合は、ねじ接合(呼び径 100 以下に限る。)、フランジ接合、ハウジング形管継手による接合又は溶接接合とする。
- (2) 排水(ポンプアップ排水管を除く。)及び通気管の場合は、ねじ接合又は排水鋼管用可と う継手(MD ジョイント)とする。

なお、排水鋼管用可とう継手 (MD ジョイント)による接合方法は、2.5.6「排水用塩ビライニング鋼管及びコーティング鋼管」による。

- (3) ポンプアップ排水管の場合は、ねじ接合、フランジ接合、圧送排水鋼管用可とう継手による接合又はハウジング形管継手による接合とする。
- (4) 蒸気給気管及び蒸気還管の場合は、フランジ接合又は溶接接合とする。ただし、呼び径 50 以下の低圧 (0.1MPa 未満) の蒸気給気管及び蒸気還管の場合は、ねじ接合としてもよい。
- (5) 油管は、原則として、溶接接合とする。
- (6) 高温水管は、原則として、溶接接合とする。

2.5.2.2 ねじ接合

(1) 接合用ねじは、JIS B 0203「管用テーパねじ」による管用テーパねじとし、接合にはねじ接合材を使用する。接合材は、一般用ペーストシール剤又は防食用ペーストシール剤とし、ねじ山、管内部及び端面に付着している切削油、水分、ほこり等を十分に除去した後、おねじ部のみ適量塗布してねじ込む。ただし、消火配管においては、あらかじめシール剤(管内の流体に溶出せず、使用目的に適する成分のもの)が塗布された工場加工の継手を使用する場合は、ねじ接合材の塗布を省略することができる。

なお、油配管のペーストシール剤は、耐油性のものとする。

- (2) 排水用ねじ込み式鋳鉄製管継手との接合は、管のテーパおねじ部を管端面と継手のリセスとの間にわずかな隙間ができる程度に正確にねじを切り、緊密にねじ込む。
- (3) 継手接続後のねじ部の鉄面は、さび止めペイント2回塗りを行う。

2.5.2.3 フランジ接合

- (1) フランジと管との取付方法は、原則として、溶接とする。ただし、2.5.2.1「一般事項」で、ねじ接合とする部分は、ねじ込みとしてもよい。
- (2) 接合には、適正材質及び厚さのガスケットを介し、ボルト及びナットを均等に片寄りなく締付ける。
- (3) 蒸気管の場合は、ガスケット面には植物性油に黒鉛を混ぜたものを薄く塗布する。
- (4) 油管の場合のガスケットは、耐油性のものとする。

2.5.2.4 溶接接合

(1) 2.5.15「溶接接合」の当該事項による。

2.5.2.5 ハウジング形管継手による接合

(1) ハウジング形管継手は、JPF MP 006「ハウジング形管継手」に規定するグルーブ形又は リング形とし、配管の接合用加工部、管端シール面等は、耐塩水噴霧試験に適合する防錆 塗料により、十分な防錆処理を行う。

2.5.2.6 管端つば出し鋼管継手による接合

(1) 管端つば出し鋼管継手は、WSP 071「管端つば出し鋼管継手 加工・接合基準」の規定により工場加工されたものとし、遊合形フランジ接合とする。

2.5.3 塩ビライニング鋼管、耐熱性ライニング鋼管及びポリ粉体鋼管

- (1) 塩ビライニング鋼管、耐熱性ライニング鋼管及びポリ粉体鋼管は、ねじ接合(呼び径 100 以下に限る。)又はフランジ接合とする。
- (2) ねじ接合の場合は、次によるほか、2.5.2「鋼管」のねじ接合による。ただし、ねじ接合 材は防食用ペーストシール剤とする。
 - (ア) 管の内面の面取りは、次によるものとし、継手形式ごとに適切に行う。
 - (a) 切削ねじの場合は、スクレーパー等の面取り工具を用いるものとする。
 - (b) 転造ねじの場合は、ねじ加工機に組込まれた専用リーマを用いて面取りを行い、バリをとる場合は、スクレーパー等を使用してもよい。
 - (イ) JIS B 0203「管用テーパねじ」に規定するねじが適正に切られていることを、ねじゲージにより確認後、ねじ込む。

なお、ねじ込みは、適正な締め付け力で継手製造者が規定する余ねじ山数又は余ねじ 長さによりねじ込む。

- (ウ) ポリ粉体鋼管に転造ねじ接合を行う場合の管端防食管継手の保護は、次による。
 - (a) ねじ込み前に、転造ねじ部の管の内径は、継手製造者が規定する最小内径以上であることを確認する。
 - (b) 継手製造者の規定によりねじ込みを行い、締めすぎによる管端コアの破損に注意する。
- (エ) 管端防食管継手の再使用は禁止する。
- (3) 外面樹脂被覆を施した管端防食管継手の場合は、(2)による。ただし、継手の外面樹脂部と管の隙間及び管ねじ込み後の残りねじ部をブチルゴム系コーキングテープ又はゴムリングで完全に密封する。また、密封後コーキングテープ又はゴムリング露出部は、プラスチックテープ2回巻きとする。

なお、ゴムリングの場合は、管材との接続が終了した後でゴムリングの装着が容易に確認できるものとする。

(4) 塩ビライニング鋼管のフランジ接合の場合で、やむを得ずフランジを現場取付けする場合は、監督職員の承諾を受け、標準図(塩ビライニング鋼管及びステンレス鋼管の施工要領)により取付ける。

2.5.4 外面被覆鋼管

- (1) 外面被覆鋼管は、ねじ接合(呼び径 100 以下に限る。)、フランジ接合、ハウジング形管 継手による接合又は溶接接合とする。
- (2) ねじ接合は、2.5.2「鋼管」のねじ接合による。
- (3) 地中配管のねじ接合は、2.5.3「塩ビライニング鋼管、耐熱性ライニング鋼管及びポリ粉体鋼管」(3)の当該事項による。
- (4) フランジ接合及び溶接接合は、2.5.2「鋼管」の当該事項による。 なお、溶接接合の場合は、熱による影響を受ける部分の外面被覆はあらかじめ取除く。 また、火花による損傷を受けないように養生する。

2.5.5 ナイロンコーティング鋼管

(1) ナイロンコーティング鋼管は、呼び径 25 以上 40 未満はフランジ接合、呼び径 40 以上は、フランジ接合又はハウジング形管継手による接合とする。

2.5.6 排水用塩ビライニング鋼管及びコーティング鋼管

(1) 排水鋼管用可とう継手 (MD ジョイント) による接合は、管端を直角に切断し内外面の面取りを行い、管のパッキン当たり面が変形や傷等がないことを確認後、フランジ・ロックパッキン又はクッションパッキンの順序で部品を挿入した管端を継手本体にはめ込み、ボルト及びナットを周囲均等に適正なトルクで締付ける。

なお、ロックパッキン使用の場合は、継手との接合に際し、管の先端と継手本体の差込み段差との間は必要により、管の熱伸縮を緩和する隙間を設ける。

- (2) 管の端部は、JPF MP 006「ハウジング形管継手」に規定する耐塩水噴霧試験に適合する 防錆塗料により、十分な防錆処理を行う。
- (3) ポンプアップ排水管の接合は、2.5.2「鋼管」の当該事項による。

2.5.7 ステンレス鋼管

- (1) 呼び径 60Su 以下は、SAS322「一般配管用ステンレス鋼管の管継手性能基準」を満足した 継手による接合とし、継手の種類は特記による。また、呼び径 75Su 以上は、溶接接合、ハウジング形管継手による接合又はフランジ接合とする。
- (2) 溶接接合は、次によるほか、2.5.15「溶接接合」の当該事項による。
 - (ア) 溶接接合は、管内にアルゴンガスを充満させてから、TIG溶接により行う。また、SUS304、SUS316等のオーステナイト系ステンレス鋼を溶接する場合は、窒素ガスとしてもよい。
 - (4) 溶接作業は、原則として、工場で行う。ただし、現場溶接する場合は、TIG 自動円周溶接機を使った自動溶接とし、やむを得ず手動溶接を行う場合は、監督職員の立会いを受けて行う。
- (3) フランジは、JIS B 2220「鋼製管フランジ」による溶接式又は遊合形とする。 なお、接合方法は、標準図(塩ビライニング鋼管及びステンレス鋼管の施工要領)によ

ガスケットは、ジョイントシートを四ふっ化エチレン樹脂(PTFE)ではさみ込んだものとする。

- (4) メカニカル接合は、継手形式ごとに製造者が規定する施工標準に従い、接合する。
- (5) 呼び径 25Su 以下の配管は、現場にて専用工具を用いた曲げ加工ができる。ただし、曲げ 半径は管径の4倍以上とする。
- (6) ハウジング形管継手は、SAS361「ハウジング形管継手」に規定するグループ式又はリング式とする。
- (7) 蒸気還管の場合は、原則として、フランジ接合又は溶接接合とする。
- (8) 管端つば出しステンレス鋼管継手は、SAS363「管端つば出しステンレス鋼管継手」の規 定により工場加工されたものとし、遊合形フランジ接合とする。
- (9) 工場での加工管は、SAS371「建築設備用ステンレス配管プレハブ加工管部材」の規定による。

2.5.8 銅管

- (1) 水配管の接合は、差込接合又はメカニカル接合とし、次による。
 - (ア) 差込接合の場合は、取外しの必要な箇所には、呼び径 32 以下は銅製ユニオン継手、呼び径 40 以上はフランジ継手を使用する。また、差込接合は、管の外面及び継手の内面を

十分に清掃した後、管を継手に正しく差込み、適温に加熱して、呼び径 32 以下ははんだ (軟ろう)又はろう(硬ろう)、呼び径 40 以上はろう(硬ろう)を流し込む。

なお、直近に弁等がある場合には、高温による変形を起こさないように養生して行う。

- (イ) メカニカル接合の場合は、呼び径 25 以下に適用し、監督職員の承諾を受け、JCDA0002 「銅配管用銅及び銅合金の機械的管継手の性能基準」を満足した継手により接合する。
- (2) 冷媒配管の接合は、2.4.6「冷媒配管」による。

2.5.9 塩ビ管

- (1) 給水管の接合は、接着接合又はゴム輪接合とし、次による。特記がなければ、接着接合とし、給水装置に該当する場合は、全て水道事業者の定める接合方法による。
 - (ア) 接着接合の場合は、切断後、呼び径 13~30 は 1 mm、呼び径 40 及び 50 は 2 mm、呼び径 65 以上は 2 mm 以上の面取りを行い、受口内面及び差口外面の油脂分等を除去した後、差口外面の標準差込み長さの位置に標線を付ける。次に、受口内面及び差口外面に専用の接着剤を薄く均一に塗布し、速やかに差口を受口に挿入し、標線位置まで差込み、そのまま保持する。差込み保持時間は、呼び径 50 以下は 30 秒以上、呼び径 65 以上は 60 秒以上とする。

接着後は、はみ出した接着剤をふきとり、換気等により、管内に充満する接着剤の溶媒蒸気を排除する。

- (イ) ゴム輪接合の場合は、切断後、管の厚さの 1/2、約 15°の面取りを行い、ゴム輪受口 内面及び差口外面のゴミ等を除去した後、差口外面の標準差込み長さの位置に標線を付 ける。次に、ゴム輪及び差口外面に専用の滑剤を塗布し、管軸を合わせて標線位置まで 挿入する。
- (2) 排水管の接合は、接着接合又はゴム輪接合とし、次による。 なお、特記がなければ、接着接合とする。
 - (ア) 接着接合及びゴム輪接合共、(1)の(ア)及び(イ)と同じ接合方法とする。
 - (4) 管内の流れの障害となる段違いを生じないようにする。

2.5.10 ポリエチレン管

- (1) 給水装置に該当する場合は、全て水道事業者の定める接合方法による。
- (2) 管の切断は、樹脂管専用カッターを用いる。
- (3) 管の接合方法は、電気融着接合又はメカニカル接合とする。 なお、接合方法は特記による。
- (4) 電気融着接合は、次による。
 - (ア) 管接続部分の外表面を、専用のスクレーパーを用いて切削し、管を継手受口の奥まで 確実に挿入し、管の継手受口端部にマーキングする。 なお、やすり、サンドペーパーで、外表面を切削してはならない。
 - (4) 管をクランプで確実に固定した後、専用コントローラで通電する。継手に通電後、継 手インジケーターの隆起、マーキングのずれがないことを確認し、接続部に無理な力が かからないよう口径ごと適正な時間経過後、クランプを外す。
- (5) メカニカル接合は、継手形式ごとに製造者が規定する施工標準に従い、接合する。
- (6) 管の敷設は、曲がり部を最小曲げ半径以上とするとともに、座屈が生じないよう施工する
- (7) 管端部の養生にビニルテープを使用した場合には、ビニルテープ部の管を除去してから施工する。

- (8) 建物導入部において、異種管と接合する場合、接合部が容易に点検できるように点検用 桝を設ける場合は標準図(点検口桝、注油口桝、フレキシブルジョイント桝及び点検ボッ クス)によることとし、適用は特記による。
- (9) 建物導入部は、地震による損傷を抑制するものとする。 なお、標準図(建築物導入部の変位吸収配管要領(三))に、施工の例を示す。

2.5.11 架橋ポリエチレン管

- (1) 呼び径 25 以下の配管に適用する。
- (2) 管の切断は、樹脂管専用カッターを用いる。
- (3) 管の接合方法は、電気融着接合又はメカニカル接合とする。 なお、接合方法は特記による。
- (4) 電気融着接合は、次による。
 - (ア) 管接続部分の外表面を、専用のスクレーパーを用いて切削し、管を継手受口の奥まで 確実に挿入し、管の継手受口端部にマーキングする。 なお、やすり、サンドペーパーで、外表面を切削してはならない。
 - (イ) 継手に通電後、継手インジケーターの隆起、マーキングのずれがないことを確認し、 接続部に無理な力がかからないよう3分以上養生後、ターミナルピンを切断する。
- (5) メカニカル接合は、継手形式ごとに製造者が規定する施工標準に従い、接合する。
- (6) 原則として、床ころがし配管とし、直線部で 1,000mm、曲がり部で 300mm 以内に固定する。また、曲り部は、最小曲げ半径以上とするとともに、座屈が生じないよう施工する。
- (7) 管の劣化するおそれがある溶剤、油性マーキング、合成樹脂調合ペイント、軟質塩化ビニル(ビニルテープ等)等の可塑剤を含んだ材料と接触させないよう施工する。また、管端部の養生にビニルテープを使用した場合には、ビニルテープ部の管を除去してから施工する。

2.5.12 ポリブテン管

- (1) 冷温水管は、呼び径 25 以下の配管に適用する。
- (2) 管の切断は、樹脂管専用カッターを用いる。
- (3) 管の接合方法は、熱融着接合、電気融着接合又はメカニカル接合とする。 なお、接合方法は特記による。
- (4) 熱融着接合は、次による。
 - (ア) 管端部外面、継手内面をアセトン又はアルコールで清掃後、加熱用ヒーターフェース に継手及び管を同時に挿入後、呼び径ごとに定められた時間加熱する。 なお、挿入前に加熱用ヒーターフェースの温度が適用温度に達していることを確認す

ね、伊八則に加烈用に一ク一ノエーAの価及が適用価及に建していることを確認する。

- (4) 融着後、接続部に無理な力がかからないよう30秒以上圧着保持、3分以上放冷し、1 時間以上養生する。
- (5) 電気融着接合は、次による。
 - (ア) 管接続部分の外表面を、専用のスクレーパーを用いて切削し、挿入長さ(標線)を管表面に記入し、確実に継手に挿入する。

なお、やすり、サンドペーパーで、外表面を切削してはならない。

(4) 管をクランプで確実に固定した後、専用コントローラで通電する。継手に通電後、継 手インジケーターの隆起、標線のずれがないことを確認し、接続部に無理な力がかから ないよう呼び径ごとに定められた時間放冷(放冷時間は、呼び径 10~20 は 3 分以上、呼 び径 25~65 は 5 分以上、呼び径 75 は 10 分以上) し、1 時間以上養生する。

- (6) メカニカル接合は、継手形式ごとに製造者が規定する施工標準に従い、接合する。
- (7) 管の敷設は、曲り部を最小曲げ半径以上とするとともに、座屈が生じないよう施工する。
- (8) 管の劣化するおそれがある溶剤、油性マーキング、合成樹脂調合ペイント、軟質塩化ビニル(ビニルテープ等)等の可塑剤を含んだ材料と接触させないよう施工する。また、管端部の養生にビニルテープを使用した場合には、ビニルテープ部の管を除去してから施工する。

2.5.13 コンクリート管

(1) 管の接合は、ソケット接合とし、ゴム輪をスピゴット端部所定の位置にねじれないように挿着し、差込機により受口部の底にスピゴット端部が接するまで差込む。

なお、滑剤は、ゴム輪に有害なものを使用してはならない。

2.5.14 耐火二層管

- (1) 接着接合又はゴム輪接合(伸縮継手用)とし、次による。
 - (ア) 管の接合は接着接合とし、受口内面及び差口外面の油脂分等を除去した後、差口外面の標準差込み長さの位置に標線を付ける。次に、受口内面及び差口外面に専用の接着剤を薄く均一に塗布し、速やかに差口を受口に挿入し標線位置まで差込み、そのまま 1 分以上保持する。
 - (イ) 伸縮継手はゴム輪接合とし、ゴム輪受口内面及び差口外面のゴミ等を除去した後、差口外面の標準差込み長さの位置に標線を付ける。次に、ゴム輪及び差口外面に専用の滑剤を塗布し、管軸を合わせて標線位置まで挿入する。
 - (ウ) 管内の流れの障害となる段違いを生じないようにする。
 - (エ) 伸縮継手の設置箇所は特記による。
 - (オ) 配管後の直管と管継手の接合部は、目地付継手を使用した場合を除き、専用の目地処理材にて処理を行う。

2.5.15 溶接接合

2.5.15.1 一般事項

(1) 配管の溶接接合は、労働安全衛生法、高圧ガス保安法(昭和 26 年法律第 204 号)、ガス 事業法(昭和 29 年法律第 51 号)、消防法又はこれらに基づく命令若しくは地方公共団体 の条例の規定で配管の溶接接合に関するもの及び本項の規定による。

2.5.15.2 適用範囲

(1) 本項は、鋼管及びステンレス鋼管に適用する。

2.5.15.3 溶接接合方法及び品質

- (1) 溶接接合方法は、突合せ溶接又はすみ肉溶接とする。
- (2) 突合せ溶接に当たっては、開先加工又は面取りを適正に行うとともに、ルート間隔を保持することにより、十分な溶込みを確保する。
- (3) 突合せ溶接部は、母材の規格による引張強さの最小値(母材が異なる場合は最も小さい値)以上の強度を有するものとする。
- (4) すみ肉溶接部は、母材の規格による引張強さの最小値(母材が異なる場合は最も小さい値)の $1/\sqrt{3}$ 以上の強度を有するものとする。
- (5) 溶接部は、溶込みが十分で、かつ、割れ、アンダーカット、オーバーラップ、クレーター、スラグ巻込み、ブローホール等で有害な欠陥があってはならない。

2.5.15.4 溶接工

- (1) 自動溶接を行う者は、自動溶接機、溶接方法に十分習熟し、かつ、十分な技量及び経験を有する者で監督職員が認めた者とする。
- (2) 自動溶接を除く溶接工は、次に示す試験等の技量を有する者又は監督職員が同等以上の技量を有すると認めた者とする。ただし、軽易な作業と監督職員が認め、承諾を得た者については、この限りでない。
 - (ア) 手溶接の場合は、JIS Z 3801「手溶接技術検定における試験方法及び判定基準」又は JIS Z 3821「ステンレス鋼溶接技術検定における試験方法及び判定基準」による。
 - (イ) 半自動溶接の場合は、JIS Z 3841「半自動溶接技術検定における試験方法及び判定基準」による。

2.5.15.5 溶接作業環境

- (1) 溶接作業場所は、必要な設備と良好な作業環境を整えなければならない。
- (2) 溶接作業中は、漏電、電撃、アーク等による人身事故及び火災防止の処置を十分に行う。
- (3) 金属をアーク溶接する作業については、屋内及び屋外における作業において、呼吸用保 護具(防じんマスク)を着用し、十分な換気を行う。

2.5.15.6 開先加工

- (1) 開先加工は、機械加工又はガス溶断加工とする。 なお、ガス溶断加工の場合は、手動グラインダー加工等により入念に仕上げる。
- (2) 開先形状及び接合部形状は、標準図(溶接開先形状、溶接接合部形状)による。ただし、自動溶接の場合はこの限りでない。

2.5.15.7 仮付け

- (1) 管を突合せ溶接する場合は、受台や吊り用ボルトを利用して芯合わせを行う。また、ア ダプタ等の治具や金馬等の仮付けピースを用いるか又は突合せ溶接部の直接仮付けにより 開先間隔を保持し、管相互の芯ずれがないように入念に仮付けを行う。
- (2) 差込みフランジや差込み継手等を使用してすみ肉溶接を行う場合は、管を所定の位置まで差込み、直角を保持して仮付けを行う。
- (3) 仮付け溶接のために使用した金馬等を取除くときは、仮付け跡をグラインダー又は溶接で補修する。
- (4) 仮付け溶接は、溶接工によらなくてもよい。ただし、開先に直接仮付け溶接する場合は、 溶接工によって行う。
- (5) 仮付け溶接終了後、開先形状確認のため、監督職員の指示に従い、工事写真又は開先寸 法記録を残す。ただし、工場溶接にあっては、この限りでない。

なお、ここでいう工場溶接とは、専用の溶接設備を用いて適確な品質管理のもとで行う 溶接であって、当該加工業者が、溶接部の品質の保証を与えるものをいう。

2.5.15.8 溶接材料

(1) 溶接材料は、母材の種類及び溶接方法により、表 2.2.15 又はこれと同等以上のものを使用する。

表 2.2.15 溶接材料

2.5.15.9 溶接材料の管理

(1) 溶接材料は、丁寧に取扱い、被覆剤のはく離、汚損、変質、吸湿、さびのあるもの等を使用してはならない。特に、溶接棒の吸湿には注意し、吸湿の疑いがあるものをそのまま使用してはならない。

2.5.15.10 溶接方法

(1) 溶接方法は、被覆アーク溶接、TIG 溶接若しくは監督職員の承諾を得た半自動アーク溶接、自動溶接又はそれらの組合せによって行う。ただし、ステンレス鋼管の場合は、被覆アーク溶接は行わない。

2.5.15.11 溶接施工

- (1) 溶接作業は、降雨・降雪時や強風時には行わない。ただし、溶接部が十分に保護され、 監督職員の承諾を受けた場合は、作業を行うことができる。また、降雨・降雪や強風の影響を受けない建物内での作業は、この限りでない。
- (2) 周囲の気温が 0 \mathbb{C} 以下の場合は、原則として、溶接作業を行わない。ただし、周囲の気温が $-15\mathbb{C}$ 以上の場合は、溶接部付近を $36\mathbb{C}$ 程度に予熱することにより作業を行ってもよい。
- (3) 溶接は、下向き溶接とする。ただし、やむを得ない場合は、下から上への巻き上げ溶接とし、ゆがみや残留応力が最小となる方法及び順序で作業を行ってもよい。
- (4) 高セルローズ系又は低水素系溶接棒を使用する場合は、亜鉛めっきを除去する。
- (5) 溶接面は、溶接に先立ち、水分、油、スラグ、塗料等溶接の障害となるものを除去する。
- (6) 溶接作業に際しては、適切な工具を用い、適切な電圧、電流及び溶接速度で作業を行う。
- (7) 溶接後は、溶接部の内外面をワイヤブラシ等で可能な限り清掃し、さび止め塗料又は有機質亜鉛末塗料で溶接面の補修を行う。

