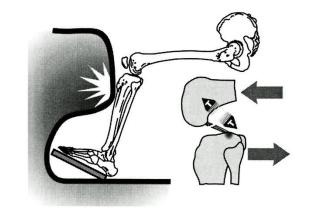
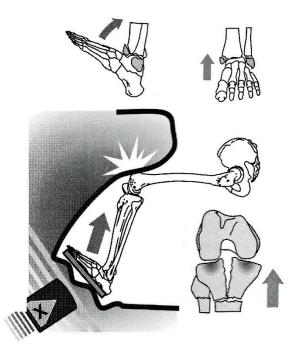

脛骨軸力

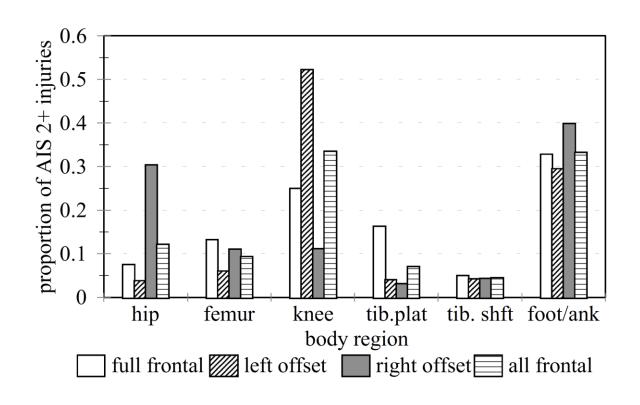
名古屋大学 JNCAP衝突WG 2017年10月16日

足関節


- 距腿関節と距骨下関節を合わせて足関節とよぶ
- 体重の全ては距骨を通る


距骨が「ほぞ」, 脛骨と腓骨が「ほぞ穴」を形成する. この部位の損傷は関節機能の破綻をきたす.

下肢傷害の発生メカニズム

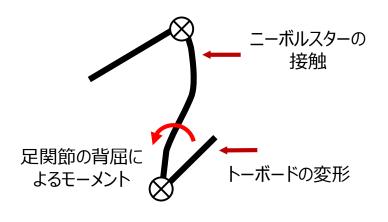

(a) 膝-大腿骨-股関節複合体 の傷害

(b) 膝関節の傷害

(c) 下腿,足関節,足部の傷害

下肢傷害 (事故分析)



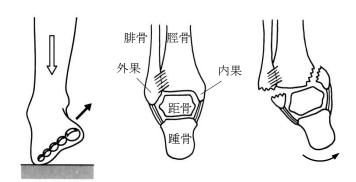

エアバッグ装着車 (NASS 1993-1999), 前席乗員, [Kuppa 17th ESV, 2001]

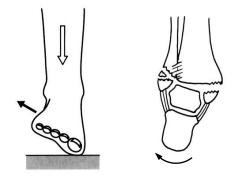
脛骨骨幹部骨折

- 脛骨骨幹部は曲げモーメントによって骨折する
- 好発部位は骨幹部中央および断面2次モーメントが小さい遠位1/3

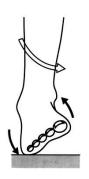
①下腿の慣性力に起因する曲げモーメント

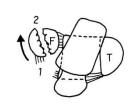
②客室侵入にともなう足関節の背 屈に起因する曲げモーメント

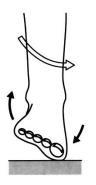

Tibia index =
$$\frac{\sqrt{M_x^2 + M_y^2}}{M_c} + \frac{F_z}{F_c}$$

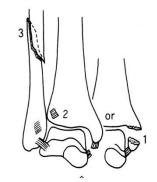

足関節果部骨折(内旋・外旋)

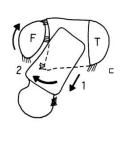
距骨が内・外転,回旋することで靭帯が引っ張られ,靭帯損傷や骨折を生じる. 反対側では距骨の接触により骨折が起きる.


Lauge-Hansen分類(足の姿勢と距骨の運動)

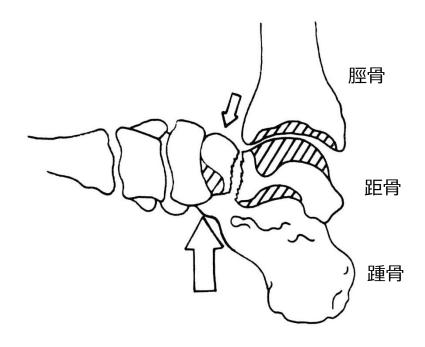

(a) 回外-内転


(c) 回内-外転





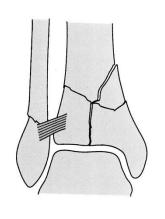
(b) 回外-外旋

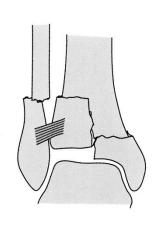


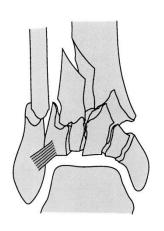
(d) 回内-外旋

足関節損傷 (屈曲)

【距骨頸部骨折】

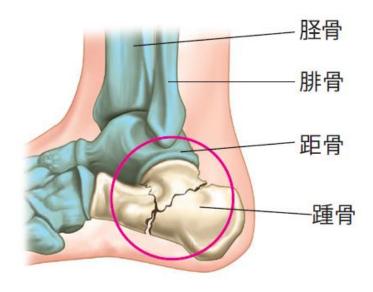



背屈+軸荷重によって,脛骨下端に距骨が接触して,距骨頸部骨折が発生する.



