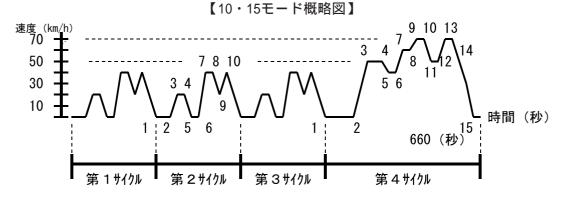

1.燃	費一覧につい	τ	1
2. 用	語の解説等		1
3.主	な燃費向上技	術例	5
4.ガ	ソリン乗用車	の10・15モード燃費平均値の推移	7
5. 車	両重量別燃費	及び CO₂排出状況について	8
6.排	気量別燃費及	び CO₂排出状況について	12
7.ガ	ソリン乗用車	燃費について	15
(1))普通/小型	自動車	15
	トヨタ		15
	ニッサン		23
	三菱		27
	マツダ		29
	フォード		31
	ホンダ		32
	いすゞ		36
	スバル		37
	ダイハツ		39
	スズキ		40
	シボレー		42
(2)軽自動車		43
	ニッサン		43
	三菱		44
	マツダ		46
	ホンダ		48
	スバル		49
	ダイハツ		50
	スズキ		52
(3)輸入自動車		54
	シボレー		54
	フォード		55
	サーブ		56
	キャデラッ	ク	57
	クライスラ	–	58
	ジャガー		59
	ランドロー	バー	60
	メルセデス	ベンツ	61
	スマート		64
	BMW		65
	アウディ		67
	フォルクス	ワーゲン	68
	オペル		69

	قب		
	ポルシェ		
	ルノー		
	プジョー		
	アルファロ		
	ボルボ		
	ヒュンダイ		76
	-		
		アメリカ	
	ホンダカナ・	ダ	79
		ザユーケー	
	ホンダ(タ	イランド)	81
8.	ディーゼル乗用	車燃費について	82
	トヨタ		82
9.3	ガソリン貨物車	燃費について	83
(1) 普通 / 小型	自動車	83
,	トヨタ		83
	ニッサン		84
	三菱		85
	マツダ		86
	ホンダ		87
(2) 軽自動車		88
,	ニッサン		88
	三菱		89
	マツダ		90
	ホンダ		91
	スバル		-
	ダイハツ		-
	スズキ		
10		車燃費について	•
10.	トヨタ		
	ニッサン		
	三菱		
	ーマ マツダ		-
11 1		、費について	
	ニッサン	· · · · · · · · · · · · · · · · · · ·	
10		準について	
		•••	
13.)	燃料相算举归上(のための『エコドライブ10のおすすめ』について	102

1. 燃費一覧について

この燃費一覧には、型式指定を受けたガソリン・LP ガス・ディーゼル乗用車及びガソリン・ ディーゼル貨物車(車両総重量2.5t以下)であって、平成16年末現在新車として販売されてい るもの及びこれから販売される予定のものを車種別に掲載しています。


2. 用語の解説等

(1) (自動車) 型式	
型式: - ・・ 自動車製作者等が決めた記号	
自動車排出ガス規制及び低排出ガス車認定の識別記号	
・ガソリン (LP ガス) 乗用車 GF GF 平成10年アイドリング規制に適合させたもの GH HK 中成12年規制に適合させたもの HK HN 中成12年規制に適合させたいイブリッド車 TA 中成12年基準排出ガス25%低減レベルのもの LA LA 中成12年基準排出ガス5%低減レベルのもの UA UA UA UA UA UA TRT2年基準排出ガス5%低減レベルのもの UA A A 平成12年基準排出ガス5%低減レベルのハイブリッド車 YA A A CA PK12年基準排出ガス5%低減レベルのハイブリッド車 ZA A A A PK12年基準排出ガス5%低減レベルのハイブリッド車 ZA A A A A PK17年基準排出ガス5%低減レベルののハイブリッド車 CBA A A PK17年基準排出ガス5%低減レベルのハイブリッド車 CBA A A PK17年基準排出ガス5%低減レベルののハイブリッド車 DA A PK17年基準排出ガス5%低減レベルのハイブリッド車 A A PK17年基準排出ガス5%低減レベルのハイブリッド車 CA A PK17年基準排出ガス5%低減レベルのハイブリッド車 CA A PK17年基準排出ガス5%低減レベルのハイブリッド車 CA PK17年基準排出ガス5%低減レベルのハイブリッド車 CA PK17年基準 中成17年基準指出ガス5%低減レベルのハイブリッド車 CA PK17年基準 中成17年基準 中期 C PK1 PK10年規制に適合させたもの (車両重量1265kg 以下) KH PK14 PK10年規制に適合させたもの (車両重量1265kg 超) F) KH PK14年規制に適合させたもの PK14年規制に適合させたもの (車両重量1265kg 超) F	
GD平成10年規制に適合させた軽自動車GG平成10年規制に適合させた軽自動車GJ平成12年規制に適合させたもの(車両総重量1.7t以下)GJ平成12年規制に適合させたもの(車両総重量1.7t以下)GK平成13年規制に適合させたもの(車両総重量1.7t以下)TB平成12年基準排出ガス25%低減レベルのもの(車両総重量1.7t以下)LB平成12年基準排出ガス5%低減レベルのもの(車両総重量1.7t以下)UB平成12年基準排出ガス5%低減レベルのもの(車両総重量1.7t以下)UC平成12年基準排出ガス5%低減レベルのもの(車両総重量1.7t超3.5t以下)UC平成12年基準排出ガス5%低減レベルのもの(車両総重量1.7t超3.5t以下)UC平成12年基準排出ガス5%低減レベルのもの(車両総重量1.7t超3.5t以下)UC平成12年基準排出ガス75%低減レベルのもの(車両総重量1.7t超3.5t以下)UE平成12年基準排出ガス75%低減レベルのもの(車両総重量1.7t超3.5t以下)UE平成12年基準排出ガス50%低減レベルのもの(車両総重量1.7t超3.5t以下)CBE平成17年基準排出ガス50%低減レベルのもの(車両総重量1.7t以下)CBE平成17年基準排出ガス50%低減レベルの軽自動車UE平成17年基準排出ガス50%低減レベルの転回動車KE平成9年規制に適合させたもの(車両総重量1.7t以下)CBE平成17年基準排出ガス50%低減レベルのIC平成17年基準排出ガス50%低減レベルのCBD平成17年基準排出ガス50%低減レベルのKE平成9年規制に適合させたもの(車両総重量1.7t超2.5t以下のMT車)KJ平成10年規制に適合させたもの(車両総重量1.7t超2.5t以下のAT車))

	式及び変速段数
(略号) CVT	自動無段変速機
3AT	前進 3 段式自動変速機
4AT	前進 4 段式自動変速機
5AT	前進 5 段式自動変速機
6AT	前進 6 段式自動変速機
3AT × 2	前進3段式自動変速機(副変速機付)
4AT × 2	前進4段式自動変速機(副変速機付)
4MT	前進4段式手動変速機
4MT × 2	前進 4 段式手動変速機 (副変速機付)
5MT	前進 5 段式手動変速機
5MT × 2	前進 5 段式手動変速機 (副変速機付)
6MT	前進 6 段式手動変速機
E LTC	電子制御式 ロックアップ機構付トルクコンバータ
LIC	ロッファッフィ液曲ロールフィンハーフ

KP

(3) エネルギー消費効率 (km/ℓ)
 10・15モード走行パターン (図参照) により運転して測定したときの燃費を記載しています。

図中 番号	速度	時間(秒)
1	アイドリング	20
2	加速 0 20km/h	7
3	一定速 20km/h	15
4	減速 20 0 km/h	7
5	アイドリング	16
6	加速 0 40km/h	14
7	一定速 40km/h	15
8	減速 40 20	10
9	一定速 20km/h 加速 20 40	2 12
10	減速 40 20 減速 20 0 km/h	10 7

【第1サイクル~第3サイクル】

(注)10・15モード法:

日本の都市交通の走行実態を反映させたもので、 シャシダイナモメータ上でこのモードに沿って自 動車を走らせ、排出ガスを測定するもの。10モー ドを3サイクルに15モード1サイクルを加えた4 サイクルで測定。

図中 番号	速度	時間(秒)
1	アイドリング	65
2	加速 0 50km/h	18
3	一定速 50km/h	12
4	減速 50 40	4
5	一定速 40km/h	4
6	加速 40 60	16
7	一定速 60km/h	10
8	加速 60 70	11
9	一定速 70km/h	10
10	減速 70 50	10
11	一定速 50km/h	4
12	加速 50 70	22
13	一定速 70km/h	5
14	減速 70 30 減速 30 0	20 10
15	アイドリング	10

【第4サイクル】

(4) 1 km 走行における CO₂排出量 (g-CO₂ / km)
 10・15モード燃費を1 km 走行における CO₂排出量に換算したものです。

ガソリン車 1 km 走行当たりの CO₂ 排出量 (g-CO₂ / km) = (1÷エネルギー消費効率値(km/ℓ))^{注1}×34.6(MJ/ℓ)^{注2}×67.1(g-CO₂/MJ)^{注3} ディーゼル車 1 km 走行当たりの CO₂排出量 (g-CO₂ / km) = (1 ÷ エネルギー消費効率値(km/ℓ))^{注1}×38.2(MJ/ℓ)^{注4}×68.6(g-CO₂/MJ)^{注5} LP ガス車 1 km 走行当たりの CO₂排出量 (g-CO₂ / km) = (1÷エネルギー消費効率値(km/ℓ))^{注1}×28.1 (MJ/ℓ)^{注6}×59.8 (g-CO₂/MJ)^{注7} 注1:エネルギー消費効率値の1km 走行当たりの燃料使用量(ℓ/km) 注2:ガソリン1 ℓ 当たりの発熱量 (MJ/ℓ) 注3: ガソリンの発熱量当たりの CO₂排出原単位 (g-CO₂/MJ) 注4:軽油1ℓ当たりの発熱量 (MJ/ℓ) 注5:軽油の発熱量当たりの CO₂排出原単位 (g-CO₂/MJ) 注6:LP ガス1 ℓ 当たりの発熱量 (MJ/ℓ) 注7:LP ガスの発熱量当たりの CO₂排出原単位 (g-CO₂/MJ)

(5) 主要燃費向上対策

(略号)

L	ガソリンリーンバーンエンジン
D	直噴エンジン
V	可変バルブタイミング機構
С	自動無段変速機
Н	ハイブリッド自動車
I	アイドリングストップ装置
Р	高圧噴射
MC	ミラーサイクル
CY	気筒休止
FI	電子制御式燃料噴射
В	充電制御
ТС	過給器
IC	インタークーラー

EP 電動パワーステアリング又は電動油圧パワーステアリング

(6) 主要排出ガス対策

(略号)

EGR	排出ガス再循環装置
CCO	酸化触媒装置
3W	三元触媒装置
AI	二次空気噴射装置
AS	二次空気供給装置

(7) 駆動形式

(略号)

F	前輪駆動車
_	

- R 後輪駆動車
- A 全輪駆動車
- (8) その他欄

車のタイプ又は、同一型式においてエネルギー消費効率の違う要因が変速装置の型式及 び変速段数、車両重量、主要燃費向上対策、自動車の構造、主要排出ガス対策以外にある 場合は、その要因となっている主な事項を記載しています。

(9) 低排出ガス認定レベル

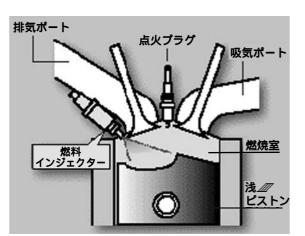
平成12年基準に対し有害物質を25%以上低減させた自動車 平成12年基準に対し有害物質を50%以上低減させた自動車 平成12年基準に対し有害物質を75%以上低減させた自動車 平成17年基準に対し有害物質を50%以上低減させた自動車 平成17年基準に対し有害物質を75%以上低減させた自動車

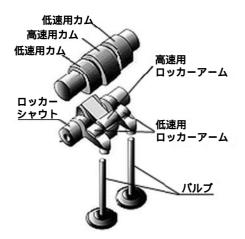
3. 主な燃費向上技術例

(1) ガソリンリーンバーンエンジン

希薄燃焼のことで通常の空気と燃料の混合割合より空気を多くすることによって燃料 であるガソリンを節約しようとするエンジンである。

燃料と空気の理論混合比(供給した燃料を完全燃焼させるために、理論上必要な最小 空気量と燃料量との重量比)は空気とガソリンの重量比で14.5~14.8:1程度であるが、 この理論比より薄い状態(混合比22~25:1)が希薄領域である。

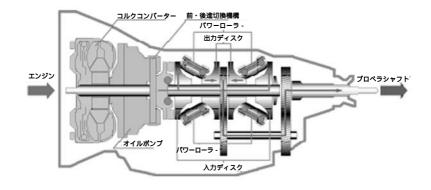

(2) ガソリン直噴エンジン


シリンダー(筒内)に直接燃料を噴射させる機構のエンジンである。

燃費性能を良くするために混合気を成 層化して燃焼させることにより希薄燃焼 方式エンジンより更に薄い混合気を使用 するものであり、混合比40~50:1程度 までの超希薄領域を使用するエンジンで ある。

(3) 可変バルブタイミング

吸気バルブと排気バルブの開閉時期と それらのリフト量を可変にすることによっ て、異なった運転条件における性能のト レードオフを小さくすることを目的に開 発されたシステム。通常のガソリンエン ジンでは、バルブの開閉タイミングを低 速域でのトルクを出すようなセッティン グにすると高速域の性能が犠牲になった リ、アイドル性能を重視すると中速域で のトルクが低下し、商品としての魅力を 失うこととなる。これらの相反する性能 を両立させるために、吸気バルプと排気 バルブの開閉時期とそれらのリフト量を 最適化するシステムである。 筒内直接噴射方式構造図

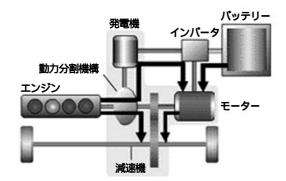

(4) アイドリングストップ装置

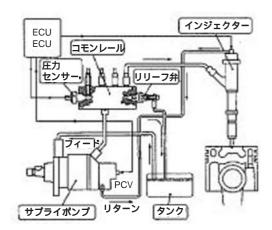
アイドリングストップ装置は、車両の停止中にエンジンのアイドリングを自動的に停止し、発進時にはクラッチペダルを踏むことによりエンジンが再機動するもである。これによりアイドリング時の燃料消費がカットされ、燃料消費率の向上が図られる。

(5) 自動無段変速機 (CVT)

ベルトやローラーにより駆動力を少ないロスで無段階に伝達し、エンジンの最良燃費 領域を有効に利用することを可能にしたオートマチックである。走行状態にあわせた最 適な変速比が設定され、燃料消費率の向上が図られる。

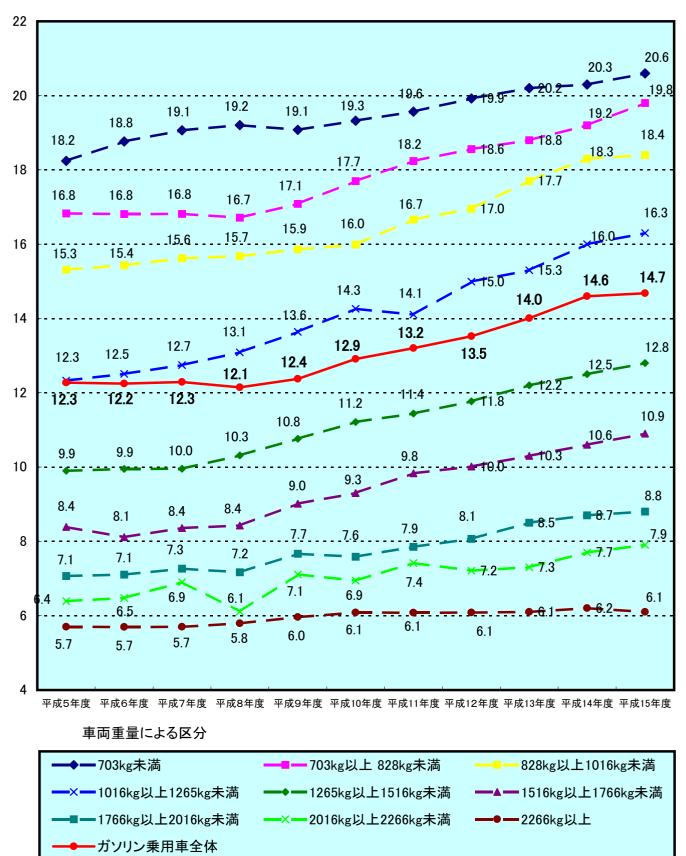
ディスクとパワーローラを用いたトロイダル型 CVT の例

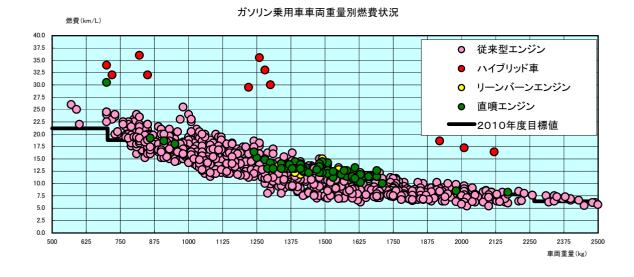

(6) ハイブリッド自動車


ハイブリッド自動車は、エンジン動力と 電気モータや圧力など他の動力と組み合わ せた自動車のことを言う。

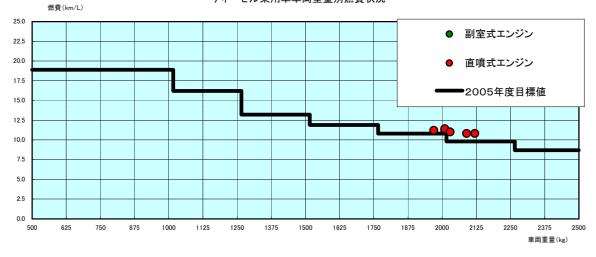
例えば、 郊外はエンジン、市街地は電気 モーターで走る。 電気モーターで走行し、 充電用にエンジンを使う。 制動時、減速 時のエネルギーを電気や圧力として蓄え、 加速時などの補助動力として利用する。 などのタイプがある。

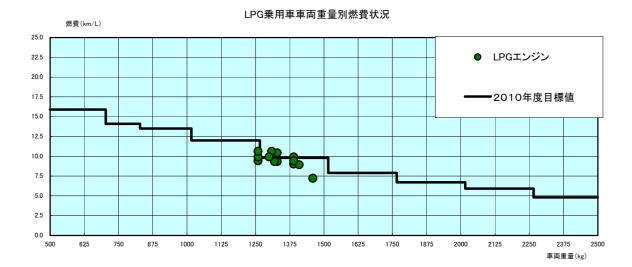
(7) コモンレール式燃料噴射装置

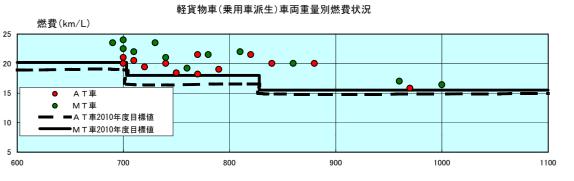

コモンレール式燃料噴射装置は、ディー ゼルの超高圧燃料に対応した電子制御燃料 噴射装置で、各インジェクター共通に高圧 燃料を蓄えるパイプ状のコモンレールを設 け、高圧ポンプで燃料を噴射することによっ て、圧力変動の少ない高圧噴射制御が可能 である。従来の噴射系に対し、燃料噴射量 や噴射タイミング等の制御に優れるため、 燃焼効率等が向上し低燃費化が図られる。

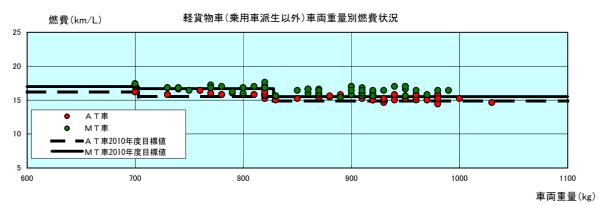

4. ガソリン乗用車の10・15モード燃費平均値の推移

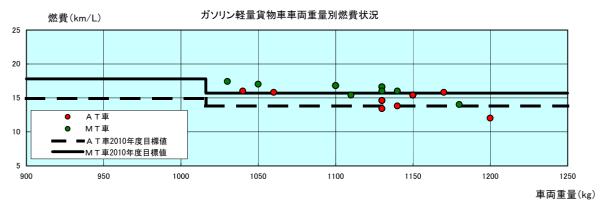
燃費(km/L)

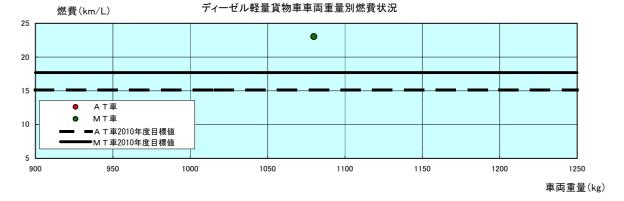


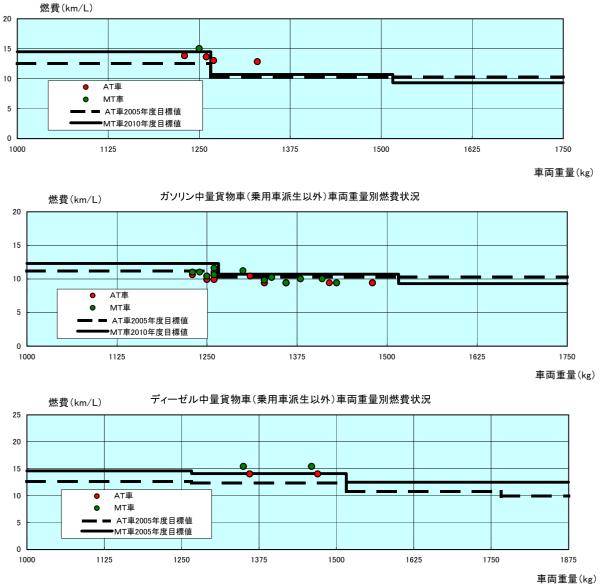

車両重量区分は、平成11年3月に告示された燃費目標値の区分である。

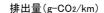

5. 車両重量別燃料及び CO2排出状況について

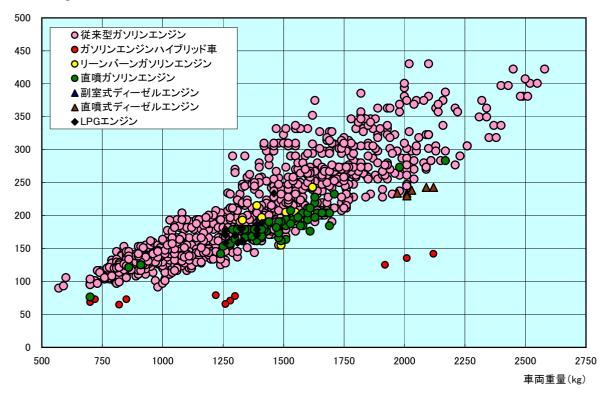

ディーゼル乗用車車両重量別燃費状況

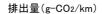




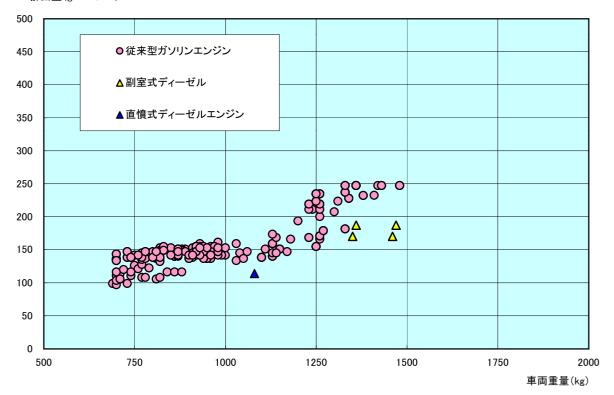


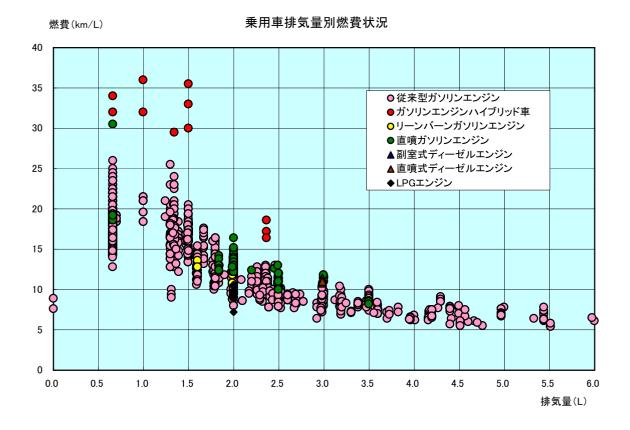


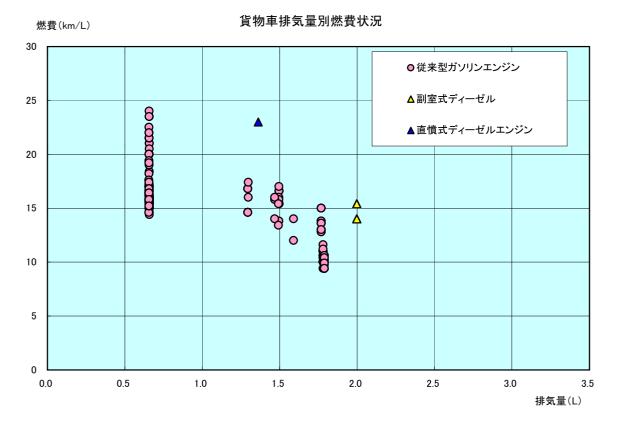


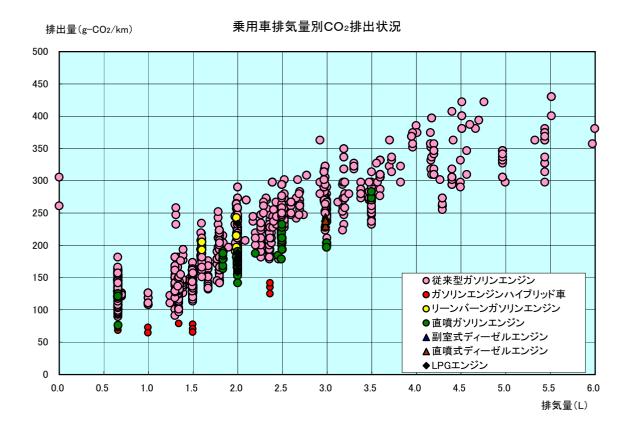


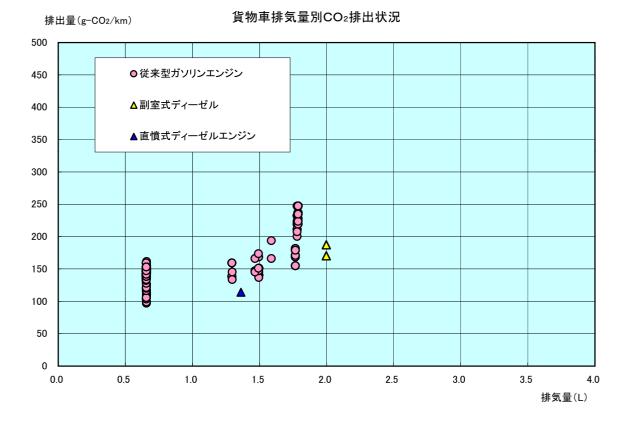
ガソリン中量貨物車(乗用車派生)車両重量別燃費状況




乗用車車両重量別CO₂排出状況






貨物車車両重量別CO₂排出状況

7. ガソリン乗用車燃費について

(1) 普通 / 小型自動車

		原動		**		1km 走行に		主要	その他エネルギー消費効率の異なる要因			
通称名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ℓ)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
センチュリー	DBA- GZG50	1GZ	4.996	6AT (E・LTC)	7.8	297.6	2050	V	3W AS	R		
	TA-JCG10	1JZ	2.491	5AT (E・LTC)	11.6	200.1	1520 ~ 1570	D V	3W EGR	R		
プログレ、 ブレビス	TA-JCG11	2JZ	2.997	5AT (E・LTC)	11.4	203.7	1530 ~ 1580	D V	3W EGR	R		
	TA-JCG15	1JZ	2.491	4AT (E・LTC)	10.6	219.0	1590 ~ 1630	D V	3W EGR	A		
	DBA- UCF30	3UZ	4.292	6AT (E・LTC)	8.9	260.9	1800 ~ 1840	V B	3W	R		
セルシオ	DBA- UCF31	3UZ	4.292	6AT (E・LTC)	8.9	260.9	1820 ~ 1880	V B	3W	R		
	TA-JZS160	2JZ	2.997	5AT (E・LTC)	9.4	247.0	1610 ~ 1650	V	3W	R	ターボ無	
アリスト	GH-JZS161	2JZ	2.997	4AT (E・LTC)	8.8	263.8	1670 ~ 1710	V	3W	R	ターボ付	
	DBA- UZS186	3UZ	4.292	6A⊤ (E・LTC)	9.1	255.1	1670 ~ 1710	V EP B	3W	R		
クラウンマジェスタ	DBA- UZS187	3UZ	4.292	6AT (E・LTC)	8.8	263.8	1760	V EP B	3W	А		
	DBA- UZS187	3UZ	4.292	6AT (E・LTC)	8.5	273.1	1780	V EP B	3W	A		
	TA-GS171	1G	1.988	4AT (E・LTC)	11.4	203.7	1470 ~ 1510	V	3W	R		
	TA-JZS175	2JZ	2.997	5AT (E・LTC)	11.4	203.7	1580 ~ 1640	D V	3W EGR	R		
	DBA- GRS180	4GR	2.499	5AT (E・LTC)	12.0	193.5	1550 ~ 1600	D V EP B	3W	R		
クラウン	DBA- GRS181	4GR	2.499	5AT (E・LTC)	11.4	203.7	1620 ~ 1670	D V EP B	3W	A		
	DBA- GRS182	3GR	2.994	6AT (E・LTC)	11.8	196.8	1580 ~ 1630	D V EP B	3W	R		
	DBA- GRS183	3GR	2.994	6AT (E・LTC)	11.4	203.7	1640 ~ 1690	D V EP B	3W	R		
クラウンセダン	CAA- GBS12	1G (内燃 機関) 1GM (電動機)	1.988	4AT (E・LTC)	13.0	178.6	1480	H V	3W	R		
	TA-GXS12	1G	1.988	4AT (E・LTC)	11.4	203.7	1390	V	3W	R		
	TA- JZS175W	2JZ	2.997	5AT (E・LTC)	11.4	203.7	1660 ~ 1690	D V	3W EGR	R		
クラウンエステート	TA- JZS171W	1JZ	2.997	5AT (E·LTC)	11.4	203.7	1630 ~ 1660	D V	3W EGR	R		
	TA- JZS173W	1JZ	2.491	4AT (E・LTC)	9.2	252.4	1670 ~ 1700	V	3W	A		
ソアラ	CBA- UZZ40	3UZ	4.292	5AT (E・LTC)	8.5	273.1	1730	V	3W	R		
ウィンダム	TA- MCV30	1MZ	2.994	5AT (E・LTC)	9.8	236.9	1520 ~ 1540	V	3W	F		
	CBA- ACV30	2AZ	2.362	4AT (E・LTC)	11.0	211.1	1430 ~ 1450	V LT	3W	F		
カ ム リ	CBA- ACV35	2AZ	2.362	4AT (E・LTC)	10.2	227.6	1530 ~ 1550	V LT	3W	A		
マ ー ク X	DBA- GRX120	4GR	2.499	6AT (E・LTC)	12.0	193.5	1520 ~ 1540	D V FP	3W	R		