2.5.15.12 溶接部の検査

- (1) 溶接部は、溶接部全線にわたり目視検査を行い、割れ、アンダーカット、オーバーラップ、クレーター等で有害な欠陥がないものとする。
- (2) 溶接部の管外面の余盛りの高さは、3mm以下とする。
- (3) 溶接部の非破壊検査の適用、検査の種類及び抜取率は特記によるものとし、抜取率については、特記がなければ、表 2.2.16 による。

なお、ガス配管については、第6編2.2.2「管の接合」による。

(4) 非破壊検査の結果、不合格箇所数が抜取箇所数の5%を超えた場合は、さらに同数を抜取り、その合計不合格率が5%以内ならば合格とする。

なお、不合格の場合は、その群の全溶接部を検査する。

<u> </u>	23.5.10	400		
溶接部の	種別	蒸気	配 管	冷却水、冷温水、
種類	使用圧力			消火(水用)及び
192.75	検査の種類	1.0MPa未満	1.0MPa以上	油配管
突合せ溶	放射線透過検査(RT)、			
接部	浸透探傷検査又は			
	磁粉探傷検査 (PT又はMT)	5%	10%	5%
すみ肉溶	浸透探傷検査又は			
接部	磁粉探傷検査 (PT又はMT)			

表2.2.16 抜 取 率

注 工場溶接部については、適用された抜取率の1/5としてもよい。

2.5.15.13 非破壊検査の適用範囲と判定基準

(1) 非破壊検査の適用範囲は、表 2.2.17 による。

	衣2.2.11 升恢泰恢宜以過用靶团
非破壊検査の種類	適 用 範 囲
放射線透過検査	表2.2.16に示した抜取率の溶接部について、1溶接線につき1枚、放射線透
(RT)	過写真を撮影する。
浸透探傷検査又は	表2.2.16に示した抜取率の溶接部について、その溶接部の外面を全周検査す
磁粉探傷検査	る。
(PT又はMT)	

表2.2.17 非破壊検査の適用範囲

(2) 放射線透過検査は、JIS Z 3104「鋼溶接継手の放射線透過試験方法」又は JIS Z 3106「ステンレス鋼溶接継手の放射線透過試験方法」による。

なお、判定基準は特記による。

- (3) 浸透探傷検査は、JIS Z 2343-1「非破壊試験ー浸透探傷試験ー第1部:一般通則:浸透探傷試験方法及び浸透指示模様の分類」による染色浸透試験とする。また、磁粉探傷検査は、JIS Z 2320-1「非破壊試験ー磁粉探傷試験ー第1部:一般通則」により行う。浸透探傷検査又は磁粉探傷検査を実施したものにあっては、次に示す欠陥が表 2.2.19 に示す合格基準に合格するものとする。
 - (ア) 独立欠陥
 - (a) 独立して存在する欠陥は、次の3種類に分類する。
 - ① 割 れ 割れと認められたもの
 - ② 線状欠陥 割れ以外の欠陥で、その長さが幅の3倍以上のもの
 - ③ 円形状欠陥 割れ以外の欠陥で、線状欠陥でないもの
 - (化) 連続欠陥
 - (a) 割れ、線状欠陥及び円形状欠陥が、ほぼ同一直線上に存在し、その相互の距離と個々の長さとの関係から、一つの連続した欠陥と認められるものの欠陥長さは、特に指定がない場合は、欠陥の個々の長さ及び相互の距離を加え合わせた値とする。
 - (ウ) 分散欠陥

(a) 定められた面積の中に存在する1個以上の欠陥である分散欠陥は、欠陥の種類、個数又は個々の長さの合計値によって評価するものとし、一定の領域の面積が2,500mm²の範囲内に、その最大寸法が4mm以下の線状欠陥、円形状欠陥又は連続欠陥が多数ある場合において、表2.2.18に示す欠陥の種類及び最大寸法に応じた欠陥の個数と点数の積の和で表す。

 表 2. 2. 18 分 散 欠 陥

 欠陥の種類
 最大寸法
 点 数

 線 状 欠 陥
 2 mm以下
 3

 2 mmを超え、4 mm以下
 6

 円 形 状 欠 陥
 2 mm以下
 1

 2 mmを超え、4 mm以下
 2

表 2.2.19 配管溶接部に適用する欠陥合格基準

欠陥の種類	合格基準
表面割れ	割れによる欠陥がないこと
線状欠陥、円形状欠陥及び連続欠陥	最大4mm以下のもの
分散欠陥	欠陥の積の和が12以下のもの

2.5.15.14 不良溶接の補正

2.5.16 異種管の接合

(1) 鋼管とステンレス鋼管又は銅管と鋼管を接合する場合は、絶縁フランジ接合とし、接合要領は特記による。

なお、特記がない場合は、標準図(異種管の接合要領)による。

2.5.17 鋳鉄管

- (1) 改修時の給水鋳鉄管の接合は、メカニカル接合又は差込接合とし、次による。
 - (ア) メカニカル接合の場合は、受口部の底に差口端部が接触するまで差込み、あらかじめ 差口端近くにはめ込んだゴム輪を受口と差口との間隙にねじれが生じないように挿入の 上、押輪で押さえ、ボルト及びナットで周囲均等に適切なトルクで締付けてゴム輪を管体に密着させる。
 - (4) 差込接合の場合は、あらかじめゴム輪をゴム輪のバルブ部が奥になるように受口内面 の突起部に正確にはめ込み、フォーク又はジャッキ等により差口部に設けられた表示線 が受口端面に位置するまで差口を差し込む。

なお、管の挿入に使用する滑剤は、衛生上無害であり、かつ、水質に悪影響を与えないものとする。

(ウ) 鋼管と鋳鉄管を接合する場合は、GS 継手を用いるものとし、GS 継手と鋳鉄管はメカニカル接合、GS 継手と鋼管はねじ接合とする。

なお、接合要領は、標準図(異種管の接合要領)による。

2.5.18 機器への接続

(1) 改修時に機器に接続する配管は、既設配管及びダクトとの取合いを行って製作・施工する。また、接続は、フランジ接合等とし、火を使用する溶接接合は、原則として、禁止する。

第6節 勾配、吊り及び支持

2.6.1 勾配

- (1) 給水管、給湯管、消火管(ガス系消火管を除く。)、冷却水管、冷温水管、ブライン管、高温水管及び油管の場合は、水抜き及び空気抜きが容易に行えるように適切な勾配を確保する。
- (2) 屋内横走り排水管の勾配は、原則として、呼び径 65 以下は最小 1/50、呼び径 75、100 は最小 1/100、呼び径 125 は最小 1/150、呼び径 150 以上は最小 1/200 とする。また、通気管は、全ての立て管に向って上り勾配をとり、いずれも逆勾配又は凸凹部のないようにする。
- (3) 蒸気給気管は、原則として、先下り配管で、勾配は 1/250 とし、先上がりの場合は 1/80 とする。また、蒸気還管は、先下り配管とし、勾配は 1/200 から 1/300 とする。
- (4) ドレン管の勾配は、原則として、1/100以上とする。

2.6.2 吊り及び支持

2.6.2.1 一般事項

- (1) 屋内の配管の吊り、支持等の施工要領は、標準図(配管の吊り金物・形鋼振れ止め支持要領(一)、配管の吊り金物・形鋼振れ止め支持要領(二)、立て管の床固定要領)による。
- (2) 屋上の配管の施工要領は、標準図(屋上配管支持施工要領)によるものとし、防水層に 支障のないよう施工する。

なお、適用箇所は特記による。

- (3) 外壁の配管の施工要領は、特記による。特記が無ければ、配管の荷重を支持できる支持金物等を用いる。
- (4) 機器廻りの配管は、地震時等に加わる過大な力、機器の振動、管内流体の脈動等による力を抑えるために、次の固定又は支持を行う。
 - (ア) 冷凍機、ポンプ等に接続する呼び径100以上の配管は、床より形鋼で固定する。
 - (イ) 呼び径80以下の配管、空気調和機及びタンク類に接続する配管は、形鋼振れ止め支持とする。

なお、施工要領は、標準図(機器廻り配管吊り及び支持要領(一)、機器廻り配管吊り 及び支持要領(二))による。

(5) ステンレス鋼管及び銅管の支持及び固定に鋼製又は鋳鉄製の金物を使用する場合は、合成樹脂を被覆した支持及び固定金具を用いるか、ゴムシート又は合成樹脂の絶縁テープ等を介して取付ける。

なお、合成樹脂が破損しないように、締付ける。

- (6) インサート金物は、吊り用ボルトに対し、適正なサイズのものを選定する。
- (7) 壁貫通等で、形鋼による振れ止めと同等に振れを防止できる場合は、貫通部及び吊りを もって振れ止め支持とみなしてもよい。
- (8) 改修時に屋上の冷媒管を架台により支持する場合は、防水層に影響がないように、原則として躯体等に固定する。

2.6.2.2 横走り管の吊り及び振れ止め支持間隔

(1) 横走り配管は、吊り金物による吊り及び形鋼振れ止め支持を表 2.2.20 により行う。また、形鋼振れ止め支持を行う横走り主管の末端部には、形鋼振れ止め支持を行う。

	呼び径														
分類		15	20	25	32	40	50	65	80	100	125	150	200	250	300
吊り金物	鋼管及び		2.0m以下						3.	0m以	下				
による吊り	ステンレス鋼管														
	塩ビ管、		1.0m以下							2.0n	ı以下				
	耐火二層管及び														
	ポリエチレン管														
	銅管		1.0m以下						2. 0 m	ı以下					
	ポリブテン管	0.6m 以下	0.	7m以	下	1.0n 下		1.3m	以下	1.6m 以下			_		
形鋼振れ	鋼管及び			_				8. 0m	以下			12	2m以	下	
止め支持	ステンレス鋼管														
	塩ビ管、			6.	0m以	下		8.0m	以下			12	2m以	下	
	耐火二層管、														
	ポリエチレン管														
	及びポリブテン														
	管														
	銅 管			6.	0m以	下		8. 0 m	以下			12	2m以	下	

表2.2.20 横走り管の吊り及び振れ止め支持間隔

- (2) 次の配管の、形鋼振れ止め支持は不要とし、必要な場合の支持間隔は特記による。
 - (ア) 鋼管及びステンレス鋼管の呼び径 40 以下
 - (イ) 塩ビ管、耐火二層管、ポリエチレン管、ポリブテン管及び銅管の呼び径 20 以下の管
 - (ウ) 配管の吊り用ボルトの長さが均一で、20cm以下の場合
- (3) 直管部の長さが 25m を超える場合は、25m 以内ごとに、直管方向の形鋼振れ止め支持を 行う。ただし、表 2.2.20 で形鋼振れ止め支持を規定していない呼び径の配管は不要とす る。
- (4) 吊り用ボルトの径は、吊り荷重により適正なボルト径のものを選定する。ただし、鋼管及びステンレス鋼管の横走り管の吊り用ボルトの径は、配管呼び径 100 以下は呼称 M10 又は呼び径 9、呼び径 125 以上 200 以下は呼称 M12 又は呼び径 12、呼び径 250 以上は呼称 M16 又は呼び径 16 としてもよい。
- (5) ハウジング形管継手で接合されている呼び径 100 以上の配管は、吊り材長さが 400mm 以下の場合、吊り材に曲げ応力が生じないように、吊り用ボルトに替えてアイボルト、鎖等を使用して吊る(可動式のみ、固定式は除く。)。
- (6) 電動弁等の重量物及び可とう性を有する継手(排水鋼管用可とう継手、ハウジング形管

継手(可動式)等)を使用する場合は、表 2.2.20 のほか、その直近で吊る。曲部及び分岐箇所は、必要に応じて支持する。

- (7) 蒸気管の横走り管を、形鋼振れ止め支持により下方より支持する場合には、ローラ金物等を使用する。
- (8) 蒸気管の横走り管は、伸縮管継手と固定点との中間に標準図(伸縮管継手の固定及びガイド・座屈防止用形鋼振れ止め支持施工要領)による座屈防止用形鋼振れ止め支持を設ける。
- (9) 冷媒用銅管の吊り、支持等は次による。
 - (ア) 吊り金物の間隔は、銅管の基準外径が 9.52mm 以下の場合は 1.5m以下、12.70mm 以上 の場合は 2.0m以下とする。
 - (イ) 形鋼振れ止め支持の間隔は銅管による。ただし、液管・ガス管共吊りの場合は、液管 の外径とするが、液管 25mm 未満の形鋼振れ止めの支持の間隔は、ガス管の外径による。
 - (ウ) 冷媒管と制御線を共吊りする場合は、支持部で制御線に損傷を与えないようにする。

2.6.2.3 立て管の支持

(1) 複数階にわたって設置する立て管は、表 2.2.21 により固定(床)及び形鋼振れ止め支持を 行う。

施工の種別	管種	施工場所
固定(床)	鋼管及びステンレス鋼管	最下階の床又は最上階の床
回足(水)	(呼び径80以下は不要としてもよい。)	
形鋼振れ	鋼管及びステンレス鋼管	各階1箇所
止め支持	塩ビ管、耐火二層管及び	各階1箇所
	ポリエチレン管	
	銅管	各階1箇所

表 2.2.21 立て管の固定(床)及び振れ止め箇所

- (2) 呼び径80以下の配管の固定(床)は、不要としてもよい。
- (3) 鋼管及びステンレス鋼管で、床貫通等により振れが防止されている場合は、形鋼振れ止め支持を3階ごとに1箇所としてもよい。

なお、排水用可とう継手を使用する場合は、最下階の床に1箇所設ける。

- (4) 耐火二層管の立て管に伸縮継手を取付ける場合で伸縮継手直下に床貫通の振れ止め支持がされている場合は、伸縮継手の形鋼振れ止め支持の固定と共用してもよい。
- (5) 冷媒用銅管の立て管の振れ止めは、形鋼による支持に代えて、冷媒用銅管用の支持材を用いても良い。
- (6) 冷媒用銅管の立て管は、立て管長の中間部で1箇所固定し、他は配管の温度変化による 伸縮を妨げない支持とする。

第7節 地中配管

2.7.1 一般事項

(1) 給水管と排水管が平行して埋設される場合には、原則として、両配管の水平実間隔を 500mm 以上とし、かつ、給水管は排水管の上方に埋設するものとする。また、両配管が交差

する場合も、給水管は排水管の上方に埋設する。

- (2) 鋼管類を地中配管する場合は、2.7.3「防食処置」による防食処置を行う。
- (3) コンクリート類に埋設する熱伸縮を伴う管は、それを妨げない処置を行う。
- (4) 油管の地中配管で、ねじ接合を行う場合には、継手を標準図(点検口桝、注油口桝、フレキシブルジョイント桝及び点検ボックス)に示すコンクリート製の点検口桝内に設ける。
- (5) コンクリート管以外の管を地中埋設とする場合は、管及び被覆樹脂に損傷を与えないよう山砂の類で管の周囲を埋戻した後、掘削土の良質土で埋戻す。
- (6) 排水管として、コンクリート管又は塩ビ管を埋設する場合は、呼び径 300 以下の場合は根切り底を管の下端より 100mm 程度、呼び径 300 を超える場合は管の下端より 150mm 程度深く根切りをし、切込み砕石、切込み砂利又は山砂の類をやりかたにならい敷き込み、突き固めた後、管をなじみ良く布設する。

なお、継手箇所は、必要に応じて増し掘りをする。

埋戻しは、管が移動しないように管の中心線程度まで埋戻し、十分充塡した後、所定の 埋戻しを行う。

- (7) 埋設給水本管の分岐、曲り部等の衝撃防護措置は特記による。
- (8) 屋外地中配管の分岐及び曲り部には、標準図(地中埋設標)による地中埋設標を設置する。

なお、設置箇所は特記による。

- (9) 管を埋戻す場合は、土被り 150mm 程度の深さに埋設表示用アルミテープ又はポリエチレンテープ等を埋設する。ただし、排水管は除く。
- (10) 根切り、埋戻し、建設発生土の処理等は、4.2.1「一般事項」の当該事項による。
- (11) 改修時の舗装、養生等は、次による。
 - (ア) 管を埋設する部分の舗装等のはつり及び復旧工事の施工範囲及び舗装仕様は、特記による。
 - (イ) 埋設部分の既設配管接続では、土砂等が混入しないように周辺の養生及び整備を適切 に行う。
 - (ウ) 既設地中配管の経路が不明な場合は、監督職員と協議の上、試験掘りを行う。
 - (エ) 新設配管経路に埋設物等の障害が生じた場合は、監督職員と協議し、経路変更を行う。
 - (オ) 地盤対策が必要な場合は特記による。
 - (カ) 植栽・芝生・舗装・石貼・タイル等の移植及び撤去、復旧並びに再利用品等は特記による。
 - (キ) 構内作業に伴う、開削穴・マンホール開口部等は、作業員以外の者が容易に近づいて 墜落等の事故を起こさないように十分な防護処置を講ずる。

2.7.2 埋設深さ

(1) 管の地中埋設深さは、車両道路では管の上端より 600mm 以上、それ以外では 300mm 以上 とする。ただし、寒冷地では凍結深度以上とする。

2.7.3 防食処置

- (1) 地中埋設の鋼管類(排水配管の鋼管類、合成樹脂等で外面を被覆された部分及びステンレス鋼管(SUS316)は除く。)には、防食材による防食処理を次により行う。
 - (ア) ペトロラタム系を使用する場合は、汚れ、付着物等の除去を行い、プライマーを塗布し、防食テープを 1/2 重ね 1 回巻きの上、プラスチックテープを 1/2 重ね 1 回巻きとする。継手等のように巻きづらいものは、凹部分にペトロラタム系のマスチックを詰め、表面を平滑にした上で、防食シートで包み、プラスチックテープを 1/2 重ね 1 回巻きとする。
 - (4) ブチルゴム系を使用する場合は、汚れ、付着物等の除去を行い、プライマーを塗布し、 絶縁テープを 1/2 重ね 2 回巻きとする。継手等のように巻きづらいものは、凹部分にブ チルゴム系のマスチックを詰め、表面を平滑にした上で、絶縁シートで包み、さらにプ ラスチックテープのシート状のもので覆い、プラスチックテープを 1/2 重ね 1 回巻きと する。
 - (ウ) 熱収縮チューブ及び熱収縮シートを使用する場合は、汚れ、付着物等の除去を行い、 チューブは1層、シートは2層重ねとし、プロパンガスバーナーで均一に加熱収縮させる。
- (2) 油管の地中配管は、「危険物の規制に関する技術上の基準の細目を定める告示」(昭和 49 年自治省告示第 99 号)第3条の規定による塗覆装若しくはコーティング又はこれと同 等以上の防食効果のある材料・方法で所轄消防署が承認したもので防食措置を行う。

第8節 貫通部の処理

2.8.1 一般事項

(1) 建築基準法施行令(昭和25年政令第338号)第112条第20項に規定する準耐火構造等の防火区画等を不燃材料の配管が貫通する場合は、その隙間をモルタル又はロックウール保温材で充填する。また、不燃材料以外の配管が防火区画等を貫通する場合は、建築基準法令に適合する工法とする。

なお、施工要領は、標準図(配管の防火区画貫通部施工要領)による。

- (2) 保温を行わない配管で、天井、床、壁等を貫通する見え掛り部には、管座金を取付ける。
- (3) 外壁を貫通する配管とスリーブとの隙間は、バックアップ材等を充塡し、シーリング材によりシーリングし、水密を確保する。
- (4) 地中部分で水密を要する部分のスリーブは、つば付き鋼管とし、配管はスリーブと触れないように施工する。

第9節 試験

2.9.1 一般事項

- (1) 試験は、次のいずれかの施工前に行う。
 - (ア) 隠ぺい又は埋戻し
 - (4) 配管完了後の塗装(ねじ部のさび止めペイントは除く。)
 - (ウ) 保温施工

2.9.2 冷温水、冷却水、蒸気、油、ブライン、高温水及び冷媒配管

(1) 次の圧力値による耐圧試験を行う。 なお、保持時間は、冷媒管を除き、最小30分とする。

- (ア) 蒸気管及び高温水管は水圧試験とし、最高使用圧力の2倍の圧力(その値が0.2MPa未満の場合は、0.2MPa)とする。
- (イ) 油管は空気圧試験とし、最大常用圧力の 1.5 倍の圧力とする。
- (ウ) 水配管は水圧試験とし、最高使用圧力の 1.5 倍の圧力 (その値が 0.75MPa 未満の場合は、0.75MPa) とする。
- (エ) ブライン管は水圧試験とし、最高使用圧力の 1.5 倍の圧力 (その値が 0.75MPa 未満の場合は、0.75MPa) とする。
- (オ) 冷媒管は、JRA-GL14「フロン類を用いた冷凍空調機器の冷媒漏えいガイドライン」による気密試験を行う。気密試験後は、全系統の高真空蒸発脱水処理を行う。

2.9.3 給水及び給湯配管

- (1) 水道事業者及び規格類に試験の規定がない給水管及び給湯管は、次の水圧試験を行う。
 - (ア) 保持時間は最小60分とし、試験圧力は配管の最下部におけるものとする。
 - (イ) 試験圧力は次による。ただし、試験圧力に満たない耐圧の配管、弁類等を接続する場合は、その耐圧を超えない試験圧力での試験とする。
 - (a) 給水装置に該当する管は、1.75MPa以上とする。
 - (b) ポンプの圧力がかかる配管は、当該ポンプの全揚程に相当する圧力の 2 倍の試験圧力かつ 0.75MPa 以上とする。
 - (c) 高置タンク以下の配管は、静水頭に相当する圧力の 2 倍の試験圧力かつ 0.75MPa 以上とする。
- (2) 飲料水以外の給水管は、誤接続がないことを確認するため衛生器具等の取付け完了後、 系統ごとに着色水を用いた通水試験等を行う。

2.9.4 排水及び通気配管

(1) 排水管は、満水試験を行い、衛生器具等の取付け完了後、通水試験を行う。また、ドレン管は、通水試験を行う。

なお、保持時間は、満水試験にあっては最小30分とする。

(2) 排水ポンプ吐出し管は、2.9.3「給水及び給湯配管」(1)による。

2.9.5 消火配管

- (1) 試験は、次によるほか、「消防用設備等の試験基準の全部改正について」(平成 14 年消 防予第 282 号)に基づく外観試験及び性能試験を行う。
 - (ア) 水配管は、次の圧力値による水圧試験を行う。 なお、保持時間は、最小60分とする。
 - (a) 各消火ポンプに連結される配管は、当該ポンプの締切圧力の 1.5 倍の圧力とする。
 - (b) 連結送水管送水口等、各種送水口に連結される配管は、配管の設計送水圧力(ノズル先端における放水圧力が0.6MPa(消防長又は消防署長が指定する場合にあっては、当該指定放水圧力)以上になるように送水した場合の送水口における圧力をいう。)の1.5倍の圧力とし、(a)と兼用される配管は、(a)、(b)いずれか大なる圧力とする。
 - (イ) 不活性ガス消火配管、ハロゲン化物消火配管及び粉末消火配管は、配管完了後、空気 又は窒素ガスにより、次の圧力値による気密試験を行う。