軸力による骨折

【脛骨下端骨折】

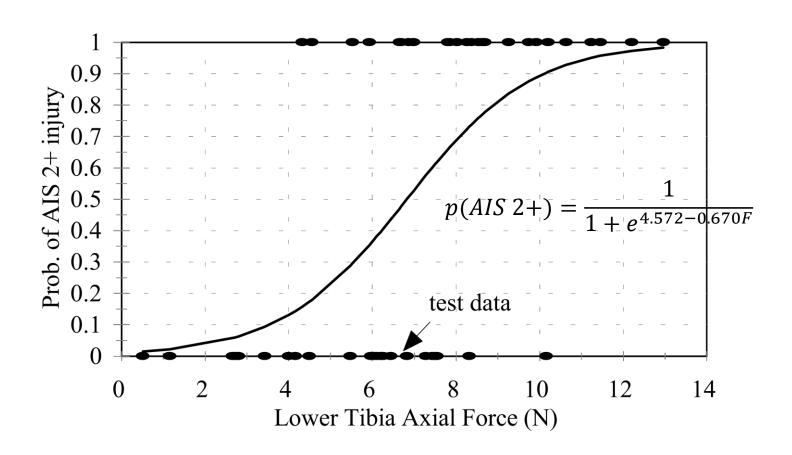


脛骨に大きな軸力が作用すると, 脛骨の足関節

面の粉砕をともなう重篤な関節損傷であるピロン骨折(脛骨天蓋骨折)が生じる.

【踵骨骨折·距骨骨折】

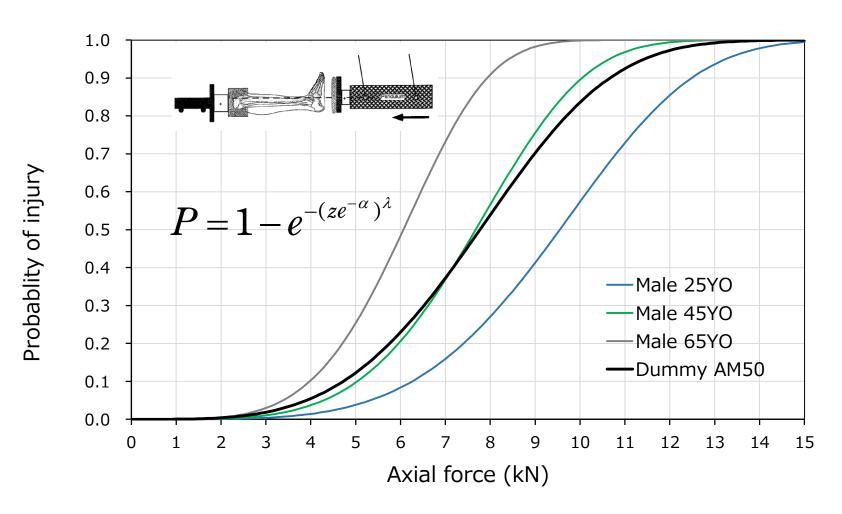
高所よりの落下など、踵骨に力が加わった場合に生ずる.



脛骨・足関節の傷害パラメータ

損傷形態	傷害パラメータ
脛骨骨幹部骨折	Tibia index
足関節果部骨折	足関節曲げモーメント(Mx) 足関節外がえし・内がえし角度(θx)
距骨頸部骨折	足関節曲げモーメント(My) 足関節背屈角(θy), 軸力(Fz)
脛骨下端骨折, 距骨骨折, 踵骨骨折	軸力(Fz)

リスクカーブ (NHTSA)



対象:脛骨遠位端骨折,踵骨骨折

[Kuppa 17th ESV, 2001]

リスクカーブ

[Yoganandan, Traffic Injury Prevention, 16(sup1), S100-107, 2015]

脛骨軸力の導入状況

試験	衝突形態	閾 値
UN R94	ODB	8 kN
UN R129	FW	-
JNCAP	FW ODB	- -
EuroNCAP	FW ODB	- 2-8 kN
US NCAP	FW	-
IIHS	ODB/Small overlap	\leq 2 kN (Good), \leq 4 kN (Acceptable) \leq 6 kN (Marginal), >8kN (Poor)
KNCAP	FW ODB	- 2-8 kN
CNCAP	FW ODB	2-8 kN 2-8 kN

まとめ

- 脛骨軸力が評価する傷害は,脛骨遠位端骨折,踵骨骨折,距骨骨折である(脛骨の曲げモーメントが評価しているものは脛骨骨幹部骨折)
- JNCAP以外のODB試験ではいずれも脛骨軸力が 採用されている

【提案】

脛骨軸力 8 kNをモディファイヤとし, この値を超えた場合には, 下腿部 (脛骨荷重) の減点-1とする