		原	動機	- 変速装置の	エネルギー	1km 走行に おける CO2 排出量 (g-CO2/km)	車両重量 (kg)	主要燃費向上対策	その他エネルギー消費効率の異なる要因			(会老)
通 称 名	型式	型式	総排気量 (ℓ)	夏速表直の 型式及び 変速段数	消費効率 (km/ℓ)				主要排出 ガス対策	駆動 形式	その他	低排出ガス 認定レベル
	DBA- GRX120	4GR	2.449	6AT (E・LTC)	12.6	184.3	1500 ~ 1510	D V EP	3W	R		
マ – ク X	DBA- GRX121	3GR	2.994	6AT (E・LTC)	11.8	196.8	1520 ~ 1560	D V EP B	3W	R		
	DBA- GRX125	4GR	2.499	5A⊤ (E・LTC)	11.0	211.1	1560 ~ 1600	D V EP B	3W	A		
	TA- JZX110W	1JZ	2.491	5AT (E・LTC)	11.4	203.7	1570 ~ 1600	D V	3W EGR	R		
	GH- JZX110W	1JZ	2.491	4A⊤ (E・LTC)	9.2	252.4	1620 ~ 1650	V	3W	R	ターボ付	
マーク プリット	TA- JZX115W	1JZ	2.491	4A⊤ (E・LTC)	9.2	252.4	1610 ~ 1640	V	3W	А		
	TA- GX110W	1G	1.988	4AT (E・LTC)	11.4	203.7	1470 ~ 1500	V	3W	R		
	TA- GX115W	1G	1.988	4AT (E・LTC)	10.2	227.6	1550 ~ 1580	V	3W	А		
	CBA- ACU30W	2AZ	2.362	4A⊤ (E・LTC)	11.0	211.1	1600 ~ 1690	V B	3W	F		
	CBA- MCU30W	1MZ	2.994	5AT (E・LTC)	9.7	239.3	1670 ~ 1760	V	3W	F		
	CBA- MCU31W	1MZ	2.994	5AT (E・LTC)	9.4	247.0	1770 ~ 1790	V	3W	F		
	CBA- MCU31W	1MZ	2.994	5AT (E・LTC)	9.7	239.3	1700 ~ 1760	V	3W	F		
ハリアー	CBA- ACU35W	2AZ	2.362	4AT (E・LTC)	10.2	227.6	1770 ~ 1790	V B	3W	А		
	CBA- ACU35W	2AZ	2.362	4AT (E・LTC)	10.6	219.0	1700 ~ 1760	V B	3W	А		
	CBA- MCU35W	1MZ	2.994	5AT (E·LTC)	9.1	255.1	1770 ~ 1850	V	3W	А		
	CBA- MCU35W	1MZ	2.994	5AT (E·LTC)	9.4	247.0	1760	V	3W	A		
	CBA- MCU36W	1MZ	2.994	5AT (E·LTC)	9.1	255.1	1800 ~ 1890	V	3W	А		
	CBA- ACU20W	2AZ	2.362	4AT (E・LTC)	11.0	211.1	1560 ~ 1630	V B	3W	F		
	CBA- MCU20W	1MZ	2.994	5AT (E·LTC)	9.6	241.8	1630 ~ 1700	V	3W	F		
クルーガー V、 クルーガー L	CBA- ACU25W	2AZ	2.362	4AT (E·LTC)	10.6	219.0	1670 ~ 1740	V B	3W	А		
	CBA- MCU25W	1MZ	2.994	5AT (E·LTC)	9.0	258.0	1770 ~ 1800	V	3W	А		
	CBA- MCU25W	1MZ	2.994	5AT (E・LTC)	9.3	249.6	1730 ~ 1760	V	3W	А		
	TA-GXE10	1G	1.988	4AT (E・LTC)	11.6	200.1	1310 ~ 1390	V	3W	R		
	TA-GXE10	1G	1.988	6MT	11.6	200.1	1300 ~ 1400	V	3W	R		
アルテッツァ	GH-SXE10	3S	1.998	6MT	11.4	203.7	1340 ~ 1420	V	3W	R		
	GH-SXE10	3S	1.998	5AT (E・LTC)	11.0	211.1	1330 ~ 1430	V	3W	R		
	TA- GXE10W	1G	1.988	6MT	11.4	203.7	1350 ~ 1460	V	3W	R		
	TA- GXE10W	1G	1.988	4AT (E・LTC)	11.4	203.7	1360 ~ 1470	V	3W	R		
アルテッツァジータ	TA- JCE10W	2JZ	2.997	5AT (E·LTC)	9.8	236.9	1470 ~ 1510	V	3W	R		
	TA- JCE10W	2JZ	2.997	5AT (E·LTC)	9.4	247.0	1520 ~ 1540	V	3W	R		<u> </u>
	TA- JCE15W	2JZ	2.997	4AT (E·LTC)	8.0	290.2	1520 ~ 1590	V	3W	A		<u> </u>

		原動		変速装置の	エネルギー	1km 走行に		主要燃	その他エネルギー消費効率の異なる要因			- (参考)
通称名	型式	型式	総排気量 (ℓ)	型式及び 変速段数	消費効率 (km/ ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	低排出ガス 認定レベル
アルテッツァジータ	TA- GXE15W	1G	1.988	4AT (E・LTC)	10.6	219.0	1460 ~ 1510	V	3W	А		
	TA- GXE15W	1G	1.988	4AT (E・LTC)	10.2	227.6	1520 ~ 1550	V	3W	А		
	CBA- NZT240	1NZ	1.496	4AT (E∙LTC)	16.4	141.6	1140 ~ 1150	V	3W	F		
	DBA- ZZT240	1ZZ	1.794	4AT (E・LTC)	16.0	145.1	1170 ~ 1180	V	3W	F		
プレミオ、アリオン	CBA- AZT240	1AZ	1.998	CVT (E・LTC)	15.2	152.7	1240 ~ 1250	D V C	3W EGR	F		
	CBA- ZZT245	1ZZ	1.794	4AT (E・LTC)	13.0	178.6	1280 ~ 1290	V	3W	А		
	CBA- ACM21W	2AZ	2.362	4AT (E・LTC)	11.4	203.7	1520 ~ 1550	V B	3W	F		
イプサム	CBA- ACM21W	2AZ	2.362	4AT (E・LTC)	12.0	193.5	1490 ~ 1510	V B	3W	F		
	CBA- ACM26W	2AZ	2.362	4A⊤ (E・LTC)	11.0	211.1	1580 ~ 1640	V B	3W	А		
	TA- ZZT230	1ZZ	1.794	5MT	14.0	165.8	1090 ~ 1110	V	3W	F		
セリカ	TA- ZZT230	1ZZ	1.794	4AT (E・LTC)	13.0	178.6	1110 ~ 1130	V	3W	F		
	TA- ZZT231	2ZZ	1.795	6MT	13.0	178.6	1120 ~ 1160	V	3W	F		
	TA- ZZT231	2ZZ	1.795	4AT (E・LTC)	12.0	193.5	1160 ~ 1200	V	3W	F		
MR-S	TA-ZZW30	1ZZ	1.794	6MT	14.8	156.9	1000 ~ 1010	V EP	3W	R		
	TA-ZZW30	1ZZ	1.794	6MT	14.0	165.8	1020	V EP	3W	R		
	TA- AZT241W	1AZ	1.998	4A⊤ (E・LTC)	14.0	165.8	1290 ~ 1340	D V	3W EGR	F		
	CBA- ZZT241W	1ZZ	1.794	4A⊤ (E・LTC)	14.4	161.2	1270 ~ 1280	V	3W	F		
カルディナ	CBA- ZZT241W	1ZZ	1.794	4AT (E・LTC)	15.6	148.8	1240 ~ 1260	V	3W	F		
	TA- AZT246W	1AZ	1.998	4AT (E・LTC)	13.0	178.6	1370 ~ 1420	D V	3W EGR	А		
	ABA- ST246W	3S	1.998	4AT (E·LTC)	10.6	219.0	1480 ~ 1510		3W	А		
	ABA- ST246W	3S	1.998	4AT (E·LTC)	10.2	227.6	1520		3W	А		
	TA-ACT10	1AZ	1.998	CVT (E・LTC)	14.8	156.9	1270 ~ 1280	D V C	3W EGR	F		
オーパ	CBA- ZCT10	1ZZ	1.794	4A⊤ (E・LTC)	16.0	145.1	1210 ~ 1220	V	3W	F		
	CBA- ZCT15	1ZZ	1.794	4A⊤ (E・LTC)	13.0	178.6	1310 ~ 1320	V	3W	А		
	CBA- NZE121N	1NZ	1.496	4A⊤ (E・LTC)	16.0	145.1	1170 ~ 1230	V EP	3W	F		
カローラスパシオ	CBA- ZZE122N	1ZZ	1.794	4AT (E·LTC)	14.8	156.9	1200 ~ 1260	V	3W	F		
	CBA- ZZE124N	1ZZ	1.794	4AT (E·LTC)	12.6	184.3	1300 ~ 1360	V	3W	А		
	CBA- NZE121G	1NZ	1.496	5MT	18.0	129.0	1070 ~ 1110	V EP	3W	F		
	CBA- NZE121G	1NZ	1.496	4A⊤ (E・LTC)	17.2	135.0	1100 ~ 1140	V FP	EGR 3W	F		
カローラフィールダー	DBA- NZE121G	1NZ	1.496	4A⊤ (E・LTC)	17.2	135.0	1100 ~ 1140	EP V	EGR 3W	F		
	CBA- ZZE122G	1ZZ	1.794	4A⊤ (E・LTC)	16.0	145.1	1140 ~ 1180	V EP	3W	F		
	TA- ZZE122G	1ZZ	1.794	5MT	15.2	152.7	1120 ~ 1150	V	3W	F		

			原	動機	赤海社室の		1km 走行に		主要	その他エネル	/ギー消	費効率の異なる要因	(会去)
通 称	名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ ℓ)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
		TA- ZZE123G	2ZZ	1.795	6MT	13.0	178.6	1180 ~ 1210	V	3W	F		
		TA- ZZE123G	2ZZ	1.795	4AT (E・LTC)	12.0	193.5	1220 ~ 1250	V	3W	F		
カローラフィ	ィールダー	CBA- ZZE124G	1ZZ	1.794	4AT (E・LTC)	13.0	178.6	1270 ~ 1280	V	3W	А		
		CBA- NZE124G	1NZ	1.496	4AT (E・LTC)	14.4	161.2	1190 ~ 1230	V	3W	А		
		CBA- ZZE124G	1ZZ	1.794	4AT (E・LTC)	13.8	168.2	1240 ~ 1260	V	3W	А		
		CBA- NZE120	2NZ	1.298	5MT	20.0	116.1	1010	V EP	3W	F		
		CBA- NZE120	2NZ	1.298	5MT	18.6	124.8	1020 ~ 1030	V EP	3W	F		
		CBA- NZE120	2NZ	1.298	4AT (E・LTC)	17.0	136.6	1030 ~ 1050	V EP	3W	F		
		CBA- NZE121	1NZ	1.496	5MT	18.0	129.0	1020 ~ 1050	V EP	3W	F		
カ ロ ー カローララ ア レ ッ	ンクス、	CBA- NZE121	1NZ	1.496	4AT (E・LTC)	17.2	135.0	1050 ~ 1120	V EP	3W EGR	F		
アレッ	9 X	DBA- NZE121	1NZ	1.496	4AT (E・LTC)	17.2	135.0	1050 ~ 1120	EP V	EGR 3W	F		
		CBA- ZZE122	1ZZ	1.794	4AT (E·LTC)	16.0	145.1	1100 ~ 1160	V EP	3W	F		
		CBA- NZE124	1NZ	1.496	4AT (E・LTC)	14.4	161.2	1140 ~ 1210	V	3W	А		
		CBA- ZZE124	1ZZ	1.794	4AT (E・LTC)	13.8	168.2	1200 ~ 1250	V	3W	А		
カローララ	ンクス、	TA- ZZE123	2ZZ	1.795	6MT	13.0	178.6	1160 ~ 1190	V	3W	F		
アレッ		TA- ZZE123	2ZZ	1.795	4AT (E・LTC)	12.0	193.5	1200 ~ 1230	V	3W	F		
		DAA- NHW20	1NZ(内 燃機関) 3CM (電動機)	1.496	CVT (E)	30.0	77.4	1270 ~ 1300	H V C EP	3W	F	195/55R16 タイヤ付	
プリ	ウス	DAA- NHW20	1NZ(内 燃機関) 3CM (電動機)	1.496	CVT (E)	33.0	70.4	1270 ~ 1280	H V C EP	3W	F	185/65R15 タイヤ付	
		DAA- NHW20	1NZ(内 燃機関) 3CM (電動機)	1.496	CVT (E)	35.5	65.4	1250 ~ 1260	H V C EP	3W	F		
WiLL サ	477	CBA- NCP70	2NZ	1.298	4AT (E·LTC)	18.0	129.0	990	V	3W	F		
	177	CBA- NCP75	1NZ	1.496	4AT (E・LTC)	14.8	156.9	1090	V	3W	А		
ラウ	1.	CBA- NCZ20	1NZ	1.496	4AT (E・LTC)	16.2	143.3	1130 ~ 1190	V	3W	F		
<i>J</i> .)	Д	CBA- NCZ25	1NZ	1.496	4AT (E・LTC)	15.0	154.8	1210 ~ 1240	V	3W	А		
		CBA- NCP20	2NZ	1.298	4AT (E・LTC)	16.8	138.2	1020 ~ 1070	V	3W	F		
ファント	+ _ ~	CBA- NCP20	2NZ	1.298	4AT (E・LTC)	18.0	129.0	1010	V	3W	F		
ファンク	μ — Γ	CBA- NCP21	1NZ	1.496	4AT (E・LTC)	16.0	145.1	1060 ~ 1090	V	3W	F		
		CBA- NCP25	1NZ	1.496	4AT (E・LTC)	14.6	159.0	1130 ~ 1170	V	3W	А		
		CBA- NCP30	2NZ	1.298	4AT (E・LTC)	16.4	141.6	1060 ~ 1080	V	3W	F		
b	В	CBA- NCP31	1NZ	1.496	4AT (E・LTC)	16.0	145.1	1070 ~ 1090	V	3W	F		
		CBA- NCP35	1NZ	1.496	4AT (E・LTC)	14.6	159.0	1130 ~ 1150	V	3W	А		

		原	動機	亦法法案の	エネルギー	1km 走行に		主要雌	その他エネル	レギー消費	費効率の異なる要因	(会本)
通称名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	洋費効率 (km/ℓ)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
	CBA- SCP11	1SZ	0.997	5MT	21.5	108.0	870 ~ 890	V	3W	F		
	CBA- SCP11	1SZ	0.997	4AT (E・LTC)	19.6	118.5	890 ~ 910	V	3W	F		
	CBA- NCP12	1NZ	1.496	5MT	20.0	116.1	920 ~ 930	V	3W	F		
プラッツ	CBA- NCP12	1NZ	1.496	4AT (E・LTC)	18.0	129.0	940 ~ 950	V	3W	F		
	CBA- NCP16	2NZ	1.298	5MT	18.2	127.6	990	V	3W	А		
	CBA- NCP16	2NZ	1.298	4AT (E·LTC)	16.6	139.9	1000 ~ 1010	V	3W	A		
	CBA- NCP16	2NZ	1.298	4AT (E·LTC)	15.6	148.8	1030	V	3W	А		
	CBA- SCP10	1SZ	0.997	5MT	21.5	108.0	840 ~ 890	V	3W	F		
	CBA- SCP10	1SZ	0.997	4AT (E·LTC)	19.6	118.5	860 ~ 920	V	3W	F		
	CBA- NCP10	2NZ	1.298	5MT	20.5	113.3	910 ~ 960	V	3W	F		
	CBA- NCP10	2NZ	1.298	4AT (E・LTC)	18.0	129.0	920 ~ 970	V	3W	F		
	CBA- SCP13	2SZ	1.296	CVT (E・LTC)	23.0	100.9	950 ~ 970	V C B	3W EGR	F		
ヴィッツ	CBA- SCP13	2SZ	1.296	CVT (E·LTC)	25.5	91.0	960 ~ 980	V C I B	3W EGR	F		
	CBA- NCP13	1NZ	1.496	5MT	17.0	136.6	940 ~ 980	V	3W	F		
	CBA- NCP13	1NZ	1.496	4AT (E·LTC)	15.2	152.7	960 ~ 1000	V	3W	F		
	CBA- NCP15	2NZ	1.298	5MT	18.2	127.6	970 ~ 1000	V	3W	А		
	CBA- NCP15	2NZ	1.298	4AT (E・LTC)	16.6	139.9	980 ~ 1010	V	3W	A		
	CBA- NCP15	2NZ	1.298	4AT (E·LTC)	15.6	148.8	1030	V	3W	A		
ランドクルーザーワゴン	GH- UZJ100W	2UZ	4.663	5AT (E·LTC)	6.1	380.6	2280 ~ 2490		3W	А		
	TA- VZJ120W	5VZ	3.378	4AT (E·LTC)	8.1	286.6	1950 ~ 1990		3W	А		
	TA- VZJ121W	5VZ	3.378	4AT (E・LTC)	7.8	297.6	2020 ~ 2030		3W	А		
	TA- VZJ121W	5VZ	3.378	4AT (E・LTC)	8.1	286.6	1960 ~ 2010		3W	А		
ランドクルーザープラド	T A- VZJ125W	5VZ	3.378	4AT (E・LTC)	8.1	286.6	1820 ~ 1870		3W	A		
	CBA- TRJ120W	2TR	2.693	4AT (E·LTC)	8.8	263.8	1880 ~ 1960	V B	3W AS	А		
	CBA- TRJ125W	2TR	2.693	4AT (E·LTC)	8.8	263.8	1790 ~ 1830	V B	3W AS	А		
	TA- MNH15W	1MZ	2.994	4AT (E·LTC)	8.3	279.7	2020 ~ 2080	V	3W	А		
	TA- MNH15W	1MZ	2.994	4AT (E·LTC)	8.6	270.0	1940 ~ 2010	V	3W	А		
アルファード G、 アルファード V	CBA-	2AZ	2.362	4AT (E·LTC)	9.4	247.0	1870 ~ 2010	V	3W	А		
	CBA- ANH10W	2AZ	2.362	4AT (E • LTC)	9.7	239.3	1770 ~ 1910	V	3W	F		
	TA- MNH10W	1MZ	2.994	4AT (E·LTC)	8.9	260.9	1840 ~ 1980	V	3W	F		
アルファードハイブリッド	CAA- ATH10W	2AZ (内 燃機関) 1EM1FM (電動機)	2.362	CVT (E)	17.2	135.0	1990 ~ 2010	H V C EP	3W	A		

		原	動機	赤さなる	***	1km 走行に		主要	その他エネル	/ギー消費	費効率の異なる要因	
通称名	型式	型式	総排気量 (ℓ)	- 変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ℓ)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
アルファードハイブリッド	CAA- ATH10W	2AZ (内 燃機関) 1EM1FM (電動機)	2.362	CVT (E)	16.4	141.6	2020 ~ 2120	H V C EP	3W	A		
	DBA- ACR30W	2AZ	2.362	4AT (E·LTC)	11.0	211.1	1610 ~ 1760	V B	3W	F		
	DBA- ACR30W	2AZ	2.362	4AT (E·LTC)	10.2	227.6	1770	V B	3W	F		
	TA- MCR30W	1MZ	2.994	4AT (E・LTC)	9.0	258.0	1770 ~ 1850	V	3W	F		
エスティマT、 エスティマL	TA- MCR30W	1MZ	2.994	4AT (E·LTC)	9.4	247.0	1720 ~ 1760	V	3W	F		
	DBA- ACR40W	2AZ	2.362	4AT (E・LTC)	10.0	232.2	1770 ~ 1860	V B	3W	А		
	DBA- ACR40W	2AZ	2.362	4AT (E・LTC)	10.6	219.0	1700 ~ 1760	V B	3W	А		
	TA- MCR40W	1MZ	2.994	4AT (E・LTC)	8.6	270.0	1810 ~ 1940	V	3W	А		
エスティマハイブリッド	CAA- AHR10W	2AZ (内 燃機関) 1EM1FM (電動機)	2.362	CVT (E)	18.6	124.8	1840 ~ 1920	H V C EP	3W	A		
	CBA- AZR60G	1AZ	1.998	CVT (E・LTC)	14.2	163.5	1490 ~ 1510	DV C B	3W EGR	F		
ノア、ヴォクシー	CBA- AZR60G	1AZ	1.998	CVT (E・LTC)	13.2	175.9	1520 ~ 1610	DV C B	3W EGR	F		
	CBA- AZR65G	1AZ	1.998	CVT (E・LTC)	12.6	184.3	1570 ~ 1690	DV C B	3W EGR	А		
	CBA- ACA20W	1AZ	1.998	4AT (E・LTC)	13.2	175.9	1300 ~ 1350	D V B	3W EGR	А		
R A V 4 J 、 R A V 4 L	CBA- ACA21W	1AZ	1.998	4AT (E・LTC)	13.2	175.9	1350 ~ 1400	D V B	3W EGR	A		
	CBA- ZCA25W	1ZZ	1.794	4AT (E・LTC)	14.4	161.2	1160 ~ 1190	V	3W	F		
	CBA- ZCA26W	1ZZ	1.794	4AT (E・LTC)	14.4	161.2	1220 ~ 1250	V	3W	F		
	CBA- NCP60	2NZ	1.298	4AT (E・LTC)	16.8	138.2	1020	V	3W	F		
イスト	CBA- NCP60	2NZ	1.298	4AT (E·LTC)	18.0	129.0	1000 ~ 1010	V	3W	F		
	CBA- NCP61	1NZ	1.496	4AT (E・LTC)	16.4	141.6	1020 ~ 1050	V	3W	F		
	CBA- NCP65	1NZ	1.496	4AT (E·LTC)	15.0	154.8	1100 ~ 1120	V	3W	А		
	CBA- NCP58G	1NZ	1.496	5MT	17.2	135.0	1020 ~ 1030	V	3W	F		
プロボックス、	CBA- NCP58G	1NZ	1.496	4AT (E·LTC)	16.4	141.6	1030 ~ 1060	V	3W	F		
サクシード	NCP59G	1NZ	1.496	5MT	16.2	143.3	1100 ~ 1110	V	3W	А		
	CBA- NCP59G	1NZ	1.496	4AT (E・LTC)	14.0	165.8	1110 ~ 1140	V	3W	A		
	CBA- ANE10G	1AZ	1.998	CVT (E·LTC)	14.4	161.2	1360 ~ 1390	D V C EP B	3W EGR	F		
ウィッシュ	CBA- ZNE10G	1ZZ	1.794	4AT (E・LTC)	14.4	161.2	1300 ~ 1330	V	3W	F		
	CBA- ANE11W	1AZ	1.998	CVT (E・LTC)	13.2	175.9	1400 ~ 1430	D V C B	3W EGR	F		

		原	動機	変速装置の	エネルギー	1km 走行に		主要	その他エネル	ノギー消費	費効率の異なる要因	(会老)
通称名	型式	型式	総排気量 (ℓ)	愛速表重の 型式及び 変速段数	洋費効率 (km/ℓ)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
ウィッシュ	CBA- ZNE14G	1ZZ	1.794	4AT (E·LTC)	12.8	181.4	1400 ~ 1430	V	3W	A		
シェンタ	CBA- NCP81G	1NZ	1.496	CVT (E・LTC)	18.6	124.8	1210 ~ 1240	V C EP B	3W EGR	F		
	CBA- NCP85G	1NZ	1.496	4A⊤ (E・LTC)	14.0	165.8	1310 ~ 1340	V EP	3W	А		
	TA-J102E	K3	1.297	5MT	15.4	150.8	1050 ~ 1070	V EP	ЗW	A		
	TA-J102E	K3	1.297	4AT (E・LTC)	13.8	168.2	1060 ~ 1080	V EP	ЗW	A		
+ + = *	TA-J102E	K3	1.297	4AT (E・LTC)	12.8	181.4	1090 ~ 1100	V EP	ЗW	A	ターボ付	
	TA-J122E	K3	1.297	5MT	16.4	141.6	1030 ~ 1050	V EP	ЗW	R		
	TA-J122E	K3	1.297	4AT (E・LTC)	14.4	161.2	1040 ~ 1060	V EP	ЗW	R		
	DBA- KGC10	1KR	0.996	4A⊤ (E・LTC)	21.0	110.6	900	V, EP	3W EGR	F		
パッソ	DBA- KGC15	1KR	0.996	4AT (E・LTC)	18.4	126.2	930 ~ 940	V, EP	3W EGR	А		
て ポールテ レテ レテ	DBA- QNC10	K3	1.297	4AT (E·LTC)	18.0	129.0	930 ~ 940	V, EP	ЗW	F		
	CBA- NNP10	2NZ	1.298	4AT (E・LTC)	16.4	141.6	1090 ~ 1100	V	ЗW	F		
	CBA- NNP11	1NZ	1.496	4AT (E·LTC)	16.0	145.1	1110 ~ 1120	V	3W	F		
C ト ロース ハイエース	CBA- TRH219W	2TR	2.693	4A⊤ (E・LTC)	8.2	283.1	2020 ~ 2040	V B	3W AS	A		
	CBA- TRH224W	2TR	2.693	4AT (E·LTC)	8.6	270.0	2020 ~ 2040	V B	3W AS	R		
	CBA- TRH229W	2TR	2.693	4AT (E·LTC)	8.2	283.1	2130 ~ 2150	V B	3W AS	А		
ハイエース	CBA- TRH214W	2TR	2.693	4AT (E·LTC)	9.1	255.1	1910 ~ 1930	V B	3W AS	R		
	CBA- TRN210W	2TR	2.693	4AT (E·LTC)	8.9	260.9	1770 ~ 1790	V B	3W AS	R		
	CBA- TRN210W	2TR	2.693	4AT (E·LTC)	8.9	260.9	1720 ~ 1760	V B	3W AS	R		
人イラックスサーフ	CBA- TRN215W	2TR	2.693	4AT (E·LTC)	8.9	260.9	1830 ~ 1910	V B	3W AS	А		
	TA- VZN210W	5VZ	3.378	4AT (E·LTC)	8.5	273.1	1740 ~ 1760		3W	R		
	TA- VZN210W	5VZ	3.378	4A⊤ (E・LTC)	8.3	279.7	1770 ~ 1810		3W	R		
	TA- VZN215W	5VZ	3.378	4A⊤ (E・LTC)	8.3	279.7	1860 ~ 1930		3W	A		
	CBA- ZNM10G	1ZZ	1.794	4A⊤ (E・LTC)	14.4	161.2	1400 ~ 1410	V EP	3W	F		
	CBA- ZNM10W	1ZZ	1.794	4AT (E・LTC)	14.4	161.2	1400 ~ 1410	V EP	3W	F		
アイシス	CBA- ANM10G	1AZ	1.998	CVT (E・LTC)	14.4	161.2	1460 ~ 1490	V C D EP B	3W EGR	F		
	CBA- ANM10W	1AZ	1.998	CVT (E・LTC)	14.0	165.8	1470 ~ 1480	V C D B	3W EGR	F		
	CBA- ANM15G	1AZ	1.998	CVT (E·LTC)	12.6	184.3	1550 ~ 1580	V C D B	3W EGR	A		