なお、保持時間は最小10分とする。

- (a) 不活性ガス消火配管及びハロゲン化物消火配管の圧力値は、次による。
 - ① 不活性ガス消火配管の場合の貯蔵容器から選択弁までの配管は、40℃における貯蔵容器内圧力値とする。ただし、容器弁に圧力調整装置が設けられている場合は、

圧力調整装置の最高調整圧力とする。

- ② ハロゲン化物消火配管の場合の貯蔵容器から選択弁までの配管は、40℃における 貯蔵容器内圧力値 4.4MPa とする。
- ③ 選択弁から噴射ヘッドまでの配管は、最高使用圧力(初期圧力降下計算を行った 結果得られた値。以下同じ。)とする。
- ④ 選択弁を設けない場合、貯蔵容器から噴射ヘッドまでの配管は、最高使用圧力とする。
- (b) 粉末消火配管の圧力値は、次による。
 - ① 貯蔵容器から選択弁までの配管は、圧力調整器の設定圧力とする。
 - ② 選択弁から噴射ヘッドまでの配管は、最高使用圧力(初期圧力降下計算を行った 結果得られた値。以下同じ。)とする。
 - ③ 選択弁を設けない場合、貯蔵容器から噴射ヘッドまでの配管は、最高使用圧力とする。

2.9.6 二酸化炭素消火配管

- (1) 改修時の二酸化炭素消火配管の試験は、次によるほか、「消防用設備等の試験基準の全部改正について」(平成14年消防予第282号)に基づく外観試験及び性能試験を行う。
- (2) 二酸化炭素消火配管は、配管完了後、空気又は窒素ガスにより、次の圧力値による気密 試験を行う。

なお、保持時間は最小10分とする。

- (ア) 貯蔵容器から選択弁までの配管は、6.0MPaとする。
- (イ) 選択弁から噴射ヘッドまでの配管は、最高使用圧力(初期圧力降下計算を行った結果 得られた値。以下同じ。)とする。
- (ウ) 選択弁を設けない場合、貯蔵容器から噴射ヘッドまでの配管は、最高使用圧力とする。

2.9.7 既設配管との接続部等

- (1) 改修時の既設配管との接続等部の試験は、次による。
 - (ア) 新設配管の試験は、既設配管との接続前に行う。
 - (イ) 既設配管との接続部等、既設配管を含む部分の試験方法及び試験圧力は特記による。 また、特記により、システム全体の試験を行う場合は、既設配管及び機器に損傷を与え ないよう十分に調査する。

なお、規定圧力まで昇圧することができない場合は、直ちに試験を中止し、監督職員と協議する。

- (ウ) 給水・給湯等の飲料用配管は、水質検査を行う。
- (エ) 排水管において部分改修の場合は、監督職員と協議し、通水試験等を行う。

第10節 撤去

2.10.1 一般事項

(1) 第1編第4章「撤去」及び第5章「発生材の処理等」によるほか、特記による。

2.10.2 既設配管の撤去

- (1) 既設配管を撤去する場合は、保温材等と分離する。
- (2) 既設配管の撤去範囲は特記による。ただし、その位置で不具合が生じた場合又は接続が不可能若しくは危険と判断される場合は、監督職員と協議する。
- (3) 配管の切断・切離しをする前に、既設バルブで確実に止水できることを確認する。

- (4) 止水後、水栓や水抜きバルブより水抜きを行い、管内容物を確実に排出したことを確認 した後、管の切断・切離しを行う。
 - なお、管内容物を完全に排出できない場合は、監督職員と協議する。
- (5) 止水したバルブには、「閉」・「操作厳禁」の表示を行う。また、撤去する配管が接続している機器・器具には、「使用禁止」の表示を行う。
- (6) 配管切断位置に分岐バルブがない場合又は既設バルブで確実に止水できない場合は、監督職員と協議する。
- (7) 配管を切断する場合は、原則として、火を使わない工法又は工具を使用する。
- (8) 配管を切断する場合は、保温材等を撤去し、電線等他の材料に影響を及ぼさないことを確認する。
- (9) 給水、給湯等の飲料水系統の配管の場合は、水質汚染に十分注意する。
- (10) 既設配管切断後、施工を一時休止する場合は、既設管内への異物の混入防止、漏水や臭気の発生防止のための措置として、既設配管端部をエンドキャップ、閉止フランジ、プラグ等で適切に閉止する。また、誤接続防止のための措置として、配管の用途を表示する。
- (11) 既設配管の機能のみを停止し、管を現状のまま残置する場合は、管内容物を排出したことを確認し、既設配管端部をエンドキャップ、閉止フランジ、プラグ等で閉塞処置を行うとともに「機能停止」の表示を行う。
- (12) 燃料配管を撤去する場合は、撤去に先立ち、廃油の回収を行うとともに、内部の洗浄を 行う。また、撤去に際しては、火気の使用を禁止する。

なお、廃油の回収方法及び内部の洗浄方法は、第1編5.1.2「産業廃棄物等」(4)による。

2.10.3 既設配管の搬出

(1) 撤去する配管は、搬出に支障のない長さに切断する。

第3章 保温、塗装及び防錆工事

第1節 保温工事

3.1.1 一般事項

(1) 保温工事の施工箇所、使用する材料、厚さ等は、特記による。特記がなければ次による。

3.1.2 材料

(1) 保温工事における材料は、標準仕様書第2編第3章第1節「保温工事」による。

3.1.3 施工

- (1) 保温の厚さは、保温材主体の厚さとし、外装及び補助材の厚さは、含まないものとする。
- (2) 保温材相互の間隙はできる限り少なくし、重ね部の継目は同一線上を避けて取付ける。
- (3) ポリスチレンフォーム保温筒は、合わせ目を全て粘着テープで止め、継目は、粘着テープ 2 回巻きとする。

なお、継目間隔が 600mm 以上 1,000mm 以下の場合は、中間に 1 箇所粘着テープ 2 回巻きを行う。

- (4) 鉄線巻きは、原則として、帯状材の場合は、50mm ピッチ(スパイラルダクトの場合は 150mm ピッチ)以下にらせん巻き締め、筒状材の場合は1本につき2箇所以上、2巻き締めとし、ロックウールフェルト及び波形保温板の場合は、1枚につき500mm 以下に1箇所以上、2巻き締めとする。
- (5) アルミガラスクロス化粧保温帯、アルミガラスクロス化粧ロックウールフェルト、アルミガラスクロス化粧保温筒及びアルミガラスクロス化粧波形保温板は、合わせ目及び継目を全てアルミガラスクロス粘着テープで貼り合わせ、筒は継目間隔が 600mm 以上 1,000mm 以下の場合は中間に1箇所アルミガラスクロス粘着テープ2回巻きとし、スパイラルダクトへの保温帯、フェルト、波形保温板の取付けは、1枚が600mm 以上1,000mm 以下の場合は、1箇所以上アルミガラスクロス粘着テープ2回巻きとする。
- (6) テープ巻きその他の重なり幅は、原則として、テープ状の場合は 15mm 以上 (ポリエチレンフィルムの場合は 1/2 重ね以上)、その他の場合は 30mm 以上とする。
- (7) テープ巻きは、配管の下方より上向きに巻き上げる。アルミガラスクロス巻き等で、ずれるおそれのある場合には、粘着テープ等を用いてずれ止めを行う。
- (8) アルミガラスクロス化粧原紙の取付けは、30mm 以上の重ね幅とし、合わせ目は 150mm 以下のピッチでステープル止めを行う。合わせ目及び継目を全てアルミガラスクロス粘着テープで貼合わせる。
- (9) アルミガラスクロス化粧保温筒のワンタッチ式(縦方向の合わせ目に貼り合わせ用両面 粘着テープを取付けたもの。)の合わせ目は、接着面の汚れを十分に除去した後に貼合わ せる。
- (10) 合成樹脂製カバー1の取付けは、重ね幅は25mm以上とし、直管方向の合わせ目を両面テープで貼合せた後、150mm以下のピッチで、合成樹脂製カバー用ピンで押さえる。立て管部は、下からカバーを取付け、ほこり溜まりのないよう施工する。
- (11) 合成樹脂製カバー2の取付けは、合成樹脂製シート端部の差込みジョイナーに、ボタンパンチを差し込んで接合し、エルボ部分と直管部分の継目は、シーリングを行う。立て管部は、下からカバーを取付け、ほこり溜まりのないよう施工する。
- (12) 合成樹脂製カバー3の取付けは、はめあい等により、合わせ目が開かないよう、すき間なく施工する。
- (13) 金属板巻きは、管の場合ははぜ掛け又はボタンパンチはぜ、曲り部はえび状又は整形カ

バーとし、長方形ダクト及び角形タンク類ははぜ掛け、継目は差込みはぜとする。丸形タンクは差込みはぜとし、鏡部は放射線形に差込みはぜとする。

なお、タンク類は、必要に応じて、重ね合せの上、ビス止めとしてもよい。屋外及び屋内多湿箇所の継目は、シーリング材等によりシールを施す。

シーリング材を充塡する場合は、油分、じんあい、さび等を除去してから行う。また、 温度、湿度等の気象条件が充塡に不適当なときは作業を中止する。

- (14) 鋲の取付数は、原則として、300mm 角当たりに1個以上とし、全ての面に取付ける。 なお、絶縁座金付銅製スポット鋲以外の場合は、鋲止め用平板(座金)を使用する。
- (15) 屋内露出の配管及びダクトの床貫通部は、その保温材保護のため、床面より少なくとも高さ150mmまでステンレス鋼板で被覆する。ただし、外装材に塗装亜鉛系めっき鋼板等の金属板を使用する場合を除く。

蒸気管等が壁、床等を貫通する場合には、その面から 25mm 以内は保温を行わない。

- (16) 屋内露出配管の保温見切り箇所には、菊座を取付ける。
- (17) 保温の見切り部端面は、使用する保温材及び保温目的に応じて必要な保護を行う。
- (18) 保温を必要とする機器の扉、点検口等は、その開閉に支障がなく、保温効果を減じないように施工する。
- (19) 絶縁継手廻り(絶縁フランジを含む。)は、金属製のラッキングを行ってはならない。
- (20) グラスウール保温板 (32K) をスパイラルダクトへ取付ける場合は、保温厚さが復元した後に行い、鉄線巻きは 150mm ピッチ以下にらせん巻き締めし、500mm 以下に1箇所以上、2巻き締めとする。

なお、鉄線の締めすぎに注意する。

(21) アルミガラスクロス化粧グラスウール保温板(32K)をスパイラルダクトへ取付ける場合は、保温厚さが復元した後に行い、合わせ目及び継ぎ目を全てアルミガラスクロス粘着テープで貼合わせ、1枚が600mm以上1,000mm以下の場合は1箇所以上アルミガラスクロス粘着テープ2回巻きとする。

なお、アルミガラスクロス粘着テープの締めすぎに注意する。

3.1.4 空気調和設備工事及び衛生設備工事の保温

(1) 空気調和設備工事及び衛生設備工事の保温は、標準仕様書第2編第3章第1節「保温工事」による。

第2節 塗装及び防錆工事

3.2.1 塗装

3.2.1.1 一般事項

(1) 塗装は、次の事項及び各編に定める事項のほか、公共建築工事標準仕様書(建築工事編) (以下「標準仕様書(建築工事編)」という。) 18 章「塗装工事」による。

なお、機器及び盤類は、製造者の標準仕様とする。

- (ア) 本節で規定する塗料を屋内で使用する場合のホルムアルデヒド放散量は、JIS 等の材料規格において放散量が規定されている場合、特記がなければ、F☆☆☆☆とする。
- (4) 塗装を適用する箇所は各編によるほか、特記による。 なお、塗装仕様については、3.2.1.4「塗装箇所の塗料の種別及び塗り回数」によるも のとする。
- (ウ) 塗料は、原則として、調合された塗料をそのまま使用する。ただし、素地面の粗密、

吸収性の大小、気温の高低等に応じて、塗装に適する粘度に調節することができる。

- (エ) 仕上げの色合いは、見本帳又は見本塗り板を監督職員に提出し、承諾を受ける。
- (オ) 各塗装工程の工程間隔時間及び最終養生時間は、材料の種類、気象条件等に応じて適切に定める。
- (カ) 工場塗装を行ったもので、工事現場搬入後に損傷した箇所は直ちに補修する。
- (キ) 検査を要するものの塗装は、当該部分の検査の終了後に施工する。やむを得ず検査前に塗装を必要とするときは、事前に監督職員の承諾を受ける。
- (1) 塗装面、その周辺、床等に汚損を与えないように注意し、必要に応じて、あらかじめ 塗装箇所周辺に適切な養生を行う。
- (ケ) 塗装作業環境は、次による。
 - (a) 塗装場所の気温が5℃以下、湿度が85%以上、換気が十分でなく結露する等、塗料 の乾燥に不適当な場合は、原則として、塗装を行ってはならない。
 - (b) 外部の塗装は、降雨のおそれのある場合及び強風時には、原則として、行ってはならない。
 - (c) 塗装を行う場所は、換気に注意して、溶剤による中毒を起こさないようにする。
 - (d) 火気に注意し、爆発、火災等の事故を起こさないようにする。また、塗料をふき取った布、塗料の付着した布片等は、自然発火を起こすおそれがあるので、作業終了後速やかに処置する。

3.2.1.2 素地ごしらえ

(1) 塗装を施す素地ごしらえは、表 2.3.8 による。

用 工程順序 処 理 方 法 涂 合成樹脂調合ペイント塗 スクレーパー、ワイヤブラシ等 さび、汚れ及び付着物の除去 1 油類の除去 り等を施す鉄面 揮発油ぶき 合成樹脂調合ペイント塗 1 汚れ及び付着物の除去 スクレーパー、ワイヤブラシ等 り等を施す亜鉛めっき面 油類の除去 揮発油ぶき

表2.3.8 塗装を施す素地ごしらえ

3.2.1.3 塗料種別

- (1) 特記がなければ、合成樹脂調合ペイント塗りの塗料は、JIS K 5516「合成樹脂調合ペイント」の1種とし、アルミニウムペイント塗りの塗料は、JIS K 5492「アルミニウムペイント」とする。
- (2) さび止め塗料の種別は、表 2.3.9 による。

表2.3.9 さび止め塗料の種別

涂 壮 笠 正	さ び 止 め 塗 料 そ の 他					
塗 装 箇 所	規格番号	規格名称	規格種別			
亜鉛めっき以外の鉄面	JIS K 5621	一般用さび止めペイント	2 種			
			4種			
	JASS 18 M-111	水系さび止めペイント				
	JIS K 5674	鉛・クロムフリーさび止めペイント	1 種			
			2種			
亜鉛めっき面	JPMS 28	一液形変性エポキシ樹脂さび止めペイ				
		ント				
	JASS 18 M-109	変性エポキシ樹脂プライマー(変性エ				
		ポキシ樹脂プライマー及び弱溶剤系変				
		性エポキシ樹脂プライマー)				

注 JIS K 5621「一般用さび止めペイント」及びJASS 18 M-111「水系さび止めペイント」は、屋内のみとする。

3.2.1.4 塗装箇所の塗料の種別及び塗り回数

(1) 塗装箇所の塗料の種別及び塗り回数は、原則として、表 2.3.10 による。ただし、記載のないものについては、その用途、材質、状態等を考慮し、類似の項により施工する。なお、機器及び盤類は、製造者の標準仕様とする。

	塗 装 箇 戸		10 室表面//(少室//(少		きり回数		
設備区分	機材	状 態	塗料の種別	下塗り	中塗り	上塗り	備考
共通	支持金物及び架台類 (亜鉛めっきを施し た面を除く。)	露出	合成樹脂調合又は アルミニウムペイ ント	2	1	1	下塗りは、さび止めペイント
		隠ぺい	さび止めペイント	2	_	_	
	保温される金属下地		さび止めペイント	2	_	_	亜鉛めっき部を除く
	タンク類	外 面	合成樹脂調合ペイント	2	1	1	下塗りは、さび止めペイント
	鋼管及び継手 (黒管)	露出	合成樹脂調合ペイント	2	1	1	下塗りは、さび止めペイント
		隠ぺい	さび止めペイント	2	_	_	
	鋼管及び継手 (白管)	露出	合成樹脂調合ペイント	1	1	1	下塗りは、さび止めペイント
	蒸気管及び同用継手 (黒管)	露出	アルミニウムペイ ント	2	1	1	下塗りは、さび止めペイント
		隠ぺい	さび止めペイント	2	_	_	
	煙突及び煙道		耐 熱 塗 料	2	1	1	断熱なし。下塗りは、耐熱さ び止めペイント
			耐熱さび止めペイント	2	_	_	断熱あり
空気調和	ダ ク ト (亜鉛鉄板製)	露出	合成樹脂調合ペイント	1	1	1	下塗りは、さび止めペイント
和		内 面	合成樹脂調合ペイ ント (黒、つやけし)	_	1	1	室内外より見える範囲
	ダ ク ト (鋼板製)	露出	合成樹脂調合ペイント	2	1	1	下塗りは、さび止めペイント
		隠ぺい	さび止めペイント	2	_	_	
		内 面	さび止めペイント	2	_	_	

表2.3.10 塗装箇所の塗料の種別及び塗り回数

注 1. 耐熱塗料の耐熱温度は、ボイラー用では400℃以上のものとする。

^{2.} さび止めペイントを施す面で、製作工場で浸漬等により塗装された機材は、搬入、溶接等により塗装のはく離した部分は、さび止めを考慮した補修を行った場合は、さび止めを省略することができる。

3.2.2 防錆

3.2.2.1 一般事項

(1) 各編で本項を指定したもの及び特記により指定された「防錆」の方法は、本項による。

3.2.2.2 防錆前処理

(1) 防錆処理(埋設配管で、防食テープ等による防食処置を行う部分を除く。)を施す金属面は、JIS Z 0313「素地調整用ブラスト処理面の試験及び評価方法」による「目視による洗浄度の評価」の除錆度の評価 Sa 2 1/2 (拡大鏡なしで、表面には目に見えるミルスケール、さび、塗膜、異物、油、グリース及び泥土がなく、残存する全ての汚れはその痕跡が斑点又はすじ状の僅かな染みとなって認められる程度)以上のブラスト仕上げの前処理を行う。ただし、有機質亜鉛末塗料による場合は除く。

3.2.2.3 エポキシ樹脂ライニング

- (1) エポキシ樹脂塗料は、エポキシ基2個以上を有するエポキシ樹脂に所要の硬化剤及び充填剤を添加したものとする。また、飲料用の機器等の場合は、硬化した皮膜は、「食品、添加物等の規格基準」(昭和34年厚生省告示第370号)に規定する試験に適合するものとする。
- (2) ライニングは、防錆前処理を行った後に施し、乾燥方法は加熱硬化又は常温硬化により、 完全に硬化させる。
- (3) 加熱硬化による乾燥を行う場合の温度及び時間は、100℃以上で4時間以上とする。
- (4) タンク内面に施す皮膜厚さは、0.4mm以上とする。

3.2.2.4 溶融亜鉛めっき

(1) めっきは、JIS H 8641「溶融亜鉛めっき」によるものとし、めっきの種類は、各編による。

3.2.2.5 電気亜鉛めっき

(1) めっきは、JIS H 8610「電気亜鉛めっき」の2級とし、クロメートフリー処理を施した ものとする。

なお、本項は屋内に使用する鋼材の防錆処理に適用する。

3.2.2.6 溶融アルミニウムめっき

(1) めっきは、JIS H 8642「溶融アルミニウムめっき」の2種とする。

3.2.2.7 有機質亜鉛末塗料

(1) 有機質亜鉛末途料は、JIS K 5553「厚膜形ジンクリッチペイント」とする。

第4章 関連工事

第1節 仮設工事

4.1.1 一般事項

(1) 仮設工事は、第1編2章「仮設工事」による。

第2節 土工事

4.2.1 一般事項

- (1) 十工事は、次によるほか、標準仕様書(建築工事編)3章「十工事」による。
 - (ア) 根切りは、周辺の状況、土質、地下水の状態等に適した工法とし、関係法令等に基づき、適切な法面又は山留めを設ける。
 - (4) 地中埋設物は、事前に調査を行い給排水管、ガス管、配線等に影響がないように施工する。

なお、給排水管、ガス管、配線等を掘り当てた場合には、これらを損傷しないように 注意するとともに、必要に応じて緊急処置を行い、監督職員及び関係者と協議して処理 する。

- (ウ) 地中配管の根切りは、必要な勾配を保持することができ、かつ、管の接合が容易に行える掘削幅及び掘削深さとする。
- (エ) タンク類の基礎や桝等の根切りは、型枠の組立て、取外しを見込んだ掘削幅及び掘削 深さとする。
- (オ) 地中配管を除き、埋戻し及び盛土は、特記がなければ、根切り土の中の良質土を使用し、十分な締め固めを行う。

なお、特記により山砂の類を使用する場合は、十分な締め固めを行い、水締めを行う。

(カ) 建設発生土の処理は特記による。特記がなければ、工事現場外に搬出し、関係法令等に基づき、適切に処理する。

第3節 地業工事

4.3.1 一般事項

- (1) 地業工事は、次によるほか、標準仕様書(建築工事編)4章「地業工事」による。
 - (ア) 砂利地業は、次による。
 - (a) 砂利は、再生クラッシャラン、切込砂利又は切込砕石とし、粒度は JIS A 5001「道路用砕石」による C-40 程度のものとする。
 - (b) 根切り底に砂利を敷きならし、十分に締め固める。
 - (c) 砂利地業の厚さは、100mm以上とする。
 - (イ) 捨コンクリート地業は、次による。
 - (a) 捨コンクリートの設計基準強度は、18N/mm²以上とする。
 - (b) 捨コンクリートの厚さは、50mm以上とする。

第4節 コンクリート工事

4.4.1 一般事項

- (1) コンクリート工事は、次によるほか、標準仕様書(建築工事編)5章「鉄筋工事」及び6章「コンクリート工事」による。
 - (ア) コンクリートは次によるほか、その種類は普通コンクリートとし、原則として、レデ

ィーミクストコンクリートとする。レディーミクストコンクリートは、JIS Q 1001「適合性評価-日本産業規格への適合性の認証-一般認証指針(鉱工業品及びその加工技術)」及び JIS Q 1011「適合性評価-日本産業規格への適合性の認証-分野別認証指針(レディーミクストコンクリート)」に基づき、JIS A 5308「レディーミクストコンクリート」への適合を認証されたものとする。ただし、コンクリートが少量の場合等は、監督職員の承諾を受けて、現場練りコンクリートとすることができる。

- (a) コンクリートの設計基準強度は、特記がなければ、18N/mm²以上、スランプは 15cm 又は 18cm とし、施工に先立ち、調合表を監督職員に提出する。ただし、少量の場合等 は、監督職員の承諾を受けて、省略することができる。
- (b) セメントは、JIS R 5210「ポルトランドセメント」による普通ポルトランドセメント又は JIS R 5211「高炉セメント」、JIS R 5212「シリカセメント」、JIS R 5213「フライアッシュセメント」のA種のいずれかとする。
- (c) 骨材の種類及び品質は、JIS A 5308「レディーミクストコンクリート」の附属書A (規定) [レディーミクストコンクリート用骨材] によるものとし、骨材の大きさは、原則として、砂利は 25mm 以下、砕石は 20mm 以下とする。ただし、基礎等で断面が大きく鉄筋量の比較的少ない場合は、砂利は 40mm 以下、砕石は 25mm 以下とすることができる。
- (イ) 鉄筋は、JIS G 3112「鉄筋コンクリート用棒鋼」によるものとする。ただし、少量の場合で監督職員の承諾を受けたものは、この限りでない。

第5節 左官工事

4.5.1 一般事項

- (1) 左官工事は、次によるほか、標準仕様書(建築工事編)15章「左官工事」による。
 - (ア) モルタル塗りは、次による。
 - (a) セメントは、4.4.1「一般事項」(1)(ア)(b)による。
 - (b) 調合は、容積比でセメント1:砂3とする。
 - (c) モルタルの塗り厚は、15mm 以上とし、1回の塗り厚を7mm 程度とする。
 - (d) 下地は、清掃の上適度の水湿しを行う。

第6節 鋼材工事

4.6.1 一般事項

(1) 本節は、各編の鋼製架台、はしご等の機器附属金物並びに配管及びダクトの支持金物に 適用する。

4.6.2 材料

(1) 鋼板、形鋼、棒鋼、平鋼又は軽量形鋼によるものとし、3.2.1.4「塗装箇所の塗料の種別及び塗り回数」を施したものとする。ただし、屋外露出部分は3.2.2.4「溶融亜鉛めっき」によるHDZT49を施したもの又はステンレス鋼製(SUS304)とする。

なお、現場等で、亜鉛めっきを施した鋼材を加工した部分は、有機質亜鉛末塗料で補修 を行う。

(2) ボルト及びナットは、JIS B 1180「六角ボルト」及び JIS B 1181「六角ナット」による鋼材 (SS400) とし、座金は、JIS B 1256「平座金」によるもので、3.2.2.4「溶融亜鉛めっき」による HDZT49 を施したもの又は 3.2.2.5「電気亜鉛めっき」を施したものとす

る。ただし、屋外部分は 3.2.2.4 「溶融亜鉛めっき」による HDZT49 を施したもの又はステンレス鋼製 (SUS304) とする。

4.6.3 溶接

- (1) 溶接工は、配管の場合は 2.5.15「溶接接合」によるものとし、配管以外の場合は、JIS Z 3801「手溶接技術検定における試験方法及び判定基準」に示す試験等による技量を有する者又は監督職員が同等以上の技量を有すると認めた者とする。ただし、軽易な作業と監督職員が認め、承諾を得た者については、この限りでない。
- (2) 溶接作業環境は次による。
 - (ア) 溶接作業場所は、必要な設備と良好な作業環境を整えなければならない。
 - (イ) 溶接作業中は、漏電、電撃、アーク等による人身事故及び火災防止の処置を十分に行う。
 - (ウ) 亜鉛蒸気等の有毒ガスの発生のおそれのある場合は、保護具を着用するとともに十分 な換気を行う。
- (3) 溶接棒は、JIS Z 3211「軟鋼、高張力鋼及び低温用鋼用被覆アーク溶接棒」、JIS Z 3201 「軟鋼用ガス溶加棒」によるもの又はこれと同等以上のものとする。
- (4) 溶接面は、溶接に先立ち、水分、油、スラグ、塗料等溶接の障害となるものを除去する。
- (5) 溶接作業に際しては、適切な工具を用い、適切な電圧、電流及び溶接速度で作業を行う。
- (6) 溶接後は、溶接部をワイヤブラシ等で可能な限り清掃し、必要に応じて、グラインダー 仕上げをした後、有機質亜鉛末塗料で溶接面の補修を行う。
- (7) 溶接部は、溶接部全線にわたり目視検査を行い、割れ、アンダーカット、オーバーラップ、クレーター等の欠陥がないものとする。

第7節 電気設備工事

4.7.1 一般事項

(1) 電気設備工事は、公共建築改修工事標準仕様書(電気設備工事編)(以下「改修標準仕 様書(電気設備工事編)」という。)及び公共建築設備工事標準図(電気設備工事編)の 当該事項による。

第5章 はつり及び穴開け

第1節 一般事項

5.1.1 共通事項

- (1) 施工時間は、第1編1.3.3「施工条件」による。
- (2) はつり及び穴開け作業を行う場合は、埋設配管等に損傷を与えないように行う。 なお、放射線透過検査等による埋設物の調査を行う場合は特記による。
- (3) 電動ドリル等の刃が鉄筋、金属配管等に接触した場合に、自動で電動工具の電源を遮断する装置を使用する。
- (4) 特記以外の場所を施工する場合は、監督職員と協議する。

5.1.2 非破壞検査

- (1) 放射線透過検査は、特記により行うものとし、労働安全衛生法、「電離放射線障害防止規則」(昭和47年労働省令第41号)等に定めるところによるほか、次による。
 - (ア) 作業主任者は、エックス線作業主任者の資格を有する者とし、資格を証明する資料を 監督職員に提出する。
 - (イ) 放射線照射量は最小限のものとし、照射中は人体に影響のない程度まで照射器より離れる。また、作業者以外の立入り禁止措置を講ずる。
 - (ウ) 露出時間は、コンクリートの厚さ等により、適宜調整する。
 - (エ) 付近にフィルム、磁気ディスク等放射線の影響を受けるものの有無を確認する。
 - (オ) 躯体の墨出しは、表裏でズレがないよう措置を講ずる。

5.1.3 穴開け及び補修

(1) 既存のコンクリート床、壁等の配管貫通部の穴開けは、原則として、ダイヤモンドカッターによる。

なお、貫通場所、口径等は特記による。

- (2) ダイヤモンドカッターを使用する場合は、ノロ、ガラ、発生水等の処理及び養生を行う。
- (3) 穴開け完了後の貫通穴の確認を行い、必要に応じて養生を確実に行う。
- (4) ダイヤモンドカッターを固定するためのアンカー打ちは、6.1.3「あと施工アンカー」による。
- (5) 配管施工完了後、必要に応じて、モルタル又はロックウールを充塡する。 なお、ロックウールの場合は、脱落防止の処置を施す。
- (6) ダクト用開口でクラッシャー工法等、他の工法を採用する場合は、監督職員と協議する。

5.1.4 溝はつり及び補修

- (1) 無筋コンクリート等の溝はつりを行う場合は、次による。
 - (ア) 原則として、はつりを行う箇所にカッターを入れた後、手はつり又は電動ピックで行う。
 - (イ) 配管完了後、モルタルを充塡し、金ごて仕上げをする。
 - (ウ) はつりガラ及び粉じんの飛散防止及び養生を行う。

5.1.5 既設基礎の解体はつり

- (1) 解体基礎の仕様(有筋・無筋、防水・非防水、寸法等)は特記による。
- (2) はつりガラ、粉じん等の飛散防止を行う。
- (3) 周辺機器等の養生が必要な場合は、監督職員と協議する。
- (4) 防水層等の補修が必要な場合は、監督職員と協議する。
- (5) 基礎の解体・撤去後の床面仕上げ及び補修は特記による。また、この場合のはつりは、

床仕上げを考慮した深さまで行う。

5.1.6 開口補修

(1) 既設配管等の撤去後の補修は、隙間にモルタル等を充塡する。

第6章 インサート及びアンカー

第1節 一般事項

6.1.1 共通事項

- (1) 既存のインサート及びアンカーボルトは、原則として、使用しない。やむを得ず既存のインサート及びアンカーボルトを再使用する場合は、状態及び強度を確認し、監督職員と協議のうえ、十分に清掃を行ってから使用する。また、引張強度の確認試験の適用は特記による。
- (2) アンカーの埋込深さ及び許容引抜荷重は特記がなければ、標準図(形鋼振れ止め支持部 材選定表(二)) による。

6.1.2 機器の固定

(1) 特記された機器に使用するアンカーは、耐震計算を行い選定する。

6.1.3 あと施工アンカー

- (1) あと施工アンカーの施工には、工事内容に相応した施工の指導を行う施工管理技術者を置く。
- (2) あと施工アンカー作業における技能者は、あと施工アンカー工事の施工に関する十分な 経験と技能を有するものとする。
- (3) 配管、ダクト、機器等の天井吊下げ用アンカーには、接着系アンカーを使用してはならない。

6.1.4 穿孔機械

- (1) 穿孔に使用する機械は、アンカーの種類、径及び長さ、施工条件等を勘案し、適切な機械を選定する。
- (2) 穿孔作業には、ハンマードリル又はダイヤモンドコアドリルを使用する。
- (3) 必要埋込み深さを確保するため、穿孔深さのドリルへの表示又はストッパー付きドリル の使用を行う。

第2節 施工

6.2.1 穿孔

- (1) 穿孔は、既存躯体に有害な影響を与えないように行う。
- (2) 埋込み配管等の探査の範囲及び方法は特記による。
- (3) 埋込み配管等に干渉した場合は、直ちに穿孔を中止し、監督職員に報告し、指示を受ける。
- (4) 鉄筋等に干渉した場合は、直ちに穿孔を中止し、あと施工アンカーによる引抜きコーン 状破壊の影響を受けない位置に再穿孔を行う。また、中止した孔はモルタルで充塡する。
- (5) 穿孔された孔内に水分があることが確認された場合は、監督職員に報告し、指示を受ける。
- (6) 穿孔された孔は、所定の深さがあることを確認する。
- (7) 穿孔後、切粉が残らないようブロア、ブラシ等で孔内を清掃する。

6.2.2 養生

(1) 接着系アンカーの場合は、所定の強度が発現するまで養生を行う。

6.2.3 確認試験

- (1) あと施工アンカーの性能確認試験の適用は特記による。
- (2) あと施工アンカーの施工後確認試験の適用は特記による。

第3編 空気調和設備工事

第1章 機材

第1節 一般事項

1.1.1 一般事項

(1) 機材は、標準仕様書第3編第1章「機材」によるほか、本章による。

第2節 空気調和機

1.2.1 マルチパッケージ形空気調和機

1.2.1.1 一般事項

- (1) マルチパッケージ形空気調和機は、標準仕様書第3編第1章第7節1.7.6「マルチパッケージ形空気調和機」によるほか、既設配管を再利用する場合は次の機能を備えたものとし、適用は特記による。
 - (ア) 運転時の冷媒圧力を調節できる機能
 - (イ) 必要に応じて、既設配管内の油等の回収機能
- (2) 既設配管を再利用する場合は、既存冷媒の種別は特記による。

1.2.2 ガスエンジンヒートポンプ式空気調和機

1.2.2.1 一般事項

- (1) ガスエンジンヒートポンプ式空気調和機は、標準仕様書第3編第1章第7節1.7.7「ガスエンジンヒートポンプ式空気調和機」によるほか、既設配管を再利用する場合は次の機能を備えたものとし、適用は特記による。
 - (ア) 運転時の冷媒圧力を調節できる機能
 - (イ) 必要に応じて、配管内の油等の回収機能
- (2) 既設配管を再利用する場合は、既存冷媒の種別は特記による。

第2章 施工

第1節 機器の据付け及び取付け

2.1.1 一般事項

- (1) 機器の据付けに際し、維持管理に必要なスペースを確保する。
- (2) 基礎は、機器運転時の全体荷重に耐えられる床又は地盤上に築造する。
- (3) 基礎は、標準基礎又は防振基礎とし、適用は特記による。
 - (ア) 標準基礎は、次による。
 - (a) コンクリート基礎とし、コンクリート打設後 10 日間以内に荷重をかけてはならない。また、表面は、金ごて押さえ又はモルタル塗りとし、据付け面を水平に仕上げたものとする。
 - (b) コンクリート工事及び左官工事は、第2編第4章「関連工事」の当該事項による。
 - (c) 基礎の大きさは、特記によるものとし、基礎の高さ、配筋要領等は、標準図(基礎 施工要領(一))による。
 - (4) 防振基礎は、標準基礎にストッパーを設けて、防振架台(製造者の標準仕様)を間接 的に固定するものとし、ストッパーは、水平方向及び鉛直方向の地震力に耐えるもので、 ストッパーと防振架台との間隙は、機器運転時に接触しない程度とする。また、地震時 に接触するストッパーの面には、緩衝材を取付ける。

なお、ストッパーの形状及びストッパーの取付要領は、標準図(基礎施工要領(三)、 基礎施工要領(四))による。

- (4) 鋼製架台は、機器の静荷重及び動荷重を基礎に完全に伝えるもので、建築基準法施行令 第 90 条及び第 92 条並びに第 129 条の 2 の 3 によるものとし、材料は、「鋼構造許容応力度 設計規準」(日本建築学会)に規定されたもの又はこれと同等以上のものとする。
- (5) 機器は、水平に、かつ、地震力により転倒、横滑りを起こさないように基礎、鋼製架台等に固定する。固定方法は、標準図(基礎施工要領(一)、基礎施工要領(二)、基礎施工要領(三)、基礎施工要領(四)、吊りボルトによる機器振れ止めの施工例、機器固定要領)による。

なお、機器は、地震時に設計用水平震度に機器の重量(kN)をかけた設計用水平地震力(kN)及び設計用鉛直震度に機器の重量(kN)をかけた設計用鉛直地震力(kN)が、重心に作用するものとし、設計用震度は特記による。ただし、特記がない場合は、次による。

(ア) 設計用水平震度は、表 3.2.1 による。

設 置 場 所*1	タンク以外の機器	タンク
上層階*2	1. 0	1.0
屋上及び塔屋	(1.5)	
中間階*3	0.6	0.6
	(1.0)	
1階及び地下階	0.4	0.6
	(0.6)	

表3.2.1 設計用水平震度

備考 () 内の数値は、防振支持の機器の場合を示す。

- 注 *1 設置場所の区分は機器を支持している床部分により適用し、床又は壁に支持される機器 は当該階を適用し、天井面より支持(上階床より支持)される機器は、支持部材取付床の 階(当該階の上階)を適用する。
 - *2 上層階は、2から6階建の場合は最上階、7から9階建の場合は上層2階、10から12階 建の場合は上層3階、13階以上の場合は上層4階とする。
 - *3 中間階は、1階及び地下階を除く各階で上層階に該当しない階とする。
- (4) 設計用鉛直震度は、設計用水平震度の1/2の値とする。
- (6) 機器廻り配管は、機器へ荷重がかからないように、第2編2.6.2.1「一般事項」の固定及 び支持を行う。
- (7) 改修時の基礎は、次による。
 - (ア) 機器用基礎の新設及び既設再使用は特記による。
 - (イ) 基礎の増設及び補修は特記による。

なお、基礎を増設する場合は、目荒らし後、増設基礎と既設基礎が一体となるように 施工する。

- (ウ) 屋上や機械室等で基礎の解体・増設及び補修に伴う防水層の補修は特記による。
- (エ) あと施工アンカーを使用する場合は、第2編6.1.3「あと施工アンカー」の項による。
- 2.1.2 ボイラー
- 2.1.2.1 鋼製ボイラー、鋼製小型ボイラー、鋼製簡易ボイラー、小型貫流ボイラー及び簡易貫流ボイラー
 - (1) 鋼製ボイラー、鋼製小型ボイラー、鋼製簡易ボイラー、小型貫流ボイラー及び簡易貫流

ボイラーの据付けは、本項によるほか、「ボイラー及び圧力容器安全規則」、地方公共団体の条例及び JIS B 8201「陸用鋼製ボイラー構造」の定めによる。

- (2) ボイラーの基礎は、構造計算で強度が確認された基盤上に築造する。
- (3) 据付けの際は、図面に従い、所定の位置及び四隅にやり方を施し、芯出し、水平、垂直、 適正勾配等を水準器、水糸、下げ振り等の測器で計測する。
- (4) 据付けは、サドル、ジャッキ等で仮受台に缶体を仮置きし、正確な据付位置を定めた後に行う。
- (5) ボイラーの組立ては、製造者の組立て仕様により行う。
- (6) 附属品及び金物の取付けは、取付けの前に異常の有無を点検し、接触面を清掃してから 行う。

2.1.2.2 鋳鉄製ボイラー及び鋳鉄製簡易ボイラー

- (1) 鋳鉄製ボイラー及び鋳鉄製簡易ボイラーの据付けは、本項によるほか、2.1.2.1「鋼製ボイラー、鋼製小型ボイラー、鋼製簡易ボイラー、小型貫流ボイラー及び簡易貫流ボイラー」の当該事項による。
- (2) ベースの組立ては、基礎上に墨打ちした線に合わせて、側ベース及び前後プレートを仮置きし、四隅の直角を定めた後、水準器でベースの水平を確認しながら締付けボルトの本締めを行う。
- (3) セクションの組立ては、製造者の組立て仕様により行う。

2.1.3 鋼板製煙道

(1) 煙道は、1.8m以下ごとに、標準図(ダクトの吊り金物・形鋼振れ止め支持要領)による 吊り又は支持を行い、ボルト等によりレベル調整し、煙突に上り勾配になるように接続す る。また、ブラケット又は受台により支持する場合は、支持面にローラ付き支持金物を設 けて行う。

なお、煙道の荷重が、直接、機器にかかってはならない。

(2) 主煙道は、7.2m以下ごとに、標準図(ダクトの吊り金物・形鋼振れ止め支持要領)による振れ止め支持を行う。

なお、壁貫通等で、形鋼による振れ止めと同等に振れを防止できる場合は、貫通部と吊り又は支持をもって振れ止め支持とみなしてもよい。

- (3) 煙道の継手には、シリカ、カルシア、マグネシアを主原料とした、厚さ 2.0mm 以上のアルカリアースシリケートウールガスケット (テープ状で耐熱温度が 600℃以上のもの)を使用し、ボルト及びナットで気密に締付ける。
- (4) 伸縮継手の滑動部及び煙突への差込み間隙には、シリカ、カルシア、マグネシアを主原料としたアルカリアースシリケートウール組ひも(ロープ状で耐熱温度が 600℃以上のもの)を使用し、ボルト及びナットで気密に締付ける。
- (5) 鋼板製煙道の伸縮部及び壁貫通部の施工要領は、標準図(鋼板製煙道の伸縮部及び壁貫 通部施工要領)による。
- (6) ばい煙濃度計及びばいじん量測定口は、横走り煙道の直線部でボイラーの放射熱を受けない位置に水平に取付ける。

2.1.4 地震感知器

(1) 地震感知器は、機械室の柱、壁等の主要構造部に取付ける。

2.1.5 給水軟化装置

(1) 給水軟化装置は、地震力により転倒しないように固定金物を用いて床又は壁に取付ける。

2.1.6 温水発生機

(1) 温水発生機の据付けは、2.1.2.1「鋼製ボイラー、鋼製簡易ボイラー、小型貫流ボイラー 及び簡易貫流ボイラー」及び2.1.2.2「鋳鉄製ボイラー及び鋳鉄製簡易ボイラー」の当該事項による。

2.1.7 冷凍機

- (1) 冷凍機の据付けは、本項によるほか、「冷凍保安規則」、「冷凍保安規則関係例示基準」 及び高圧ガス保安協会制定の「冷凍空調装置の施設基準」の定めによる。
- (2) 冷凍機の基礎は、構造計算で強度が確認された基盤上に築造する。
- (3) 冷凍機の基礎は、標準図(基礎施工要領(二)、基礎施工要領(三))による。
- (4) 冷凍機の据付けの際は、図面に従い、所定の位置及び四隅にやり方を施し、芯出し、水平、垂直、適正勾配等を水準器、水糸、下げ振り等の測器で計測する。
- (5) 冷凍機の据付けは、サドル、ジャッキ等で仮受台に缶体を仮置きし、正確な据付位置を 定めた後に行う。
- (6) 冷凍機の据付けに際し、ショートサーキット、障害物、騒音等の影響がないこと確認する。

2.1.8 コージェネレーション装置

- (1) コージェネレーション装置の据付けは、本項によるほか、消防法及び「電気設備に関する技術基準を定める省令」の定めによる。
- (2) 燃料電池を用いるコージェネレーション装置の設置は、JIS C 62282-3-300「定置用燃料電池発電システムー設置要件」による。
- (3) コージェネレーション装置の基礎等は、2.1.7「冷凍機」の当該事項による。
- (4) コージェネレーション装置の組立ては、製造者の組立て仕様により行う。
- (5) 外部配管との接続には、防振継手又はフレキシブルジョイントを用いて行う。
- (6) 煙道、蒸気管等には、保温を行う。ただし、蒸気トラップ、容易に人が触れない箇所等 を除く。
- (7) 排ガス管や排ガスダクトは、ロックウール保温材等により保温を行う。ただし、ロックウール保温材の耐熱温度を超える場合は、JIS A 9510「無機多孔質保温材 (けい酸カルシウム保温材)」によるものを使用する。

なお、保温材の厚さは特記による。

(8) 温水管及び継手は、亜鉛めっきを施していないものとする。

2.1.9 氷蓄熱ユニット

(1) 氷蓄熱ユニットの据付けは、2.1.7「冷凍機」の当該事項による。

2.1.10 冷却塔

- (1) 冷却塔は、構造計算で強度が確認されたコンクリート基礎又は鋼製架台に据付ける。 なお、冷却塔を屋上に据付ける場合は、建築基準法施行令第 129 条の 2 の 6 及び同令に 基づく告示の定めによる。
- (2) 冷却塔の据付けに際し、ショートサーキット、障害物、水滴の飛散、騒音等の影響がないことを確認する。

2.1.11 空気調和機

- (1) ユニット形空気調和機、コンパクト形空気調和機及びパッケージ形空気調和機の基礎は、標準図(基礎施工要領(三))による。
- (2) パッケージ形空気調和機の屋外機の据付けに際し、ショートサーキット、障害物、騒音

等の影響がないこと確認する。

2.1.12 ファンコイルユニット

- (1) 床置形は、固定金物又は補強された取付け穴を用いて、壁又は床に取付ける。
- (2) 天井吊形等は、地震力の計算又は製造者の試験に基づいた設置とする。 なお、支持をとる構造体からの距離を短くし、地震力による振動を抑制することで落下 を防ぐことができる場合は除く。
- (3) 天井吊形等の設置例を、標準図(吊りボルトによる機器振れ止めの施工例)に示す。

2.1.13 マルチパッケージ形空気調和機及びガスエンジンヒートポンプ式空気調和機

- (1) 屋内機の設置は、次による。
 - (ア) 床置形の基礎は、標準図(基礎施工要領(三))による。
 - (イ) 天井吊形及びカセット形の設置は、2.1.12「ファンコイルユニット」の当該事項による。
- (2) 屋外機の据付けに際し、ショートサーキット、障害物、騒音等の影響がないこと確認する。
- (3) 接続する既設配管の配管洗浄は、次の場合に行う。
 - (ア) 特記された場合。
 - (イ) 既設配管内の油等の回収機能がないマルチパッケージ形空気調和機又はガスエンジン ヒートポンプ式空気調和機を新設する場合。