(注) *印の付いている通称名については、ダイハツ工業株式会社が製造事業者である。

				原	動機	変速装置の	エネルギー	1km 走行に		主要燃	その他エネル	レギー消	費効率の異なる要因	(参考)
通	称	名	型式	型式	総排気量 (ℓ)	夏速表量の 型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(^{www}) 低排出ガス 認定レベル
ア	イシ	/ ス	CBA- ANM15W	1AZ	1.998	CVT (E・LTC)	12.6	184.3	1560 ~ 1570	V C D B	3W EGR	A		
							L							

ガソリン乗用車・RV 車 当該自動車の製造又は輸入の事業を行う者の氏名又は名称 日産自動車株式会社 原動機 その他エネルギー消費効率の異なる要因 賣 1km **走行に** 変速装置の エネルギ-(参考) 燃費向上対 車両重量 おける 名 型式及び 消費効率 诵 称 低排出ガス 主要排出 総排気量 CO₂排出量 駆動 (ka) 型式 型式 Ø 変速段数 そ 他 認定レベル (km/l)(l) (g-CO₂/km) ガス対策 形式 策 5AT プレジデント UA-PGE50 VK45 1870 ~ 1890 R 4,494 7.8 297.6 3W $(E \cdot LTC)$ 5AT UA-GE50 VK45 4.494 80 290.2 $1770 \sim 1850$ 3W R $(E \cdot LTC)$ 4AT UA-GNF50 VK45 4.494 7.0 331.7 1870 ~ 1930 3W А (E·LTC) マ シ 5AT GH-HF50 VQ30 2.987 9.1 255.1 1710 ~ 1750 3W R $(E \cdot LTC)$ 5AT GH-HF50 VQ30 2.987 8.7 266.9 1770 3W R (E·LTC) 5AT CBA-Y50 VQ25 2.495 11.2 207.3 1630 ~ 1680 V, B 3W+EGR R (E·LTC) 5AT CBA-PY50 VQ35 3.498 252.4 1650 ~ 1730 V, B R 9.2 3W $(E \cdot LTC)$ ガ フ CBA-5AT VQ35 3.498 8.6 270.0 1720 ~ 1760 V, B 3W А PNY50 (E·LTC) CBA-5AT VQ35 3.498 8.0 290.2 1770 ~ 1780 V, B 3W А PNY50 (E·LTC) CBA-Z33 VQ35 6MT 239.3 3.498 9.7 1430 ~ 1460 V 3W R 吸排気可変バル CBA-Z33 VQ35 3.498 6MT 9.4 247.0 1460 ~ 1470 V 3W R ブ仕様 5AT フェアレディ Z CBA-Z33 VQ35 3.498 1440 ~ 1470 R 258.0 V 3W 9.0 (E·LTC) VQ35 249.6 R CBA-HZ33 3.498 6MT 9.3 1550 ~ 1560 V 3W 5AT V R CBA-HZ33 VQ35 3.498 8.6 270.0 $1560 \sim 1570$ 3W $(E \cdot LTC)$ 4AT GH-V35 VQ25 2 4 9 5 11.2 207.3 $1520 \sim 1530$ DV 3W+EGR R $(E \cdot LTC)$ 4AT GH-V35 VQ25 3W+EGR R 2.495 12.0 193.5 1480 ~ 1510 D, V $(E \cdot LTC)$ 5AT GH-NV35 VQ25 2.495 10.2 227 6 1580 ~ 1630 D. V 3W+FGR А (E·LTC) CBA-PV35 VQ35 3.498 6MT 9.3 249.6 1540 ~ 1570 V 3W R スカイライン 5AT CBA-PV35 VQ35 3.498 8.6 270.0 1520 ~ 1550 V 3W R $(E \cdot LTC)$ CVT CBA-PV35 VQ35 3.498 266.9 1580 ~ 1600 C, V 3W R 8.7 $(F \cdot | TC)$ CBA-VQ35 3.498 6MT 9.3 249.6 1530 ~ 1550 V 3W R CPV35 CBA-5AT 1540 ~ 1560 VQ35 3.498 8.6 270.0 V 3W R CPV35 $(E \cdot LTC)$ 4AT CBA-J31 **VQ23** 2.349 10.6 219.0 1520 V 3W F (E·LTC) 4AT VQ23 1450 ~ 1480 V 3W F CBA-J31 2.349 11.2 207.3 $(E \cdot LTC)$ CVT テ 1 ア ナ CBA-PJ31 VQ35 3.498 10.0 232.2 1490 ~ 1500 C, V 3W F $(E \cdot LTC)$ CVT CBA-PJ31 VQ35 3.498 236.9 1520 ~ 1530 C, V 3W F 9.8 $(E \cdot LTC)$ CBA-4AT **QR25** 2,488 V 3W А 10.8 215.0 $1460 \sim 1480$ TNJ31 (E·LTC) CVT TA-RP12 **OR25** 2 4 8 8 13.0 178 6 $1330 \sim 1350$ DCV 3W+EGR F $(E \cdot LTC)$ CVT UA-TP12 F **QR20** 1,998 C. V 13.0 178.6 $1290 \sim 1320$ 3W (E·LTC) CVT F TA-WRP12 **OR**25 2 488 D.C.V 3W+EGR 13.0 178 6 $1390 \sim 1420$ $(E \cdot LTC)$ プリメーラ UA-CVT F **QR20** 1.998 13.0 178.6 1350 ~ 1390 C, V 3W WTP12 (E·LTC) 4AT UA-QP12 **QG18** 1.769 13.6 170.7 1270 ~ 1290 V 3W F $(E \cdot LTC)$ 4AT UA-TNP12 QR20 1.998 11.0 211.1 1350 ~ 1370 V 3W А (E·LTC)

		原	動機	変速装置の	エネルギー	1km 走行に		主要	その他エネル	/ギー消	費効率の異なる要因	(参考)
通 称 名	型式	型式	総排気量 (ℓ)	夏速表量の 型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(^愛 号) 低排出ガス 認定レベル
プリメーラ	UA- WTNP12	QR20	1.998	4AT (E・LTC)	11.0	211.1	1410 ~ 1440	V	3W	А		
	UA-FG10	QG15	1.497	5MT	17.6	131.9	1110 ~ 1130	V	3W	F	i-G	
	CBA-FG10	QG15	1.497	5MT	17.6	131.9	1110 ~ 1130	V	3W	F	i-G	
	GH-TG10	QR20	1.998	CVT (E・LTC)	16.4	141.6	1220 ~ 1240	D,V,C	3W+EGR	F		
	UA-QG10	QG18	1.769	4AT (E・LTC)	16.0	145.1	1170 ~ 1190		3W+EGR	F		
สาย เกิดระบอง	DBA-QG10	QG18	1.769	4AT (E・LTC)	16.0	145.1	1130 ~ 1190		3W+EGR	F		
ブルーバードシルフィ	UA-FG10	QG15	1.497	5MT	16.0	145.1	1100 ~ 1110	V	3W	F	教習車	
	UA-FG10	QG15	1.497	4AT (E・LTC)	16.0	145.1	1120 ~ 1150	V	3W	F		
	CBA-FG10	QG15	1.497	5MT	16.0	145.1	1100 ~ 1110	V	3W	F	教習車	
	CBA-FG10	QG15	1.497	4AT (E・LTC)	16.0	145.1	1120 ~ 1150	V	3W	F		
	TA-QNG10	QG18	1.769	4AT (E・LTC)	12.2	190.3	1270 ~ 1290		3W	А		
	DBA-C11	HR15	1.498	4AT (E・LTC)	16.8	138.2	1100 ~ 1120	V, EP, B	3W+EGR	F		
	DBA-C11	HR15	1.498	CVT (E·LTC)	18.2	127.6	1140 ~ 1160	C, V, EP, B	3W+EGR	F		
ティーダ	DBA-NC11	HR15	1.498	4AT (E・LTC)	14.8	156.9	1270	V, EP, B	3W+EGR			
	DBA-NC11	HR15	1.498	4AT (E・LTC)	16.0	145.1	1190 ~ 1250	V, EP, B	3W EGR	А		
	CBA-JC11	MR18	1.797	CVT (E·LTC)	16.4	141.6	1170 ~ 1190	C, V, EP, B	3W	F		
	DBA-SC11	HR15	1.498	4AT (E・LTC)	16.8	138.2	1090 ~ 1120	V, EP, B	3W+EGR	F		
#	DBA-SC11	HR15	1.498	CVT (E・LTC)	18.2	127.6	1120 ~ 1130	C, V, EP, B	3W+EGR	F		
ティーダラティオ	DBA- SNC11	HR15	1.498	4AT (E∙LTC)	16.0	145.1	1190 ~ 1230	V, EP, B	3W EGR	А		
	CBA-SJC11	MR18	1.797	CVT (E・LTC)	16.4	141.6	1150 ~ 1170	C, V, EP, B	3W	F		
	CBA-AK12	CR12	1.240	5MT	21.0	110.6	900 ~ 930	EP, V	3W	F		
	CBA-AK12	CR12	1.240	4AT (E・LTC)	19.0	122.2	920 ~ 950	EP, V	3W	F		
マ - チ	CBA-BK12	CR14	1.386	4AT (E・LTC)	18.4	126.2	970 ~ 980	EP, V	3W	F		
	CBA- BNK12	CR14	1.386	4AT (E・LTC)	16.6	139.9	1030 ~ 1040	EP, V	3W	А		
サファリ	TA- WFGY61	TB48	4.758	5AT (E・LTC)	5.5	422.1	2370 ~ 2450	V	3W	А		
	CBA-E51	VQ35	3.498	5AT (E・LTC)	8.2	283.1	2020 ~ 2110	V	3W	R		
	CBA-E51	VQ35	3.498	5AT (E・LTC)	8.4	276.4	1990 ~ 2010	V	3W	R		
	CBA-NE51	VQ35	3.498	5AT (E·LTC)	8.0	290.2	2110 ~ 2230	V	3W	А		
エルグランド	CBA-ME51	VQ25	2.495	5AT (E・LTC)	8.6	270.0	2020 ~ 2090	V	3W	R		
	CBA-ME51	VQ25	2.495	5AT (E・LTC)	8.9	260.9	1990 ~ 2010	V	3W	R		
	CBA- MNE51	VQ25	2.495	5AT (E・LTC)	8.4	276.4	2110 ~ 2210	V	3W	А		
	CBA-TZ50	QR25	2.488	4AT (E・LTC)	10.6	219.0	1640 ~ 1660	V	3W	F		
ムラーノ	CBA- PNZ50	VQ35	3.498	CVT (E·LTC)	8.9	260.9	1780 ~ 1800	C, V	3W	А		

		原	動機	変速装置の	エネルギー	1km 走行に		主要燃	その他エネル	/ギー消費	費効率の異なる要因	(参考)
通称名	型式	型式	総排気量 (ℓ)	型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(ショ) 低排出ガス 認定レベル
ムラーノ	CBA-PZ50	VQ35	3.498	CVT (E・LTC)	9.3	249.6	1720 ~ 1740	C, V	3W	F		
	GH-M35	VQ25	2.495	4A⊤ (E・LTC)	11.0	211.1	1550 ~ 1610	D, V	3W+EGR	R		
	GH-NM35	VQ25	2.495	5AT (E・LTC)	10.0	232.2	1650 ~ 1710	D, V	3W+EGR	А		
	GH-NM35	VQ25	2.495	5AT (E・LTC)	9.0	258.0	1680 ~ 1730	V	3W	А	上級グレード スポーティグレード	
ステージア	GH-NM35	VQ25	2.495	5AT (E・LTC)	8.8	263.8	1720 ~ 1760	V	3W	А	上級スポーティ グレード	
	GH-NM35	VQ25	2.495	5AT (E・LTC)	8.4	276.4	1770	V	3W	А	上級スポーティ グレード	
	CBA-PM35	VQ35	3.498	5AT (E・LTC)	8.6	270.0	1580 ~ 1630	V	3W	R		
	CBA- PNM35	VQ35	3.498	5AT (E・LTC)	7.8	297.6	1670 ~ 1760	V	3W	А		
	CBA- PNM35	VQ35	3.498	5AT (E・LTC)	7.4	313.7	1770	V	3W	А		
± . =	TA-QGE25	KA24	2.388	4AT (E・LTC)	7.8	297.6	1860 ~ 1950		3W	R		
キャラバン	TA-QE25	KA24	2.388	4AT (E・LTC)	7.8	297.6	1940 ~ 1970		3W	R		
	CBA-TU31	QR25	2.488	4AT (E・LTC)	11.0	211.1	1690 ~ 1760	V	3W	F		
	CBA-TU31	QR25	2.488	4AT (E・LTC)	10.4	223.2	1770	V	3W	F		
	CBA- TNU31	QR25	2.488	4AT (E・LTC)	10.2	227.6	1770 ~ 1840	V	3W	А		
プレサージュ	CBA- TNU31	QR25	2.488	4AT (E・LTC)	10.8	215.0	1760	V	3W	А		
	CBA-PU31	VQ35	3.498	CVT (E・LTC)	9.1	255.1	1770 ~ 1850	C, V	3W	F		
	CBA- PNU31	VQ35	3.498	CVT (E・LTC)	8.9	260.9	1840 ~ 1920	C, V	3W	А		
	CBA-TC24	QR20	1.998	CVT (E・LTC)	12.2	190.3	1560 ~ 1630	C, V	3W	F		
セレナ	CBA-RC24	QR25	2.488	4AT (E·LTC)	10.6	219.0	1580 ~ 1640	V	3W	F		
	CBA- TNC24	QR20	1.998	4AT (E・LTC)	10.6	219.0	1610 ~ 1680	V	3W	А		
	CBA-B30	MR20	1.997	CVT (E・LTC)	15.0	154.8	1390 ~ 1480	B, EP, V, C	3W+EGR	F		
ラフェスタ	CBA-NB30	MR20	1.997	CVT (E・LTC)	13.8	168.2	1470 ~ 1510	B, EP, V, C	3W+EGR	А		
	CBA-NB30	MR20	1.997	CVT (E・LTC)	13.2	175.9	1520 ~ 1550	B, EP, V, C	3W+EGR	А		
	UA-T30	QR20	1.998	4A⊤ (E・LTC)	13.2	175.9	1350 ~ 1400	V	3W	F		
	UA-NT30	QR20	1.998	5MT	13.2	175.9	1380 ~ 1430	V	3W	А		
エクストレイル	UA-NT30	QR20	1.998	4AT (E・LTC)	13.0	178.6	1400 ~ 1460	V	3W	А		
	GH-PNT30	SR20	1.998	4AT (E・LTC)	9.5	244.4	1460 ~ 1490		3W	А		
	GH-PNT30	SR20	1.998	4AT (E・LTC)	9.0	258.0	1520		3W	А		
	TA-RW11	QR20	1.998	CVT (E·LTC)	13.0	178.6	1340 ~ 1370	C, V	3W	F		
アベニール	UA-W11	QG18	1.769	4A⊤ (E・LTC)	13.0	178.6	1300 ~ 1330		3W	F		
	TA- RNW11	QR20	1.998	4AT (E・LTC)	11.6	200.1	1390 ~ 1420	V	3W	А		
	UA- WFY11	QG15	1.497	5MT	17.0	136.6	1150 ~ 1180		3W	F		
ウイングロード	UA- WHNY11	QG18	1.769	4A⊤ (E・LTC)	13.0	178.6	1300 ~ 1340		3W	А		

ニッサン

				原	動機	赤さなる	** "	1km 走行に		主要	その他エネル	/ギー消	費効率の異なる要因	
通	称	名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エ ネルキー 消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
		1.8	UA- WFY11	QG15	1.497	4AT (E·LTC)	16.0	145.1	1170 ~ 1210		3W	F		
	ングロ		TA- WRY11	QR20	1.998	CVT (E·LTC)	13.0	178.6	1270 ~ 1290	C, V	3W	F		
,			DBA-E11	HR15	1.498	CVT (E·LTC)	18.2	127.6	1070 ~ 1100	B, EP, V, C	3W+EGR	F		
	_	F	DBA-NE11	HR15	1.498	4AT (E·LTC)	16.0	145.1	1140 ~ 1160	B, EP, V	3W+EGR	А		
			UA-BZ11	CR14	1.386	CVT (E·LTC)	17.2	135.0	1070 ~ 1110	C, EP, V	3W	F		
			UA-BZ11	CR14	1.386	4AT (E・LTC)	16.4	141.6	1060 ~ 1100	V, EP	3W	F		
			UA-BGZ11	CR14	1.386	CVT (E·LTC)	16.8	138.2	1170 ~ 1210	C, EP, V	3W	F		
+	<u>–</u> ב	ブ	UA-BGZ11	CR14	1.386	4AT (E・LTC)	16.0	145.1	1160 ~ 1200	V, EP	3W	F		
			UA-BNZ11	CR14	1.386	4AT (E·LTC)	15.8	146.9	1130 ~ 1170	V, EP	3W	А		
			CBA-BZ11	CR14	1.386	CVT (E・LTC)	17.2	135.0	1070 ~ 1110	C, EP, V	3W	F		
			CBA- BGZ11	CR14	1.386	CVT (E·LTC)	16.8	138.2	1170 ~ 1210	C, EP, V	3W	F		
L			l	I	1	1	1		l	1	I			

]車・RV I	-			<u></u>	§自動車の製活						工業株式会社
				原	動機	変速装置の	エネルギー	1km 走行に		工要燃	その他エネル	/ギー消	費効率の異なる要因	(参考)
通	称	名	型式	型式	総排気量 (ℓ)	型式及び 変速段数	消費効率 (km/ ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	低排出ガス 認定レベル
			DBA-Z21A	4A90	1.332	CVT (LTC)	20.5	113.3	1010	CV	3W+EGR	F		
			DBA-Z21A	4A90	1.332	CVT (LTC)	18.8	123.5	1020 ~ 1080	CV	3W+EGR	F		
			CBA-Z22A	4A90	1.332	CVT (LTC)	17.8	130.4	1080 ~ 1140	CV	3W+EGR	А		
			DBA-Z23A	4A91	1.499	CVT (LTC)	18.2	127.6	1020 ~ 1090	CV	3W+EGR	F		
コ	ル	۲	CBA-Z24A	4A91	1.499	CVT (LTC)	17.4	133.4	1090 ~ 1150	CV	3W+EGR	А		
			DBA-Z23W	4A91	1.499	CVT (LTC)	18.2	127.6	1070 ~ 1130	CV	3W+EGR	F		
			CBA-Z24W	4A91	1.499	CVT (LTC)	17.4	133.4	1140 ~ 1200	CV	3W+EGR	А		
			CBA-Z27A	4G15	1.468	CVT	15.6	148.8	1100 ~ 1140	CV	3W+EGR	F	ターボチャージャ	
			CBA-Z27W	4G15	1.468	CVT	15.6	148.8	1150 ~ 1190	CV	3W+EGR	F	ターボチャージャ	
			GH-CT9A	4G63	1.997	6MT	9.7	239.3	1310 ~ 1380		3W	A	ターボチャージャ	
			GH-CT9A	4G63	1.997	5MT	9.6	241.8	1340 ~ 1450		3W	А	ターボチャージャ	
			DBA-CS2A	4G15	1.468	5MT	16.8	138.2	1100 ~ 1110		3W+EGR	F		
			DBA-CS2A	4G15	1.468	CVT (LTC)	16.2	143.3	1130 ~ 1140	С	3W+EGR	F		
			DBA-CS2A	4G15	1.468	CVT (LTC)	16.0	145.1	1210 ~ 1220	С	3W+EGR	A		
ラン	/ サ	_	DBA- CS2W	4G15	1.468	CVT (LTC)	16.0	145.1	1200 ~ 1230	С	3W+EGR	F		
			CBA-CS6A	4G94	1.999	4AT (LTC)	12.4	187.2	1200 ~ 1220		3W+EGR	F		
			LA-CS5W	4G93	1.834	CVT (LTC)	14.2	163.5	1270 ~ 1300	CD	3W+EGR	F		
			LA-CS5W	4G93	1.834	CVT (LTC)	13.8	168.2	1340 ~ 1370	CD	3W+EGR	A		
			TA-CS5A	4G93	1.834	4AT (LTC)	13.0	178.6	1270 ~ 1290	D	3W+EGR	F	ターボチャージャ	
			TA-CS5W	4G93	1.834	4AT (LTC)	13.0	178.6	1300 ~ 1340	D	3W+EGR	F	ターボチャージャ	
			TA-CR6W	4G94	1.999	CVT (LTC)	13.8	168.2	1360 ~ 1410	CD	3W+EGR	F		
			TA-CR6W	4G94	1.999	CVT (LTC)	13.4	173.3	1430 ~ 1480	CD	3W+EGR	A		
ディ	イオ	ン	TA-CR5W	4G93	1.834	4AT (LTC)	12.6	184.3	1400 ~ 1420	D	3W+EGR	F		
			TA-CR5W	4G93	1.834	4AT (LTC)	12.2	190.3	1470 ~ 1490	D	3W+EGR	A		
			UA-CU5W	4G69	2.378	4AT (LTC)	10.6	219.0	1520 ~ 1550	V	3W+EGR	А		
			UA-CU5W	4G69	2.378	4AT (LTC)	11.4	203.7	1410 ~ 1450	V	3W+EGR	F		
			UA-CU5W	4G69	2.378	4AT	11.0	211.1	1510	V	3W+EGR	A		
エア	トレッ	ック	LA-CU2W	4G63	1.997	(LTC) 4AT	11.2	207.3	1350 ~ 1390		3W+EGR	F		
			LA-CU2W	4G63	1.997	(LTC) 4AT	11.0	211.1	1450 ~ 1490		3W+EGR	A		
			TA-CU2W	4G63	1.997	(LTC) 5AT	9.5	244.4	1520 ~ 1560		3W+EGR	A	ターボチャージャ	
			LA-EA7A	4G94	1.999	(LTC)	13.0	178.6	1280 ~ 1310	D	3W+EGR	F		
± ·	~ ,	ン		4G94	1.999	(LTC) 4AT	12.4	187.2	1400 ~ 1420	D	3W+EGR	A		
ギャ			LA-EC7A	41-94		(LTC)								

			原	動機	亦油壮罢の	エネルギー	1km 走行に		主要燃	その他エネル	/ギー消	費効率の異なる要因	(参考)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	通称名	型式	型式		型式及び	消費効率	CO₂排出量		主要燃費向上対策			その他	(愛考) 低排出ガス 認定レベル
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ディアマンテ	ABA-F34A	6A13	2.498		9.5	244.4	1520		3W+EGR	F		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		LA-V63W	6G72	2.972	5MT	8.7	266.9	1860 ~ 1910		3W+EGR	А		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		LA-V63W	6G72	2.972		8.4	276.4	1840 ~ 1930		3W+EGR	А		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			6G72	2.972	5MT	8.7	266.9	1860 ~ 1910		3W+EGR	А		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			6G72	2.972		8.4	276.4	1840 ~ 1930		3W+EGR	А		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		LA-V73W	6G72	2.972	5MT	8.5	273.1	2020 ~ 2090		3W+EGR	А		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		LA-V73W	6G72	2.972		8.2	283.1	2020 ~ 2110		3W+EGR	А		
$\frac{\sqrt{73W}}{73W} = 6672 = 2972 = \frac{\sqrt{2}}{\sqrt{2}} = \frac{8.2}{\sqrt{2}} = 283.1 = 2020 - 2110 = 3W + EGR = A = 1000 - 2110 = 3W + EGR = A = 1000 - 2110 = 3W + EGR = A = 1000 - 2110 = 1000 - 1100 - 1100 = 1000 - 1100 - 1100 = 1000 - 1100 = 1000 - 1100 = 1000 - 1100 - 1100 - 1100 = 1100 - 1100 - 1100 - 1100 = 1100 - 1100 - 1100 = 1100 - 1100 - 1100 = 1000 - 1100 = 1000 - 1000 = 1000 - 1000 - 1000 = 1000 - 1000 - 1000 = 1000 - 1000 - 1000 = 1000 - 1000 - 1000 - 1000 = 1000 - 1000$			6G72	2.972	5MT	8.5	273.1	2020 ~ 2090		3W+EGR	А		
$\frac{1}{14.055W} = \frac{1}{6674} = \frac{3}{3.496} = \frac{1}{2.2} = \frac{1}{8.5} = \frac{2}{27.1} = \frac{1}{1930-1930} = \frac{1}{10} = \frac{1}{3W+EGR} = \frac{1}{A} = \frac{1}{100} = $			6G72	2.972		8.2	283.1	2020 ~ 2110		3W+EGR	А		
$\frac{1}{7} + \frac{1}{7} + \frac{1}$		TA-V65W	6G74	3.496		8.5	273.1	1930 ~ 1980	D	3W+EGR	А		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TA-V75W	6G74	3.496		8.2	283.1	2100 ~ 2170	D	3W+EGR	А		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TA-H76W	4G93	1.834		10.8	215.0	1300 ~ 1340		3W+EGR	А		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ᆙᅘᆮᇊᄼᆂ	TA-H76W	4G93	1.834		12.4	187.2	1390 ~ 1430	D	3W+EGR	А	ターボチャージャ	
$\frac{1}{7} + \frac{1}{7} + \frac{1}$	Λ9ΙЦΙ3	TA-H77W	4G94	1.999	5MT	13.0	178.6	1350 ~ 1390	D	3W+EGR	А		
$ \vec{\mathcal{T}} = \vec{\mathcal{T}} \cdot \mathcal$		TA-H77W	4G94	1.999		12.6	184.3	1370 ~ 1420	D	3W+EGR	А		
$\frac{CBA^{+}}{NA4W} = 4669 = 2.378 = \frac{4A1}{(LTC)} = 11.0 = 211.1 = 1700 \sim 1750 = V = 3W + EGR = A = 2000 = $	ガニンディフ		4G69	2.378		11.4	203.7	1620 ~ 1680	V	3W+EGR	F		
$\vec{\tau}$ U D $\frac{GH-PD6W}{GH2}$ $\frac{6G72}{2.972}$ $\frac{2.972}{\times 2}$ $\frac{1.7}{\times 2}$ $\frac{301.5}{1960}$ $\frac{1960}{2010}$ $\frac{3W+EGR}{3W+EGR}$ A	クラノティス		4G69	2.378		11.0	211.1	1700 ~ 1750	V	3W+EGR	А		
GH-PD6W 6G72 2972 4AT(LTC) 7.3 318.0 2020~2060 3W+EGR A	<i>≕</i> ,, , ,	GH-PD6W	6G72	2.972		7.7	301.5	1960 ~ 2010		3W+EGR	А		
Image: state stat		GH-PD6W	6G72	2.972		7.3	318.0	2020 ~ 2060		3W+EGR	А		
Image: state s													
Image: state s													
Image: series of the series													
Image: Sector													
Image: Sector of the sector													
Image: Sector of the sector													

菱

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 マツダ株式会社

		原	動機	変速装置の	エクルゼー	1km 走行に		主要	その他エネル	/ギー消費	費効率の異なる要因	(参考)
通称名	型式	型式	総排気量 (ℓ)	夏速表量の 型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(<u></u> 低排出ガス 認定レベル
	TA-EP3W	L3	2.260	4AT (E・LTC)	11.4	203.7	1420		3W+EGR	F		
	TA-EP3W	L3	2.260	4AT (E·LTC)	11.0	211.1	1490 ~ 1500		3W+EGR	А	I. W.1500	
トリビュート	TA-EP3W	L3	2.260	4AT (E·LTC)	10.4	223.2	1520		3W+EGR	А	I. W.1750	
	LA-EPFW	AJ	2.967	4AT (E·LTC)	8.0	290.2	1530		3W+EGR	А		
	ABA- EPFW	AJ	2.967	4AT (E・LTC)	8.0	290.2	1530		3W+EGR	А		
	TA-LWFW	AJ	2.967	5AT (E・LTC)	8.6	270.0	1700 ~ 1740		3W+EGR	F		
	LA-LW3W	L3	2.260	4AT (E・LTC)	9.4	247.0	1770		3W+EGR	А	I. W.2000	
MPV	CBA- LW3W	L3	2.260	4AT (E・LTC)	11.6	200.1	1630 ~ 1670		3W+EGR	F		
	ABA- LW3W	L3	2.260	4AT (E・LTC)	9.4	247.0	1770		3W+EGR	А		
	ABA- LW3W	L3	2.260	4AT (E・LTC)	10.0	232.2	1730 ~ 1760		3W+EGR	А		
	CBA- LW3W	L3	2.260	4AT (E・LTC)	10.0	232.2	1730 ~ 1760		3W+EGR	А		
	GH-SGEW	FE	1.998	4AT (E・LTC)	8.5	273.1	1600 ~ 1610		3W+EGR	R		
ボンゴフレンディ	GH-SGE3	FE	1.998	4AT (E・LTC)	8.5	273.1	1670 ~ 1700		3W+EGR	R		
	LA-GY3W	L3	2.260	5AT (E・LTC)	10.2	227.6	1500	V	3W+EGR	А	I. W.1500	
	LA-GY3W	L3	2.260	5AT (E·LTC)	9.9	234.5	1520	V	3W+EGR	А	I. W.1750	
	CBA-GGEP	LF	1.998	4AT (E・LTC)	14.0	165.8	1310		3W+EGR	F		
	CBA-GGES	LF	1.998	4AT (E・LTC)	14.0	165.8	1370		3W+EGR	F		
	CBA- GYEW	LF	1.998	4AT (E・LTC)	14.0	165.8	1370		3W+EGR	F		
アテンザ	UA-GG3P	L3	2.260	4AT (E・LTC)	11.6	200.1	1340 ~ 1360	V	3W+EGR	F		
	UA-GG3S	L3	2.260	5MT	12.2	190.3	1360 ~ 1390	V	3W+EGR	F		
	UA-GG3S	L3	2.260	4AT (E・LTC)	11.6	200.1	1390 ~ 1420	V	3W+EGR	F		
	UA-GY3W	L3	2.260	5MT	12.2	190.3	1390 ~ 1410	V	3W+EGR	F		
	UA-GY3W	L3	2.260	4AT (E・LTC)	11.6	200.1	1420 ~ 1440	V	3W+EGR	F		
プレマシー	DBA- CREW	LF	1.998	4AT (E・LTC)	14.0	165.8	1450 ~ 1480		3W+EGR	F		
	DBA- CR3W	L3	2.260	4AT (E・LTC)	11.2	207.3	1490 ~ 1510	V	3W+EGR	F		
	GH-NB6C	B6	1.597	5MT	14.2	163.5	1030 ~ 1050		3W+EGR	R		
	GH-NB6C	B6	1.597	4AT (E・LTC)	12.0	193.5	1060		3W+EGR	R		
ロードスター	GH-NB8C	BP	1.839	6MT	13.0	178.6	1060 ~ 1090	V	3W+EGR	R		
	GH-NB8C	BP	1.839	6MT	12.2	190.3	1120		3W+EGR	R	ターボ	
	GH-NB8C	BP	1.839	4AT (E·LTC)	11.4	203.7	1080	V	3W+EGR	R		
	CBA- BKEP	LF	1.998	4AT (E・LTC)	13.8	168.2	1230 ~ 1260		3W+EGR	F		
アクセラ	CBA- BKEP	LF	1.998	4AT (E・LTC)	13.0	178.6	1270		3W+EGR	F		
	СВА-ВКЗР	L3	2.260	5MT	12.8	181.4	1240	V	3W+EGR	F		

				原	動機	変速装置の	エネルギー	1km 走行に		王要燃	その他エネル	/ギー消	費効率の異なる要因	(参考)
通	称	名	型式	型式	総排気量 (ℓ)	夏速表置の 型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(● で) 低排出ガス 認定レベル
			CBA-BK3P	L3	2.260	5MT	12.2	190.3	1270	V	3W+EGR	F		
			CBA-BK3P	L3	2.260	4AT (E・LTC)	12.2	190.3	1260	V	3W+EGR	F		
ア	クセ	∍	CBA-BK3P	L3	2.260	4AT (E·LTC)	11.6	200.1	1280	V	3W+EGR	F		
			DBA-BK5P	ZY	1.498	5MT	17.4	133.4	1180 ~ 1210	V	3W+EGR	F		
			DBA-BK5P	ZY	1.498	4AT (E·LTC)	17.4	133.4	1210 ~ 1240	V	3W+EGR	F		
			ABA-SE3P	13B	0.654 x2	5MT	10.0	232.2	1300 ~ 1320		3W+AI	R		
R	Х -	8	ABA-SE3P	13B	0.654 x2	6MT	9.4	247.0	1310 ~ 1330		3W+AI	R		
			ABA-SE3P	13B	0.654 x2	4AT (E·LTC)	9.0	258.0	1330 ~ 1350		3W+AI	R		
			DBA- DY3W	ZJ	1.348	5MT	17.6	131.9	1050	V	3W+EGR	F		
			DBA- DY3W	ZJ	1.348	5MT	17.8	130.4	1060 ~ 1080	V	3W+EGR	F	低アイドル回転数化仕様	
			DBA- DY3R	ZJ	1.348	4AT (E・LTC)	16.2	143.3	1160 ~ 1190	V	3W	А		
	_	_	DBA- DY3W	ZJ	1.348	4AT (E・LTC)	16.8	138.2	1080	V	3W+EGR	F		
デ	Ξ	オ	DBA- DY3W	ZJ	1.348	4AT (E・LTC)	17.6	131.9	1080 ~ 1110	V	3W+EGR	F	低アイドル回転数化仕様	
			DBA- DY5R	ZY	1.498	4AT (E・LTC)	16.0	145.1	1170 ~ 1180	V	3W	А		
			DBA- DY5W	ZY	1.498	5MT	17.0	136.6	1070 ~ 1090	V	3W	F		
			DBA- DY5W	ZY	1.498	4AT (E・LTC)	16.8	138.2	1100 ~ 1120	V	3W	F		
- 9			DBA-DC5R	ZY	1.498	4AT (E・LTC)	16.0	145.1	1170 ~ 1180	V	3W	А		
ベ	IJ —	サ	DBA- DC5W	ZY	1.498	4AT (E・LTC)	16.8	138.2	1100 ~ 1110	V	3W	F		
			<u> </u>											
			<u> </u>											
		_	<u> </u>											

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 マッダ株式会社

		原動機		亦連牲署の	エネルギー 1km 走行に *++-2			主要燃	その他エネルギー消費効率の異なる要因			- (参考)		
通	称	名	型式	型式	総排気量 (ℓ)	型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(シ) が低排出ガス認定レベル
エス	、ケー	・プ	TA- EP3WF	L3	2.260	4AT (E・LTC)	11.0	211.1	1500		3W+EGR	A		
			LA- EPFWF	AJ	2.967	4AT (E·LTC)	8.0	290.2	1530 ~ 1550		3W+EGR	A		
			ABA- EPFWF	AJ	2.967	4AT (E·LTC)	8.0	290.2	1530 ~ 1550		3W+EGR	A		

ガソリン乗用	J車・ RV」	₽										F工業株式会社
		原動機		- 変速装置の	エネルギー	1km 走行に		主要燃費	その他エネルギー消費効率の異なる			要因(参考)
通称名	型式	型式	総排気量 (ℓ)	2 型式及び 変速段数		おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	溢費 向 上 対策	主要排出 ガス対策	駆動 形式	その他	(ショ) 低排出ガス 認定レベル
	DBA-KB1	J35 A	3.471	5AT (E·LTC)	8.6	270.0	1760	V	3W+EGR	A		
レジェンド	DBA-KB1	J35 A	3.471	5AT (E・LTC)	8.5	273.1	1770 ~ 1800	V · EP	3W+EGR	A		
	DBA-KB1	J35 A	3.471	5AT (E·LTC)	8.2	283.1	1770 ~ 1790	V	3W+EGR	A		
インスパイア	DBA-UC1	J30 A	2.997	5AT (E・LTC)	11.6	200.1	1530 ~ 1580	CY · EP	3W+EGR	F		
	ABA-NA2	C32B	3.179	6MT	9.0	258.0	1320 ~ 1350	V	3W+EGR +AS	R		
N S X	ABA-NA2	C32B	3.179	6MT	9.0	258.0	1330 ~ 1410	V · EP	3W+EGR +AS	R		
N S X	ABA-NA2	C32B	3.179	6MT	8.6	270.0	1270 ~ 1300	V	3W+EGR +AS	R	減速比4.235	
	ABA-NA1	C30A	2.977	4AT (E・LTC)	8.4	276.4	1390 ~ 1440	V · EP	3W+EGR +AS	R		
5 2 0 0 0	ABA-AP1	F20C	1.997	6MT	12.0	193.5	1250 • 1260	V · EP	3W+AS	R		
S 2 0 0 0	ABA-AP1	F20C	1.997	6MT	11.6	200.1	1270 ~ 1300	V · EP	3W+AS	R		
	DBA-RB2	K24A	2.354	5AT (E・LTC)	11.2	207.3	1660 ~ 1740	V	3W+EGR	A		
L /	ABA-RB2	K24A	2.354	5AT (E・LTC)	10.6	219.0	1690 ~ 1760	V	3W	А		
オデッセイ	DBA-RB1	K24A	2.354	CVT (E·LTC)	12.2	190.3	1610 ~ 1700	C· V	3W+EGR	F		
	ABA-RB1	K24A	2.354	5AT (E·LTC)	11.0	211.1	1640 ~ 1710	V	3W	F		
	DBA-CL7	K20A	1.998	5AT (E·LTC)	13.8	168.2	1370 ~ 1410	V· EP	3W+EGR	F		
	ABA-CL8	K20A	1.998	5AT (E・LTC)	13.4	173.3	1450 ~ 1490	V · EP	3W+EGR	А		
アコード	ABA-CL9	K24A	2.354	5AT (E・LTC)	12.0	193.5	1420 ~ 1450	V · EP	3W	F		
	ABA-CL7	K20A	1.998	6MT	11.8	196.8	1390	V· EP	3W	F		
	ABA-CM3	K24A	2.354	5AT (E・LTC)	11.0	211.1	1580 ~ 1640	V · EP	3W	А	24T タイヤ205/55R16	
	ABA-CM3	K24A	2.354	5AT (E・LTC)	11.8	196.8	1560 ~ 1610	V · EP	3W+EGR	A	24E タイヤ205/55R16	
	ABA-CM3	K24A	2.354	5AT (E・LTC)	12.0	193.5	1550 ~ 1580	V · EP	3W+EGR	A	24E タイヤ195/65R15	
	ABA-CM2	K24A	2.354	5AT (E・LTC)	11.4	203.7	1530 ~ 1590	V · EP	3W	F		
	DBA-CM2	K24A	2.354	5AT (E・LTC)	12.4	187.2	1520	V · EP	3W+EGR	F	タイヤ195/65R15	
アコードワゴン	DBA-CM2	K24A	2.354	5AT (E・LTC)	12.2	190.3	1520 ~ 1560	V · EP	3W+EGR	F	タイヤ205/55R16	
	DBA-CM2	K24A	2.354	5AT (E・LTC)	13.0	178.6	1490 ~ 1510	V · EP	3W+EGR	F	タイヤ195/65R15	
	DBA-CM1	K20A	1.998	5AT (E・LTC)	13.4	173.3	1480 ~ 1500	V · EP	3W+EGR	F	タイヤ195/65R15	
	DBA-CM1	K20A	1.998	5AT (E・LTC)	13.2	175.9	1490 ~ 1500	V · EP	3W+EGR	F		
	DBA-CM2	K24A	2.354	5AT (E·LTC)	12.8	181.4	1500 • 1510	V · EP	3W+EGR	F	タイヤ205/55R16	
	CBA-RN5	K20B	1.998	CVT (E·LTC)	15.0	154.8	1470 ~ 1490	C· D· L· V	3W+EGR	F		
ストリーム	CBA-RN1	D17A	1.668	4AT (E・LTC)	14.2	163.5	1320 ~ 1370	V	3W+EGR	F		
	CBA-RN1	D17A	1.668	4AT (E・LTC)	14.0	165.8	1370 ~ 1390	V	3W+EGR	F	タイヤ195/65R15	
	ABA-RN4	K20A	1.998	4AT (E·LTC)	13.0	178.6	1470 ~ 1500	V	3W	А		

		原	動機	᠇᠇᠇᠇᠇᠇	エネルギー 消費効率 (km/ ℓ)	1km 走行に おける CO2 排出量 (g-CO2/km)		主要雌	その他エネル	- (参考)		
通称名	型式	型式	総排気量 (ℓ)				車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
	CBA-RN3	K20A	1.998	5AT (E・LTC)	13.6	170.7	1430 ~ 1450	V	3W	F	タイヤ195/65R15	
ストリーム	CBA-RN3	K20A	1.998	5AT (E・LTC)	13.2	175.9	1430 ~ 1450	V	ЗW	F		
	ABA-RN2	D17A	1.668	4AT (E・LTC)	13.6	170.7	1380 ~ 1440	V	3W+EGR	А		
ステップワゴン/	CBA-RF8	K24A	2.354	5AT (E・LTC)	11.0	211.1	1610 ~ 1680	V	3W	А		
ステップワゴンスパーダ	CBA-RF7	K24A	2.354	5AT (E・LTC)	11.2	207.3	1570 ~ 1640	V	3W	F		
フニップロゴンフパ ガ	CBA-RF6	K20A	1.998	4AT (E・LTC)	11.6	200.1	1600 ~ 1660	V	3W	А		
ステップワゴンスパーダ	CBA-RF5	K20A	1.998	4A⊤ (E・LTC)	12.0	193.5	1540 ~ 1600	V	3W	F		
	CBA-RF4	K20A	1.998	4AT (E・LTC)	11.6	200.1	1580 ~ 1650	V	3W	А		
ステップワゴン	CBA-RF3	K20A	1.998	4AT (E・LTC)	12.0	193.5	1520 ~ 1600	V	3W	F		
	CBA-RF3	K20A	1.998	4AT (E・LTC)	13.0	178.6	1510	V	3W	F		
	ABA-DC5	K20A	1.998	6MT	12.4	187.2	1170 ~ 1190	V	3W	F		
インテグラ	ABA-DC5	K20A	1.998	5AT (E·LTC)	13.8	168.2	1230 • 1240	V	3W	F		
	ABA-DC5	K20A	1.998	5MT	14.4	161.2	1200 · 1210	V	3W	F		
インサイト	AAA-ZE1	ECA(内 燃機関)- MF2 (電動機)	0.995	CVT (E)	32.0	72.6	850	C · H · L · V · EP	3W+EGR	F		
	AAA-ZE1	ECA(内 燃機関)- MF2 (電動機)	0.995	5MT	36.0	64.5	820	H· I· L· V· EP	3W+EGR	F		
シビック ハイブリッド	CAA-ES9	LDA(内 燃機関)- MF3 (電動機)	1.339	CVT (E)	29.5	78.7	1200 • 1220	L· H· C· I· EP	3W+EGR	F		
	ABA-EU4	D17A	1.668	4AT (E·LTC)	15.2	152.7	1260	V· EP	3W+EGR	А		
	ABA-EU4	D17A	1.668	4AT (E·LTC)	14.2	163.5	1280	V· EP	3W+EGR	А		
シビック	CBA-EU3	D17A	1.668	CVT (E)	17.0	136.6	1210 • 1230	C· V· EP	3W+EGR	F		
	CBA-EU3	D17A	1.668	CVT (E)	16.4	141.6	1230 • 1240	C· V· EP	3W+EGR	F	タイヤ205/55R16	
	ABA-ET2	D17A	1.668	4AT (E·LTC)	15.4	150.8	1180 · 1200	V· EP	3W+EGR	А		
	ABA-ES2	D15B	1.493	4AT (E·LTC)	15.2	152.7	1160	EP	3W	А		
	CBA-ES3	D17A	1.668	5MT	17.6	131.9	1090 · 1110	V · EP	3W+EGR	F		
シビック フェリオ	CBA-ES3	D17A	1.668	CVT (E)	17.4	133.4	1120 • 1140	C· V· EP	3W+EGR	F		
	CBA-ES1	D15B	1.493	5MT	17.8	130.4	1070	EP	3W	F		
	CBA-ES3	D17A	1.668	CVT (E)	16.6	139.9	1150 • 1170	C· V· EP	3W+EGR	F	タイヤ195/60R15	
	ABA-ES2	D15B	1.493	5MT	16.4	141.6	1150	EP	3W	A		

		原	動機	変速装置の	エネルギー	1km 走行に		主要	その他エネル	- (参考)		
通称名	型式	型式	総排気量 (ℓ)	夏速表直の 型式及び 変速段数	型式及び 変速段数 (km/ℓ) (g-		車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	() 低排出ガス 認定レベル
シビック フェリオ	CBA-ES1	D15B	1.493	4A⊤ (E・LTC)	16.2	143.3	1090	EP	3W	F		
	CBA-GD4	L15A	1.496	CVT (E)	18.0	129.0	1090 ~ 1110	C· V· EP	3W+EGR	А		
	CBA-GD4	L15A	1.496	CVT (E)	17.6	131.9	1100 ~ 1120	C· V· EP	3W+EGR	A	タイヤ185/55R15	
	CBA-GD3	L15A	1.496	CVT (E)	20.5	113.3	1010	C· V· EP	3W+EGR	F		
	CBA-GD3	L15A	1.496	CVT (E)	19.2	120.9	1020 ~ 1040	C· V· EP	3W+EGR	F		
	CBA-GD3	L15A	1.496	CVT (E)	18.6	124.8	1030 ~ 1050	C· V· EP	3W+EGR	F	タイヤ185/55R15	
	CBA-GD3	L15A	1.496	5MT	19.4	119.7	1000	V· EP	3W+EGR	F		
フィット	CBA-GD3	L15A	1.496	5MT	18.8	123.5	1010	V· EP	3W+EGR	F	タイヤ185/55R15	
	CBA-GD3	L15A	1.496	5MT	18.2	127.6	1020	V· EP	3W+EGR	F		
	CBA-GD3	L15A	1.496	5MT	17.6	131.9	1030	V · EP	3W+EGR	F	タイヤ185/55R15	
	DBA-GD2	L13A	1.339	CVT (E)	20.0	116.1	1070 ~ 1100	C· EP	3W+EGR	А		
	DBA-GD2	L13A	1.339	CVT (E)	19.4	119.7	1090 • 1110	C· EP	3W+EGR	А	タイヤ185/55R15	
	DBA-GD1	L13A	1.339	CVT (E)	23.0	100.9	1000 ~ 1010	C· EP	3W+EGR	F		
	DBA-GD1	L13A	1.339	CVT (E)	22.5	103.2	1010	C· EP	3W+EGR	F	タイヤ185/55R15	
	DBA-GD1	L13A	1.339	CVT (E)	21.0	110.6	1020 · 1030	C· EP	3W+EGR	F		
	DBA-GD1	L13A	1.339	CVT (E)	24.0	96.7	990, 1000	C· EP	3W+EGR	F	減速比5.416	
	DBA-GD1	L13A	1.339	CVT (E)	23.0	100.9	1010	C· EP	3W+EGR	F	タイヤ 185/55R15 減速比5.416	
	CBA-GK1	L15A	1.496	CVT (E)	17.6	131.9	1230 ~ 1260	C· V· EP	3W+EGR	F		
モビリオ スパイク	CBA-GK1	L15A	1.496	CVT (E)	16.2	143.3	1270 ~ 1290	C· V· EP	3W+EGR	F		
	CBA-GK2	L15A	1.496	CVT (E)	15.4	150.8	1290 ~ 1350	C· V· EP	3W+EGR	А		
	DBA-GB2	L15A	1.496	CVT (E)	16.2	143.3	1320 ~ 1380	C· EP	3W+EGR	А		
	DBA-GB1	L15A	1.496	CVT (E)	18.2	127.6	1250 • 1260	C· EP	3W+EGR	F		
モビリオ	DBA-GB1	L15A	1.496	CVT (E)	17.0	136.6	1270 ~ 1310	C· EP	3W+EGR	F		
	CBA-GB1	L15A	1.496	CVT (E)	16.0	145.1	1270 ~ 1310	C· V· EP	3W+EGR	F		
	DBA-RR1	K24A	2.354	5AT (E・LTC)	10.2	227.6	1780 ~ 1910	V	3W+EGR	F		
	DBA-RR2	K24A	2.354	5AT (E・LTC)	10.0	232.2	1850 ~ 1950	V	3W+EGR	А		
エリシオン	DBA-RR3	J30A	2.997	5AT (E・LTC)	9.8	236.9	1880 ~ 1980	CY	3W+EGR	F		
	DBA-RR4	J30A	2.997	5AT (E・LTC)	9.5	244.4	1960 ~ 2010	CY	3W+EGR	А		
	DBA-RR4	J30A	2.997	5AT (E·LTC)	9.1	255.1	2020 ~ 2040	СҮ	3W+EGR	А		

		原	動機	- 変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ℓ) (km/ℓ)		主要燃	その他エネル	- (参考)			
通称名	型式	型式	総排気量 (ℓ)			CO₂ 排出量	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(シ ^ら) 低排出ガス 認定レベル
	ABA-GH4	D16A	1.590	CVT (E)	13.0	178.6	1270 ~ 1290	С	3W	А		
	ABA-GH4	D16A	1.590	CVT (E)	13.0	178.6	1280 ~ 1300	c· V	3W	А		
	ABA-GH4	D16A	1.590	5MT	14.2	163.5	1240 ~ 1260		3W	А		
HR-V	ABA-GH3	D16A	1.590	5MT	14.8	156.9	1190 ~ 1210		3W	F		
	ABA-GH3	D16A	1.590	CVT (E)	14.0	165.8	1210 ~ 1230	С	3W	F		
	ABA-GH3	D16A	1.590	CVT (E)	14.0	165.8	1230 ~ 1250	C· V	3W	F		
	CBA-BE1	D17A	1.668	4AT (E・LTC)	13.8	168.2	1360 ~ 1380	V	3W+EGR	F		
	DBA-BE3	K20A	1.998	5AT (E・LTC)	13.0	178.6	1440	V	3W	F		
エディックス	ABA-BE2	D17A	1.668	4AT (E・LTC)	13.2	175.9	1430 ~ 1450	V	3W+EGR	А		
	ABA-BE4	K20A	1.998	4AT (E・LTC)	12.2	190.3	1480 • 1490	V	3W	А		
	CBA-RD7	K24A	2.354	5AT (E・LTC)	11.0	211.1	1520 ~ 1540	V	3W	А		
CR-V	CBA-RD6	K24A	2.354	5AT (E・LTC)	12.0	193.5	1450 • 1470	V	3W	F		
	CBA-RD7	K24A	2.354	5AT (E·LTC)	11.6	200.1	1500 • 1510	V	3W	А		
		1						1				L

ガソリン乗用車・RV 車 当該自動車の製造又は輸入の事業を行う者の氏名又は名称 日産自動車株式会社 主要燃費向上対策 原動機 その他エネルギー消費効率の異なる要因 1km **走行に** 変速装置の エネルギー (参考) おける 車両重量 称 名 型式及び 消費効率 低排出ガス 通 主要排出 総排気量 CO₂排出量 駆動 (kg) 型式 型式 変速段数 (km/ℓ) その他 認定レベル ガス対策 形式 (l) (g-CO₂/km) TA-4AT 297.6 1860 ~ 1950 R KA24 2.388 7.8 3W JQGE25 $(E \cdot LTC)$ コ Ŧ 4AT (E·LTC) TA-JQE25 KA24 2.388 297.6 1940 ~ 1970 3W R 7.8

				原	動機					主	その他エネル	レギー消	費効率の異なる要因	
通	称	名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ℓ)	1km 走行に おける CO2排出量 (g-CO2/km)	車両重量 (kg)	主要燃費向上対策	主要排出ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
			TA-BL5	EJ20	1.994	5MT	13.4	173.3	1340 ~ 1390	V	3W	А	DOHC	
			TA-BL5	EJ20	1.994	4AT (E·LTC)	13.0	178.6	1360 ~ 1410	V	ЗW	А	DOHC	
			TA-BL5	EJ20	1.994	5MT	13.0	178.6	1400 ~ 1450	V	ЗW	А	ターボチャージャ	
			TA-BL5	EJ20	1.994	5AT (E・LTC)	13.0	178.6	1430 ~ 1480	V	3W	А	ターボチャージャ	
			TA-BP5	EJ20	1.994	5MT	13.4	173.3	1360 ~ 1420	V	ЗW	A	DOHC	
			TA-BP5	EJ20	1.994	4AT (E・LTC)	13.0	178.6	1380 ~ 1440	V	ЗW	А	DOHC	
			TA-BP5	EJ20	1.994	5MT	13.0	178.6	1420 ~ 1480	V	3W	А	ターボチャージャ	
			TA-BP5	EJ20	1.994	5AT (E・LTC)	13.0	178.6	1410 ~ 1510	V	3W	А	ターボチャージャ	
			CBA-BP9	EJ25	2.457	4AT (E·LTC)	13.0	178.6	1410 ~ 1480		EGR 3W	А		
			CBA-BL5	EJ20	1.994	4A⊤ (E・LTC)	14.0	165.8	1330 ~ 1380		EGR 3W	A		
			CBA-BP5	EJ20	1.994	4AT (E・LTC)	14.0	165.8	1350 ~ 1410		EGR 3W	A		
	. د د ل		TA-BP5	EJ20	1.994	5AT (E・LTC)	12.2	190.3	1520	V	3W	A	ターボチャージャ	
	ガシ	1	TA-BP5	EJ20	1.994	5AT (E・LTC)	11.4	203.7	1520 ~ 1540	V	3W	A	ターボチャージャ Spec. B	
			CBA-BPE	EZ30	2.999	5AT (E・LTC)	11.0	211.1	1520 ~ 1570	V	3W	A		
			TA-BL5	EJ20	1.994	5MT	12.0	193.5	1420 ~ 1470	V	3W	A	ターボチャージャ Spec. B	
			TA-BL5	EJ20	1.994	5AT (E·LTC)	12.0	193.5	1450 ~ 1500	V	3W	А	ターボチャージャ Spec. B	
			TA-BP5	EJ20	1.994	5MT	12.0	193.5	1440 ~ 1500	V	3W	A	ターボチャージャ Spec. B	
			TA-BP5	EJ20	1.994	5AT (E・LTC)	12.0	193.5	1470 ~ 1510	V	3W	A	ターボチャージャ Spec. B	
			CBA-BLE	EZ30	2.999	5AT (E·LTC)	11.6	200.1	1450 ~ 1510	V	3W	A		
			CBA-BLE	EZ30	2.999	6MT	9.8	236.9	1460 ~ 1510	V	3W	A		
			CBA-BLE	EZ30	2.999	6MT	9.5	244.4	1520	V	3W	A		
			CBA-BPE	EZ30	2.999	5AT (E·LTC)	11.6	200.1	1470 ~ 1510	V	3W	A		
			CBA-BPE	EZ30	2.999	6MT	9.8	236.9	1480 ~ 1510	V	3W	A		
			CBA-BPE	EZ30	2.999	6MT	9.5	244.4	1520 ~ 1550	V	3W	A		
			CBA-SG5	EJ20	1.994	5MT	13.6	170.7	1370 ~ 1400		EGR 3W	А		
			CBA-SG5	EJ20	1.994	4AT (E・LTC)	13.0	178.6	1390 ~ 1420		EGR 3W	A		
			TA-SG5	EJ20	1.994	5MT	13.0	178.6	1430 ~ 1460	V	3W	A	ターボチャージャ	
フォ	レスタ	-	TA-SG5	EJ20	1.994	4AT (E・LTC)	13.0	178.6	1450 ~ 1480	V	ЗW	A	ターボチャージャ	
			TA-SG5	EJ20	1.994	5MT	12.2	190.3	1440 ~ 1470	V	3W	A	ターボチャージャ クロススポーツ	
		-	TA-SG5	EJ20	1.994	4AT (E・LTC)	12.2	190.3	1460 ~ 1490	V	3W	A	ターボチャージャ クロススポーツ	
		-	TA-SG9	EJ25	2.457	6MT	10.0	232.2	1490	V	3W	A		
	_e .		LA-GD2	EJ15	1.493	5MT	16.6	139.9	1170 ~ 1190		EGR 3W	F		
ィン	プレッ	サ	LA-GG2	EJ15	1.493	5MT	16.6	139.9	1200 ~ 1220		EGR 3W	F		

ス バ

ル

		原	動機	変速装置の	エネルギー	1km 走行に		土要樹	その他エネル	レギー消費	費効率の異なる要因	(会老)
通称名	型式	型式	総排気量 (ℓ)	2速装置の 型式及び 変速段数	エネルキー 消費効率 (km/ℓ)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガン 認定レベル
	LA-GD3	EJ15	1.493	5MT	16.0	145.1	1230 ~ 1250		EGR 3W	А		
	LA-GG3	EJ15	1.493	5MT	16.0	145.1	1260		EGR 3W	А		
	TA-GD3	EJ15	1.493	4AT (E・LTC)	13.4	173.3	1270 ~ 1280		EGR 3W	А		
	TA-GG3	EJ15	1.493	4AT (E・LTC)	13.4	173.3	1290 ~ 1310		EGR 3W	А		
	TA-GD9	EJ20	1.994	5MT	13.0	178.6	1300 ~ 1330	V	EGR 3W	А		
	TA-GG9	EJ20	1.994	5MT	13.0	178.6	1330 ~ 1360	V	EGR 3W	А		
	TA-GG3	EJ15	1.493	5MT	15.0	154.8	1270 ~ 1280		EGR 3W	А		
	LA-GD2	EJ15	1.493	4AT (E・LTC)	15.0	154.8	1200 ~ 1220		EGR 3W	F		
インプレッサ	LA-GG2	EJ15	1.493	4AT (E・LTC)	15.0	154.8	1230 ~ 1250		EGR 3W	F		
	LA-GD3	EJ15	1.493	4AT (E・LTC)	14.2	163.5	1260		EGR 3W	A		
	TA-GD9	EJ20	1.994	4AT (E·LTC)	12.2	190.3	1320 ~ 1350	V	EGR 3W	A		
	TA-GG9	EJ20	1.994	4AT (E·LTC)	12.2	190.3	1350 ~ 1380	V	EGR 3W	А		
	TA-GDA	EJ20	1.994	5MT	11.8	196.8	1360 ~ 1390	V	3W	А		
	TA-GDA	EJ20	1.994	4AT (E·LTC)	11.4	203.7	1390 ~ 1420	V	3W	A		
	TA-GGA	EJ20	1.994	5MT	11.8	196.8	1380 ~ 1410	V	3W	A		
	TA-GGA	EJ20	1.994	4AT (E・LTC)	11.4	203.7	1410 ~ 1440	V	3W	А		
	GH-GDB	EJ20	1.994	6MT	10.2	227.6	1340 ~ 1460	V	3W	А		
トラヴィック	TA-XM182	Z18	1.795	4AT (E・LTC)	11.0	211.1	1420 ~ 1440		3W	F		
*	TA-XM220	Z22	2.198	4AT (E·LTC)	10.6	219.0	1450 ~ 1480		EGR 3W	F		
					<u> </u>							
				<u> </u>								