2.1.14 全熱交換器

- (1) 全熱交換器及び床置形全熱交換ユニットの基礎は、標準図(基礎施工要領(三)の空気調和機)による。
- (2) 天井隠ぺい形全熱交換ユニットの設置は、2.1.12「ファンコイルユニット」の当該事項による。

2.1.15 放熱器

- (1) コイルが逆勾配にならないように、かつ、放熱の循環が阻害されないように取付ける。
- (2) 床置形は、固定金物を用いて、壁又は床に取付ける。

2.1.16 床暖房

- (1) 温水式床暖房は、次による。
 - (ア) 温熱源と放熱器間の配管は、折れ、傷等の損傷を与えないよう敷設し、温水配管相互 の接続は行わない。

なお、温熱源、温水式放熱器本体及び分岐ヘッダーへの接続は、製造者の標準仕様とし、分岐ヘッダー部は点検ができる位置に設ける。

- (4) 配管の劣化するおそれがある溶剤、油性マーキング、合成樹脂調合ペイント、軟質塩化ビニル(ビニルテープ等)等の可塑剤を含んだ材料と接触させないよう施工する。また、管端部の養生にビニルテープを使用した場合は、ビニルテープ部の管を除去してから施工する。
- (2) 電気式床暖房は、JIS C 3651「ヒーティング施設の施工方法」によるほか、発熱マット 及び発熱シートは、重ねたり、折り曲げたりしてはならない。
- (3) 操作パネルは、操作及び点検が容易な箇所に設置し、温度センサーは温度を正確に検出できる箇所を選定する。

2.1.17 ガス温水熱源機

(1) 床置形のガス温水熱源機は、地震動等により転倒しないように、固定金物を用いて床又

は壁に取付ける。

(2) 壁掛形のガス温水熱源機は、第 5 編 2.1.1「一般事項」の当該事項により取付ける。ただし、可燃性の取付面に、ガス機器防火性能評定 ((一財)日本ガス機器検査協会)を有しない機器を取付ける場合は、背部に耐熱板(アルミニウム板で絶縁した 3.2mm 以上の耐火ボード)を設ける。

2.1.18 送風機

2.1.18.1 遠心送風機

(1) 床置形の据付けは、標準図(基礎施工要領(四))の標準基礎又は防振基礎によるものとし、基礎の形式は特記による。

なお、特記がない場合は、標準基礎とする。

(2) 天井吊形の据付けは、標準図(吊りボルトによる機器振れ止めの施工例、機器固定要領)よる。

なお、小形の遠心送風機(呼び番号2未満)の場合は、吊り用ボルトにブレース等による振れ止めを施したものでもよい。

(3) 防振基礎の防振材の個数及び取付け位置は、運転荷重、回転速度、防振材の振動絶縁効率により決定する。

なお、防振材及び振動絶縁効率は特記による。

- (4) 遠心送風機とダクトの接続には、たわみ継手を用いて行う。 なお、吸込口にダクトを接続しない場合は、保護金網を取付ける。
- (5) ケーシングの水抜きの適用は、特記による。

2.1.18.2 軸流送風機及び斜流送風機

(1) 軸流送風機及び斜流送風機の据付けは、標準図(機器固定要領)に準じて行う。 なお、小形の軸流送風機及び斜流送風機(呼び番号3以下)の場合は、吊り用ボルトに ブレース等による振れ止めを施したものでもよい。

2.1.19 ポンプ

- (1) ポンプの基礎は、標準図(基礎施工要領(四))による。
- (2) ポンプ本体が結露する場合及び軸封がグランドパッキンの場合は、ポンプの基礎には、ポンプ周囲に排水溝及び排水目皿を設け、呼び径 25 以上の排水管で最寄りの排水系統に排水する。ただし、温水ポンプ及び冷却水ポンプで軸封がグランドパッキンの場合は、排水管による間接排水とする。
- (3) 防振基礎における防振材の個数及び取付位置は、運転荷重、回転速度及び防振材の振動 絶縁効率により決定する。

なお、防振材及び振動絶縁効率は特記による。特記がなければ、振動絶縁効率は80%以上とする。

- (4) 真空給水ポンプユニット及び油ポンプの基礎の高さは、床仕上げ面より 200mm 程度とする。
- (5) ポンプは、共通ベースが、基礎上に水平になるように据付け、その後、軸心の調整を行う。

2.1.20 タンク

- (1) 空調用密閉形隔膜式膨張タンクの温水配管に溶解栓を取付ける場合は、標準図(密閉形隔膜式膨張タンク廻り配管要領)による。
- (2) オイルタンク類の据付けは次によるほか、危険物の規制に関する政令及び同規則の定め

による。

- (ア) 標準図(鋼製強化プラスチック製二重殻タンク据付け図、地下オイルタンク据付け図、 鋼製強化プラスチック製二重殻タンクの外郭及び構造施工要領、地下オイルタンクの外 郭及び構造施工要領)による。
- (4) 保護筒の内面側壁及び油タンクふたは、JIS K 5674「鉛・クロムフリーさび止めペイント」によるさび止め塗装2回塗りとする。また、タンク室を設けない場合の固定バンド、締付けボルト及びアンカーボルトは、さび止めを施す。

2.1.21 試験

- (1) コージェネレーション装置は、総合インターロック試験を行う。
- (2) 還水タンク、開放形膨張タンクは、据付け後に満水試験を行い漏洩が無いことを確認する。
- (3) 消防法による完成検査前検査の検査済証がある場合を除き、屋内オイルタンクは、据付け後に満水試験を行い漏洩が無いことを確認する。

第2節 ダクトの取付け

2.2.1 一般事項

(1) 建築基準法施行令第 112 条第 21 項に規定する準耐火構造の防火区画等をダクトが貫通する場合は、貫通部とダクトとの隙間にモルタル又はロックウール保温材を充塡する。また、保温が必要なダクトの場合は、その貫通部の保温は、ロックウール保温材によるものとする。

なお、ロックウール保温材を施す場合は、脱落防止の措置を講ずる。

- (2) 外壁を貫通するダクトとスリーブとの隙間は、バックアップ材等を充塡し、シーリング 材によりシーリングし、水密を確保する。
- (3) シールの方法は、標準図(シールの施工例(一)、シールの施工例(二))による。 なお、厨房、浴室等の多湿箇所の排気用の長方形ダクトは、Nシール+Aシール+Bシ ールとし、水抜管を設ける場合は特記による。
- (4) アングルフランジの接合は、接合後にフランジ幅と同一となるフランジ用ガスケットを 使用し、ボルト及びナットで片締めのないよう気密に締付ける。
- (5) 厨房の排気ダクトは、ダクト内の点検が可能な措置を講ずる。
- (6) 改修時は、ダクトの施工に先立ち、第1編1.5.3「事前調査」を十分に行い、既設設備との関連事項を詳細に検討し、風量バランス等を考慮して施工する。

なお、ダクトの材質及び圧力区分は、既設ダクトと同様とする。

2.2.2 ダクトの吊り及び支持

2.2.2.1 一般事項

- (1) 吊り金物に用いる山形鋼の長さは、保温も含めたダクトの横幅以上とする。
- (2) 横走りダクトは、次の場合を除き、12m以下ごとに、標準図(ダクトの吊り金物・形鋼振れ止め支持要領)による形鋼振れ止め支持を行うほか、横走りダクト末端部に形鋼振れ止め支持を行う。

なお、壁貫通等で、形鋼振れ止め支持と同等に振れを防止できる場合は、貫通部及び吊りをもって振れ止め支持とみなしてもよい。

- (ア) ダクトの周長が、1,000mm 以内の場合
- (イ) 吊り用ボルトの長さが、平均 200mm 以内の場合

- (3) 立てダクトには、各階1箇所以上に、標準図(ダクトの吊り金物・形鋼振れ止め支持要領)による振れ止め支持(固定)を行う。
- (4) ダクトの振動伝播を防ぐ必要がある場合は、防振材を介して吊り及び支持を行う。

2.2.2.2 アングルフランジ工法ダクト

- (1) 横走りダクトは、吊り間隔 3,640mm 以下ごとに、標準図(ダクトの吊り金物・形鋼振れ 止め支持要領)による吊りを行う。
- (2) ダクトと吊り金物の組合せは、表 3.2.2 による。

表 3.2.2 ダクトの吊り金物

(単位 mm)

ダクトの長辺	山形鋼寸法	吊り用ボルト
750以下	$25 \times 25 \times 3$	M10又は呼び径 9
750を超え、1,500以下	$30 \times 30 \times 3$	M10又は呼び径 9
1,500を超え、2,200以下	$40 \times 40 \times 3$	M10又は呼び径 9
2,200を超えるもの	$40 \times 40 \times 5$	M10又は呼び径 9

注 ダクトの周長が3,000mmを超える場合の吊り用ボルトの径は、強度を確認の上、選定する。

2.2.2.3 コーナーボルト工法ダクト

(1) 横走りダクトの吊り間隔は、スライドオンフランジ工法ダクトは 3,000mm 以下とし、共 板フランジ工法ダクトは 2,000mm 以下とする。

なお、機械室内は、長辺が 450mm 以下の横走りダクトの吊り間隔は、2,000mm 以下とする。

2.2.2.4 スパイラルダクト及び円形ダクト

- (1) 横走りダクトは、標準図(ダクトの吊り金物・形鋼振れ止め支持要領)に準じた吊りを 行う。吊り間隔は、スパイラルダクトは 4,000mm 以下、円形ダクトは 3,640mm 以下とする。
- (2) ダクトと吊り金物の組合せは、表 3.2.3 による。

表 3.2.3 スパイラル及び円形ダクトの吊り金物

(単位 mm)

呼 称 寸 法	山形鋼寸法	吊り用ボルト
750以下	$25 \times 25 \times 3$	M10又は呼び径 9
750を超え、1,000以下	$30 \times 30 \times 3$	M10又は呼び径 9
1,000を超え、1,250以下	$40 \times 40 \times 3$	M10又は呼び径 9

注 呼称寸法1,000を超える場合の吊り用ボルトの径は、強度を確認の上、選定する。

(3) 呼称寸法 750 以下の横走りダクトの吊り金物は、厚さ 0.8mm 以上の亜鉛めっきを施した 鋼板を円形に加工した吊りバンドと吊り用ボルトとの組合せによるものとしてもよい。

なお、小口径(呼称寸法300以下)のものにあっては、吊り金物に代えて、厚さ0.6mmの 亜鉛鉄板を帯状に加工したものを使用してもよい。ただし、これによる場合は、要所に振 れ止め支持を行う。

2.2.3 ダクトの接合

2.2.3.1 コーナーボルト工法ダクト

(1) フランジ押さえ金具の取付けは、標準図(コーナーボルト工法ダクトのフランジ施工例 (一)、コーナーボルト工法ダクトのフランジ施工例(二)、コーナーボルト工法ダクト のフランジ施工例(三))による。

2.2.3.2 スパイラルダクト

- (1) スパイラルダクトの接合は、差込み継手接合又はフランジ継手接合とする。
- (2) 差込み継手及びフランジ用カラーとダクトの接合は、継手を直管に差込み、鋼製ビスで周囲を固定し、継手と直管の継目全周にシール材を塗布した後、ダクト用テープで二重巻きにしたものとする。接合部の鋼製ビス本数は、表 3.2.4 による。

2	- 7 - 7 - 3/C	
ダク	片側最小本数	
155 mm以下		3
155mmを超え、	355 mm以下	4
355mmを超え、	560 mm以下	6
560mmを超え、	800 mm以下	8
800mmを超え、	1,250 mm以下	12

表 3.2.4 接合部のビス本数

2.2.4 排煙ダクト

- (1) 排煙ダクトの吊り及び支持は、2.2.2「ダクトの吊り及び支持」の当該事項による。
- (2) ダクトと排煙機との接続は、フランジ接合とする。
- (3) 亜鉛鉄板製のダクトを溶接接合する場合は、溶接部をワイヤブラシ等で可能な限り清掃し、さび止め塗料又は有機質亜鉛末塗料で溶接面の補修を行う。
- (4) 鋼板製ダクトの塗装は、第2編3.2.1「塗装」による。
- (5) 排煙ダクトは、木材その他の可燃物から 150mm 以上離して設置する。

2.2.5 ダクト附属品

2.2.5.1 チャンバー

(1) チャンバーの取付けは、2.2.2.2「アングルフランジ工法ダクト」の当該事項による。

2.2.5.2 排気フード

- (1) 排気フードの吊り及び支持は、2.2.2.2「アングルフランジ工法ダクト」の当該事項による。ただし、吊り間隔は、1,500mm以下、かつ、四隅とする。
- (2) 改修時に、天井を撤去する場合は、天井下地の施工後に排気フードを取付ける。天井を撤去しない場合は、既設天井に天井点検口を設け、天井点検口を用いて排気フードを取付ける。

2.2.5.3 フレキシブルダクト

(1) フレキシブルダクトは、吹出口及び吸込口ボックスの接続用として 1.5m以下で使用してもよい。

なお、湾曲部の内側半径はダクト半径以上とし、有効断面を損なうことのないように取付ける。

2.2.5.4 グラスウール製ダクト (円形ダクト)

(1) グラスウール製ダクト(円形ダクト)の施工は、次によるほか、「グラスウール製ダク

ト標準施工要領」 (グラスウールダクト工業会) のグラスウール製円形ダクトに関する項目 (分岐ダクトの接続及びダンパーとの接続に関する項目を除く。) による。

- (ア) グラスウール製ダクト(円形ダクト)の板厚は、25mmとする。
- (イ) グラスウール製ダクト(円形ダクト)の接続は、次によるほか、標準図(グラスウール製ダクト(円形ダクト)の接続要領)による。
 - (a) グラスウール製ダクト (円形ダクト) 同士の接続は、突合わせ接続とし、切り口両面等に接着及びグラスウール繊維の飛散防止のため、均一に接着剤 (JIS K 6804「酢酸ビニル樹脂エマルジョン木材接着剤」) を塗布し、接続した後、継目をグラスウール用アルミニウムテープ (JIS A 4009「空気調和及び換気設備用ダクトの構成部材」) 巻きとし、テープを巻く幅は、ダクト径の 1/2 以上(最大 150mm 程度) となるよう重ね巻きしたものとする。ただし、テープ幅でダクト径の 1/2 以上の幅を確保できる場合は、重ね巻きは不要とする。
 - (b) スパイラルダクトとの接続は、グラスウール製ダクト(円形ダクト)を差込む側の継手(スパイラルダクトの差込み継手)の外面に均一に接着剤(JIS K 6804「酢酸ビニル樹脂エマルジョン木材接着剤」)を塗布して差込み、鋼帯を巻き、鋼製ビス(鋼製ビスの本数は2.2.3「ダクトの接合」の当該事項による。)で固定し、グラスウール用アルミニウムテープ(JIS A 4009「空気調和及び換気設備用ダクトの構成部材」)でグラスウール製ダクト(円形ダクト)の切り口面から鋼帯を全て覆うように重ね巻きしたものとする。
 - (c) フレキシブルダクトとの接続は、グラスウール製ダクト(円形ダクト)を差込む側の継手(スパイラルダクトの差込み継手)の外面に均一に接着剤(JIS K 6804「酢酸ビニル樹脂エマルジョン木材接着剤」)を塗布して差込み、鋼帯を巻き鋼製ビス(鋼製ビス本数は2.2.3「ダクトの接合」の当該事項による。)で固定し、グラスウール用アルミニウムテープ(JIS A 4009「空気調和及び換気設備用ダクトの構成部材」)でグラスウール製ダクト(円形ダクト)の切り口面から鋼帯を全て覆うように重ね巻きしたものとする。
- (ウ) ダクトの吊り及び支持
 - (a) グラスウール製ダクト (円形ダクト) の吊り及び支持は、表 3.2.5 による。 なお、支持材は JIS G 3302 「溶融亜鉛めっき鋼板及び鋼帯」により成形される鋼帯 とする。
 - (b) ダクトの接合部付近及び端部は、全て支持する。
 - (c) ダンパー等の金物部は、全て支持する。
- (エ) グラスウール製ダクト(円形ダクト)は、厨房等火気使用室や多湿箇所に使用してはならない。

	表 3.2.5	グラスウール	製ダクト	(円形ダクト)	の吊り及び支持
--	---------	--------	------	---------	---------

(単位 mm)

ダクト内径	吊り及び支持金物		
	鋼帯	棒鋼の呼び径	最大間隔
300 以下	24 以上×0.4t 以上	M10 又は 9 mm の	2, 400
300 を超えるもの		吊り用ボルト	2,000

2.2.5.5 風量測定口

(1) 風量測定口の取付け個数は、表 3.2.6 による。 なお、取付け位置は特記による。

表 3.2.6 風量測定口の取付け個数

取付け辺(長辺)の寸法	300mm以下	300mmを超え、700mm以下	700mmを超えるもの
取付け個数	1	2	3

2.2.6 既設ダクトの再利用

- (1) 既設ダクトを再利用する場合、運転再開前に次のいずれかの防じん対策を行う。 なお、ダクト内清掃を行う場合は、2.2.7「ダクト清掃」によるものとし、適用は特記による。
 - (ア) 吹出口にフィルターをはさむ等、ほこり等の飛散を防止する対策
 - (イ) 吹出口廻りの居室内壁面、机、ロッカー等への防じん対策
- (2) 工事中に既設ダクト系を運転する場合は、撤去又は取外した開口部よりほこり等が、機器及びダクト内に入らないように必要な防護措置を施す。
- (3) 空調機等の試運転調整後には、フィルターの清掃を行う。

2.2.7 ダクト清掃

- (1) ダクト清掃の工法は特記による。
- (2) ダクト清掃作業は、建築物における衛生的環境の確保に関する法律(昭和 45 年法律第 20 号)に基づくダクト清掃作業監督者を配置し、監督職員の承諾を受ける。
- (3) 当該ダクトの経路、構造、天井点検・作業口の取付けの適否等を調査し、監督職員に報告する。
- (4) 施工に先立ち、当該ダクトの既存状態を調査・記録(記録写真等を含む。)し、監督職員に提出する。

なお、調査・記録する場所及び箇所数は特記による。

- (5) 作業機器の据付場所は、騒音対策、ほこり等の飛散防止対策を考慮した場所とし、監督 職員の承諾を受ける。
- (6) 吹出口、吸込口、ダンパー等で作業上一時取外し、再使用する機材は保管を確実に行う。 なお、再取付け前に清掃を行う場合は特記による。
- (7) 当該ダクトの内面に付着したほこり等の除去、清掃及び確認作業については、採用した工法の規定による。
- (8) 施工に当たっては、既設天井、ダクト、ダンパー等の強度、耐久性及び機能性に影響を 与えないようにする。
- (9) ダクト内の粉じんの捕集方法は特記による。 なお、特記がなければ、集じん装置又は集じんフィルタにより適切に捕集する。
- (10) 作業に伴い、ダクトに開口部等を設ける場合は、必要最小限なものとし、作業終了後に 適切な方法で漏れのないよう閉鎖する。
- (11) 作業に伴い、じんあいが飛散するおそれのある場合は、室内各部、机、ロッカー等に十分な養生を行う。
- (12) 所定の清掃作業終了後にダクト系の機能を調査確認する。また、清掃後のダクト内面の

状態を記録写真に撮り、監督職員に提出する。

なお、記録する場所及び箇所数は特記による。

(13) 作業中、仮設ダクトを設ける必要がある場合は特記による。

第3節 制気口及びダンパー

2.3.1 ガラリ

(1) 外壁ガラリは、建築物の外壁等に堅固に取付け、その間隙はモルタル等で気密に仕上げる。

2.3.2 排煙口

- (1) 排煙口の吊り及び支持は、2.2.2.2「アングルフランジ工法ダクト」の当該事項によるほか、振れ止め支持を施し、堅固に取付ける。
- (2) 手動開放装置の操作箱は、見やすく、避難の際に操作が容易な位置に取付ける。取付け 高さは、床面より 800mm 以上 1,500mm 以下とする。

2.3.3 ダンパー

- (1) ダンパーが、隠ぺい部分に設置される場合は、点検口があることを確認する。
- (2) 防火ダンパー、防煙ダンパー等は、火災時に脱落しないように、防火区画の壁又は床に 固定する。固定方法は、標準図(ダクトの防火区画貫通部施工要領)による。

2.3.4 定風量ユニット及び変風量ユニット

- (1) ダクトに気密に取付け、必要に応じて、吊り又は支持を行う。
- (2) 風速センサー形は、ユニット上流側にダクト径の4倍程度の直管部を設けて取付ける。

2.3.5 試験

- (1) 防火ダンパー、防煙ダンパー、防火・防煙ダンパー及びピストンダンパーは、施工後に作動の確認を行う。
- (2) 排煙口は、施工後に作動(手動開放装置及び連動制御器等を含む)の確認を行う。

第4節 撤去

2.4.1 一般事項

(1) 第1編第4章「撤去」及び第5章「発生材の処理等」によるほか、特記による。

2.4.2 機器の撤去

- (1) 機器の撤去に先立ち、水、ガス、油等の接続配管が取外されていることを確認する。また、電源及び自動制御設備については、他の設備に影響しないように遮断する。
- (2) 冷凍機等(フロン系冷媒の使用機器)は、撤去に先立ち、冷媒の回収又は放出を防止する措置を講ずるものとし、冷媒の回収方法及び放出を防止する措置は、2.4.3「冷媒の回収方法等」による。
- (3) オイルタンク、オイルサービスタンク等の撤去に先立ち、次の措置を講ずる。
 - (ア) タンク内の残油の有無を確認する。 なお、タンク内に残油がある場合には、監督職員に報告する。
 - (イ) タンク内に残油が無いことの確認ができた場合は、廃油の回収を行うとともに、内部 の洗浄を行う。また、撤去に際しては、火気を使用してはならない。

なお、廃油の回収方法及び内部の洗浄方法は、第1編5.1.2「産業廃棄物等」(4)による。

(4) オイルタンク内部、蓄熱槽内部等の密閉された空間で作業を行う場合は、第1編 1.3.5

「施工中の安全確保」の当該事項による換気等の措置を講ずる。

- (5) 煙道及び排気筒の撤去に際しては、すすの飛散を防止する措置を講ずる。
- (6) 冷凍機、ボイラー、空調機等の大形機器の撤去において、機器を分割・解体する必要がある場合は、監督職員と協議する。
- (7) 機器の吊り装置(電動ウインチ等)とそれらを支持固定する架台(チャンネルベース)等が必要な場合は、監督職員と協議する。

2.4.3 冷媒の回収方法等

- (1) 冷媒の回収方法及び放出を防止する措置は、次による。
 - (ア) 業務用冷凍空調機器(第1種特定製品)は、フロン排出抑制法の定めに従って行う。
 - (イ) 特定家庭用機器再商品化法 (平成 10 年法律第 97 号) の対象となるものは、同法の定めに従って行う。

2.4.4 廃油の回収方法等

- (1) オイルタンク、オイルサービスタンク、油配管等の廃油は、廃棄物処理法、消防法その 他関係法令等の定めに従い、回収し、適切に処理する。
- (2) 廃油の回収に際しては、周辺の汚損及び土壌の汚染をしないよう養生を行う。