(注) *印の付いている通称名については、アダムオペル AGが製造事業者である。

				原	動機			1km 走行に		主要	その他エネル	レギー消	費効率の異なる要因	
通利	你	名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ℓ)	おける CO ₂ 排出量 (g-CO ₂ /km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
			CBA- M201G	K3	1.297	5MT	19.6	118.5	920 ~ 930	V	3W	F		
			CBA- M201G	К3	1.297	4A⊤ (E・LTC)	18.0	129.0	940 ~ 950	V	3W	F		
Y I	R	v	ABA- M201G	K3	1.297	4AT (E·LTC)	15.6	148.8	950 ~ 960	V	3W	F		
	N	Ň	ABA- M211G	K3	1.297	5MT	18.2	127.6	970 ~ 980	V	3W	А		
			ABA- M211G	K3	1.297	4AT (E・LTC)	16.6	139.9	990 ~ 1000	V	3W	A		
			ABA- M211G	К3	1.297	4AT (E・LTC)	14.4	161.2	1000 ~ 1010	V	3W	A	ターボ付	
アルヨ	ਜ	z	CBA- ACV30N	2AZ	2.362	4AT (E・LTC)	11.0	211.1	1430 ~ 1450	V	3W	F		
		*	CBA- ACV35N	2AZ	2.362	4AT (E・LTC)	10.2	227.6	1530 ~ 1550	V	3W	A		
			TA-J102G	K3	1.297	5MT	15.4	150.8	1050 ~ 1070	V, EP	3W	A		
			TA-J102G	K3	1.297	4AT (E・LTC)	13.8	168.2	1060 ~ 1080	V, EP	3W	A		
テリ	オ	ス	TA-J102G	K3	1.297	4AT (E・LTC)	12.8	181.4	1090 ~ 1100	V, EP	3W	A	ターボ付	
			T A-J122G	КЗ	1.297	5MT	16.4	141.6	1030 ~ 1050	V, EP	3W	R		
			TA-J122G	К3	1.297	4AT (E・LTC)	14.4	161.2	1040 ~ 1060	V, EP	3W	R		
			DBA- M300S	1KR	0.996	4AT (E·LTC)	21.0	110.6	900	V, EP	3W EGR	F		
ブ・	_	ン	DBA- M301S	K3	1.297	4AT (E • LTC)	18.0	129.0	930 ~ 940	V, EP	3W	F		
			DBA- M310S	1KR	0.996	4AT (E·LTC)	18.4	126.2	930 ~ 940	V, EP	3W EGR	A		
						()					2011			

ダイハッ

(注) *印の付いている通称名については、トヨタ自動車株式会社が製造事業者である。

原動機 その他エネルギー消費効率の異なる要因 賣 1km 走行に 変速装置の エネルギー (参考) 燃費向上対 車両重量 おける 型式及び 消費効率 诵 称 名 低排出ガス 主要排出 総排気量 CO₂排出量 駆動 (kg) 型式 型式 その 変速段数 他 認定レベル (km/l)(l) (g-CO₂/km) ガス対策 形式 策 UA-5AT × 2 グランドエスクード 1670 ~ 1680 3W+EGR H27A 2.736 9.4 247.0 А TX92W $(E \cdot LTC)$ LA-TL52W J20A 1.995 $5MT \times 2$ 12.4 187 2 1360 3W+EGR А エスクード 4AT × 2 LA-TL52W J20A 1.995 11.6 200.1 1380 3W+EGR А (E·LTC) CBA-M15A 1.490 5MT 18.0 129.0 1140 V 3W F RA21S CBA-M15A 1.490 5MT 16.0 145.1 1200 V 3W А RA21S CBA-4AT M15A 1.490 16.2 143.3 1150 V 3W F $(E \cdot LTC)$ RA21S CBA-1150 ~ 1160 V F M15A 1.490 5MT 18.0 129.0 3W RB21S CBA-M15A 1.490 5MT 16.0 145.1 1220 V 3W А RB21S CBA-4AT M15A 1.490 16.2 143.3 1160 ~ 1170 V 3W F $(E \cdot LTC)$ RB21S Т IJ オ ABA-4AT M15A V 1.490 14.4 161.2 1210 3W А RA21S $(E \cdot LTC)$ ABA-4AT M15A 1.490 14.4 161.2 1230 V 3W А RB21S $(E \cdot LTC)$ ABA-4AT M18A V F 1.796 165.8 1170 3W 14.0 RC51S (E·LTC) ABA-4AT M18A 1.796 181.4 1230 V 3W А 12.8 (E·LTC) RC51S 4AT ABA-F M18A 1.796 14.0 165.8 1190 V 3W RD51S $(E \cdot LTC)$ ABA-4AT V M18A 1.796 12.8 181 4 1250 3W А $(E \cdot LTC)$ RD51S DBA-V, EP 3W+EGR F M13A 1.328 5MT 18.8 123.5 980 ~ 1000 ZC11S DBA-4AT F M13A 1.328 18.0 129.0 1000 V. EP 3W+FGR ZC11S $(E \cdot LTC)$ DBA-4AT M13A 1.328 17.0 136.6 1020 V, EP 3W+EGR F ZC11S $(E \cdot LTC)$ DBA-M13A 1.328 5MT 16.8 138.2 1070 V, EP 3W+EGR А ZD11S DBA-4AT M13A 1.328 145.1 1090 V, EP 3W+EGR 16.0 А $(F \cdot | TC)$ ZD11S DBA-4AT M15A 1.490 16.4 141.6 1030 V, EP 3W+EGR F (E·LTC) ZC21S スイフト DBA-4AT 1100 3W+EGR А M15A 1.490 15.0 154.8 V, EP $(E \cdot LTC)$ ZD21S UA-HT51S M13A 1.328 5MT 18.6 124.8 880 ~ 900 V, EP 3W F 5MT UA-HT51S M13A 1.328 18.0 129.0 920 ~ 940 V, EP 3W А

当該自動車の製造又は輸入の事業を行う者の氏名又は名称

スズキ株式会社

ガソリン乗用車・RV 車

4AT

(E·LTC)

4AT

 $(E \cdot LTC)$

5MT

4AT

 $(E \cdot LTC)$

4AT

 $(E \cdot LTC)$

5MT

4AT

(E·LTC)

4AT

(E·LTC)

4AT

(E·LTC)

18.0

16.4

16.0

18.0

16.4

14.0

12.8

15.6

15.0

129.0

141.6

145.1

129.0

141.6

165.8

181.4

148.8

154.8

910 ~ 930

950 ~ 970

930

970

1010

 $1040 \sim 1060$

1050 ~ 1070

1000 ~ 1010

1020 ~ 1040

V, EP

V, EP

V. EP

V FP

V, EP

V

V

EP

EΡ

3W

3W

3W

3W

3W

3W+EGR

3W+EGR

3W

3W

F

А

F

F

А

А

А

R

R

UA-HT51S

LA-HT51S

TA-HT81S

UA-MA34S

LA-MA34S

ABA-

JB43W

ABA-

JB43W

DA32W

DA32W

LA-

LA-

ゴン

Д 二

エブリイ

R

ヮ

ジ

M13A

M13A

M15A

M13A

M13A

M13A

M13A

G13B

G13B

1.328

1.328

1.490

1 328

1.328

1 328

1.328

1.298

1.298

					原	動機	変速装置の	エネルギー	1km 走行に		主要燃	その他エネノ	レギー消	費効率の異なる要因	(参考)
通	1	称	名	型式	型式	総排気量 (ℓ)	型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
I	ブ	IJ	イ	LA- DA32W	G13B	1.298	4AT (E·LTC)	14.0	165.8	1040 ~ 1080	EP	3W	A		
_	_														

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 スズキ株式会社

				原	動機			1km 走行に		主要	その他エネル	ノギー消	費効率の異なる要因	
通	称	名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
			LA-HR52S	M13A	1.328	4AT (E・LTC)	17.0	136.6	990	V, EP	3W	A		
-	ル –	– *	UA-HR82S	M15A	1.490	4AT (E・LTC)	17.0	136.6	940	V, EP	3W	F		
	<i>w</i> –	^	UA-HR52S	M13A	1.328	4AT (E·LTC)	18.0	129.0	930 ~ 940	V, EP	3W	F		
			LA-HR82S	M15A	1.490	4AT (E・LTC)	16.2	143.3	990	V, EP	3W	A		

(2) 軽自動車

ガソリン乗用車・RV 車

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 日産自動車株式会社

				原	動機	変速装置の	エネルギー	1km 走行に		主要燃	その他エネル	ノギー消	費効率の異なる要因	(参考)
;	称	名	型式	型式	総排気量 (ℓ)	型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(^{シッ} う) 低排出ガス 認定レベル
			CBA- MG21S	K6A	0.658	4AT (E)	18.8	123.5	840 ~ 850	V, EP	3W	F		
			ABA- MG21S	K6A	0.658	4AT (E)	16.8	138.2	880 ~ 890	V, EP	3W	A		
		コ *	TA-MG21S	K6A	0.658	4AT (E)	16.8	138.2	850 ~ 860	EP	3W	F	定格出力44kW	
		*	TA-MG21S	K6A	0.658	4AT (E)	16.8	138.2	890 ~ 900	EP	3W	A	定格出力44kW	
			TA-MG21S	K6A	0.658	4AT (E·LTC)	17.4	133.4	850 ~ 860	EP	3W	F	定格出力47kW	
			TA-MG21S	K6A	0.658	4AT (E)	16.4	141.6	890 ~ 900	EP	3W	A	定格出力47kW	
_														
														<u> </u>
*	EIIのŕ	<u></u>	71)ろ通称名1	1.17			다	こ株式会社が制造事業之	こ件ポーンサが制法事業者である		- 株式会社が制造事業者である	- 株式会社が制造電業表である	- 件 ポ 会 社 が 制 法 再 業 老 で あ ス	- 件 ポ 今 社 が 制 法 専 要 老 で あ ス

(注) *印の付いている通称名については、スズキ株式会社が製造事業者である。

ニッサン

		原	動機			1km 走行に		主要	その他エネル	レギー消	費効率の異なる要因	
通称名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ℓ)	ホール おける CO2排出量 (g-CO2/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
	CBA-H42A	3G83	0.657	5MT	22.5	103.2	700		3W	F		
	CBA-H42A	3G83	0.657	5MT	22.0	105.5	710 ~ 760		3W	F		
	CBA-H42A	3G83	0.657	ЗАТ	19.4	119.7	710 ~ 770		3W	F		
ミニカ	CBA-H42A	3G83	0.657	4AT	19.2	120.9	740 ~ 780		3W	F		
ミニカ	CBA-H47A	3G83	0.657	5MT	19.2	120.9	760 ~ 810		3W	A		
	CBA-H47A	3G83	0.657	4AT	18.0	129.0	830		3W	A		
	CBA-H47A	3G83	0.657	3A T	18.2	127.6	770 ~ 820		3W	A		
	CBA-H47A	3G83	0.657	4AT	18.6	124.8	800 ~ 820		3W	A		
	DBA- H81W	3G83	0.657	5MT	21.5	108.0	770 ~ 790		3W	F		
	DBA- H81W	3G83	0.657	ЗАТ	19.4	119.7	780 ~ 800		3W	F		
	DBA- H81W	3G83	0.657	4AT	19.2	120.9	790 ~ 810		3W	F		
e K-WAGON	CBA- H81W	3G83	0.657	5MT	20.5	113.3	820		3W	A		
	CBA- H81W	3G83	0.657	5MT	19.8	117.3	830 ~ 840		3W	A		
	CBA- H81W	3G83	0.657	3A T	17.4	133.4	830 ~ 850		3W	А		
	CBA- H81W	3G83	0.657	4A T	18.0	129.0	840 ~ 860		3W	А		
	DBA- H81W	3G83	0.657	ЗАТ	19.4	119.7	790 ~ 810		3W	F		
	DBA- H81W	3G83	0.657	4AT	19.2	120.9	800 ~ 820		3W	F		
	CBA- H81W	3G83	0.657	4AT	18.0	129.0	850 ~ 870		3W	Α		
e K-S P O R T	CBA- H81W	3G83	0.657	3A T	17.4	133.4	840 ~ 860		3W	А		
	CBA- H81W	3G83	0.657	4AT	16.0	145.1	840 ~ 850		3W	F	ターボチャージャ	
	CBA- H81W	3G83	0.657	4AT	15.2	152.7	890 ~ 900		3W	A	ターボチャージャ	
	DBA- H81W	3G83	0.657	4AT	19.2	120.9	800 ~ 820		3W	F		
e K-C L A S S Y	CBA- H81W	3G83	0.657	4AT	18.0	129.0	850 ~ 870		3W	А		
	CBA- H81W	3G83	0.657	4AT	18.4	126.2	830 ~ 840		3W	F		
	CBA- H81W	3G83	0.657	4AT	18.0	129.0	880 ~ 890		3W	Α		
e K-ACTIVE	CBA- H81W	3G83	0.657	4AT	16.0	145.1	860		3W	F	ターボチャージャ	
	CBA- H81W	3G83	0.657	4AT	15.2	152.7	910		3W	A	ターボチャージャ	
	ТА-Н53А	4A30	0.659	5MT	18.0	129.0	890 ~ 910		3W	F		
	ТА-Н5ЗА	4A30	0.659	4AT	15.4	150.8	900 ~ 920		3W	F		
	ТА-Н5ЗА	4A30	0.659	4AT (LTC)	14.6	159.0	940 ~ 960		3W	F	ターボチャージャ	
パジェロミニ	TA-H53A	4A30	0.659	4AT (LTC)	14.4	161.2	930 ~ 950		3W	F	ターボチャージャ	
	TA-H58A	4A30	0.659	5MT	16.2	143.3	950 ~ 970		3W	A		
	TA-H58A	4A30	0.659	4AT	15.0	154.8	960 ~ 980		3W	A		

		原	動機	変速装置の	エクルギー	1km 走行に		主要	その他エネル	ノギー消費	費効率の異なる要因	(参考)
通称名	型式	型式	総排気量 (ℓ)	愛速表量の 型式及び 変速段数	洋費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
	TA-H58A	4A30	0.659	5MT	15.4	150.8	960 ~ 990		3W	A	ターボチャージャ	
パジェロミニ	TA-H58A	4A30	0.659	4AT (LTC)	14.4	161.2	970 ~ 1000		3W	A	ターボチャージャ	
	CBA- U61W	3G83	0.657	5MT	16.4	141.6	930 ~ 960		3W	R		
	CBA- U61W	3G83	0.657	4AT	15.8	146.9	950 ~ 980		3W	R		
	CBA- U62W	3G83	0.657	5MT	16.4	141.6	990 ~ 1010		3W	A		
	CBA- U62W	3G83	0.657	4AT	15.8	146.9	1010		3W	A		
	ABA- U61W	3G83	0.657	5MT	16.0	145.1	970 ~ 980		3W	R	ターボチャージャ	
タウンボックス	ABA- U61W	3G83	0.657	4AT	14.2	163.5	990 ~ 1000		3W	R	ターボチャージャ	
	ABA- U62W	3G83	0.657	5MT	15.0	154.8	1020		3W	A		
	ABA- U62W	3G83	0.657	4AT	14.0	165.8	1020 ~ 1040		3W	A		
	ABA- U62W	3G83	0.657	5MT	14.8	156.9	1030 ~ 1040		3W	А	ターボチャージャ	
	ABA- U62W	3G83	0.657	4AT	12.8	181.4	1040 ~ 1050		3W	A	ターボチャージャ	

Ξ

菱

		原	動機	赤海社室の		1km 走行に		主要燃費	その他エネル	レギー消	費効率の異なる要因	(
通称名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	燃費 向 上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガ 認定レベ
	CBA- HB24S	K6A	0.658	3AT (E)	19.4	119.7	780 ~ 790	EP	3W	A		
	DBA- HB24S	K6A	0.658	4AT (E・LTC)	21.5	108.0	760 ~ 770	EP	3W	F		
	CBA- HB24S	K6A	0.658	5MT	24.5	94.8	700	EP	3W	F		
キャロル *	CBA- HB24S	K6A	0.658	5MT	24.0	96.7	710 ~ 730	EP	3W	F		
	CBA- HB24S	K6A	0.658	5MT	22.0	105.5	770 ~ 780	EP	3W	A		
	CBA- HB24S	K6A	0.658	3AT (E)	20.5	113.3	730 ~ 740	EP	3W	F		
	CBA- HB24S	K6A	0.658	4AT (E・LTC)	19.8	117.3	810 ~ 820	EP	3W	A		
	CBA- MJ21S	K6A	0.658	5MT	23.5	98.8	800 ~ 820	V, EP	3W	F		
	CBA- MJ21S	K6A	0.658	5MT	19.8	117.3	850 ~ 870	V, EP	3W	A		
	CBA- MJ21S	K6A	0.658	4AT (E)	20.0	116.1	810 ~ 820	V, EP	3W	F		
	CBA- MJ21S	K6A	0.658	4AT (E)	18.8	123.5	830	V, EP	3W	F		
	CBA- MJ21S	K6A	0.658	4AT (E・LTC)	19.2	120.9	850 ~ 860	D, EP	3W+EGR	F		
A Z - ワゴン *	DBA- MJ21S	K6A	0.658	4AT (E·LTC)	18.4	126.2	860 ~ 880	V, EP	3W	А		
	CBA- MH21S	K6A	0.658	4AT (E·LTC)	18.6	124.8	900 ~ 910	D, EP	3W+EGR	А		
	ABA- MJ21S	K6A	0.658	4AT (E·LTC)	18.6	124.8	830 ~ 850	EP	3W	F	定格出力44kW	
	ABA- MJ21S	K6A	0.658	4AT (E・LTC)	18.0	129.0	880 ~ 900	EP	3W	А	定格出力44kW	
	ABA- MJ21S	K6A	0.658	4AT (E・LTC)	18.0	129.0	840 ~ 850	EP	3W	F	定格出力47kW	
	ABA- MJ21S	K6A	0.658	4AT (E・LTC)	17.4	133.4	890 ~ 900	EP	3W	A	定格出力47kW	
	CBA- HP22S	K6A	0.658	5MT	22.5	103.2	760	V, EP	3W	F		
	CBA- HP22S	K6A	0.658	4AT (E)	19.8	117.3	770	V, EP	3W	F		
	TA-HP22S	K6A	0.658	5MT	20.0	116.1	780	EP	3W	F	定格出力44kW	
	TA-HP22S	K6A	0.658	5MT	20.0	116.1	820	EP	3W	А	定格出力44kW	
ラピュタ	TA-HP22S	K6A	0.658	5MT	19.6	118.5	780	EP	3W	F	定格出力47kW	
*	TA-HP22S	K6A	0.658	5MT	19.6	118.5	820	EP	3W	А	定格出力47kW	
	TA-HP22S	K6A	0.658	4AT (E)	17.6	131.9	790	EP	3W	F	定格出力44kW	
	TA-HP22S	K6A	0.658	4AT (E)	17.0	136.6	830	EP	3W	A	定格出力44kW	
	TA-HP22S	K6A	0.658	4AT (E・LTC)	18.2	127.6	790	EP	ЗW	F	定格出力47kW	
	TA-HP22S	K6A	0.658	4AT (E)	16.6	139.9	830	EP	3W	A	定格出力47kW	
	CBA- HF21S	K6A	0.658	4AT (E)	19.8	117.3	780 ~ 790	V, EP	3W	F		
	TA-HF21S	K6A	0.658	5MT	18.8	123.5	830 ~ 840	EP	3W	A	定格出力47kW	
スピアーノ *	TA-HF21S	K6A	0.658	5MT	19.4	119.7	790 ~ 800	EP	ЗW	F	定格出力47kW	
	ABA- HF21S	K6A	0.658	4AT (E)	17.4	133.4	820	V, EP	3W	А		
	ABA- HF21S	K6A	0.658	4AT (E)	16.8	138.2	830	V, EP	3W	А		

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 マツダ株式会社

マッダ

ガソリン乗用車・RV 車

		原	動機	変速装置の	エナルギー	1km 走行に		主要	その他エネル	レギー消	費効率の異なる要因	(会老)
通称名	型式	型式	総排気量 (ℓ)	変速表直の 型式及び 変速段数	洋費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
	TA-HF21S	K6A	0.658	4AT (E)	17.4	133.4	800 ~ 810	EP	3W	F	定格出力44kW	
スピアーノ	TA-HF21S	K6A	0.658	4AT (E)	16.8	138.2	840 ~ 850	EP	3W	A	定格出力44kW	
*	TA-HF21S	K6A	0.658	4AT (E・LTC)	18.0	129.0	800 ~ 810	EP	3W	F	定格出力47kW	
	TA-HF21S	K6A	0.658	4AT (E)	16.4	141.6	840 ~ 850	EP	3W	A	定格出力47kW	
A Z -オフロード	ABA- JM23W	K6A	0.658	5MT	16.4	141.6	970 ~ 990	EP	3W	A		
*	ABA- JM23W	K6A	0.658	4AT (E)	14.8	156.9	980 ~ 1000	EP	3W	A		
	T A- DG62W	K6A	0.658	5MT	16.6	139.9	870 ~ 910	EP	3W	R		
	T A- DG62W	K6A	0.658	5MT	16.2	143.3	920 ~ 960	EP	3W	A		
	T A- DG62W	K6A	0.658	3AT (E)	15.6	148.8	880 ~ 920	EP	3W	R		
スクラム	TA- DG62W	K6A	0.658	3AT (E)	15.2	152.7	930 ~ 970	EP	3W	A		
*	GH-DG62W	K6A	0.658	5MT	17.0	136.6	890 ~ 930	EP	3W	R		
	GH-DG62W	K6A	0.658	5MT	17.0	136.6	940 ~ 980	EP	3W	A		
	GH-DG62W	K6A	0.658	4AT (E)	15.0	154.8	910 ~ 950	EP	3W	R		
	GH-DG62W	K6A	0.658	4AT (E)	15.0	154.8	960 ~ 1000	EP	3W	A		

(注) *印の付いている通称名については、スズキ株式会社が製造事業者である。

マ ツ ダ

		-1-4]車・RV I						製造又は輸入の					工業株式会
				原	動機	変速装置の	エネルギー	1km 走行に		工要燃	その他エネノ	レギー消 -	費効率の異なる要因	(参考)
通	称	名	型式	型式	総排気量 (ℓ)	型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	低 排 出 ガ ジ 認 定 レベノ
			CBA-JB8	P07A	0.658	4AT (E·LTC)	17.0	136.6	930 ~ 950	EP	3W	А	タイヤ155/65R13	
			CBA-JB8	P07A	0.658	4AT (E・LTC)	16.4	141.6	940 ~ 960	EP	3W	A		
			CBA-JB7	P07A	0.658	4AT (E・LTC)	18.2	127.6	870 • 880	EP	3W	F		
			CBA-JB6	P07A	0.658	4AT (E・LTC)	18.6	124.8	910 ~ 930	EP	3W	A	タイヤ155/65R13	
ラ	イ	フ	CBA-JB6	P07A	0.658	4AT (E・LTC)	18.4	126.2	910 • 920	EP	ЗW	A	タイヤ 155/65R13 ABS 無し	
)	1)	CBA-JB6	P07A	0.658	4AT (E・LTC)	17.8	130.4	920 • 940	EP	3W	A		
			CBA-JB7	P07A	0.658	4AT (E・LTC)	18.8	123.5	860 • 870	EP	3W	F	タイヤ155/65R13	
			CBA-JB5	P07A	0.658	4AT (E・LTC)	20.0	116.1	840 ~ 860	EP	3W	F	タイヤ155/65R13	
			CBA-JB5	P07A	0.658	4AT (E・LTC)	19.8	117.3	840 ~ 860	EP	3W	F	タイヤ155/65R13 ABS 無し	
			CBA-JB5	P07A	0.658	4AT (E・LTC)	19.0	122.2	850 ~ 870	EP	3W	F		
			ABA-JD2	E07Z	0.656	ЗАТ	16.4	141.6	880 • 890	EP	3W	A		
			ABA-JD2	E07Z	0.656	3AT	16.0	145.1	910 · 920	EP	3W	A	過給機付	
ザ	ッ	ッ	ABA-JD1	E07Z	0.656	ЗАТ	19.0	122.2	820	EP	3W	F		
			ABA-JD1	E07Z	0.656	ЗАТ	18.0	129.0	830	EP	3W	F		
			ABA-JD1	E07Z	0.656	3AT	17.0	136.6	850 · 860	EP	3W	F	過給機付	
			ABA-HM4	E07Z	0.656	5MT	15.8	146.9	1020	EP	3W	A		
			ABA-HM4	E07Z	0.656	4AT	14.6	159.0	1060	EP	3W	A		
VA	мо	s	ABA-HM4	E07Z	0.656	4AT	14.2	163.5	1060 · 1070	EP	3W	A	過給機付	
Ηo	b i	0	ABA-HM3	E07Z	0.656	5MT	18.0	129.0	970	EP	3W	R		
			ABA-HM3	E07Z	0.656	ЗАТ	15.8	146.9	980	EP	3W	R		
			ABA-HM3	E07Z	0.656	4AT	14.8	156.9	1030	EP	3W	R		
			ABA-HM2	E07Z	0.656	5MT	15.8	146.9	1020	EP	3W	A		
			ABA-HM2	E07Z	0.656	4AT	14.6	159.0	1060	EP	3W	A		
., .			ABA-HM2	E07Z	0.656	4AT	14.2	163.5	1060 • 1070	EP	3W	A	過給機付	
VA	ΜΟ	S	ABA-HM1	E07Z	0.656	5MT	18.0	129.0	970	EP	3W	R		
			ABA-HM1	E07Z	0.656	3AT	15.8	146.9	980	EP	3W	R		
			ABA-HM1	E07Z	0.656	4AT	14.8	156.9	1030	EP	3W	R		

ホンダ

				- T	動機					主	スの仙マラリ	.土	費効率の異なる要因	
				原	里川筏	変速装置の		1km 走行に おける	車両重量	要燃	その他エネル	ノナ 一 洞: 	貿別率の乗なる安凶 	(参考)
通	称	名	型式	型式	総排気量 (ℓ)	型式及び 変速段数	消費効率 (km/ℓ)	CO₂ 排出量 (g-CO₂/km)	(kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	低排出ガス 認定レベル
			ABA-RC2	EN07	0.658	CVT (E・LTC)	18.0	129.0	870	EP, C	3W	A		
			CBA-RC1	EN07	0.658	5MT	22.0	105.5	770	EP	3W	F	SOHC	
			CBA-RC1	EN07	0.658	CVT (E·LTC)	22.5	103.2	800	EP, C	3W	F	SOHC	
			CBA-RC1	EN07	0.658	5MT	22.5	103.2	780	V, EP	3W	F	DOHC	
		2	CBA-RC1	EN07	0.658	CVT (E·LTC)	24.0	96.7	810	V, EP C	3W	F	DOHC	
R		2	CBA-RC2	EN07	0.658	5MT	20.5	113.3	810	EP	3W	A	зонс	
			CBA-RC2	EN07	0.658	CVT (E·LTC)	21.0	110.6	840	EP, C	3W	A	зонс	
			CBA-RC2	EN07	0.658	5MT	21.0	110.6	820	V, EP	3W	A	DOHC	
			CBA-RC2	EN07	0.658	CVT (E·LTC)	22.0	105.5	850	V, EP C	3W	A	DOHC	
			ABA-RC1	EN07	0.658	CVT (E·LTC)	18.8	123.5	830	EP, C	3W	F		
			TA-RA1	EN07	0.658	CVT (E·LTC)	18.0	129.0	860 ~ 870	с	3W	F	スーパー チャージャ	
			TA-RA2	EN07	0.658	CVT (E·LTC)	18.0	129.0	910 ~ 920	с	3W	A	スーパー チャージャ	
			TA-RA1	EN07	0.658	5MT	22.0	105.5	790 ~ 820	EP	3W	F	NA	
			TA-RA1	EN07	0.658	5MT	21.0	110.6	840	EP	3W	F	NA	
プ	V	オ	TA-RA1	EN07	0.658	CVT (E·LTC)	21.5	108.0	820	EP, C	3W	F	NA	
			TA-RA1	EN07	0.658	CVT (E·LTC)	20.0	116.1	830 ~ 850	EP, C	3W	F	NA	
			TA-RA2	EN07	0.658	5MT	20.0	116.1	860 ~ 900	EP	3W	A	NA	
			TA-RA2	EN07	0.658	5MT	19.8	117.3	840 ~ 850	EP	3W	A	NA, 12インチタ イヤ (145)	
			TA-RA2	EN07	0.658	CVT (E·LTC)	20.0	116.1	880 ~ 910	EP, C	3W	A	NA	
			CBA-RJ1	EN07	0.658	CVT (E·LTC)	24.0	96.7	800 ~ 810	V, EP C	3W	F		
R		1	CBA-RJ2	EN07	0.658	CVT (E·LTC)	22.0	105.5	840 ~ 850	V, EP C	3W	A		
			TA-TW1	EN07	0.658	5MT	17.2	135.0	930	EP	3W	R	NA	
			TA-TW1	EN07	0.658	3AT (E)	15.8	146.9	940 ~ 950	EP	3W	R	NA	
			TA-TW1	EN07	0.658	5MT	16.6	139.9	950	EP	3W	R	スーパー チャージャ	
			TA-TW1	EN07	0.658	3AT (E)	15.2	152.7	960 ~ 970	EP	3W	R	スーパー チャージャ	
サ :	ンバ	-	TA-TW2	EN07	0.658	5MT	17.0	136.6	970	EP	3W	A	NA	
			TA-TW2	EN07	0.658	3AT (E)	15.6	148.8	980 ~ 990	EP	3W	A	NA	
			TA-TW2	EN07	0.658	5MT	16.4	141.6	990	EP	3W	A	スーパー チャージャ	
			TA-TW2	EN07	0.658	3AT (E)	15.0	154.8	1000 ~ 1010	EP	3W	A	スーパー チャージャ	
													11-14	

ス バ

ル

49

		原	動機			1km 走行に		主要	その他エネル	レギー消	費効率の異なる要因	
通称名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ ℓ)	おける CO ₂ 排出量 (g-CO ₂ /km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
アトレーワゴン	T A-S220G	EF	0.659	5MT	16.0	145.1	940	V	3W	R		
	T A-S230G	EF	0.659	5MT	15.2	152.7	980	V	3W	A		
	ABA- L880K	JB	0.659	5MT	18.8	123.5	800		3W	F		
コペン	ABA- L880K	JB	0.659	4AT (E・LTC)	16.0	145.1	810		3W	F		
	ABA- L880K	JB	0.659	5MT	18.0	129.0	830		3W	F		
	ABA- L880K	JB	0.659	4A⊤ (E・LTC)	15.2	152.7	840		3W	F		
	TA-L350S	EF	0.659	4A⊤ (E・LTC)	17.6	131.9	890	EP	3W	F		
タント	TA-L360S	EF	0.659	4AT (E・LTC)	17.2	135.0	940	EP	3W	A		
· · ·	CBA-L350S	EF	0.659	4AT	18.0	129.0	870	V, EP	3W	F		
	ABA- L360S	EF	0.659	3AT	16.8	138.2	920	V, EP	3W	A		
	TA-J111G	EF	0.659	5MT	16.8	138.2	990	EP	3W	A	インタークーラ 無ターボ付	
	TA-J111G	EF	0.659	4AT	15.2	152.7	990	EP	3W	A	インタークーラ 無ターボ付	
	TA-J111G	EF	0.659	4AT	15.4	150.8	990	EP	3W	A	インタークーラ 付ターボ付	
テリオスキッド	TA-J131G	EF	0.659	5MT	18.0	129.0	960	EP	3W	R	インタークーラ 無ターボ付	
	TA-J131G	EF	0.659	4AT	15.8	146.9	960	EP	3W	R	インタークーラ 無ターボ付	
	TA-J131G	EF	0.659	4AT	16.0	145.1	960	EP	3W	R	インタークーラ 付ターボ付	
	CBA-L950S	EF	0.659	5MT	22.0	105.5	800	V	3W	F		
	CBA-L950S	EF	0.659	4AT	18.8	123.5	810	V	3W	F		
	ABA- L950S	EF	0.659	4AT (E・LTC)	18.0	129.0	870		3W	F		
	ABA- L952S	JB	0.659	4AT (E・LTC)	16.6	139.9	870		3W	F		
マックス	ABA- L960S	EF	0.659	4AT (E・LTC)	16.4	141.6	910		3W	A	ターボ付	
	ABA- L960S	EF	0.659	5MT	19.4	119.7	840	V	3W	A		
	ABA- L960S	EF	0.659	4AT	16.4	141.6	850	V	3W	A		
	ABA- L962S	JB	0.659	4AT (E・LTC)	15.0	154.8	930		3W	A		
	TA-L250S	EF	0.659	5MT	23.0	100.9	710 ~ 720		3W	F		
	TA-L250S	EF	0.659	3AT	20.0	116.1	710 ~ 730		3W	F		
	TA-L260S	EF	0.659	3AT	19.0	122.2	760 ~ 780	EP	3W	A		
	TA-L260S	EF	0.659	5MT	21.5	108.0	760 ~ 780	EP	3W	А		
ミ ラ	DBA- L250S	EF	0.659	5MT	30.5	76.1	700	D, V, I, EP	3W	F		
	CBA-L250S	EF	0.659	4AT	20.5	113.3	780	V	3W	F		
	CBA-L250S	EF	0.659	5MT	21.5	108.0	790	EP	3W	F	ターボ付	
	CBA-L250S	EF	0.659	4AT	19.0	122.2	800	EP	3W	F	ターボ付	
	CBA-L260S	EF	0.659	5MT	20.0	116.1	830	EP	3W	A	ターボ付	

				原	動機	変速装置の	エネルギー	1km 走行に		主要	その他エネル	/ギー消	費効率の異なる要因	(参考)
通	称	名	型式	型式	総排気量 (ℓ)	愛速表量の 型式及び 変速段数	エ ネル ギー 消費効率 (km/ l)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
			CBA-L260S	EF	0.659	4A⊤ (E・LTC)	18.4	126.2	850	EP	3W	А	ターボ付	
Ξ		∍	CBA-L260S	EF	0.659	5MT	21.5	108.0	810	V	3W	А		
			CBA-L260S	EF	0.659	4AT	18.8	123.5	820	V	3W	А		
= =	ジ -	_ ,	DBA- L650S	EF	0.659	4AT	20.5	113.3	780	V	3W	F		
			CBA-L660S	EF	0.659	4AT	18.8	123.5	820	V	3W	А		
			DBA- L150S	EF	0.659	CVT	22.0	105.5	850	V, C, EP	3W	F		
			DBA- L150S	EF	0.659	5MT	23.0	100.9	800	V	3W	F		
			DBA- L150S	EF	0.659	4AT	19.4	119.7	810 ~ 820	V	3W	F	減速比5.844	
			CBA-L150S	EF	0.659	4AT	18.2	127.6	840	V	3W	F	減速比5.844	
Ь	-	ヴ	CBA-L150S	EF	0.659	4AT (E・LTC)	18.6	124.8	860	EP	3W	F	ターボ付	
			CBA-L152S	JB	0.659	4AT (E・LTC)	18.0	129.0	880	EP	3W	F		
			CBA-L160S	EF	0.659	5MT	21.0	110.6	850	V, EP	3W	А		
			CBA-L160S	EF	0.659	4AT	18.2	127.6	860 ~ 880	V, EP	3W	А		
			CBA-L160S	EF	0.659	4AT (E・LTC)	18.0	129.0	910 ~ 930	EP	3W	А	ターボ付	
			DBA- L550S	EF	0.659	4AT	19.4	119.7	820	V	3W	F	減速比5.844	
			CBA-L550S	EF	0.659	4AT	18.2	127.6	830	V	3W	F	減速比5.844	
<u></u> – д	ヴラ	,テ	CBA-L550S	EF	0.659	4AT (E・LTC)	18.6	124.8	860	EP	3W	F	ターボ付	
			CBA-L560S	EF	0.659	4AT	18.2	127.6	870 ~ 880	V, EP	3W	А		
			CBA-L560S	EF	0.659	4AT (E・LTC)	18.0	129.0	910	EP	3W	А	ターボ付	
				<u> </u>										
					1									

ガソリン乗用車・RV 車 当該自動車の製造又は輸入の事業を行う者の氏名又は名称 スズキ株式会社 原動機 その他エネルギー消費効率の異なる要因 賣 1km **走行に** 変速装置の エネルギ・ (参考) 燃費向上対策 車両重量 おける 型式及び 消費効率 诵 称 名 低排出ガス 主要排出 総排気量 CO₂排出量 駆動 (ka) 型式 型式 その 変速段数 他 認定レベル (km/l)(l) (g-CO₂/km) ガス対策 形式 DBA-4AT K6A 108.0 $760 \sim 770$ FP 3W F 0.658 21.5 HA24S $(E \cdot LTC)$ CBA-F K6A 0.658 5MT 24.5 94.8 700 FP 3W HA24S CBA-K6A 0.658 5MT 24.0 96.7 700 EP 3W F 減速比5.941 HA24S CBA-K6A 0.658 5MT 24.0 96.7 710 ~ 730 EΡ 3W F HA24S CBA-K6A 0.658 5MT 23.5 98.8 710~730 EΡ 3W F 減速比5.941 HA24S CBA-K6A 0.658 5MT 22.0 105.5 770 ~ 780 EΡ 3W А HA24S ア ル ト CBA-EΡ 減速比5.705 K6A 0.658 5MT 21.5 108.0 770~780 3W А HA24S CBA-K6A 0.658 3AT (E) 20.5 113.3 730 ~ 740 EP 3W F HA24S CBA-K6A 0.658 3AT (E) 20.0 116.1 730 ~ 740 ΕP 3W F 減速比4.676 HA24S CBA-3AT (E) 780 ~ 790 EΡ K6A 0.658 19.4 119.7 3W А HA24S CBA-K6A 0.658 3AT (E) 19.0 122.2 780~790 EΡ 3W Α 減速比5.083 HA24S CBA-4AT K6A 0.658 19.8 117.3 810 ~ 820 EΡ А 3W HA24S $(E \cdot LTC)$ DBA-4AT 0.658 126.2 V. EP K6A 18.4 860 ~ 880 3W А MH21S $(E \cdot LTC)$ CBA-F K6A 0.658 5MT V. EP 23.5 98.8 800 ~ 820 3W MH21S CBA-0.658 5MT 19.8 117.3 V FP 3W K6A $850 \sim 870$ А MH21S CBA-F V, EP K6A 0.658 4AT (E) 20.0 116.1 810 ~ 820 3W MH21S CBA-K6A 0.658 4AT (E) 18.8 123.5 830 V. EP 3W F. MH21S CBA-4AT ヮ ゴンR K6A 0.658 19.2 120.9 850 ~ 860 D, EP 3W+EGR F MH21S $(E \cdot LTC)$ CBA-4AT K6A 0.658 124.8 900 ~ 910 D, EP 3W+EGR 18.6 А MH21S $(E \cdot LTC)$ ABA-4AT K6A 0.658 124.8 830 ~ 850 ΕP 3W F 定格出力44kW 18.6 $(E \cdot LTC)$ MH21S ABA-4AT K6A 0.658 18.0 129.0 880 ~ 900 EΡ 3W А 定格出力44kW MH21S (E·LTC) ABA-4AT 129.0 840 ~ 850 EΡ 3W 定格出力47kW K6A 0.658 18.0 F (E·LTC) MH21S ABA-4AT 890 ~ 900 定格出力47kW K6A 0.658 174 133.4 FP 3W А $(E \cdot LTC)$ MH21S CBA-5MT 103.2 V, EP F K6A 0.658 22.5 760 3W HN22S CBA-K6A 0.658 4AT (E) 19.8 117.3 770 V, EP 3W F HN22S TA-HN22S K6A 0.658 5MT 20.0 116.1 780 EΡ 3W F 定格出力44kW TA-HN22S EΡ 定格出力44kW K6A 0.658 5MT 20.0 116.1 3W А 820

131.9

136.6

118.5

118.5

127.6

139.9

790

830

780

820

790

830

FP

EP

FP

EP

EP

EΡ

3W

3W

3W

3W

3W

3W

F

А

F

А

F

А

定格出力44kW

定格出力44kW

定格出力47kW

定格出力47kW

定格出力47kW

定格出力47kW

4AT (E)

4AT (E)

5MT

5MT

4AT

(E·LTC)

4AT (E)

176

17.0

19.6

19.6

18.2

16.6

TA-HN22S

TA-HN22S

TA-HN22S

TA-HN22S

TA-HN22S

TA-HN22S

Κ

e

i

K6A

K6A

K6A

K6A

K6A

K6A

0.658

0.658

0.658

0.658

0.658

0.658

		原	動機	変速装置の	エネルギー	1km 走行に		主要憐	その他エネル	ノギー消	費効率の異なる要因	(参考)
通称名	型式	型式	総排気量 (ℓ)	夏速表直の 型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(低 排 出 ガス 認 定 レベル
	CBA- MF21S	K6A	0.658	4AT (E)	18.8	123.5	840 ~ 850	V, EP	3W	F		
	ABA- MF21S	K6A	0.658	4AT (E)	16.8	138.2	880 ~ 890	V, EP	3W	А		
MRワゴン	TA-MF21S	K6A	0.658	4AT (E)	16.8	138.2	850 ~ 860	EP	3W	F	定格出力44kW	
	TA-MF21S	K6A	0.658	4AT (E)	16.8	138.2	890 ~ 900	EP	3W	A	定格出力44kW	
	TA-MF21S	K6A	0.658	4AT (E·LTC)	17.4	133.4	850 ~ 860	EP	3W	F	定格出力47kW	
	TA-MF21S	K6A	0.658	4AT (E)	16.4	141.6	890 ~ 900	EP	3W	A	定格出力47kW	
	CBA- HE21S	K6A	0.658	4AT (E)	19.8	117.3	780 ~ 790	V, EP	3W	F		
	ABA- HE21S	K6A	0.658	4AT (E)	17.4	133.4	820	V, EP	3W	A		
	ABA- HE21S	K6A	0.658	4AT (E)	16.8	138.2	830	V, EP	3W	A		
	TA-HE21S	K6A	0.658	4AT (E)	17.4	133.4	800 ~ 810	EP	3W	F	定格出力44kW	
アルト ラパン	TA-HE21S	K6A	0.658	4AT (E)	16.8	138.2	840 ~ 850	EP	3W	А	定格出力44kW	
	TA-HE21S	K6A	0.658	5MT	19.4	119.7	790 ~ 800	EP	3W	F	定格出力47kW	
	TA-HE21S	K6A	0.658	5MT	18.8	123.5	830 ~ 840	EP	3W	А	定格出力47kW	
	TA-HE21S	K6A	0.658	4AT (E·LTC)	18.0	129.0	800 ~ 810	EP	3W	F	定格出力47kW	
	TA-HE21S	K6A	0.658	4AT (E)	16.4	141.6	840 ~ 850	EP	3W	A	定格出力47kW	
	CBA- EC22S	K6A	0.658	5MT	26.0	89.3	570		3W	F		
	CBA- EC22S	K6A	0.658	5MT	25.0	92.9	580 ~ 590		3W	F		
	CBA- EC22S	K6A	0.658	3AT (E)	22.0	105.5	580 ~ 600		3W	F		
ツイン	CAA- EC22S	K6A(内 燃機関) メイデン MS05PA (電動機)	0.658	4AT (E・LTC)	34.0	68.3	700	Н, І	3W+EGR	F		
	CAA- EC22S	K6A(内 燃機関) メイデン MS05PA (電動機)	0.658	4AT (E・LTC)	32.0	72.6	710 ~ 720	Н, І	3W+EGR	F		
ジムニー	ABA- JB23W	K6A	0.658	5MT	16.4	141.6	970 ~ 990	EP	3W	A		
	ABA- JB23W	K6A	0.658	4AT (E)	14.8	156.9	980 ~ 1000	EP	3W	A		
	TA- DA62W	K6A	0.658	5MT	16.6	139.9	870 ~ 910	EP	3W	R		
	TA- DA62W	K6A	0.658	5MT	16.2	143.3	920 ~ 960	EP	3W	A		
	TA- DA62W	K6A	0.658	3AT (E)	15.6	148.8	880 ~ 920	EP	3W	R		
エブリイ	TA- DA62W	K6A	0.658	3AT (E)	15.2	152.7	930 ~ 970	EP	3W	A		
エブリイ	GH- DA62W	K6A	0.658	5MT	17.0	136.6	890 ~ 930	EP	3W	R		
	GH- DA62W	K6A	0.658	5MT	17.0	136.6	940 ~ 980	EP	3W	A		
	GH- DA62W	K6A	0.658	4AT (E)	15.0	154.8	910 ~ 950	EP	3W	R		
	GH- DA62W	K6A	0.658	4AT (E)	15.0	154.8	960 ~ 1000	EP	3W	A		

スズキ

(3) 輸入自動車

ガソリン乗用車・RV 車

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 スズキ株式会社

	(参考) 低排出ガス
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\frac{(H+1300)}{(H+1300)} = \frac{4L}{4L} = \frac{4.137}{(E+LTC)} = \frac{6.3}{33745} = \frac{2070+2140}{2070+2140} = \sqrt{-3} = \frac{3}{374} = \frac{1}{3704} = \frac{1}{100} = \frac{1}{$	認定レベル
$\frac{1}{7} r^{2} r^$	
$\frac{(H-13/0V)}{2} = \frac{5F}{2} = \frac{5.327}{2} (E \cdot LTC) = \frac{6.4}{2} = \frac{362.6}{2270 - 2340} = \frac{100}{2} =$	
$\pi \ \mathcal{I} \ I$	
Image: series of the series	
Image: Second	
Image: Section of the section of th	
Image: Section of the section of th	
Image: state of the state	
Image: state stat	
Image: state stat	
Image: state of the state of	
Image: Sector of the sector of th	
Image: Sector of the sector	
Image: Sector of the sector	
Image: Sector of the sector	

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 フォード・ジャパン・リミテッド

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	参考) 非出ガス ミレベル
$\frac{1}{2} (2 - 2)^{-1} - \frac{1}{2} - \frac{1}{2} (2 - 2)^{-1} - \frac{1}{2} (2 - 2)^{-1} (2 -$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\frac{1}{7 + 2} = \frac{1}{7 + 2} = $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
7 イ エ ス かGH- WFOFYJFYJ1.5954AT (LTC)12.0193.51130, 11403WF111 <td< td=""><td></td></td<>	
Image: series of the series	
Image: state stat	
Image: series of the series	
Image: series of the series	
Image: series of the series	
Image: series of the series	
Image: series of the series	
Image: Second	
Image: Second	
Image: Section of the section of th	
Image: Section of the section of th	
Image: Section of the section of th	
Image:	

				原	動機	***		1km 走行に おける		主要	その他エネノ	レギー消	費効率の異なる要因	
通	称	名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルキー 消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
			GH-EB205	B205	1.984	5AT (E・LTC)	8.8	263.8	1660 ~ 1680		3W	F		
9	-	5	GH-EB235	B235	2.290	5AT (E・LTC)	8.7	266.9	1590 ~ 1610		3W	F	136kW 仕様	
5	-	J	GH-EB235	B235	2.290	5AT (E・LTC)	8.9	260.9	1660 ~ 1680		3W	F	162kW 仕様	
			GH-EB235	B235	2.290	5AT (E・LTC)	9.3	249.6	1590 ~ 1680		3W	F	184kW 仕様	
			GH-FB207	B207	1.998	5AT (E・LTC)	9.7	239.3	1500 ~ 1520		3W	F	110kW 仕様	
9	-	3	GH-FB207	B207	1.998	5AT (E・LTC)	9.8	236.9	1500 ~ 1640		3W	F	129kW 仕様	
5		5	GH-FB207	B207	1.998	5AT (E・LTC)	9.4	247.0	1500 ~ 1520		3W	F	154kW、箱型仕様	
			GH-FB207	B207	1.998	5AT (E・LTC)	9.0	258.0	1660		3W	F	154kW、幌型仕様	
														1
														<u> </u>

				原	動機			1km 走行に		二二	その他エネル	レギー消	費効率の異な	る要因	
通	称	名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ℓ)	Rin 足门に おける CO ₂ 排出量 (g-CO ₂ /km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その		- (参考) 低排出ガス 認定レベノ
t	Ľ	ル	GH-AK54K	4K	4.564	4AT (E・LTC)	6.7	346.5	1810 ~ 1830		3W+EGR +AI	F			
۲	ゥビ	ル	GH-AK64K	4K	4.564	4AT (E·LTC)	7.5	309.6	1830 ~ 1850		3W+EGR +AI	F			
			GH-AD32F	2F	2.596	5AT (E·LTC)	8.9	260.9	1640 ~ 1660		3W	R			
С	Т	S	GH-AD33G	3G	3.174	5AT (E·LTC)	7.9	293.9	1640 ~ 1660		3W	R			
			GH-AD33H	ЗH	3.564	5AT (E・LTC)	7.8	297.6	1670 ~ 1690		3W	R			

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 ダイムラー・クライスラー日本株式会社

		原	動機	亦法な空の	エラルギー	1km 走行に		主要	その他エネル	/ギー消	費効率の異なる要因	(会老)
通称名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルキー 消費効率 (km/ℓ)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
ジープ・チェロキー	GH-KJ37	к	3.700	4AT X2 (E・LTC)	6.4	362.8	1840 ~ 1890		3W	А		
ジープ・ラングラー	011 7 1400	MX	3.959	4AT X2 (E·LTC)	6.2	374.5	1590 ~ 1630		3W CCO	А		
シーノ・ラノクラー	GH-1J405	MX	3.959	5MT X2	6.6	351.8	1580 ~ 1620		3W CCO	А		
ヽ゜ ゚゚゚゠ヽ.ゖ゚゚゚゚゚゚゚゚゚゚゠ヽ	GH-WJ40	MX	3.959	4AT X2 (E·LTC)	6.5	357.2	1930 ~ 1980		3W CCO	А		
ジープ・グランドチェロキー	GH-WJ47	661	4.700	5AT X2 (E·LTC)	5.9	393.5	1970 ~ 2000		3W	А		
	GH- PT2K20	т	1.996	4AT (E・LTC)	9.1	255.1	1450 ~ 1460		3W	F		
PTクルーザー	GH-PT24	S	2.429	4AT (E・LTC)	8.7	266.9	1460 ~ 1470		3W	F		
		R	3.301	4AT (E・LTC)	7.2	322.5	1890		3W	F	類別区分番号 0301	
ボイジャー	GH-RG33S	R	3.301	4AT (E·LTC)	7.3	318.0	1890		3W EGR	F	類別区分番号 0401	
		R	3.301	4AT (E·LTC)	7.2	322.5	1930 ~ 1960		3W	F	類別区分番号 0301-0303	
グランド・ボイジャー	GH-RG33L	R	3.301	4AT (E·LTC)	7.1	327.0	1990 ~ 2020		3W EGR	F	類別区分番号 0401-0403	
		R	3.301	4AT (E·LTC)	7.2	322.5	2090		3W	A	期 類別区分番号 0304	
				(L LIO)								
												<u> </u>
							<u> </u>					

ガソリン乗用車・RV車 当該自動車の製造又は輸入の事業を行う者の氏名又は名称 ピー・エー・ジー・インポート株式会社

	原動構		動機			1km 走行に		主要燃	その他エネル	レギー消	費効率の異なる要因	(会去)
通称名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ l)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
Х К 8	GH-J412A	2B	4.196	6AT (E・LTC)	7.3	318.0	1680		3W + EGR	R		
X K R / X K R コンパーチブル	GH-J413A	3B	4.196	6AT (E·LTC)	6.8	341.4	1710 ~ 1810		3W + EGR	R	スーパーチャージャ、 インタークーラ付	
S-TYPE2.5V6/ S-TYPE2.5V6SE/ S-TYPE2.5V6スポーツ	GH-J01JC	JB	2.494	6AT (E·LTC)	8.4	276.4	1680 ~ 1700	V	3W	R		
S-TYPE3.0V6/ S-TYPE3.0V6SE/ S-TYPE3.0V6スポーツ	GH-J01FC	FB	2.967	6AT (E·LTC)	7.7	301.5	1720 ~ 1740	V	3W	R		
S-TYPE4.2V8/ S-TYPE4.2V8スポーツ	GH-J01HC	HB	4.196	6AT (E・LTC)	7.5	309.6	1760 ~ 1780		3W+EGR	R		
S-TYPE R	GH-J011C	1B	4.196	6AT (E・LTC)	6.5	357.2	1800 ~ 1820		3W + EGR	R	スーパーチャージャ、 インタークーラ付	
XJ6 3.0	GH-J71VA	VB	2.967	6AT (E·LTC)	7.7	301.5	1630 ~ 1650	V	3W	R		
XJ8 3.5/ XJ8 3.5 SE	GH-J72RA	RB	3.554	6AT (E·LTC)	7.1	327.0	1680 ~ 1700		3W + EGR	R		
XJ8 4.2 SE	GH-J72SA	SB	4.196	6AT (E·LTC)	7.5	309.6	1680 ~ 1700		3W + EGR	R		
XJ8 L 4.2	GH-J80SA	SB	4.196	6AT (E·LTC)	7.5	309.6	1720 ~ 1750		3W + EGR	R		
X J R / スーパー V8	GH-J73TA	тв	4.196	6AT (E·LTC)	6.7	346.5	1760 ~ 1780		3W + EGR	R	スーパーチャージャ、 インタークーラ付	
スーパー V8 L	GH-J82TA	тв	4.196	6AT (E·LTC)	6.7	346.5	1790 ~ 1820		3W + EGR	R	スーパーチャージャ、 インタークーラ付	
X-TYPE2.5V6/ X-TYPE2.5V6SE/ X-TYPE2.5V6スポーツ/ X-TYPE2.5V6SE/ エステート	GH-J51XA	ХВ	2.494	5AT (E・LTC)	7.9	293.9	1620 ~ 1690	V	3W	A		
X-TYPE3.0V6/ X-TYPE3.0V6SE/ X-TYPE 3.0 V6 スポーツ	GH-J51WA	WB	2.967	5AT (E・LTC)	7.4	313.7	1620 ~ 1690	V	3W	A		
X-TYPE2.0V6/ X-TYPE2.0V6SE/ X-TYPE2.0V6 エステート/ X-TYPE2.0V6SE エステート	GH-J51YA	YB	2.096	5A⊤ (E・LTC)	8.6	270.0	1520 ~ 1590	v	3W	F		
X-TYPE2.5V6/ X-TYPE2.5V6SE/ X-TYPE2.5V6スポーツ/ X-TYPE2.5V6SE/ エステート	ABA- J51XB	ХВ	2.494	5AT (E・LTC)	7.9	293.9	1620 ~ 1690	V	3W	А		
X-TYPE3.0V6/ X-TYPE3.0V6SE/ X-TYPE3.0V6スポーツ/ X-TYPE 3.0 ソブリン/	ABA- J51WB	WB	2.967	5AT (E・LTC)	7.4	313.7	1620 ~ 1690	V	3W	A		
X-TYPE2.0V6/ X-TYPE2.0V6SE/ X-TYPE2.0V6 エステート/ X-TYPE2.0V6SE エステート	ABA- J51YB	YB	2.096	5AT (E・LTC)	8.6	270.0	1520 ~ 1590	v	3W	F		

ランドローバー

ガソリン乗用車・RV 車 当該自動車の製造又は輸入の事業を行う者の氏名又は名称 ピー・エー・ジー・インポート株式会社

		原	動機			1km 走行に		主要	その他エネル	ノギー消	費効率の異なる要因	
通称名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ <i>l</i>)	ホール おける CO ₂ 排出量 (g-CO ₂ /km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
ランドローバー ディスカバリー	GH-LT94	94D	3.947	4AT×2 (LTC)	6.3	368.5	2040		3W	A		
ランドローバー ディスカバリー	GH-LT94A	94D	3.947	4AT×2 (LTC)	6.3	368.5	2120 2140		3W	A		
レンジローバー	GH-LM44	448S	4.398	5AT×2 (LTC)	5.7	407.3	2420 2500	V	3W	A		
フリーランダー	GH-LN25	25K	2.497	5AT×2 (LTC)	7.9	293.9	1580 1600		3W	A		