2.4.5 既設ダクトの撤去

- (1) 既設ダクトの撤去範囲は特記による。ただし、その位置で不具合が生じた場合又は接続等が不可能な場合若しくは危険と判断される場合は、監督職員と協議する。
- (2) 既設ダクトの撤去による振動及び粉じん発生に制約がある場合は、監督職員と協議する。
- (3) 既設ダクトを撤去する場合は、空気調和機及び送風機が確実に停止していることを確認する。
- (4) 撤去箇所は、原則として、既設ダクトのフランジ部とする。また、スパイラルダクトは 差込部とする。
- (5) 既設ダクトを撤去する場合は、保温材、ガスケット、たわみ継手等と分離する。
- (6) 既設ダクトの再利用側の開口部は、新設ダクト施工までの間、遮へい板にて養生を確実に行う。
- (7) 既設ダクトの撤去には、原則として、火気を使用しない。
- (8) ダクトの切断は、原則として、火花の発生しない工具(ニブラ、ジグソー、金鋸、金切りハサミ等)により行い、はぜ部等の切断はセーバーソー、金鋸等で行う。
- (9) ダクトを撤去後、再利用側約1m程度の保温材、付着した油脂類、ダクト内に堆積した ほこり等の除去を行う。

2.4.6 既設ダクトの搬出

- (1) 撤去するダクトは、搬出に支障のない大きさに切断する。
- (2) 搬出において既設エレベーターを使用する場合は、監督職員と協議する。 なお、使用する場合の養生方法は、第1編第3章「養生」による。

第4編 自動制御設備工事

第1章 機材

第1節 総則

1.1.1 一般事項

- (1) 機材は、標準仕様書第4編第1章「機材」によるほか、本章による。
- (2) 配線工事は停電作業とし、活線工事は禁止とする。

1.1.2 盤類の改造

- (1) 盤を改造する場合は、次によるほか、特記による。
 - (ア) 盤改造に先立ち、電源が遮断されていることを確認する。
 - (イ) 改造は、系統(制御ループ)ごとに行う。
 - (ウ) 既存取付機器の移設を伴う場合は、改造前後に制御回路の動作試験を行い、影響のないことを確認する。
 - (エ) 盤表面の計器類を撤去した際にできた開口は、プレートで塞ぐ等の措置を施す。
- (2) 端末装置ユニットの追加、既存端末装置ユニットへの管理点追加、部分更新等の作業は系統ごとに行う。
- (3) 中央監視装置のソフトの追加、変更及び機能変更は特記による。

第2章 施工

第1節 自動制御機器の据付け及び取付け

2.1.1 一般事項

- (1) 機器類は、維持管理に必要なスペースを確保し、床、壁、配管等に対して水平又は垂直に据付ける。
- (2) 検出器は、温度、湿度、圧力等が正確に検出できる場所を選定し、取付ける。

2.1.2 温度検出器、湿度検出器及び二酸化炭素(CO₂)濃度検出器

- (1) 室内形の検出器は、床上 1.5m程度の高さで、直射日光及び吹出し気流の影響を受けない位置に取付ける。
- (2) 挿入形の検出器は、保温の厚みを考慮した取付台を介し、流体に対し垂直又は対向して取付ける。また、配管及びタンク類に取付ける場合は、保護管を用いて検出端を保護する。

2.1.3 圧力検出器及び発信器

(1) 水系の配管及びタンク類に取付ける場合は、圧力検出口と導圧管の間に点検用バルブを設ける。また、ポンプ吐出側等で流体が脈動する場合は、脈動防止措置として絞り弁等を設ける。

なお、導圧管は、受圧部に空気が混入しないよう 1/10 以上の勾配を設けて発信器に導き、 導圧管末端にはドレン抜きを設ける。

- (2) 蒸気用検出器は、(1)によるほか、発信器に直接蒸気が触れないようにサイホン又はコン デンサーポットを介して取付ける。
- (3) ダクト等に取付ける場合は、圧力変動が少ない位置を選び、検出端を流れに対して直角に取付ける。
- (4) 差圧測定用検出器は、高圧側及び低圧側導圧管の最高位の高さを合わせて取付ける。

2.1.4 その他の検出器

- (1) 液面検出器は、測定誤差、ハンチング等が生じないよう、必要に応じて、ガイドパイプ 又は防波筒等を設ける。
- (2) 流量検出器は、流れの方向を確認して、配管の上流及び下流側に流量検出器の必要な直

管長を確保して取付ける。

(3) フロースイッチは、流れの方向を確認後、フロースイッチの上流及び下流側に必要な直管長を確保して、水平配管に垂直に取付ける。

2.1.5 操作器

- (1) 電動弁は、上流側にストレーナが設けられていることを確認し、駆動軸が垂直になるように取付ける。やむを得ず斜めになる場合でも、駆動部が弁本体より下方になってはならない。また、防滴構造でないものを屋外に設置する場合は、取外し可能な防滴遮へいカバーを設ける。
- (2) 電磁弁は、上流側にストレーナが設けられていることを確認し、コイル部が垂直になるように取付ける。

第2節 盤類の据付け

2.2.1 自動制御盤の据付け

- (1) 自動制御盤の据付けは、次によるほか、第3編2.1.1「一般事項」の当該事項による。
 - (ア) 隣接した盤は、相互間に隙間のできないようにライナー等を用いて調整を行う。
 - (4) 質量の大きいもの及び特殊な取付け方法のものは、あらかじめ取付け詳細図を作成し、 監督職員に提出する。
 - (ウ) メタルラス張り、ワイヤラス張り、金属板張り等の木造の造営物に、動力回路等を含む盤類を取付ける場合は、それらの金属部分と電気的に絶縁して据付ける。

2.2.2 中央監視盤の据付け

- (1) 中央監視盤の据付けは、次による。
 - (ア) 保守点検及び運用上必要なスペースを確保し、監視及び操作がし易い位置に据付ける。
 - (4) 操作卓は、地震力により転倒及び横滑りを起こさないように設置する。
 - (ウ) 操作卓上に設置する表示装置、記録(印字)装置等は、転倒防止用の措置を施す。

第3節 配線

2.3.1 配線

- (1) 配線は、本項によるほか、電気事業法、電気設備に関する技術基準を定める省令及び電気用品安全法の定めによる。
 - (ア) 同軸ケーブルの曲げ半径は、ケーブル外径の10倍以上とする。
 - (イ) 光ケーブルの曲げ半径は、ケーブル外径の、敷設時で20倍、固定時で10倍以上とする。
 - (ウ) 自動制御盤、プルボックス等の配線及びケーブルには、回路種別、行先表示等を表示する。
 - (エ) シールド電線の接続は、コネクター又は端子により行い、その部分には、シールド処理を施す。
 - (オ) ボックス又は端子盤から機器への引出し配線が露出する部分は、これをまとめて保護を行う。
 - (カ) 耐火ケーブル相互及び耐熱ケーブル相互の接続は、消防法等の関係法令の定めによる。
 - (キ) 電線等が防火区画等を貫通する場合の措置は、建築基準法等の関係法令の定めによる。
 - (ク) 金属管の支持間隔は、2.0m以下とする。
 - (ケ) ケーブルラックは吊り金物による支持とし、吊り間隔を鋼製の場合は 2.0m以下、ア

ルミニウム合金製の場合は1.5m以下とするほか、ケーブルラック端部にも吊りを施す。

- (コ) 支持金物は、スラブ等の構造体に取付ける。
- (サ) 自動制御の接地工事は、次による。
 - (a) 管、ボックス等には、D種接地を施す。ただし、小勢力回路、出退表示回路等の最大電圧 60V以下の直流電気回路の計測制御配線の配管は、接地工事を省略できる。
 - (b) 小勢力回路、出退表示回路等の最大電圧 60 V 以下の直流電気回路を除き、管とボックス及び管と制御盤等の間は、ボンディングを施し、電気的に接続する。
 - (c) 接地線は、緑色の絶縁電線を使用する。
- (シ) 建築物への導入部及び建築物のエキスパンションジョイント部の配管等は、標準図(建築物導入部の変位吸収電気配管要領、建築物エキスパンションジョイント部電気配線要領)による。

第4節 耐震

2.4.1 耐震

- (1) 耐震支持は、次による。
 - (ア) 機器、配管等の耐震支持は、所要の強度を有していない簡易壁(ALC パネル、PC パネル、ブロック等)に支持をしてはならない。
 - (4) 機器は、地震時の設計用水平震度(以下「水平震度」という。)及び設計用鉛直震度(以下「鉛直震度」という。)に応じた地震力に対し、移動又は転倒しないように、床スラブ、 基礎等に固定する。

なお、水平震度及び鉛直震度は、特記による。

(ウ) 横引き配管等は、次によるほか、地震時の水平震度及び鉛直震度に応じた地震力に耐えるよう、表 4.2.1 により標準図(電気配管振れ止め支持要領)の S_A種、A種又はB種耐震支持を行う。

なお、 S_A 種及びA種耐震支持の支持材は、地震時に作用する引張り力、圧縮力及び曲げモーメントそれぞれに対応する材料で構成し、 S_A 種耐震支持では 1.0、A種耐震支持では 0.6 を配管等の重量に乗じて算出する水平地震力により選定した耐震支持材を用いる。また、B種耐震支持は、地震力により支持材に作用する圧縮力を自重による引張り力と相殺させることにより、つり材、振止め斜材等で構成した耐震支持材を用いる。

表 4.2.1 横引き配管等の耐震支持				
	特定0)施設	一般の施設	
設置場所*1	電気配線 (金属管・金属 ダクト・バスダ クト等)	ケーブルラック	電気配線 (金属管・金属ダク ト・バスダクト等)	ケーブルラック
上層階* ² 屋上及び塔屋	12m以内ごとに S _A 種耐震支持	6 m以内ごとに S A 種耐震支持	12m以内ごとに A種耐震支持	8 m以内ごとに A種又はB種耐震支持
中間階*3				122 (10) 121/01/20 (10)
1階及び地下階	12m以内ごとに A種耐震支持	8 m以内ごとに A種耐震支持	12m以内ごとに A種又はB種耐震支持	12m以内ごとに A種又はB種耐震支持

表 4.2.1 横引き配管等の耐震支持

- 備考 特記がなければ、一般の施設を適用する。
- 注 *1 設置場所の区分は、配管等を支持する床部分により適用し、天井面より支持する配管等は、直上階を適用する。
 - *2 上層階は、2から6階建の場合は最上階、7から9階建の場合は上層2階、10から12階建の場合は上層3階、13階建以上の場合は上層4階とする。
 - *3 中間階は、1階及び地下階を除く各階で上層階に該当しない階とする。
- (a) 次のいずれかに該当する場合は、耐震支持を省略できる。
 - ① 呼び径が 82mm 以下の単独配管
 - ② 周長 800mm 以下の金属ダクト、幅 400mm 未満のケーブルラック及び幅 400mm 以下の集合配管
 - ③ 定格電流 600 A以下のバスダクト
 - ④ つり材の長さが平均 0.2m以下の配管等
- (b) 長期荷重で支持材を選定する場合は、鉛直震度に耐えるものとして耐震支持材の算 出に鉛直震度を加算しないことができる。
- (c) 横引き配管等の耐震支持は、管軸方向に対しても行う。
- (d) 横引き配管等の末端から2m以内、曲がり部及び分岐部付近には、耐震支持を行う。
- (エ) 垂直配管等は、地震時の水平震度及び鉛直震度に応じた地震力に耐えるよう、表 4.2.2 により標準図(電気配管振れ止め支持要領)の S_A種又はA種耐震支持を行う。

なお、 S_A 種及びA種耐震支持の支持材は、地震時に作用する引張り力、圧縮力及び曲げモーメントそれぞれに対応する材料で構成し、 S_A 種耐震支持では 1.0、A種耐震支持では 0.6 を配管等の重量に乗じて算出する水平地震力により選定した支持材を用いる。

衣 4.2.2 華 直 能 官 寺 の 順 展 又 付					
	特定	の施設	一般の施設		
設置場所*1	電気配線 (金属管・金属ダ クト・バスダクト 等)	ケーブルラック	電気配線 (金属管・金属ダク ト・バスダクト等)	ケーブルラック	
上層階* ² 屋上及び塔屋	電気配線の支持間 隔ごとに自重支持 (S _A 種耐震支持)	支持間隔6m以下の 範囲、かつ、各階ご とにS _A 種耐震支持	電気配線の支持間隔 ごとに自重支持(A	支持間隔6m以下 の範囲、かつ、各	
中間階*3	電気配線の支持間	支持間隔6m以下の	ことに日里又抒(A 種耐震支持)	階ごとにA種耐震	
1階及び地下階	隔ごとに自重支持 (A種耐震支持)	範囲、かつ、各階ご とにA種耐震支持	(性間長又付)	支持	
供来 性記がわた	トカバ 一帆の歩型など	古田 十 フ			

表 4.2.2 垂直配管等の耐震支持

備考 特記がなければ、一般の施設を適用する。

- 注 *1 設置場所の区分は、配管等を支持する床部分により適用し、天井面より支持する配管等は、直上階を適用する。
 - *2 上層階は、2から6階建の場合は最上階、7から9階建の場合は上層2階、10から12階建の場合は上層3階、13階建以上の場合は上層4階とする。
 - *3 中間階は、1階及び地下階を除く各階で上層階に該当しない階とする。
- (a) 耐震支持の省略は、(1)(a)による。
- (b) 長期荷重で支持材を選定する場合は、鉛直震度に耐えるものとして支持材の算出に 鉛直震度を加算しないことができる。

第5節 試験

2.5.1 試験

(1) 絶縁抵抗試験は、表 4.2.3 により行い、試験結果を監督職員に報告する。

機材	試験項目	試 験 方 法
自動制御盤	絶縁抵抗試験	線間及び対地間の絶縁抵抗を絶縁抵抗計にて確認する。
端末装置	絶縁抵抗試験	線間及び対地間の絶縁抵抗を絶縁抵抗計にて確認する。
中央監視盤	絶縁抵抗試験	線間及び対地間の絶縁抵抗を絶縁抵抗計にて確認する。

表4.2.3 絶縁抵抗試験

第6節 総合試運転調整等

2.6.1 個別運転調整

(1) 総合試運転調整に先立ち、自動制御機器、自動制御盤及び中央監視制御装置に、各々仮入力信号等を与えて、要求される基本動作を確認する。

2.6.2 総合試運転調整

- (1) 自動制御設備の総合試運転調整は、設備システム全体の総合試運転調整に併せて行うものとし、総合試運転調整の項目は、次による。
 - (ア) 監視・制御対象の機器の運転・停止及び連動の確認
 - (4) 設定値及び運転内容が、設計条件を満たす範囲であることの確認
 - (ウ) 制御状態を確認し、必要に応じて、制御パラメータの微調整

注 絶縁抵抗試験は、製造者の規定による。

(2) 総合試運転調整完了後、制御・計測調整報告書を監督職員に提出する。制御・計測調整報告書は、日時、系統名、機器名称、型番、据付位置・状態、設定値(設定値協議書を含む。)、実測値及び制御動作状態を記入したものとする。また、エネルギー管理機能を備える場合は、総合試運転調整時の計測、計量等のデータによるグラフ等を監督職員に提出する。

なお、制御・計測値が確認できない電気式の場合を除く。

第7節 撤去

2.7.1 一般事項

(1) 第1編第4章「撤去」及び第5章「発生材の処理等」によるほか、特記による。

2.7.2 既存設備の撤去

- (1) 既存設備の撤去に先立ち、設備システム全般にわたって、支障がないことを確認する。
- (2) 配管挿入形の検出器等を撤去する場合は、保護管の撤去は、原則として、行わない。 なお、撤去後は、プラグ止めを行い、閉止する。
- (3) ダクト挿入形の検出器等を撤去する場合は、撤去後の開口部をプレート等で塞ぎ、周囲にシールを行い空気の漏洩を防ぐ。
- (4) 蒸気・冷温水等の流体用検出端の導圧管撤去は、原則として、第2編2.10.2「既設配管の撤去」による。
- (5) 電線管、配線等の撤去範囲は特記による。

第5編 給排水衛生設備工事

第1章 機材

第1節 機器・器具

1.1.1 一般事項

(1) 機材は、標準仕様書第5編第1章「機材」によるほか、本章による。

1.1.2 衛生陶器及び附属品

- (1) 小便器用節水装置は、洗浄水を節水するため、JIS B 2061「給水栓」による電気開閉式 とし、自動的に洗浄する装置とする。
- (2) 小便器及び附属品の組合せは、標準仕様書第5編第1章「機材」の当該事項によるほか、 表5.1.9による。

	70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
	衛	生 陶 器			
種 別	JIS 記号	規格名称	── 附 属 品		
I 形	U 510	洗浄弁式床置 I 形小便器 (大形)	(ア) 小便器スパッド (イ) 小便器床フランジ		
小 便 器	U 511	同上 (小形)	(ウ) 小便器用節水装置		
	U 520	洗浄弁式壁掛 I 形小便器 (大形)	(ア) 小便器スパッド (イ) 小便器壁フランジ		
	U 521	同上 (小形)	(ウ) 小便器用節水装置		

表5.1.9 Ⅰ形小便器及び附属品

- 注 1. I形小便器の洗浄水量は4.0L/回以下とする。
 - 2. 再生水仕様の場合は特記による。
 - 3. 壁掛小便器 (大形、小形) でバリアフリー対応の場合は、標準図 (衛生器具の取付け高さ) による。

第2節 消火機器

1.2.1 一般事項

(1) 新設される消火機器の仕様は、標準仕様書第5編第1章「機材」の当該事項によるほか、 本節による。

なお、適用は特記による。

1.2.2 屋内消火栓(1号消火栓)

(1) 屋内消火栓は、消防法施行令(昭和36年政令第37号)第11条第3項第1号に規定する 屋内消火栓のうち、消防法施行規則第12条第1項第7号へただし書の規定に該当しない屋 内消火栓(以下「1号消火栓」という。)とする。

1.2.2.1 屋内消火栓開閉弁

- (1) 屋内消火栓開閉弁は、「屋内消火栓設備の屋内消火栓等の基準」に適合するものとする。
- (2) ホース接続部の結合金具は、「消防用ホースに使用する差込式又はねじ式の結合金具及び消防用吸管に使用するねじ式の結合金具の技術上の規格を定める省令」(平成25年総務省令第23号)の規定に適合するものとする。
- (3) 開閉弁の呼称は、40、30 又は25 とする。

1.2.2.2 屋内消火栓箱

- (1) 屋内消火栓箱は、厚さ 1.6mm 以上の鋼板又は厚さ 1.5mm 以上のステンレス鋼板を溶接加 工したものとし、材質は特記による。鋼板の場合は、内面及び露出面の塗装は、メラミン 樹脂焼付又は粉体塗装とする。
- (2) 次に示すホース、結合金具、ノズル1本及びホース収納装置を備えたものとする。
 - (ア) ホースは、「消防用ホースの技術上の規格を定める省令」(平成25年総務省令第22 号)に規定するものとし、結合金具は、1.2.2.1「屋内消火栓開閉弁」によるものとする。 なお、消火栓に使用するホース及び結合金具は、表 5.1.10 による。

74.1.2.2.1					
ホース				結合金具	
種別	呼称	長さ・数	使 用 圧	呼称	形式
1 号消火栓	40	15m・2本	0.7MPa以上	40	差込式

表5.1.10 消火栓に使用するホース及び結合金具

(4) ノズルは、「屋内消火栓設備の屋内消火栓等の基準」に適合するものとする。 なお、消火枠の種別に対する呼称、放水口の呼び径及び放水の形状は、表 5.1.11 による

	衣5.1.11 和	月久住の種別に対する呼ば	小、放水口の呼い住及い放水の	形扒
種 別	呕称	放水口の呼び径	お水の形状	毛元

種別	呼称	放水口の呼び径	放水の形状	手元開閉弁の有無
1 号消火栓	40	13mm相当	棒状放水	無し
			棒状と噴霧の切替式	開閉装置付き

(ウ) ホース収納装置は、表 5.1.12 による。

なお、ホース掛けは、くし型回転式又は固定式で、青銅製、アルミニウム合金製又はス テンレス鋳物製とし、ホースの垂下荷重を支持する強度を有するものとする。

種別 ホース収納装置 1 号消火栓 ホース掛けくし型

表5.1.12 ホース収納装置

1.2.3 不活性ガス消火(二酸化炭素消火)

1.2.3.1 消火剤

(1) 消火剤は、JIS K 1106「液化二酸化炭素(液化炭酸ガス)」の2種又は3種に適合する ものとする。

1.2.3.2 噴射ヘッド

- (1) 噴射ヘッドは、設置場所に適応する形状及び寸法のものとし、放射圧力 1.4MPa 以上にお いて、規定量の消火剤を規定時間内に放射できる構造のもので、「不活性ガス消火設備等 の噴射ヘッドの基準」(平成7年消防庁告示第7号)に適合するものとする。
- (2) 噴射ヘッドは青銅製、黄銅製又はステンレス鋼製とし、放射ホーンは、原則として、鋼 板製とする。

1.2.3.3 貯蔵容器

- (1) 貯蔵容器は、高圧ガス保安法及び同法に基づく省令に定める容器検査に合格したもので、 充塡比が 1.5 以上 1.9 以下であるものとする。
- (2) 容器には、安全装置、容器弁及び容器弁開放装置(ガス圧式又は電気式)を備える。 なお、安全装置及び容器弁は「不活性ガス消火設備等の容器弁、安全装置及び破壊板の 基準」(昭和51年消防庁告示第9号)に適合するものとする。

1.2.3.4 起動用ガス容器

- (1) 起動用ガスは、二酸化炭素又は窒素とする。
- (2) 起動用ガスに二酸化炭素を使用するものは、内容積1 L以上のもので、0.6kg 以上(充塡 比 1.5 以上)を貯蔵するものとする。
- (3) 容器は、高圧ガス保安法及び同法に基づく省令に定める容器検査に合格したものとする。
- (4) 容器には、安全装置、容器弁及び電気式容器弁開放装置を備える。 なお、安全装置及び容器弁は「不活性ガス消火設備等の容器弁、安全装置及び破壊板の 基準」に適合するものとする。

1.2.3.5 選択弁

(1) 選択弁は、青銅製、黄銅製、ステンレス鋳鋼製、機械構造用炭素鋼製又は高温高圧用鋳 鋼製とし、ガス圧開放方式又は電気的開放方式により迅速確実に開放ができ、かつ、手動 開放もできる構造とし、「不活性ガス消火設備等の選択弁の基準」(平成7年消防庁告示 第2号)に適合するものとする。

1.2.3.6 安全装置等

(1) 貯蔵容器と選択弁との間に設ける安全装置等は、「不活性ガス消火設備等の容器弁、安全装置及び破壊板の基準」に適合するものとする。

1.2.3.7 手動起動装置

(1) 手動起動装置は、音響警報起動用スイッチ、放出起動用スイッチ(保護カバー付き)、停止用スイッチ等を内蔵し、電源表示灯及び起動表示灯を備えたものとする。

1.2.3.8 音響警報装置

(1) 音響警報装置は、起動用スイッチと連動する音声とし、消火剤放出前に警報を遮断する ことができない構造のもので、「不活性ガス消火設備等の音響警報装置の基準」(平成7 年消防庁告示第3号)に適合するものとする。