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 ダイムラー・クライスラー日本株式会社

		原	動機	変速装置の	エネルギー	1km 走行に		王要	その他エネル	レギー消費	費効率の異なる要因	(参考)
通称名	型式	型式	総排気量 (ℓ)	型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(^シ う) 低排出ガス 認定レベル
A 1 6 0	GH-168033	166	1.598	5AT (E·LTC)	12.4	187.2	1120 ~ 1140		3W AS	F		
A 1 6 0	GH-168133	166	1.598	5AT (E·LTC)	12.4	187.2	1160 ~ 1180		3W AS	F		
A 1 9 0	GH-168032	1669	1.897	5AT (E·LTC)	11.8	196.8	1160 ~ 1200		3W AS	F		
A 2 1 0	GH-168135	166M21	2.083	5AT (E·LTC)	11.2	207.3	1200 ~ 1220		3W AS	F		
C180 コンプレッサー	GH-203046	271	1.795	5AT (E·LTC)	10.4	223.2	1470 ~ 1520	V	3W AS	R		
C200 コンプレッサー	GH-203042	271	1.795	5AT (E・LTC)	10.6	219.0	1530	V	3W AS	R		
C230 コンプレッサー	GH-203040	271	1.795	5AT (E·LTC)	10.8	215.0	1500	V	3W AS	R		
	GH-203040	271	1.795	5AT (E・LTC)	10.8	215.0	1520 ~ 1540	V	3W AS	R		
C 2 4 0	GH-203061	112M26	2.597	5AT (E·LTC)	9.4	247.0	1520 ~ 1560		3W EGR AS	R		
C240 4MATIC	GH-203081	112M26	2.597	5AT (E・LTC)	8.7	266.9	1610 ~ 1630		3W EGR AS	A		
C180 コンプレッサー ステーションワゴン	GH-203246	271	1.795	5AT (E・LTC)	10.4	223.2	1520 ~ 1570	V	3W AS	R		
C200 コンプレッサー ステーションワゴン	GH-203242	271	1.795	5AT (E・LTC)	10.6	219.0	1530 ~ 1580	V	3W AS	R		
C230 コンプレッサー ステーションワゴン	GH-203240	271	1.795	5AT (E・LTC)	10.8	215.0	1550 ~ 1590	V	3W AS	R		
C 2 4 0 ステーションワゴン	GH-203261	112M26	2.597	5AT (E·LTC)	8.9	260.9	1560 ~ 1600		3W EGR AS	R		
C240 4MATIC ステーションワゴン	GH-203281	112M26	2.597	5AT (E·LTC)	8.7	266.9	1650 ~ 1670		3W EGR AS	А		
C180 コンプレッサー スポーツクーペ	GH-203746	271	1.795	5AT (E·LTC)	11.2	207.3	1450 ~ 1480	V	3W AS	R		
C200 コンプレッサー	GH-203742	271	1.795	5AT (E·LTC)	10.6	219.0	1470 ~ 1510	V	3W AS	R		
スポーツクーペ	GH-203742	271	1.795	5AT (E・LTC)	10.6	219.0	1520	V	3W AS	R		
C 5 5	GH-203076	113M55	5.438	5AT (E・LTC)	7.1	327.0	1630 ~ 1650		3W EGR AS	R		
C 5 5 ステーションワゴン	GH-203276	113M55	5.438	5AT (E·LTC)	7.1	327.0	1670 ~ 1690		3W EGR AS	R		
E 2 4 0	GH-211061	112M26	2.597	5AT (E·LTC)	8.7	266.9	1650 ~ 1690		3W EGR AS	R		
E 3 2 0	GH-211065	112	3.199	5AT (E·LTC)	8.5	273.1	1700 ~ 1750		3W EGR AS	R		
2 2 0	GH- 211065C	112	3.199	5AT (E・LTC)	8.5	273.1	1680 ~ 1720		3W EGR AS	R		
E320 4MATIC	GH-211082	112	3.199	5AT (E・LTC)	8.3	279.7	1780 ~ 1820		3W EGR AS	А		
E 5 0 0	GH-211070	113	4.965	5AT (E・LTC)	6.9	336.5	1760 ~ 1810		3W EGR AS	R		
0	511211070	113	4.965	7AT (E・LTC)	7.0	331.7	1770 ~ 1830		3W EGR AS	R		
E 5 5	GH-211076	113M55	5.438	5AT (E·LTC)	6.4	362.8	1890 ~ 1930		3W AS	R		

メルセデスベンツ

			原	動機	変速装置の	エネルギー	1km 走行に		王要	その他エネル	レギー消費	費効率の異なる要因	(
通 称	名	型式	型式	総排気量 (ℓ)	2速装直の 型式及び 変速段数	エネルキー 消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	· (参考) 低排出ガス 認定レベル
E 2 4 ステーション		GH-211261	112M26	2.597	5AT (E・LTC)	8.7	266.9	1760 ~ 1780		3W EGR AS	R		
E 3 2	2 0	GH-211265	112	3.199	5AT (E・LTC)	8.5	273.1	1800 ~ 1840		3W EGR AS	R		
ステーション	ノワゴン	GH- 211265C	112	3.199	5AT (E·LTC)	8.5	273.1	1770 ~ 1790		3W EGR AS	R		
E320 4M ステーション		GH-211282	112	3.199	5AT (E・LTC)	8.3	279.7	1870 ~ 1890		3W EGR AS	A		
E 5 (ステーション		GH-211270	113	4.965	7AT (E·LTC)	7.0	331.7	1860 ~ 1900		3W EGR AS	R		
E 5 ステーション	5 /ワゴン	GH-211276	113M55	5.438	5AT (E·LTC)	6.1	380.6	1980 ~ 2000		3W AS	R		
		DBA- 211056	272	3.497	7AT (E·LTC)	8.6	270.0	1710 ~ 1760	V	3W AS	R		
E 3	50	DBA- 211056C	272	3.497	7AT (E·LTC)	8.6	270.0	1690 ~ 1740	V	3W AS	R		
E 3	5 0	DBA- 211256	272	3.497	7AT (E·LTC)	8.5	273.1	1810 ~ 1850	V	3W AS	R		
ステーション		DBA- 211256C	272	3.497	7AT (E·LTC)	8.5	273.1	1780 ~ 1820	V	3W AS	R		
S 3	5 0	GH-220067	112M37	3.724	5AT (E·LTC)	7.0	331.7	1780 ~ 1800		3W EGR AS	R		
S430 4M	IATIC	GH-220083	1134	4.265	5AT (E·LTC)	7.7	301.5	1920 ~ 1940		3W EGR AS	A		
			113	4.965	5AT (E・LTC)	7.6	305.5	1830 ~ 1850		3W EGR AS	R		
		GH-220075	113	4.965	7AT (E・LTC)	6.7	346.5	1840 ~ 1860		3W EGR AS	R		
S 5 (0 0	011 000 / 75	113	4.965	5AT (E・LTC)	7.6	305.5	1850 ~ 1870		3W EGR AS	R		
		GH-220175	113	4.965	7AT (E·LTC)	6.7	346.5	1860 ~ 1880		3W EGR AS	R		
	_	GH-220074	113M55	5.438	5AT (E·LTC)	6.2	374.5	2030 ~ 2050		3W AS	R		
S 5	5	GH-220174	113M55	5.438	5AT (E·LTC)	6.2	374.5	2060 ~ 2080		3W AS	R		
S 6	0 0	GH-220176	275	5.513	5AT (E·LTC)	5.4	429.9	2080 ~ 2100		3W AS	R		
SLK3	5 0	CBA- 171456	272	3.497	7AT (E·LTC)	8.5	273.1	1490 ~ 1510		3W AS	R		
SLK	55	CBA- 171473	113M55	5.438	7AT (E·LTC)	6.9	336.5	1550		3W EGR AS	R		
CLK200 コンブ	^プ レッサー	GH-209342	271	1.795	5AT (E・LTC)	10.4	223.2	1550 ~ 1570	V	3W AS	R		
CLK2	4 0	GH-209361	112M26	2.597	5AT (E·LTC)	9.3	249.6	1560 ~ 1600		3W EGR AS	R		
СLКЗ	20	GH-209365	112	3.199	5AT (E・LTC)	9.0	258.0	1570 ~ 1610		3W EGR AS	R		
CLK320 カフ	ブリオレ	GH-209465	112	3.199	5AT (E・LTC)	8.5	273.1	1730		3W EGR AS	R		
СЬК	55	GH-209376	113M55	5.438	5AT (E・LTC)	7.4	313.7	1660 ~ 1680		3W EGR AS	R		

				原	動機	変速装置の	エネルギー	波 おける		主要燃	その他エネル	ノギー消費	費効率の異なる要因	(参考)
通	称	名	型式	型式	総排気量 (ℓ)	型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(¹⁾ (1) 低排出ガス 認定レベル
С	L K 5	5	GH-209376	113M55	5.438	5AT (E・LTC)	7.8	297.6	1670 ~ 1690		3W EGR AS	R		
6	L 5 0	0	011045075	113	4.965	5AT (E・LTC)	7.1	327.0	1830		3W EGR AS	R		
	LSU	0	GH-215375	113	4.965	7AT (E·LTC)	6.7	346.5	1840		3W EGR AS	R		
с	L 5	5	GH-215374	113M55	5.438	5AT (E・LTC)	6.2	374.5	2010		3W AS	R		
С	L 6 0	0	GH-215376	275	5.513	5AT (E・LTC)	5.4	429.9	2020		3W AS	R		
	C 2 F	0	DBA- 219356	272	3.497	7AT (E·LTC)	8.5	273.1	1730 ~ 1770	V	3W AS	R		
	_ S 3 5	0	DBA- 219356C	272	3.497	7AT (E・LTC)	8.5	273.1	1730 ~ 1770	V	3W AS	R		
СL	_ S 5 0	0	CBA- 219375	113	4.965	7AT (E·LTC)	7.0	331.7	1760 ~ 1800		3W EGR AS	R		
С	L S 5	5	CBA- 219376	113M55	5.438	5AT (E・LTC)	6.4	362.8	1920 ~ 1940		3W AS	R		
s	L 3 5	0	GH-230467	112M37	3.724	5AT (E・LTC)	7.4	313.7	1730 ~ 1740		3W EGR AS	R		
5	L 5 0	0	GH-230475	113	4.965	5AT (E・LTC)	6.9	336.5	1840 ~ 1850		3W EGR AS	R		
		Ū		113	4.965	7AT (E·LTC)	6.8	341.4	1850 ~ 1860		3W EGR AS	R		
S	L 5	5	GH-230474	113M55	5.438	5AT (E・LTC)	6.3	368.5	1970 ~ 1980		3W AS	R		
s	L 6 0	0	GH-230476	275	5.513	5AT (E・LTC)	5.8	400.3	1990 ~ 2000		3W AS	R		
м	L 3 5	0	GH-163157	112M37	3.724	5AT (E・LTC)	6.9	336.5	2100 ~ 2160		3W EGR AS	А		
ビ	ア	J	GH- 639811C	112	3.199	5AT (E・LTC)	7.8	297.6	2090 ~ 2130		3W AS EGR	R		
			GH-639811	112	3.199	5AT (E・LTC)	7.8	297.6	2100 ~ 2170		3W AS EGR	R		
<u> </u>														

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 ダイムラー・クライスラー日本株式会社

	原動機		動機	変速装置の	エクルゼー	1km 走行に		主要雌	その他エネル	/ギー消費	費効率の異なる要因	(参考)
通称名	型式	型式	総排気量 (ℓ)	夏速表量の 型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(愛考) 低排出ガス 認定レベル
フォーツークーペ	GH-450332	15	0.698	6A T	19.2	120.9	770 ~ 800		3W AS	R		
フォーツーカブリオ	GH-450432	15	0.698	6AT	19.2	120.9	770 ~ 790		3W AS	R		
フォーツークーペ BRABUS	GH-450333	15	0.698	6AT	18.4	126.2	790 ~ 800		3W AS	R		
フォーツーカブリオ B R A B U S	GH-450433	15	0.698	6AT	18.4	126.2	790		3W AS	R		
ロードスタークーペ	GH-452334	15	0.698	6AT	18.4	126.2	850 ~ 860		3W AS	R		
ロードスター	GH-452434	15	0.698	6AT	18.4	126.2	830 ~ 840		3W AS	R		
ロードスタークーペ B R A B U S	GH-452557	15	0.698	6AT	18.8	123.5	870		3W AS	R		
ロ ー ド ス タ ー B R A B U S	GH-452437	15	0.698	6AT	18.8	123.5	850		3W AS	R		
フォーフォー1.3	GH-454031	MDC Power 135	1.332	6AT	15.6	148.8	1030 ~ 1050		3W	F		
フォーフォー1.5	GH-454032	MDC Power 1355	1.498	6AT	14.8	156.9	1050 ~ 1070		3W	F		

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 ビー・エム・ダブリュー株式会社

			原	動機	・変速装置の	エネルギー	1km 走行に		主要燃	その他エネル	ノギー消費	費効率の異なる要因	(参考)
通	称 1	3 型式	型式	総排気量 (ℓ)	型式及び 変速段数	消費効率 (km/ ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	低排出ガス 認定レベル
		GH-FB44N	N62B44A	4.398	6AT (E・LTC)	7.6	305.5	2240 ~ 2260	V	3W+AS	А		
DIVIVV	X5 4	GH- FB44NA	N62B44A	4.398	6AT (E・LTC)	7.6	305.5	2240 ~ 2260	V	3W+AS	А		
DAMA	V.5. 0	GH-FA30N	30 6S	2.979	5AT (E·LTC)	7.2	322.5	2080 ~ 2100	V	3W	А		
BIVIVV	X5 3	GH- FA30NA	30 6S	2.979	5AT (E·LTC)	7.2	322.5	2080 ~ 2100	V	3W	А		
BMW	X3 3	0 GH-PA30	30 6S	2.979	5AT (E·LTC)	7.6	305.5	1790 ~ 1820	V	3W	А		
BMW	X3 2	5 GH-PA25	25 6S	2.493	5AT (E・LTC)	7.9	293.9	1760 ~ 1790	V	3W	А		
BMW	7601	i GH-GN60	N73B60A	5.972	6AT (E・LTC)	6.5	357.2	2220 ~ 2280	V	3W+AS	R		
BMW	7451	i GH-GN44	N62B44A	4.398	6AT (E・LTC)	7.6	305.5	2050 ~ 2110	V	3W+AS	R		
BMW	74	5i GH-GL44	N62B44A	4.398	6AT (E・LTC)	7.9	293.9	1950	V	3W+AS	R		
BMW	73	5i GH-GL36	N62B36A	3.591	6AT (E・LTC)	8.4	276.4	1900 ~ 1920	V	3W+AS	R		
	GAE	GH-EH44	N62B44A	4.398	6AT (E・LTC)	7.9	293.9	1740	V	3W+AS	R		
BMW	6450	GH-EH44	N62B44A	4.398	6MT	7.7	301.5	1730	V	3W+AS	R		
BMW 645	Ci カブリオ	GH-EK44	N62B44A	4.398	6AT (E·LTC)	7.3	318.0	1940	V	3W+AS	R		
BMW	63)i GH-EH30	N52B30A	2.996	6AT (E・LTC)	8.7	266.9	1590 ~ 1610	V	3W	R		
BMW	54	5i GH-NB44	N62B44A	4.398	6AT (E・LTC)	7.6	305.5	1790	V	3W+AS	R		
BMW	53)i GH-NA30	30 6S	2.979	6AT (E・LTC)	8.8	263.8	1590 ~ 1610	V	3W	R		
BMW	52	5i GH-NA25	25 6S	2.493	6AT (E·LTC)	8.8	263.8	1580 ~ 1600	V	3W	R		
BMW 525	i ツーリン	グ GH-NG25	25 6S	2.493	6AT (E·LTC)	8.5	273.1	1730 ~ 1760	V	3W	R		
BMW	М	3 GH-BL32	32 6S4	3.245	6MT	8.3	279.7	1560 ~ 1580	V	3W+AS	R		
BMW	330>	(i GH-AV30	30 6S	2.979	5AT (E·LTC)	7.9	293.9	1600 ~ 1620	V	3W	А		
BMW 330	Ci カブリオ	GH-AV30	30 6S	2.979	5AT (E·LTC)	9.2	252.4	1680 ~ 1710	V	3W	R		
BMW	3300	GH-AV30	30 6S	2.979	5AT (E·LTC)	9.2	252.4	1520 ~ 1540	V	3W	R		
		GH-A V30	30 6S	2.979	5AT (E·LTC)	9.2	252.4	1520 ~ 1540	V	3W	R		
BMW	33)i GH-AV30	30 6S	2.979	5MT	10.4	223.2	1500 ~ 1520	V	3W	R		
		GH-A V30	30 6S	2.979	6MT	10.2	227.6	1500 ~ 1520	V	3W	R		
BMW 325	i ツーリン	グ GH-AV25	25 6S	2.493	5AT (E·LTC)	9.0	258.0	1520 ~ 1540	V	3W	R		
BMW	32	5i GH-AV25	25 6S	2.493	5AT (E·LTC)	9.4	247.0	1460 ~ 1480	V	3W	R		
BMW	32)i GH-AV22	22 6S	2.171	5AT (E·LTC)	9.8	236.9	1440 ~ 1460	V	3W	R		
BMW 318	i ツーリン	グ GH-AY20	N42B20A	1.995	5AT (E·LTC)	10.8	215.0	1430 ~ 1450	V	3W+AS	R		
BMW	31	GH-AY20	N42B20A	1.995	5AT (E・LTC)	10.8	215.0	1390 ~ 1410	V	3W+AS	R		
	510	GH-AY20	N42B20A	1.995	5MT	13.2	175.9	1360 ~ 1380	V	3W+AS	R		
BMW	3180	GH-AY20	N42B20A	1.995	5AT (E・LTC)	10.8	215.0	1390 ~ 1410	V	3W+AS	R		
	5100	GH-AY20	N42B20A	1.995	5MT	13.2	175.9	1360 ~ 1380	V	3W+AS	R		

原動		動機	赤海谷岡の		1km 走行に		主要	その他エネル	ノギー消費	費効率の異なる要因	(会本)	
通称名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	洋費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
DMM 0404	GH-AU20	N42B20A	1.995	5AT (E・LTC)	11.0	211.1	1380 ~ 1400	V	3W+AS	R		
BMW 318ti	GH-AU20	N42B20A	1.995	5MT	13.0	178.6	1350 ~ 1370	V	3W+AS	R		
BMW 316ti	GH-AT18	N42B18A	1.796	5AT (E・LTC)	11.4	203.7	1370 ~ 1390	V	3W+AS	R		
	GH-BT30	30 6S	2.979	5AT (E・LTC)	9.3	249.6	1400	V	3W	R		
BMW Z4 ロードスター	GH-BT25	25 6S	2.493	5AT (E・LTC)	9.3	249.6	1380	V	3W	R		
	GH-BT22	22 6S	2.171	5AT (E・LTC)	9.5	244.4	1380	V	3W	R		
BMW 120i	GH-UF20	N46B20B	1.995	6AT (E, LTC)	12.4	187.2	1370 ~ 1390	V	3W	R		
Cooper S	GH-RE16	W11B16A	1.598	6MT	11.6	200.1	1180 ~ 1210		3W	F		
	GH-RA16	W10B16A	1.598	CVT	11.6	200.1	1160 ~ 1190	С	3W	F		
Cooper	GH-RA16	W10B16A	1.598	5MT	14.4	161.2	1140 ~ 1170		3W	F		
	GH-RA16	W10B16A	1.598	5MT	13.4	173.3	1140 ~ 1170		3W	F		
	GH-RA16	W10B16A	1.598	CVT	11.8	196.8	1150 ~ 1180	С	3W	F		
MINI ONE	GH-RA16	W10B16A	1.598	5MT	15.4	150.8	1130 ~ 1160		3W	F		
	GH-RA16	W10B16A	1.598	5MT	14.0	165.8	1130 ~ 1160		3W	F		
Cooper S コンパーチプル	GH-RH16	W11B16A	1.598	6MT	11.2	207.3	1310		3W	F		
•	GH-RF16	W10B16A	1.598	CVT	11.0	211.1	1290	С	3W	F		
Cooper コンバーチブル	GH-RF16	W10B16A	1.598	5MT	12.8	181.4	1270		3W	F		
<u> </u>												<u> </u>
			<u> </u>									
			<u> </u>									
												<u> </u>
												<u> </u>
		1										

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 アウディ ジャパン株式会社

				原	動機	変速装置の	エネルギー			主要	その他エネル	ノギー消	費効率の異なる要因	(参考)
通	称	名	型式	型式	総排気量 (ℓ)	夏速表直の 型式及び 変速段数	消費効率 (km/ℓ)		車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(<u></u> 低排出ガス 認定レベル
アウディ	TT クー^	∜ 1.8T	GH- 8NAUQ	AUQ	1.780	6AT (E・LTC)	10.0	232.2	1,330 ~ 1,400	V	3W AS	F		
アウディTT	ロードスタ	- 1.8T	GH- 8NAUQ	AUQ	1.780	5MT	11.8	196.8	1,300 ~ 1,370	V	3W AS	F		
アウディ ク ワ			GH- 8NBHEF	BHE	3.188	6AT (E)	9.4	247.0	1,550	V	3W AS	A		
アウデ	1 A3	1.6	GH-8PBGU	BGU	1.595	6AT (E・LTC)	12.4	187.2	1,320 ~ 1,340	EP	3W, AS EGR	F		
アウディ	A3 2.0) FSI	GH-8PBLX	BLX	1.984	6AT (E・LTC)	11.8	196.8	1,390 ~ 1,410	V, D, L, EP	3W EGR	F		
アウディ	A3 2.0 T	T FSI	GH-8PAXX	АХХ	1.984	6AT (E)	12.8	181.4	1,430 ~ 1,470	V, D, EP	3W	F		
アウディ	A3 2.0) FSI	GH-8PBLR	BLR	1.984	6AT (E・LTC)	12.6	184.3	1,390 ~ 1,430	V, D, EP	3W EGR	F		
アウディ	A3 3.2 ク'	סוס	GH- 8PBMJF	BMJ	3.188	6AT (E)	10.0	232.2	1,600 ~ 1,640	V	3W AS	A		
			GH-8EALT	ALT	1.984	CVT	11.8	196.8	1,470 ~ 1,490	V, C	3W	F	減速比 4.555	
アウデ	1 A4	2.0	GH-8EALT	ALT	1.984	CVT	11.2	207.3	1,470 ~ 1,490	V, C	3W	F	減速比 4.777	
アウディ	A4 アバン	F 2.0	GH-8EALT	ALT	1.984	СVТ	10.8	215.0	1,520 ~ 1,540	V, C	3W	F		
アウデ FSI アウディ 2.0T FS	クワト A4 ア/	- ロ (ント	GH- 8EBGBF	BGB	1.984	6AT (E・LTC)	9.8	236.9	1,630 ~ 1,700	V, D	3W	A		
アウデ FSI アウディ 3.2 FS	クワト A4 ア/	- ロ (ント	GH- 8EAUKF	AUK	3.122	6AT (E・LTC)	8.5	273.1	1,660 ~ 1,730	V, D	3W	A		
ר ד ר ד י	4 カブリオ	tV 2.4	GH-8HBDV	BDV	2.393	CVT	10.2	227.6	1,740	V, C	3W AS	F		
アウ	ディ	S4	GH- 8EBBKF	BBK	4.163	6AT (E・LTC)	7.3	318.0	1,750	V	3W AS	A	類別001,002	
アウディ	S4 ア/	バント	GH- 8EBBKF	BBK	4.163	6AT (E・LTC)	6.6	351.8	1,770 ~ 1,820	V	3W AS	A	類別003,004, 101~104	
アウデ	1 A6	2.4	GH- 4FBDW	BDW	2.393	CVT	9.5	244.4	1,670 ~ 1,690	V, C	3W AS	F		
アウディ	A6 3.2 ク	ワトロ	GH- 4FAUKS	AUK	3.122	6AT (E・LTC)	8.7	266.9	1,790 ~ 1,810	V, D	3W	A		
アウディ	A6 4.2 ク'	סוס	GH- 4FBATS	ват	4.163	6AT (E・LTC)	7.0	331.7	1,850 ~ 1,870	V	3W AS	A		
アウディ ク ワ			GH- 4BBESF	BES	2.671	5AT (E・LTC)	7.7	301.5	1,860 ~ 1,880	V	3W AS	A		
アウディ	A8 3.7 ク'	ワトロ	GH- 4EBFLF	BFL	3.696	6AT (E・LTC)	7.2	322.5	1,910 ~ 1,930	V	3W AS	A		
アウディ	A8 4.2 ク'	סוס	GH- 4EBFMF	BFM	4.172	6AT (E・LTC)	6.9	336.5	1,910 ~ 1,930	V	3W AS	A		
アウデ クワト			GH- 4EBFML	BFM	4.172	6AT (E・LTC)	7.5	309.6	1,950 ~ 2,000	V	3W AS	A		
アウディ	A8 6.0 ク'	ワトロ	GH- 4EBHTF	внт	5.998	6AT (E・LTC)	6.1	380.6	2,050 ~ 2,100	V	3W AS	A		
アウデ クワト			GH- 4EBHTN	внт	5.998	6AT (E・LTC)	5.5	422.1	2.010 ~ 2,060	V	3W AS	A		
			1	1			1	1	I			1	1	

		原	動機			1km 走行に		主要	その他エネル	レギー消費	費効率の)異な	る要因	
通称名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ ℓ)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	そ	Ø	他	- (参考) 低排出ガス 認定レベル
VW ルポ 1.4	GH-6XBBY	BBY	1.389	4AT (E・LTC)	14.8	177.1	1,000 ~ 1,020		3W EGR	F				
VW ルポ 1.6 GTI	GH- 6EAVY	AVY	1.597	6MT	13.6	192.7	1,010 ~ 1,030	V	3W	F				
VW ポロ 1.4	GH-9NBKY	BKY	1.389	4A⊤ (E・LTC)	14.2	184.5	1,130 ~ 1,170	EP	3W EGR	F				
VW ニュービートル 1.6	GH-9CBFS	BFS	1.595	4AT (E・LTC)	11.2	234.0	1,250 ~ 1,270		3W, AS EGR	F				
VW ニューピートル 2.0	GH-9CAZJ	AZJ	1.984	4AT (E・LTC)	9.9	264.7	1,280 ~ 1,300		3W AS	F				
nw = _ レントリーカーギ	GH- 9CAWU	AWU	1.780	4AT (E・LTC)	10.8	242.6	1,310 ~ 1,330	V	3W AS	F				
/W ニュービートル ターボ	GH- 9CAWU	AWU	1.780	5MT	12.4	211.3	1,280 ~ 1,300	V	3W AS	F				
/Wニューピートルカプリオレ20	GH-1YAZJ	AZJ	1.984	6AT (E・LTC)	10.6	247.2	1,390		3W AS	F				
VW ゴルフ 1.6	GH-1KBLP	BLP	1.597	6AT (E・LTC)	13.6	192.7	1,290 ~ 1,330	V, D, L, EP	3W EGR	F				
VW ゴルフワゴン 1.6	GH-1JBFQ	BFQ	1.595	4AT (E・LTC)	12.0	218.4	1,310 ~ 1,330		3W, AS EGR	F				
VW ゴルフゴン GT	GH-1JAUM	AUM	1.780	5AT (E・LTC)	10.4	252.0	1,410 ~ 1,430	V	3W AS	F				
/₩ ゴルフワゴン2.0 /₩ ボーラ2.0	GH-1JAZJ	AZJ	1.984	4AT (E・LTC)	10.0	262.1	1,290 ~ 1,360		3W AS	F				
VW ゴルフ2.0	GH-1KBLX	BLX	1.984	6AT (E・LTC)	12.2	214.8	1,350 ~ 1,390	V, D, L, EP	3W EGR	F				
VW ゴルフ 2.0 GTX	GH- 1KAXX	AXX	1.984	6AT (E)	12.6	208.0	1,460 ~ 1,470	V, D, EP	3W	F				
/W ゴルフ トゥーラン1.6 FSI	GH-1TBLP	BLP	1.597	6AT (E·LTC)	12.8	204.7	1,490 ~ 1,510	V, D, L, EP	3W EGR	F				
/W ゴルフ トゥーラン1.6 FSI	GH-1TBLP	BLP	1.597	6AT (E・LTC)	12.8	204.7	1,530 ~ 1,550	V, D, L, EP	3W EGR	F				
/W ゴルフ トゥーラン2.0 FSI	GH-1TBLX	BLX	1.984	6AT (E・LTC)	10.8	242.6	1,560 ~ 1,620	V, D, L, EP	3W EGR	F				
VW ボーラ 2.3 V5	GH-1JAQN	AQN	2.324	5AT (E・LTC)	10.2	256.9	1,380 ~ 1,400	V	3W AS	F				
VW パサート 2.0 VW パサートワゴン 2.0	-	AZM	1.984	4AT (E・LTC)	10.2	256.9	1,410 ~ 1,480		3W AS	F				
VW パサート 2.3 V5 /W パサートワゴン 23V5	GH-3BAZX	AZX	2.324	5AT (E・LTC)	9.7	270.2	1,520 ~ 1,590	V	3W AS	F				
/W パサートワゴン 28V6	GH- 3BAMX	AMX	2.771	5AT (E・LTC)	8.5	308.3	1,600 ~ 1,620	V	3W AS	F				
VW パサート 2.8V6 4 モ ー シ ョ ン VW パサートワゴン 2.8V6 4モーション		АМХ	2.771	5AT (E・LTC)	8.5	308.3	1,640 ~ 1,710	v	3W AS	A				
VW パサート 4.0V8 4 モ ー シ ョ ン VW パサートワゴン 4.0V8 4モーション	GH-	BDN	3.998	5AT (E・LTC)	6.8	385.4	1,750 ~ 1,820	v	3W AS	A				
VW トゥアレグ 3.2 V6	GH- 7LBMVS	BMV	3.188	6AT (E・LTC)	7.5	349.4	2,270 ~ 2,310	V	3W EGR	А				
VW トゥアレグ 3.2 V6 エ ア サ ス	GH- 7LBMVA	BMV	3.188	6AT (E・LTC)	7.5	349.4	2,300 ~ 2,340	V	3W AS	А				
VW トゥアレグ 4.2 V8	GH- 7LAXQS	AXQ	4.172	6AT (E・LTC)	6.6	397.0	2,360 ~ 2,400	V	3W AS	А				
VW トゥアレグ 4.2 V8 エ ア サ ス		AXQ	4.172	6AT (E・LTC)	6.6	397.0	2,390 ~ 2,430	V	3W AS	А				