1.2.3.9 放出表示灯

(1) 放出表示灯は、鋼板製、ステンレス鋼板製又は難燃性合成樹脂製の箱形で、前面に合成 樹脂製の表示板を、内部に表示灯を取付けた壁付形とし、表示板は動作時に白地又は暗紫 色に赤文字が点灯又は点滅するものとする。

1.2.3.10 制御盤

(1) 制御盤は、「不活性ガス消火設備等の制御盤の基準」(平成 13 年消防庁告示第 38 号)に適合するものとする。

1.2.3.11 非常電源装置

(1) 非常電源装置は、消防法施行規則第 19 条第 5 項第 20 号及び同項第 24 号の規定に適合するものとする。

1.2.3.12 貯蔵容器取付枠

(1) 貯蔵容器の取付枠は、形鋼製の組立式で、容器の出し入れが容易にできるとともに、容器の計量に便利な構造とする。

1.2.3.13 安全対策

- (1) 安全対策は、「二酸化炭素消火設備の安全対策について」(平成8年消防予第193号、 消防危第117号通知)によるほか、「二酸化炭素消火設備の設置に係るガイドラインの策 定について」(令和4年消防予第573号)に適合するものとする。
- (2) 制御盤には、閉止弁「閉」の表示及び閉止弁「開」の表示を設けるものとする。

1.2.4 ハロゲン化物消火 (ハロン消火)

1.2.4.1 消火剤

(1) 消火剤は、ドデカフルオロ-2-メチルペンタン-3-オン (FK-5-1-12) 又はブロモトリフル オロメタン (ハロン 1301) とする。

1.2.4.2 噴射ヘッド

- (1) 噴射ヘッドは、設置場所に適応する形状及び寸法のものとし、FK-5-1-12 を貯蔵するものにあっては放射圧力 0.3MPa 以上、ハロン 1301 を貯蔵するものにあっては放射圧力 0.9MPa 以上において、規定量の消火剤を規定時間内に放射できる構造のもので、「不活性ガス消火設備等の噴射ヘッドの基準」に適合するものとする。
- (2) 噴射ヘッドは、青銅製、黄銅製又はステンレス鋼製とし、放射ホーンは、原則として、 鋼板製とする。

1.2.4.3 貯蔵容器

- (1) 貯蔵容器は、高圧ガス保安法及び同法に基づく省令に定める容器検査に合格したもので、 消火剤の充填比が、FK-5-1-12 を貯蔵するものにあっては 0.7 以上 1.6 以下、ハロン 1301 を貯蔵するものにあっては 0.9 以上 1.6 以下とし、充填圧力が温度 20 度において 4.2MPa となるように窒素ガスで加圧したものとする。
- (2) 容器には、安全装置、容器弁及び容器弁開放装置(ガス圧式又は電気式)を備えたものとする。

なお、安全装置及び容器弁は「不活性ガス消火設備等の容器弁、安全装置及び破壊板の 基準」に適合するものとする。

1.2.4.4 起動用ガス容器

- (1) 起動用ガスは、二酸化炭素又は窒素とする。
- (2) 起動用ガスに二酸化炭素を使用するものは、内容積1 L以上のもので、0.6kg 以上(充塡 比 1.5 以上)を貯蔵するものとする。
- (3) 容器は、高圧ガス保安法及び同法に基づく省令に定める容器検査に合格したものとする。
- (4) 容器には、安全装置、容器弁及び電気式容器弁開放装置を備える。 なお、安全装置及び容器弁は「不活性ガス消火設備等の容器弁、安全装置及び破壊板の 基準」に適合するものとする。

1.2.4.5 選択弁

(1) 選択弁は、青銅製、黄銅製、ステンレス鋳鋼製、機械構造用炭素鋼製又は高温高圧用鋳鋼製とし、ガス圧開放方式又は電気的開放方式により迅速確実に開放ができ、かつ、手動開放もできる構造とし、「不活性ガス消火設備等の選択弁の基準」に適合するものとする。

1.2.4.6 安全装置等

(1) 貯蔵容器と選択弁との間に設ける安全装置等は、「不活性ガス消火設備等の容器弁、安全装置及び破壊板の基準」に適合するものとする。

1.2.4.7 手動起動装置

(1) 手動起動装置は、音響警報起動用スイッチ、放出起動用スイッチ(保護カバー付き)、

停止用スイッチ等を内蔵し、電源表示灯及び起動表示灯を備えたものとする。

1.2.4.8 音響警報装置

(1) 音響警報装置は、起動用スイッチと連動する音声とし、消火剤放出前に警報を遮断することができない構造のもので、「不活性ガス消火設備等の音響警報装置の基準」に適合するものとする。

1.2.4.9 放出表示灯

(1) 放出表示灯は、鋼板製、ステンレス鋼板製又は難燃性合成樹脂製の箱形で、前面に合成 樹脂製の表示板を、内部に表示灯を取付けた壁付形とし、表示板は動作時に白地又は暗紫 色に赤文字が点灯又は点滅するものとする。

1.2.4.10 制御盤

(1) 制御盤は、「不活性ガス消火設備等の制御盤の基準」に適合するものとする。

1.2.4.11 非常電源装置

(1) 非常電源装置は、消防法施行規則第 20 条第 4 項第 15 号及び同項第 18 号の規定に適合するものとする。

1.2.4.12 貯蔵容器取付枠

(1) 貯蔵容器の取付枠は、形鋼製の組立式で、容器の出し入れが容易にできるとともに、容器の計量に便利な構造とする。

第2章 施工

第1節 衛生器具

2.1.1 一般事項

- (1) 壁付け器具をコンクリート、合板張り壁、金属製パネル又は軽量鉄骨ボード壁等に取付ける場合は、次による。
 - (ア) コンクリート壁等に取付ける場合は、エキスパンションボルト又は樹脂製プラグを使用する。
 - (4) 合板張り壁等に取付ける場合は、間柱と同寸法の堅木材当て木を取付ける。
 - (ウ) 金属製パネル又は軽量鉄骨ボード壁等に取付ける場合は、アングル加工材又は堅木材当て木等を取付ける。
- (2) 陶器の一部をコンクリートに埋込む場合は、コンクリート又はモルタルと陶器との接触 部に、厚さ3mm以上のアスファルト被覆等の緩衝材を用いて施す。
- (3) 次のものは、標準図による。
 - (ア) 衛生器具の取付け高さ
 - (4) 大便器、小便器、洗面器及び掃除流しと塩ビ管接続要領
 - (ウ) 和風便器取付け要領
 - (エ) 耐火性能が必要となる阻集器・和風便器の防火区画貫通部処理要領

2.1.2 大便器

- (1) 据付位置を正確に定め、便器上縁を水平に定置する。
- (2) 便器と排水用の塩ビ管の接続は、専用の床フランジ等と塩ビ管を接合し、パッキン等を はさみ込み、ボルトを用いて、ナットを上にして締付ける。
- (3) 便房に設ける便器洗浄ボタン及び紙巻器の配置は、JIS S 0026「高齢者・障害者配慮設計指針-公共トイレにおける便房内操作部の形状、色、配置及び器具の配置」による。
- (4) 改修時に、既設排水管を利用する場合で排水芯の位置調整の必要性が生じる場合は、監督職員に報告する。

2.1.3 小便器

- (1) 壁掛及び床置小便器は、芯だしを行い、正確な位置に取付ける。
- (2) 便器と排水用の塩ビ管の接続方法は、2.1.2「大便器」(2)による。

2.1.4 洗面器及び手洗器

- (1) 所定の位置にブラケット又はバックハンガーを取付け、陶器上面が水平、かつ、がたつきのないよう固定する。器具排水口周辺と排水金具との隙間には、耐熱性不乾性シール材を詰め、漏水のないように締付ける。
- (2) 洗面器の排水トラップと塩ビ管の接続は、専用の排水アダプタと塩ビ管を接着接合し、 パッキンをはさみ込み、袋ナットを用いて固定する。
- (3) 排水トラップと配管の接続に鋼管を使用する場合は、専用アダプタを使用して接合する。

2.1.5 掃除流し

- (1) 排水トラップと塩ビ管の接続は、専用の床フランジと塩ビ管を接合し、パッキン等をはさみ込み、ボルトを用いて、ナットを上にして締付け、トラップ位置の芯だしを行い、正確な位置に取付ける。
- (2) バックハンガーの取付け及び器具排水口と排水金具との接続方法は、2.1.4「洗面器及び手洗器」による。

2.1.6 水栓

(1) 取付周囲の状況により、使い勝手等を考慮して芯出しを行い取付ける。

なお、水栓の吐水口の外観最下端位置と水受容器のあふれ縁との間は、「給水装置の構造及び材質の基準に関する省令」第5条第2項に規定されている吐水口空間を確保するものとする。

2.1.7 衛生器具ユニット

- (1) 衛生器具ユニットは、特記された設計用震度による地震力によって損傷を起こさない強度を有するボルト等で、地震力によって位置のずれ等を起こさないように固定する。
 - なお、設計用震度が特記されていない場合は、2.2.1「一般事項」の当該事項による。
- (2) 排水配管は、適正な勾配を確保し、排水横枝管等に接続する。
- (3) 複数のユニットを連結する場合は、連結部の配管等を適切に接続する。

2.1.8 和風便器

(1) フランジ形和風便器は、あらかじめ床に設けた据付穴に、標準図(和風便器取付け要領) により所定の位置に水平、高さとも正確に据付ける。

なお、防水層をもつ床の場合は、同層を支えブロック及び便器通水路の保護被覆部に沿って便器リム下端まで立ち上げる。

(2) 差込形和風便器は、(1)に準じて便器を固定し、排水管受口に不乾性シール材等の充塡材を適切な厚さに塗り付けた上、片寄りのないように便器に差込み、さらに充塡材を受口上端まで隙間なく詰め、上端は45°に盛り上げる。

第2節 給排水衛生機器

2.2.1 一般事項

- (1) 基礎は、機器運転時の全体荷重に耐えられる床又は地盤上に築造する。
- (2) 基礎は、標準基礎又は防振基礎とし、適用は特記による。
 - (ア) 標準基礎は、次による。
 - (a) コンクリート基礎とし、コンクリート打設後 10 日間以内に荷重をかけてはならない。表面は、金ごて押さえ又はモルタル塗りとし、据付け面を水平に仕上げたものとする。
 - (b) コンクリート工事及び左官工事は、第2編第4章「関連工事」の当該事項による。
 - (c) 基礎の大きさは特記によるものとし、基礎の高さ、配筋要領等は、標準図(基礎施工要領(一))による。
 - (4) 防振基礎は、標準基礎にストッパーを設けて、防振架台(製造者の標準仕様)を間接 的に固定するものとし、ストッパーは、水平方向及び鉛直方向の地震力に耐えるもので、 ストッパーと防振架台との間隙は、機器運転時に接触しない程度とする。また、地震時 に接触するストッパーの面には、緩衝材を取付ける。

なお、ストッパーの形状及びストッパーの取付要領は、標準図(基礎施工要領(四)) による。

- (3) 鋼製架台は、機器の静荷重及び動荷重を基礎に完全に伝えるもので、建築基準法施行令 第 90 条及び第 92 条並びに第 129 条の 2 の 3 によるものとし、材料は、「鋼構造許容応力 度設計規準」((一社)日本建築学会)に規定されたもの又はこれと同等以上のものとする。
- (4) 機器は、水平に、かつ、地震力により転倒及び横滑りを起こさないように基礎、鋼製架 台等に固定する。固定方法は、標準図(基礎施工要領(一)、基礎施工要領(四))による。

なお、機器は、地震時に設計用水平震度に機器の重量(kN)をかけた設計用水平地震力(kN) 及び設計用鉛直震度に機器の重量(kN)をかけた設計用鉛直地震力(kN)が、重心に作用する ものとし、設計用震度は特記による。ただし、特記がない場合は、次による。

(ア) 設計用水平震度は、表 5.2.1 による。

設置場所*1	タンク以外の機器	タ ン ク		
上 層 階*2	1.0	1.0		
屋上及び塔屋	(1.5)	1.0		
 中 間 階* ³	0.6	0.6		
中 間 階* ³	(1.0)	0.0		
1 『比及 7 》 計 下 『比	0. 4	0.6		
1 階及び地下階	(0.6)	0.6		

表5.2.1 設計用水平震度

備考 ()内の数値は、防振支持の機器の場合を示す。

- 注 *1 設置場所の区分は、機器を支持している床部分により適用し、床又は壁に支持される機器は当該階を適用し、天井面より支持(上階床より支持)される機器は、支持部材取付床の階(当該階の上階)を適用する。
 - *2 上層階は、2から6階建の場合は最上階、7から9階建の場合は上層2階、10から12階建の場合は上層3階、13階建以上の場合は上層4階とする。
 - *3 中間階は、1階及び地下階を除く各階で上層階に該当しない階とする。
- (イ) 設計用鉛直震度は、設計用水平震度の1/2の値とする。
- (5) 給湯設備の転倒防止措置は、建築基準法施行令第 129 条の2の3第2号及び同令に基づく告示(平成24年国土交通省告示第 1447号)の定めによる。
- (6) 壁掛形の機器は、2.1.1「一般事項」の当該事項により取付ける。
- (7) 機器廻り配管は、機器へ荷重がかからないように、第 2 編 2.6.2.1 「一般事項」の固定 及び支持を行う。
- (8) 改修時の基礎は、次による。
 - (ア) 機器用基礎の新設及び既設再使用は特記による。
 - (イ) 基礎の増設及び補修は特記による。 なお、基礎を増設する場合は、目荒らし後、増設基礎と既設基礎が一体となるように 施工する。
 - (ウ) 屋上や機械室等で基礎の解体・増設及び補修に伴う防水層の補修は特記による。
 - (エ) あと施工アンカーを使用する場合は、第2編6.1.3「あと施工アンカー」の項による。

2.2.2 ポンプ

2.2.2.1 揚水用ポンプ (横形) 及び小形給水ポンプユニット

- (1) ポンプの基礎は、標準図(基礎施工要領(一)、基礎施工要領(四))による。
- (2) ポンプ本体が結露する場合及び軸封がグランドパッキンの場合は、ポンプの基礎には、ポンプ周囲に排水溝及び排水目皿を設け、呼び径25以上の排水管で最寄りの排水系統に排水する。
- (3) 防振基礎における防振材の個数及び取付位置は、運転荷重、回転速度及び防振材の振動 絶縁効率により決定する。

なお、防振材及び振動絶縁効率は特記による。特記がなければ、振動絶縁効率は80%以上とする。

- (4) ポンプは、共通ベースが基礎上に水平になるように据付け、その後、軸心の調整を行う。
- (5) ポンプ廻りの配管要領は、標準図(揚水ポンプ(横形)廻り配管要領)による。

2.2.2.2 揚水用ポンプ(立形)

- (1) ポンプの基礎は、標準図(基礎施工要領(一)、基礎施工要領(四))による。
- (2) ポンプは、ベースが基礎上に水平になるように据付ける。
- (3) 揚水用ポンプ (立形) の据付けは、(1)によるほか、2.2.2.1 「揚水用ポンプ (横形) 及び小形給水ポンプユニット」の(2)の当該事項による。
- (4) ポンプ廻りの配管要領は、標準図(揚水ポンプ(立形)廻り配管要領)による。

2.2.2.3 水道用直結加圧形ポンプユニット

(1) 水道用直結加圧形ポンプユニットは、基礎上に水平になるように据付けるほか、転倒防止措置を講ずる。

2.2.2.4 給湯用循環ポンプ

(1) ポンプは、水平になるように据付け、配管に荷重がかからないように、本体の前後を支持金物で支持する。

2.2.2.5 深井戸用水中モーターポンプ

(1) ポンプ等を吊りおろすパイプハンガー及び滑車台は、井側の上に据付ける。ポンプ及び 揚水管を正確に連結して垂直に井内におろし、基礎上に水平になるように据付け、井戸ふ たに固定するか又は支持バンドで支持する。水中ケーブルは、被覆を損傷しないように取 付ける。

2.2.2.6 汚水、雑排水及び汚物用水中モーターポンプ

- (1) ポンプは、吸込みピットに水平になるように据付ける。
- (2) 水中ケーブルは、余長を束ね被覆が損傷しないようにケーブルフックに取付ける。また、 吐出管の床貫通部等の隙間はモルタルを充塡する。
- (3) 着脱装置は、堅固に固定し、ガイドレールは垂直に取付ける。

2.2.2.7 消火ポンプユニット

(1) 2.2.2.1 「揚水用ポンプ (横形)及び小形給水ポンプユニット」による。 なお、ポンプ廻りの配管要領は、標準図 (消火ポンプユニット廻り配管要領)による。

2.2.3 温水発生機等

2.2.3.1 温水発生機

(1) 第3編2.1.6「温水発生機」による。

2.2.3.2 コージェネレーション装置

(1) 第3編2.1.8 「コージェネレーション装置」による。

2.2.3.3 排熱回収型給湯器

(1) 排熱回収型給湯器は、第3編2.1.8「コージェネレーション装置」(1)及び(3)による。

2.2.3.4 ガス湯沸器及び潜熱回収型給湯器

(1) ガス湯沸器及び潜熱回収型給湯器は、2.2.1「一般事項」の当該事項により取付ける。ただし、可燃性の取付面に、ガス機器防火性能評定 ((一財)日本ガス機器検査協会)を有しない機器を取付ける場合は、背部に耐熱板(アルミニウム板で絶縁した3.2mm以上の耐火ボード)を設ける。

なお、ガステーブルが設置される場合は、ガステーブルにかからないような位置に取付

ける。

2.2.3.5 貯湯式電気温水器

(1) 貯湯式電気温水器は、2.2.1「一般事項」の当該事項により取付ける。

2.2.3.6 ヒートポンプ給湯機

- (1) ヒートポンプユニットは、地震動等により転倒しないように、固定金物を用いて床又は 壁に取付ける。
- (2) 貯湯ユニットは、2.2.1「一般事項」の当該事項により取付ける。

2.2.3.7 太陽熱集熱器

(1) 太陽熱集熱器は、地震動等により転倒しないように、固定金物を用いて床又は壁に取付ける。

2.2.3.8 太陽熱蓄熱槽

(1) 太陽熱蓄熱槽は、地震動等により転倒しないように、固定金物を用いて床又は壁に取付ける。

2.2.4 タンク

2.2.4.1 FRP 製、鋼板製及びステンレス鋼板製タンク

- (1) 飲料用のタンクの据付位置等は、建築基準法施行令第 129 条の 2 の 3 及び第 129 条の 2 の 4 並びに同令に基づく告示の定めによる。
- (2) タンクの基礎は、標準図(基礎施工要領(一))による。
- (3) タンク基礎及び鋼製架台は、2.2.1「一般事項」によるものとし、荷重に対して不陸のない支持面をもつ鋼製架台(鋼板製一体形タンクにあっては架台が組込まれている構造のものは除く。)を介して水平になるように据付ける。
- (4) タンクは据付け後、清掃及び水洗を行う。飲料用の場合は、さらに次亜塩素酸ソーダ溶液等により消毒を行う。

2.2.4.2 貯湯タンク

- (1) 貯湯タンクの基礎は、標準図(基礎施工要領(一))による。
- (2) 立形の場合は基礎上に、横形の場合は鋼製架台を介して基礎上に水平になるように据付ける。
- (3) 据付け後、清掃及び水洗を行い、飲料用の場合はさらに消毒を行う。
- (4) (1)から(3)までによるほか、「ボイラー及び圧力容器安全規則」に定めるところによる。

2.2.4.3 給湯用膨張・補給水タンク

- (1) 給湯用膨張・補給水タンクの基礎は、標準図(基礎施工要領(一))による。
- (2) タンクと鋼製架台とはボルト等により固定し、基礎上に水平になるように据付ける。
- (3) 据付け後、清掃及び水洗(通水洗浄)を行い、飲料用の場合はさらに消毒を行う。

2.2.4.4 給湯用密閉形隔膜式膨張タンク

- (1) 給湯用密閉形隔膜式膨張タンクの給湯配管に、溶解栓を取付ける場合は、標準図(密閉形隔膜式膨張タンク廻り配管要領)による。
- (2) タンクと鋼製架台とはボルト等により固定し、基礎上に水平になるように据付ける。
- (3) 据付け後、清掃及び水洗を行い、飲料用の場合はさらに消毒を行う。

2.2.4.5 消火用充水タンク

- (1) 消火用充水タンクの基礎は、標準図(基礎施工要領(一))による。
- (2) タンクと鋼製架台とはボルト等により固定し、基礎上に水平になるように据付ける。

2.2.5 消火機器

2.2.5.1 一般事項

(1) 消火機器の据付位置、方法等は、消防法施行規則及び地方公共団体の条例の定めるところによる。

2.2.5.2 屋内消火栓箱及び各種格納箱

(1) 箱の正面は、壁の仕上りに平行して傾きのないよう、また、ゆがみなく戸当りに注意して所定の高さに取付ける。

2.2.5.3 屋外消火栓(地上式)

(1) 消火栓を支持するコンクリート基礎を設け、連結する配管に無理な荷重がかからないように接続する。

2.2.5.4 取付高さ

(1) 機器類の取付高さは、表 5.2.2 による。

表5.2.2 消火機器類の取付高さ

(単位 mm)

名 称	取付高さ	備考
屋内消火栓開閉弁	1,500以下	床面からの高さ
スプリンクラー用制御弁及び各種手動起動装置	800以上1,500以下	同 上
連結送水管送水口及び放水口並びにスプリンクラー用 送水口及び連結散水設備用送水口	500以上1,000以下	地盤又は床面からの高さ

2.2.5.5 スプリンクラーヘッド

(1) 天井面に設置するスプリンクラーヘッドは、地震時においても感熱部が天井材等に接触しないように、感熱部を天井面より下方に取付ける。ただし、コンシールド型の場合は除く。

2.2.6 厨房機器

(1) 厨房機器は、配置、高さ及び水平を調整し据付ける。

なお、熱調理器、高さ(機器背面に背立てを有するものはこれを除いた高さ)が1.0mを超える厨房機器及び特記された機器は、地震時に転倒及び位置ずれを起こさないよう、床又は壁に固定する。厨房機器の据付けは、標準図(厨房機器据付け要領)による。

2.2.7 雨水利用機器

(1) 網かご形スクリーン(床置形)は、標準図(網かご形スクリーン(雨水利用機器)要領図)による。

2.2.8 試験

- (1) 給湯用膨張・補給水タンクは、据付け後に満水試験を行い漏洩が無いことを確認する。
- (2) FRP 製一体形タンク、FRP 製パネルタンク、鋼板製一体形タンク、ステンレス鋼板製パネルタンク (溶接組立形)、ステンレス鋼板製パネルタンク (ボルト組立形)、給湯用膨張・補給水タンク及び消火用充水タンクは、据付け後に満水試験を行い、漏洩が無いことを確認する。
- (3) コージェネレーション装置の試験は、第 2 編 2.1.21「試験」のコージェネレーション装置の当該事項による。

第3節 撤去

2.3.1 一般事項

(1) 第1編第4章「撤去」及び第5章「発生材の処理等」によるほか、特記による。

2.3.2 機器・器具の撤去

- (1) 機器の撤去に先立ち、水、冷媒、ガス、油等の接続配管が取外されていることを確認する。また、電源及び自動制御設備については、他の設備に影響しないように遮断する。 なお、冷媒の回収方法及び放出を防止する措置は、第3編2.4.3「冷媒の回収方法等」による。
- (2) 衛生器具等を撤去する場合は、十分に洗浄を行い、汚水、汚物等による異臭の発生及び 周囲の汚染の防止に努める。
- (3) 飲料用タンク、消火用タンク等が使用できなくなる場合は、事前に監督職員と協議する ほか、関係官署と協議する。
- (4) オイルタンク、オイルサービスタンク等の撤去は、第3編第2章「施工」の当該事項に よる。
- (5) オイルタンク、汚水槽、雑排水槽等密閉された空間で作業を行う場合は、第1編 1.3.5 「施工中の安全確保」の当該事項による換気等の措置を講ずる。 なお、汚水槽及び雑排水槽において作業を行う場合、事前に汚水及び汚物の除去を行い、 清掃及び消毒を行う。
- (6) 煙道及び排気筒の撤去に際しては、すすの飛散防止措置を講ずる。
- (7) ボイラー、タンク等の大形機器の撤去において、搬出経路や搬出口等の制限を受け、機器を分割・解体する必要がある場合は、監督職員と協議する。
- (8) 機器の吊り装置(電動ウインチ等)とそれらを支持固定する架台(チャンネル等)等が必要な場合は、監督職員と協議する。
- (9) ハロゲン化物消火設備及び泡消火設備の撤去に際しては、消火剤を放出することなく、 関係法令に従い、適切に処理する。

第6編 ガス設備工事

第1章 一般事項

第1節 総 則

1.1.1 一般事項

- (1) 都市ガス設備は、ガス事業法、同法施行令(昭和29年政令第68号)、同法施行規則(昭和45年通商産業省令第97号)、「ガス工作物の技術上の基準を定める省令」(平成12年通商産業省令第111号)、「ガス工作物の技術上の基準の細目を定める告示」(平成12年通商産業省告示第355号)、ガス事業者の規定する供給約款等の定めによる。
- (2) 液化石油ガス設備は、以下の定めによる。
 - (ア) 高圧ガス保安法、同法施行令(平成9年政令第20号)、液化石油ガス保安規則(昭和41年通商産業省令第52号)、同規則関係例示基準、特定設備検査規則(昭和51年通商産業省令第4号)、同規則関係例示基準、容器保安規則(昭和41年通商産業省令第50号)及び同規則関係例示基準
 - (イ) 液化石油ガスの保安の確保及び取引の適正化に関する法律、同法施行令(昭和43年政 令第14号)、同法施行規則(平成9年通商産業省令第11号)及び同規則の例示基準
 - (ウ) 「LP ガス設備設置基準及び取扱要領」(高圧ガス保安協会)
 - (エ) 「ガス機器の設置基準及び実務指針」及び「業務用ガス機器の設置基準及び実務指針」 ((一財)日本ガス機器検査協会)
- (3) ガス器具、液化石油ガス器具等は、(1)及び(2)の法令並びにこれらの法令に基づく技術上の基準に適合するものとする。
- (4) 特定ガス消費機器の設置は、特定ガス消費機器の設置工事の監督に関する法律(昭和54年法律第33号)、同法施行令(昭和54年政令第231号)及び同法施行規則(昭和54年通商産業省令第77号)の定めによる。
- (5) ガス設備の施工に際しては、ガス事業法及び液化石油ガスの保安の確保及び取引の適正 化に関する法律に基づく命令のほか、建築基準法、消防法、電気事業法等の関係法令で定 められた事項についても遵守する。

第2章 都市ガス設備

第1節 機材

2.1.1 一般事項

(1) 機材は、標準仕様書第6編第2章「機材」による。

第2節 施工

2.2.1 器具の取付け

2.2.1.1 ガス栓

- (1) ガス栓は、ガス栓の形状、周囲の状況、使い勝手等を考慮した位置に設け、取付面に隙間又は傾きが生じないように取付ける。
- (2) 電気工作物に近接する場合は、関係法令に従い、必要な離隔距離を確保する。 なお、電気コンセント付ガス栓で樹脂被覆ケーブルを用い、絶縁部に絶縁カバーを施す 場合は、この限りでない。

2.2.1.2 ガス漏れ警報器

- (1) ガス漏れ警報器の設置場所は、次によるものとし、点検に便利な壁・天井面等に設置する。
 - (ア) ガスの比重が空気より軽い場合
 - (a) 消費機器からの水平距離で8m以内に設置する。ただし、天井面等が0.6m以上突出した梁等によって区画される場合は、当該梁等より消費機器側に設置する。
 - (b) 警報器の下端は、天井面等の下方 0.3m以内に設置する。
 - (イ) ガスの比重が空気より重い場合
 - (a) 消費機器から水平距離で4m以内に設置する。
 - (b) 警報器の上端が床面の上方 0.3m以内に設置する。

2.2.1.3 ガスメーター

(1) ガスメーターは、ガス事業者の規定に従い、容易に検針及び取替えできる位置に設置する。マイコンメーターについては、復帰操作も考慮した位置とする。据置設置するものは、コンクリート(工場製品としてもよい。)又は形鋼製台上に取付ける。

なお、電気工作物に近接する場合は、関係法令に従い、必要な離隔距離を確保する。

2.2.2 管の接合

- (1) 管は、その断面が変形しないように管軸に対して直角に切断し、その切り口は平滑に仕上げる。
- (2) 接合する前に、切りくず、ごみ等を十分除去し、管の内部に異物のないことを確かめてから接合する。
- (3) 配管の施工を一時休止する場合等は、その管内に異物が入らないように養生する。
- (4) 接合用ねじは、JIS B 0203「管用テーパねじ」による管用テーパねじとし、接合には、 おねじ部にガス事業者の定めるシール材を適量塗布し、接合する。

なお、ねじ切りした部分の鉄面は、シリコン系シール剤の塗布、防錆ペイントの塗布等 ガス事業者の規定する防錆措置を施す。 (5) 溶接部の非破壊検査(放射線透過試験)の適用は、表 6.2.3 及びガス事業法によるほか、 ガス事業者の規定による。

圧 力			延長		
		内 径	250m未満	250m以上 500m未満	500m以上
高圧	1.0MPa以上	——	0	0	0
	1.0MPa未満	150mm以上		0	0
中	0.3MPa以上	150mm未満			
庄	0.3MPa未満	150mm以上			0
	0.1MPa以上	150mm未満			

表6.2.3 非破壊検査の適用範囲

- (6) 機械的接合は、ガスケット等を所定の位置に片寄らないように取付け、所定のパイプレンチ、モンキーレンチ等を用いて接合する。
- (7) フランジ接合は、清掃されたフランジ面が管軸と直角となるよう、さらに片締めのない よう取付ける。
- (8) 融着接合は、接合する部分の付着物を除去し、融着機等を用いて、適切に融着を行う。

2.2.3 配管

2.2.3.1 一般事項

- (1) 配管の施工に先立ち、他の設備管類及び機器との関連事項を詳細に検討し、その位置を 正確に決定する。
- (2) 配管を建築物内に施工する場合は、工事の進捗に伴い、管支持金物の取付け及びスリーブの埋込みを遅滞なく行う。
- (3) 本支管よりガスメーターまでの管(供給管及び灯外内管)において、水の溜まるおそれのあるときは水取器を取付ける。
- (4) 屋外地中配管の分岐及び曲り部には、地中埋設標を設置する。 なお、設置箇所は特記による。
- (5) 天井、床、壁等を貫通する見え掛り部には、管座金を取付ける。
- (6) 気密試験を行うためのガス栓が居室内にない場合には、ガスメーター近傍等に試験孔を 設置する。
- (7) 配管は、煙突等の火気に対して十分な間隔を保持する。また、電線及び電気工作物に近接又は交差する場合は、関係法令に従い、必要な離隔距離を確保するか又は防護措置を行う。
- (8) フレキ管の配管において、スラブ内及びコンクリート増打ち内に配管する場合は、さや 管を使用する。

なお、さや管はガス用 CD 管とする。

- (9) 建築基準法施行令第 112 条第 20 項に規定する準耐火構造の防火区画等を貫通する管は、その隙間をモルタル又はロックウール保温材で充塡する。
- (10) 梁等の貫通部には接合部を設けない。

- (11) 建築物の導入部の配管は、ポリエチレン管又は可とう性を有するものとし、ガス事業者 が承認したものとする。
- (12) 不等沈下のおそれのある部分の配管は、溶接により接合された鋼管、ポリエチレン管又は可とう性を有するものとし、ガス事業者が承認したものとする。
- (13) 管を埋戻す場合は、土被り 150mm 程度の深さに埋設表示用アルミテープ又はポリエチレンテープ等を埋設する。

2.2.3.2 吊り及び支持

- (1) 吊り及び支持は、第2編2.6.2「吊り及び支持」による。
- (2) 他の配管、機器等からは、配管支持をとらない。
- (3) 床ころがし配管は、支持具を用いて支持する。
- (4) フレキ管の支持固定は、横走り管は2m以内ごとに行う。

2.2.3.3 埋設深さ

(1) 管の地中埋設深さは、車両道路では管の上端より 600mm 以上、それ以外では 300mm 以上 とする。

2.2.4 塗装

(1) 塗装は、第2編3.2.1「塗装」による。ただし、鋼管のねじ接合部箇所の余ねじ部のさび 止め塗装は、ガス事業者の規定による。

2.2.5 防食処置

- (1) 鋼管で、腐食のおそれのある部分は、次による防食処置を施すものとする。ただし、監督職員の承諾の上、ガス事業者の定める工法によることができる。
 - (ア) 地中配管及び次の部分は、原則として、第2編2.7.3「防食処置」による。
 - (a) 地中からの立上り部及び立下り部の土と接触する部分
 - (b) 床下の多湿部及び屋内の水の影響を受けるおそれがある場所の露出部
 - (イ) コンクリート埋設及び貫通する部分の鋼管類(合成樹脂等で外面を被覆された部分は 除く。)には、ビニル粘着テープ又はプラスチックテープを 1/2 重ね 1 回巻きを行う。
 - (ウ) 鉄骨造、鉄筋コンクリート造及び鉄骨鉄筋コンクリート造建物に引き込まれる箇所の 付近の露出部配管には、絶縁継手を設ける。
 - (エ) 地中配管に電気防食を施す場合は、ガス工作物の技術上の基準を定める省令第 47 条 (防食処置) による。

2.2.6 試験

- (1) 試験は、最高使用圧力以上の圧力で圧力保持による気密試験を行い、漏えいがないことを確認する。
- (2) 耐圧部分(最高使用圧力が高圧又は中圧のガスによる圧力が加えられる部分)については、最高使用圧力の1.5倍以上の圧力により、耐圧試験を行う。
- (3) 気密試験終了後、ガスへの置換を行い、配管内がガスに置換されていることを点火試験等により確認する。

第3章 液化石油ガス設備

第1節 機材

3.1.1 一般事項

(1) 機材は、標準仕様書第6編第3章「機材」による。

第2節 施工

3.2.1 器具の取付け

3.2.1.1 ガス栓

- (1) ガス栓は、ガス栓の形状、周囲の状況、使い勝手等を考慮した位置に設け、取付面に隙間又は傾きが生じないように取付ける。
- (2) 電気工作物に近接する場合は、関係法令に従い、必要な離隔距離を確保する。 なお、電気コンセント付ガス栓で樹脂被覆ケーブルを用い、絶縁部に絶縁カバーを施す 場合はこの限りでない。

3.2.1.2 ガス漏れ警報器

- (1) 設置場所は、次によるものとし、点検に便利な壁等に設置する。
 - (ア) 消費機器から水平距離で4m以内に設置する。
 - (イ) 警報器の上端が床面の上方 0.3m以内に設置する。

3.2.1.3 ガスメーター

(1) ガスメーターは、ガス事業者の規定に従い、容易に検針できる位置に設置する。マイコンメーターについては、復帰操作も考慮した位置とする。

3.2.1.4 その他の設備の取付け

(1) 充填容器の取付けは、ガス事業者の規定によるほか、充填容器廻りの施工は標準図(液化石油ガス容器転倒防止施工要領)による。

3.2.1.5 バルク貯槽

(1) バルク貯槽の据付けは、「液化石油ガスの保安の確保及び取引の適正化に関する法律施行規則」による。

3.2.2 管の接合

- (1) 鋼管の接合は、2.2.2「管の接合」による。ただし、溶接部の非破壊検査の適用、検査の 種類及び抜取率は特記による。
- (2) 銅管の接合は差込接合とし、取外しの必要がある箇所はフレア継手を使用する。差込接合は、管の外面及び継手の内面を十分清掃した後、管を継手に正しく差込み、適温に加熱して、軟ろう合金を流し込む。

3.2.3 配管

(1) 配管は、2.2.3「配管」によるほか、「LPガス設備設置基準及び取扱要領」及び「ガス機器の設置基準及び実務指針」又は「業務用ガス機器の設置基準及び実務指針」による。

3.2.4 塗装

(1) 塗装は、第2編3.2.1「塗装」による。

3.2.5 防食処置

(1) 防食処置は、2.2.5「防食処置」による。

3.2.6 試験

(1) 試験は、2.2.6「試験」による。ただし、気密試験の圧力値は高圧側 1.56MPa 以上、低圧 側 8.4kPa 以上 10.0kPa 以下とする。

第3節 撤去

2.3.1 一般事項

(1) 第1編第4章「撤去」及び第5章「発生材の処理等」によるほか、特記による。

2.3.2 既存設備の撤去

- (1) 既設配管等の撤去範囲は特記による。ただし、その位置で不具合が生じた場合又は接続が不可能若しくは危険と判断される場合は、監督職員と協議する。
- (2) ガス設備の撤去は、撤去範囲のガスを完全に遮断し、必要に応じて、設備内の残留ガスを燃焼パージ又は大気放散し、設備内の残留ガスを完全に抜取り後作業を行う。また、着火事故防止の観点より撤去作業は、可燃性ガス検知器での監視状態のもとで行い、消火器等を準備して行う。
- (3) 撤去作業に当たっては、火気の使用を禁止する。また、電動工具(防爆機能の確認されたものを除く。)は、使用しない。
- (4) 配管の切断は、手動のカッターを使用し、火花発生のおそれのある工具の使用は禁止する。
- (5) 機器及び器具の撤去を行う場合は、ガス栓等の閉止機能を確認する。また、機器及び器具を取外した後、ガス栓等に「操作厳禁」等の表示を行うほか、ガスの漏出を防止するため、プラグ等で確実に末端処理を行う。

- 第7編 さく井設備工事
- 第1章 一般事項、揚水井設備及び地中熱交換井設備
- 第1節 総則
- 1.1.1 一般事項
- (1) さく井設備工事は、標準仕様書第7編「さく井設備工事」による。
- 第8編 浄化槽設備工事
- 第1章 一般事項、現場施工型浄化槽及びユニット型浄化槽
- 第1節 総則
- 1.1.1 一般事項
 - (1) 浄化槽設備工事は、標準仕様書第8編「浄化槽設備工事」による。

第9編 昇降機設備工事

第1章 一般事項

第1節 総則

1.1.1 一般事項

- (1) 本設備は、建築基準法、同法施行令及び同令に基づく告示並びに地方公共団体の条例等の定めによる。
- (2) ロープ式エレベーター、小荷物専用昇降機及びエスカレーターは、標準仕様書第9編「昇降機設備工事」によるほか、本編による。
- (3) 一般油圧エレベーターの仕様は、本編による。
- (4) エレベーターに戸開走行保護装置及び地震時管制運転装置を設置した場合は、(一社)建築性能基準推進協会のエレベーター安全装置設置済マークを、かご内に表示する。

第2節 仮設工事等

1.2.1 一般事項

- (1) 適用は、ロープ式エレベーター、一般油圧エレベーター、小荷物専用昇降機及びエスカレーターとし、第1編第2章「仮設工事」によるほか、次による。
- (2) 複数台のエレベーターが同一昇降路内に設置されている場合で、やむを得ず隣接するエレベーターを運転する場合は、防護ネット等により作業区分を分離し、安全対策等の措置を講ずる。

なお、適用は特記による。

- (3) 乗場に仮間仕切りを設ける場合は、鋼板又は合板等で施すこととし、扉を設ける場合は 施錠できる構造とする。ただし、設置箇所が防火区画にかかる場合は、厚さ 1.5mm 以上の 鋼板で施すこととする。また、仮間仕切りの設置範囲は、施設管理者と協議する。
- (4) 乗場に仮間仕切りを設けない場合は、施工中の表示及び工事関係者以外の立入り禁止対策を行うほか、各乗場の戸が開かない措置を講ずる。
- (5) 昇降路内に石綿の封じ込め処理等が施されているおそれがある場合は、監督職員に報告する。
- (6) 非常用エレベーターの改修工事を行う場合は、施設管理者と協議し施設使用に支障がないよう施工する。

第3節 撤去工事

1.3.1 一般事項

(1) 第1編第4章「撤去」及び第5章「発生材の処理等」によるほか、特記による。

1.3.2 既設機器の撤去

- (1) 既設機器等の撤去範囲は特記による。
- (2) 機器の撤去に先立ち、他の設備に影響を及ぼさないことを確認した後、撤去機器への電源を遮断する。
- (3) 一般油圧エレベーターを撤去する場合は、撤去に先立ち、タンク内の廃油を抜き取り、 消防法、廃棄物処理法その他関係法令等の定めに従い、回収し、専門業者が適正に処理する。
- (4) 撤去に際しては、原則として、火気を使用してはならない。また、粉じん等の飛散を防止する措置を講ずる。

なお、やむを得ず火気を使用する場合は、監督職員と協議する。

(5) 床、壁等の撤去後の開口部の補修方法及び仕上げの仕様は特記による。特記がなければ、監督職員と協議する。

1.3.3 既設機器の搬出

(1) 搬出方法は特記による。

なお、搬出経路に開口等を設ける場合は、監督職員と協議する。

第2章 普及型エレベーター

第1節 一般事項

2.1.1 一般事項

(1) 普及型エレベーターは、標準仕様書第9編「昇降機設備工事」第2章「普及型エレベーター」によるほか、次による。

2.1.2 巻上機

- (1) 巻上機は、歯車なし巻上機又は歯車付き巻上機とし特記とする。
- (2) 歯車付き巻上機は、電動機の回転をウォームギヤ又はヘリカルギヤにより減速して、駆動綱車に伝えるものとする。
- (3) 歯車付き巻上機の場合は、停電時に手動により容易にかごを上又は下に移動できる構造とする。

第3章 一般油圧エレベーター

第1節 一般事項

3.1.1 一般事項

(1) 本章は、乗用、寝台用、人荷共用及び荷物用のエレベーターで間接式(片持式、せり上げ式及び上吊り方式)のものに適用する。

3.1.2 構成

(1) 構成は、機械室内機器、かご、乗場、昇降路内機器、安全装置及び附属品とする。

第2節 機材及び施工

3.2.1 機械室内機器

3.2.1.1 油圧パワーユニット

- (1) 油圧パワーユニットは、油タンク、油圧ポンプ、電動機、流量制御装置、逆止弁、手動 下降弁、安全弁、サイレンサー、圧力計等で構成されるものとする。
- (2) 油タンクは、厚さ 1.6mm 以上の鋼板製とし、シリンダーからの戻り油により油中に気泡が生じない構造とし、その容積は、戻り油全量が油タンク内に戻った時点の油量の 110% 以上とする。
- (3) 油圧ポンプは、電動機の回転により油を油圧配管を経由し、シリンダーに圧送するもので、頻繁な始動にも十分耐えられる構造とする。
- (4) 電動機は、エレベーター用に製作されたものとし、電動機の始動電流実効値は、次の範囲とする。
 - (a) 流量制御弁方式の場合

500%以下

(b) 可変電圧可変周波数制御方式の場合

400%以下

- (5) 流量制御装置は、可変電圧可変周波数制御方式又は流量制御弁方式により、いずれも円滑に油の吐出量を制御できるものとする。
- (6) 手動下降弁は、停電その他の事情でエレベーターが途中で停止した場合に、この弁を操作してエレベーターを低速で下降運転できる構造とする。
- (7) 油圧配管は、JIS G 3454「圧力配管用炭素鋼鋼管」、JIS G 3455「高圧配管用炭素鋼鋼管」又は同等以上のものとし、継手は製造者の標準仕様とする。また、地震等の振動及び建物の層間変形により損傷を受けないこととする。

3.2.1.2 電源盤及び制御盤

- (1) 電源盤及び制御盤は、製造者の標準仕様とする。
- (2) 高調波対策及び高周波ノイズ対策は、標準仕様書第2編1.2.2「機器附属盤」(5)の当該 事項による。
- (3) 動力計測用電力量計を設ける場合は、パルス発信機能付きとし、適用は特記による。
- (4) かごの着床精度は、表 7.2.1 の値に制御できるものとする。ただし、供給電源の電圧変動は5%以内、周波数変動は1%以内とし、かつ、かご内荷重は定格積載量における着床時の値とする。

表7.2.1 着床精度 (定格速度45m/min以下) (単位 mm)

乗用、寝台用、人荷共用エレベーター	±20以内
荷物用エレベーター	±25以内

3.2.2 かご及び乗場

(1) かご及び乗場は、標準仕様書第9編2章「普及型エレベーター」の当該事項による。

3.2.3 昇降路内機器

3.2.3.1 プランジャー及びシリンダー

(1) プランジャー及びシリンダーは、JIS G 3445「機械構造用炭素鋼鋼管」、JIS G 3454「圧力配管用炭素鋼鋼管」又はこれらと同等以上のものとする。

3.2.4 安全装置、管制運転等、塗装、電気配線及び附属品

(1) 安全装置、管制運転等、塗装、電気配線及び附属品は、標準仕様書第9編2章「普及型エレベーター」の当該事項によるほか、次による。

3.2.5 耐震措置

(1) 耐震措置は特記によるものとし、特記がなければ、標準仕様書第9編2.2.6「耐震措置」の当該事項による。

3.2.6 試験

- (1) 試験は、次による。
- (2) JIS A 4302「昇降機の検査標準」に準じて行い、(一社)日本エレベーター協会標準の定める試験成績書に記載して、監督職員に提出する。
- (3) 管制運転等の試験は、次により行い、標準仕様書第9編第2章2.2.7「管制運転等」、 第4章4.2.1「付加仕様」によるフローの各動作を確認し、試験成績書を監督職員に提出 する。
 - (ア) 火災時管制運転の試験は第1編1.5.6「関連工事等との総合試運転調整」により、火災報知器からの模擬的な信号を受け行う。
 - (イ) 非常用発電時管制運転の試験は第1編 1.5.6「関連工事等との総合試運転調整」により、自家発電設備からの給電を受け行うこと又は自家発電設備からの模擬的な信号により行うこととし、特記による。特記がなければ、自家発電設備からの模擬な信号にて行うこととする。
 - (ウ) (ア)、(イ)を除く管制運転等の試験は、模擬的に行う。
 - (エ) 管制運転等の作動が、かご内インジケータ、監視盤等に表示されていることを確認する。