			原	動機			1km 走行に		主要	その他エネル	レギー消	費効率の異なる要因	
通 称	名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ℓ)	おける CO2 排出量 (g-CO2/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
		TA-XK161	Z16	1.597	4AT (E·LTC)	13.0	178.6	1170 ~ 1240		3W+EGR	F		
р ス ト	_	TA-XK181	Z18	1.795	4AT (E·LTC)	12.8	181.4	1210 ~ 1230		3W	F		
		TA-XK181	Z18	1.795	4AT (E・LTC)	12.0	193.5	1260 ~ 1280		3W	F		
		TA-XK220	Z22	2.198	4AT (E·LTC)	11.6	200.1	1250 ~ 1400		3W+EGR	F		
ヾクト	5	TA-Z02Z22	Z22	2.198	5AT (E·LTC)	11.0	211.1	1440 ~ 1460		3W+EGR	F		
	-	TA-Z02Z32	Z32	3.174	5AT (E・LTC)	10.4	223.2	1510 ~ 1530		3W	F		
シグナ	7	TA- Z02Z22L	Z22	2.198	5AT (E·LTC)	12.4	187.2	1510 ~ 1530	D	3W+EGR	F		
		TA- Z02Z32L	Z32	3.174	5AT (E・LTC)	9.2	252.4	1590 ~ 1610		3W	F		
シ グ ナ ベクトラワコ		TA- Z02Z32L	Z32	3.174	5AT (E・LTC)	9.2	252.4	1590 ~ 1610		3W	F		
メリー	バ	TA- X01Z16	Z16	1.597	5AT (E)	12.0	193.5	1320 ~ 1360		3W	F	類別区分番号 0001~0002	
メリー	バ	TA- X01Z16	Z16	1.597	5AT (E)	13.0	178.6	1320 ~ 1360		3W、EGR	F	類別区分番号 0003~0004	
アスト	∍	GH- AH04Z18	Z18	1.795	4AT (E・LTC)	12.0	193.5	1270 ~ 1300		3W	F		

ガソリン乗用車・ RV 車		İ			当該自	又は輸入の事業	を行うす	皆の氏名又に	t名称	ポルシェジャ	パン株式会社	
		原	動機	・変速装置の	エネルギー	1km 走行に		主要	その他エネル	レギー消	費効率の異なる要因	(参考)
通称名	型式	型式	総排気量 (ℓ)	夏速表重の 型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(受考) 低排出ガス 認定レベル
	GH-98623	23	2.687	5MT	9.4	247.0	1340 ~ 1370	V	3W+AS	R		
ボクスター	GH-98623	23	2.687	5AT (LTC)	8.3	279.7	1370 ~ 1400	V	3W+AS	R		
	GH-98624	24	3.179	6MT	8.5	273.1	1370 ~ 1400	V	3W+AS	R		
ボクスター S	GH-98624	24	3.179	5AT (LTC)	7.8	297.6	1400 ~ 1430	V	3W+AS	R		
	GH-99603S	03S	3.595	6MT	7.6	305.5	1420	V	3W+AS	R		
	GH-99603	03	3.595	6MT	7.5	309.6	1420	V	3W+AS	R		
911 カレラ	GH-99603	03	3.595	5AT (LTC)	7.0	331.7	1470	V	3W+AS	R		
	GH-99705	05	3.595	6MT	8.1	286.6	1440	V	3W	R		
	GH-99705	05	3.595	5AT (LTC)	7.5	309.6	1480	V	3W	R		
	GH- 997M9701	M9701	3.824	6MT	7.8	297.6	1460	V	3W	R		
911カレラ S	GH- 997M9701	M9701	3.824	5AT (LTC)	7.2	322.5	1500	V	3W	R		
	GH-99603	03	3.595	6MT	7.5	309.6	1510	V	3W+AS	R		
911カレラ カブリオレ	GH-99603	03	3.595	5AT (LTC)	7.0	331.7	1560	V	3W+AS	R		
	GH-99603	03	3.595	6MT	7.5	309.6	1500	V	3W+AS	R		
911 タ ル ガ	GH-99603	03	3.595	5AT (LTC)	7.0	331.7	1550	V	3W+AS	R		
	GH-99603S	03S	3.595	6MT	7.6	305.5	1460	V	3W+AS	A		
911カレラ 4	GH-99603	03	3.595	6MT	7.5	309.6	1460	V	3W+AS	A		
	GH-99603	03	3.595	5AT (LTC)	7.0	331.7	1510	V	3W+AS	A		
	GH-99603S	03S	3.595	6MT	7.6	305.5	1550	V	3W+AS	A		
911カレラ 4 カプリオレ	GH-99603	03	3.595	6MT	7.5	309.6	1550	V	3W+AS	A		
	GH-99603	03	3.595	5AT (LTC)	7.0	331.7	1600	V	3W+AS	A		
	GH-99603S	03S	3.595	6MT	7.6	305.5	1520	V	3W+AS	A		
911カレラ 4S	GH-99603	03	3.595	6MT	7.5	309.6	1520	V	3W+AS	A		
	GH-99603	03	3.595	5AT (LTC)	7.0	331.7	1570	V	3W+AS	A		
	GH- 9PABFD	BFD	3.188	6AT (LTC)	6.9	336.5	2270 ~ 2370	V	3W+AS	А		
	GH- 9PABFD	BFD	3.188	6MT	7.3	318.0	2250	V	3W+AS	А	類別0017	
カイエン	GH- 9PABFD	BFD	3.188	6MT	7.3	318.0	2270 ~ 2350	V	3W+AS	А	類別0017を除く MT 車	
/	GH- 9PABFDA	BFD	3.188	6AT (LTC)	6.9	336.5	2300 ~ 2400	V	3W+AS	A		
	GH- 9PABFDA	BFD	3.188	6MT	7.3	318.0	2280 ~ 2380	V	3W+AS	A		
	GH-9PA00	00	4.510	6AT (LTC)	5.8	400.3	2420 ~ 2520	V	3W+AS	А		
- - - -	GH-9PA00	00	4.510	6MT	6.1	380.6	2380 ~ 2480	V	3W+AS	А		
カイエン S	GH- 9PA00A	00	4.510	6AT (LTC)	5.8	400.3	2450 ~ 2550	V	3W+AS	А		
	GH- 9PA00A	00	4.510	6MT	6.1	380.6	2410 ~ 2510	V	3W+AS	А		
		1		1		1		1	1			

			原動機		変速装置の	エネルギー	1km 走行に		主要	その他エネノ	レギー消	費効率の異なる要因	(参考)
通	称名	型式	型式	総排気量 (ℓ)	型式及び 変速段数	エネルキー 消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
カイ	エンターボ	GH- 9PA50A	50	4.510	6AT (LTC)	5.5	422.1	2480 ~ 2580	V	3W+AS	A		

ポルシェ

		原	動機	変速装置の	エクルギー	1km 走行に		主要	その他エネル	レギー消費	費効率の異なる要因	(会去)
通称名	型式	型式	総排気量 (ℓ)	愛速表直の 型式及び 変速段数	エネルキー 消費効率 (km/ℓ)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
ルーテシア	GH-BK4J	K4J	1.389	4AT (E·LTC)	12.2	190.3	1040 ~ 1080	EP	3W	F		
	GH-MF4	F4	1.998	4AT (E·LTC)	10.8	215.0	1320 ~ 1350	V EP	3W	F		
	GH-KMF4	F4	1.998	4AT (E·LTC)	10.8	215.0	1380 ~ 1430	V EP	3W	F		
メガーヌ	GH-MK4M	K4M	1.598	4AT (E・LTC)	12.0	193.5	1260 ~ 1280	v EP	3W	F		
	GH- KMK4M	K4M	1.598	4A⊤ (E・LTC)	14.6	159.0	1330 ~ 1380	v EP	3W	F		
	GH-MF4M	F4	1.998	6MT	12.0	193.5	1310 ~ 1330	v EP	3W	F		

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 ルノー・ジャポン株式会社

		原	動機	変速装置の	エネルギー	1km 走行に		主要	その他エネル	√ギー消費	費効率の異なる要因	(会老)
通称名	型式	型式	総排気量 (ℓ)	変速表量の 型式及び 変速段数	 オ カルギー 消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
	GH- T1KFW	KFW	1.360	5MT	15.0	154.8	1000		3W	F		
206 スタイル	GH- T1KFW	KFW	1.360	4AT (LTC)	13.2	175.9	1040		3W	F		
	GH-T1NFU	NFU	1.587	5MT	12.6	184.3	1050		3W	F		
206 XS	GH-T1NFU	NFU	1.587	4AT (LTC)	12.0	193.5	1090		3W	F		
000 VT	GH-T1NFU	NFU	1.587	5MT	12.6	184.3	1070		3W	F		
206 XT プレミアム	GH-T1NFU	NFU	1.587	4AT (LTC)	12.0	193.5	1100		3W	F		
	GH- 2EKNFU	NFU	1.587	4AT (LTC)	12.0	193.5	1150		3W	F		
206 SW XS	GH- 2EKNFU	NFU	1.587	5MT	12.8	181.4	1120		3W	F		
206 SW クイックシルバー	GH- 2EKNFU	NFU	1.587	4AT (LTC)	12.0	193.5	1150		3W	F		
	GH-T5NFU	NFU	1.587	5MT	12.0	193.5	1240		3W	F		
307 スタイル	GH-T5NFU	NFU	1.587	4AT (LTC)	11.2	207.3	1270		3W	F		
X	GH-T5RFN	RFN	1.997	5MT	11.0	211.1	1270、1280		3W、EGR	F		
307 XS	GH-T5RFN	RFN	1.997	4AT (LTC)	10.4	223.2	1300、1310		3W、EGR、 AS	F		
307 XT	GH-T5RFN	RFN	1.997	5MT	11.0	211.1	1270、1280		3W、EGR	F		
(307グリフ)	GH-T5RFN	RFN	1.997	4AT (LTC)	10.4	223.2	1300、1310		3W、EGR、 AS	F		
	GH-T5RFN	RFN	1.997	5MT	11.0	211.1	1270、1280		3W、EGR	F		
307 XSI	GH-T5RFN	RFN	1.997	4AT (LTC)	10.4	223.2	1300、1310		3W、EGR、 AS	F		
307 プレーク スタイル	GH- 3EHNFU	NFU	1.587	4AT (LTC)	10.6	219.0	1330		3W	F		
307 ブレーク	GH- 3EHRFN	RFN	1.997	4AT (LTC)	10.4	223.2	1350		3W、EGR、 AS	F		
307 SW	GH- 3EHRFN	RFN	1.997	4AT (LTC)	10.4	223.2	1390、1430		3W、EGR、 AS	F		
307 CC	GH- A307CC	RFN	1.997	4AT (LTC)	10.4	223.2	1490		3W、EGR、 AS	F		
307 CC	GH- M307CC	RFK	1.997	5MT	10.0	232.2	1490	V	3W、AS	F		
	1	1	1	I	1		I	1				

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 プジョー・ジャポン株式会社

				原	動機	変速装置の	エネルギー	1km 走行に		主要	その他エネル	レギー消	費効率の異なる要因	(参考)
通	称	名	型式	型式	総排気量 (ℓ)	型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(^シ う) 低排出ガス 認定レベル
アルフ MT/S	77 147 SELESPE	2.0 ED	GH-937AB	32310	1.969	5MT	9.5	244.4	1280-1340		3W	F		

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 フィアット オート ジャパン株式会社

			原	動機	変速装置の	エネルギー	1km 走行に		主要	その他エネル	ノギー消	費効率の異なる要因	(参考)
通 称	名	型式	型式	総排気量 (ℓ)	夏速表量の 型式及び 変速段数	消費効率 (km/ ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(受考) 低排出ガス 認定レベル
ボルボ	600	LA-TB6294	B6294	2.921	4AT	8.3	279.7	1630 ~ 1640	V	3W	F	類別ターボ無	
	S80	LA-1 D0294	D0294	2.921	(E·LTC)	7.8	297.6	1660 ~ 1670	V	ЗW	F	類別ターボ付	
		LA-	B5254	2.521	5AT	9.3	249.6	1680 ~ 1730	V	3W	A	ターボ154kW	
ボルボ	V70	SB5254AW	DJ2J4	2.521	(E·LTC)	8.5	273.1	1710 ~ 1760	V	3W	A	ターボ220kW	
		CBA- SB5254AW	B5254	2.521	5AT (E·LTC)	9.1	255.1	1680 ~ 1730	V	3W	A		
ボルボ	X C 70	LA- SB5254AWL	B5254	2.521	5AT (E・LTC)	9.2	252.4	1700 ~ 1750	V	3W	A		
	7010	CBA- SB5254AWL	B5254	2.521	5AT (E・LTC)	9.0	258.0	1700 ~ 1750	V	3W	A		
		LA- SB5244W	B5244	2.434	5AT (E·LTC)	9.6	241.8	1560 ~ 1610	V	3W	F		
		CBA- SB5244W	B5244	2.434	5AT (E·LTC)	9.6	241.8	1560 ~ 1610	V	3W	F		
ボルボ	V70	CBA- SB5244TW	B5244T	2.401	5AT (E・LTC)	9.1	255.1	1610 ~ 1660	V	3W	F		
		LA- SB5254W	B5254	2.521	5AT (E・LTC)	9.8	236.9	1610 ~ 1660	V	3W	F		
		CBA- SB5254W	B5254	2.521	5AT (E·LTC)	9.4	247.0	1610 ~ 1660	V	3W	F		
ボルボ	C70	T A- 8B5234K	B5234	2.318	5AT (E・LTC)	8.5	273.1	1660	V	3W	F		
		LA-	B5254	2.521	5AT	9.7	239.3	1610 ~ 1620	V	3W	A	ターボ154kW	
		RB5254A	DJ2J4	2.521	(E·LTC)	8.9	260.9	1640 ~ 1650	V	3W	A	ターボ220kW	
		CBA- RB5254A	B5254	2.521	5AT (E・LTC)	9.7	239.3	1610 ~ 1620	V	3W	A		
ボルボ	S60	LA-RB5244	B5244	2.434	5AT (E·LTC)	10.0	232.2	1490 ~ 1500	V	3W	F		
	000	CBA- RB5244	B5244	2.434	5AT (E・LTC)	10.0	232.2	1490 ~ 1500	V	3W	F		
		CBA- RB5244T	B5244T	2.401	5AT (E·LTC)	9.8	236.9	1540 ~ 1550	V	3W	F		
		LA-RB5254	B5254	2.521	5AT (E·LTC)	10.2	227.6	1540 ~ 1550	V	3W	F		
		CBA- RB5254	B5254	2.521	5AT (E·LTC)	10.0	232.2	1540 ~ 1550	V	3W	F		
		LA- CB6294AW	B6294	2.921	4A⊤ (E・LTC)	6.4	362.8	2050 ~ 2130	V	3W	A		
ボルボ	X CQO	LA- CB5254AW	B5254	2.521	5AT (E·LTC)	7.7	301.5	2020 ~ 2100	V	3W	A		
11, 11, 11,	7030	CBA- CB5254AW	B5254	2.521	5AT (E·LTC)	7.6	305.5	2050 ~ 2130	V	3W	A		
		CBA- CB8444AW	B8444	4.413	6AT (E·LTC)	6.4	362.8	2130 ~ 2210	V	3W	A		
		CBA- MB5244	B5244	2.434	5AT (E·LTC)	9.5	244.4	1450 ~ 1460	V	3W	F		
ボルボ	S40	CBA- MB5254	B5254	2.521	5AT (E·LTC)	9.7	239.3	1460 ~ 1470	V	3W	F		
		CBA- MB5254A	B5254	2.521	5AT (E・LTC)	8.3	279.7	1550 ~ 1560	V	3W	A		
		CBA- MB5244	B5244	2.434	5AT (E·LTC)	9.5	244.4	1470 ~ 1480	V	3W	F		
ボルボ	V50	CBA- MB5254	B5254	2.521	5AT (E·LTC)	9.7	239.3	1480 ~ 1490	V	3W	F		
		CBA- MB5254A	B5254	2.521	5AT (E・LTC)	8.3	279.7	1570 ~ 1580	V	3W	A		

ボ ル ボ

ドロマンダイ ガソリン乗用車・RV車 当該自動車の製造又は輸入の事業を行う者の氏名又は名称 ビー・エー・ジー・インポート株式会社 原動機 変速装置の エネルギー 1km 走行に おける 重両重量 整盤 その他エネルギー消費効率の異なる要因 (参考) (参考)

				原	動機	亦违壮军の	エネルギー	1km 走行に		主要	その他エネル	ノギー消	費効率の異なる要因	(会考)
通	称	名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(参考) 低排出ガス 認定レベル
			GH SM24	G4JS	2.596	4AT (LTC)	8.9	260.9	1630 ~ 1660		3W, EGR	F		
ען. 	ンタフ	Т	GH SM27	G6BA	2.656	4AT (LTC)	8.5	273.1	1710 ~ 1730		3W	A	4WD	
			GH XD18	G4GB	1.795	5MT	12.8	181.4	1250		3W	F		
	ラント	=	GH XD18	G4GB	1.795	4AT (LTC)	11.6	200.1	1280 ~ 1350		3W	F		
)	GH XD20	G4GC	1.975	4AT (LTC)	11.8	196.8	1290 ~ 1310		3W	F		
			GH XD20	G4GC	1.975	4AT (LTC)	12.2	190.3	1300 ~ 1320		3W	F		
Т		В	LA-TB13	G4EA	1.341	4AT (LTC)	15.4	150.8	1070 ~ 1090		3W	F		
x		G	GH-TXG30	G6CT	2.972	5AT (LTC)	8.6	270.0	1650 ~ 1670		3W, EGR	F		
		G	GH-TXG25	G6BV	2.493	4AT (LTC)	9.5	244.4	1570 ~ 1590		3W	F		
J		М	GH-JM20	G4GC	1.975	4AT	11.4	203.7	1480 ~ 1510		3W	F		
			GH-JM27	G6BA	2.656	4AT	9.6	241.8	1590 ~ 1620		3W	A	4WD	

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 ヒュンダイモータージャパン株式会社

		原	動機	変速装置の	エネルギー	1km 走行に		主要燃	その他エネル	ノギー消費	費効率の異なる要因	(参考)
通称名	型式	型式	総排気量 (ℓ)	型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	(ショ) 低排出ガス 認定レベル
	CBA- AZT250	1AZ	1.998	4AT (LTC)	13.0	178.6	1370 ~ 1380	D V LT	3W EGR	F		
アベンシス	CBA- AZT255	1AZ	1.998	4AT (LTC)	12.2	190.3	1440	D V LT	3W EGR	A		
	CBA- AZT250W	1AZ	1.998	4AT (LTC)	13.0	178.6	1410	D V LT	3W EGR	F		
アベンシスワゴン	CBA- AZT255W	1AZ	1.998	4AT (LTC)	12.2	190.3	1480	D V LT	3W EGR	А		

主要燃費向上対策 原動機 その他エネルギー消費効率の異なる要因 1km **走行に** 変速装置の エネルギー (参考) 車両重量 おける 名 型式及び 消費効率 低排出ガス 通 称 総排気量 CO₂排出量 主要排出 駆動 (kg) 型式 型式 変速段数 (km/ℓ) その他 認定レベル ガス対策 形式 (l) (g-CO₂/km) 4AT エレメント<mark>CBA-YH</mark>2 V K24A 2.354 219.0 1560 3W 10.6 А (E·LTC)

ガソリン乗用車・RV 車 当該自動車の製造又は輸入の事業を行う者の氏名又は名称

TOYOTA MOTOR MANUFACTURING (UK) LTD. トヨタ自動車株式会社

ガソリン乗用車・RV 車 当該自動車の製造又は輸入の事業を行う者の氏名又は名称 本田技研工業株式会社 主要燃費向上対策 原動機 その他エネルギー消費効率の異なる要因 1km **走行に** 変速装置の エネルギー (参考) 車両重量 おける 名 型式及び 消費効率 低排出ガス 通 称 主要排出 総排気量 CO₂排出量 駆動 (kg) 型式 型式 変速段数 (km/ℓ) その他 認定レベル ガス対策 形式 (l) (g-CO₂/km) ホンダオ 5AT (E·LTC) ブアメリ カ J35A Μ D X CBA-YD1 3.471 7.8 297.6 2040 · 2050 V 3W+EGR А _____

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 本田技研工業株式会社

				原	動機	変速装置の	エクルギー	1km 走行に		主要	その他エネル	ノギー消	費効率0) 異な	る要因	(会老)
通	称	名	型式	型式	総排気量 (ℓ)	夏速表量の 型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	そ	Ø	他	- (参考) 低排出ガス 認定レベル
シ	ビッ	ク	ABA-EP3	ホンダ K20A	1.998	6MT	12.4	187.2	1190 · 1210	V· EP	3W	F				

ガソリン乗用	-		至4.4%				製造又は輸入の					工業株式会
	[原	動機 	変速装置の		1km 走行に おける	車両重量	要燃	その他エネル	ノキー消	費効率の異なる要因 	(参考)
通称名	型式	型式	総排気量 (ℓ)	型式及び 変速段数	消費効率 (km/ℓ)	CO₂ 排出量 (g-CO₂/km)	中间重重 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	その他	低排出ガス 認定レベル
	DBA-GD9	L15A	1.496	CVT (E)	18.4	126.2	1120	C· EP	3W+EGR	A		
	DBA-GD9	L15A	1.496	CVT (E)	18.0	129.0	1130	C· EP	3W+EGR	A	タイヤ 185/55R15	
	DBA-GD8	L15A	1.496	CVT (E)	20.0	116.1	1060	C· EP	3W+EGR	F		
	DBA-GD8	L15A	1.496	CVT (E)	19.4	119.7	1060	C· EP	3W+EGR	F	タイヤ 185/55R15	
フィット アリア	DBA-GD7	L13A	1.339	CVT (E)	19.4	119.7	1120	C· EP	3W+EGR	А		
	DBA-GD7	L13A	1.339	CVT (E)	18.8	123.5	1120	C · EP	3W+EGR	A	タイヤ 185/55R15	
	DBA-GD6	L13A	1.339	CVT (E)	20.5	113.3	1040	C · EP	3W+EGR	F		
	DBA-GD6	L13A	1.339	CVT (E)	20.0	116.1	1050	C · EP	3W+EGR	F	タイヤ 185/55R15	
				. ,								
												<u> </u>

8. ディーゼル乗用車燃費について

		原	動機			1km 走行に		土要	その他エネル	レギー消費	費効率の	異な	る要因	
通 称 名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ℓ)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動 形式	そ	Ø	他	(参考) 低排出ガス 認定レベル
	KN- KDJ120W	1KD	2.982	4AT (E・LTC)	10.8	242.6	2020 ~ 2090	P D FI TC IC	CCO EGR	A				
- v. 10 Juni 12	KN- KDJ120W	1KD	2.982	4AT (E・LTC)	11.2	234.0	1990 ~ 2010	P D FI TC IC	CCO EGR	A				
ランドクルーザープラド	KN- KDJ121W	1KD	2.982	4AT (E・LTC)	10.8	242.6	2040 ~ 2120	P D FI TC IC	CCO EGR	A				
	KN- KDJ125W	1KD	2.982	4AT (E・LTC)	11.2	234.0	1900 ~ 1970	P D FI TC IC	CCO EGR	A				
ハイラックスサーフ	KN- KDN215W	1KD	2.982	4AT (E・LTC)	11.4	229.9	1940 ~ 2010	P D FI TC IC	CCO EGR	A				
	KN- KDN215W	1KD	2.982	4AT (ELTC)	11.0	238.2	2020 ~ 2030	P D FI TC IC	CCO EGR	A				

9. ガソリン貨物車燃費について

(1) 普通 / 小型自動車

		原	動機						主要	白			ネルギー消	費	(参考)
通称名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ℓ)	1km 走行に おける CO2 排出量 (g-CO2/km)	車両重量 (kg)	車両総重量 (kg)	主要燃費向上対策	自動車の構造	00 主要 排出 ガス	駆動形	なる要因 その		低排出 ガス 認定
	<u> </u>	7K	1.781	5MT	11.0	211.1	1130 ~ 1240	2040 ~ 2155	分 策 FI	構造	対策 3W	式 R			レベル
	GK-KM70	7K	1.781	4AT	10.6	219.0	1140 ~ 1230	2050 ~ 2145	FI	B 構造	3W	R			
	GK-KM75	7K	1.781	5MT	11.0	211.1	1180 ~ 1230	2340 ~ 2395	FI	B 構造	3W	R			
ライトエース、 タウンエース	GK-KM75	7K	1.781	4AT	10.6	219.0	1190 ~ 1230	2350 ~ 2395	FI	B 構造	3W	R			
	GK-KM80	7K	1.781	5MT	10.0	232.2	1330 ~ 1380	2240 ~ 2295	FI	В	3W	A			
	GK-KM85	7K	1.781	5MT	10.0	232.2	1330 ~ 1380	2340 ~ 2395	FI		3W	A			
	GK-KR42V	7K	1.781	5MT	11.6	200.1	1220 ~ 1260	2120 ~ 2175	FI	構造 B	3W	R			
	GK-KR42V	7K	1.781	4AT	11.0	211.1	1250 ~ 1260	2165 ~ 2175	FI	B 構造 B	3W	R			
	GK-KR52V	7K	1.781	5MT	10.0	232.2	1360 ~ 1410	2260 ~ 2325	FI		3W	A			
ライトエースバン、 タウンエースバン	GK-KR52V	7K	1.781	4AT	9.4	247.0	1390 ~ 1420	2270 ~ 2335	FI		3W	A			
	GK-KR42V	7K	1.781	4AT	10.4	223.2	1270 ~ 1310	2130 ~ 2215	FI		3W	R			
	GK-KR42V	7K	1.781	5MT	11.2	207.3	1270 ~ 1300	2130 ~ 2205	FI		3W	R			
	CBE- NCP55V	1NZ	1.496	5MT	16.0	145.1	1100 ~ 1130	1620 ~ 1665	V FI		3W	А			
	CBE- NCP55V	1NZ	1.496	4AT (E・LTC)	13.8	168.2	1110 ~ 1140	1610 ~ 1665	V		3W	А			
プロボックス、	CBE- NCP50V	2NZ	1.298	5MT	17.4	133.4	1020 ~ 1030	1530 ~ 1555	V FI		3W	F			
サクシード	CBE- NCP50V	2NZ	1.298	4AT (E·LTC)	16.0	145.1	1030 ~ 1040	1540 ~ 1565	V FI		3W	F			
	CBE- NCP51V	1NZ	1.496	5MT	17.0	136.6	1020 ~ 1050	1530 ~ 1610	V FI		3W	F			
	CBE- NCP51V	1NZ	1.496	4AT (E・LTC)	15.8	146.9	1030 ~ 1060	1540 ~ 1620	V FI		3W	F			

トヨタ

				原	動機			1km 走行に			土要	自			ネルギー消費 なる要因	(参考
通	称	名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	車両総重量 (kg)	主要燃費向上対策	「 動車 の 構造	主要 排出 ガス 対策	駆動形式	その他	- 低排 ガス 認定 レベ
			UC-VW11	QG18	1.769	4A⊤ (E・LTC)	13.8	168.2	1200 ~ 1230	1775 ~ 1840		構造 A	3W	F		
- +	- スパ -	L	UC- VNW11	QG18	1.769	4A⊤ (E・LTC)	12.8	181.4	1300 ~ 1330	1810 ~ 1855			3W	А		
1 +	- 7 7 -	- F	CBF-VW11	QG18	1.769	4AT (E・LTC)	13.8	168.2	1200 ~ 1230	1775 ~ 1840		構造 A	3W	F		
			CBF- VNW11	QG18	1.769	4AT (E・LTC)	12.8	181.4	1300 ~ 1330	1810 ~ 1855			3W	А		
			CBE-VY11	QG13	1.295	5MT	16.8	138.2	1070 ~ 1100	1480 ~ 1525	FI		3W	F		
			CBE-VY11	QG13	1.295	4AT (E・LTC)	14.6	159.0	1100 ~ 1130	1610 ~ 1655	FI		3W	F		
			CBE- VFY11	QG15	1.497	5MT	16.6	139.9	1090 ~ 1130	1600 ~ 1655	FI		3W	F		
A		D	CBE- VFY11	QG15	1.497	4AT (E・LTC)	15.4	150.8	1110 ~ 1150	1620 ~ 1675	FI		3W	F		
			CBF- VHNY11	QG18	1.769	5MT	15.0	154.8	1220 ~ 1250	1730 ~ 1775	FI	構造 A	3W	А		
			CBF- VHNY11	QG18	1.769	4AT (E・LTC)	13.6	170.7	1240 ~ 1260	1750 ~ 1785	FI	構造 A	3W	А		
			CBF- VHNY11	QG18	1.769	4AT (E·LTC)	13.0	178.6	1270	1780 ~ 1795	FI		3W	А		
			TC- SK82VN	F8	1.789	5MT	10.6	219.0	1240 ~ 1260	2155 ~ 2175		構造 B	3W+ EGR	R	シングルタイヤ 1250kg	
			TC- SK82VN	F8	1.789	5MT	10.2	227.6	1270 ~ 1340	2110 ~ 2255			3W+ EGR	R	シングルタイヤ 1500kg	
			TC- SK82VN	F8	1.789	4AT (E·LTC)	9.9	234.5	1250 ~ 1260	2165 ~ 2175		構造 B	3W+ EGR	R	シングルタイヤ 1250kg	
			TC- SK82VN	F8	1.789	4AT (E·LTC)	9.4	247.0	1270 ~ 1360	2115 ~ 2265			3W+ EGR	R	シングルタイヤ 1500kg	
			TC- SK82VN	F8	1.789	5MT	9.8	236.9	1270 ~ 1330	2400 ~ 2495			3W+ EGR	R	ダブルタイヤ	-
バ	ネッ	ト *	TC- SK82VN	F8	1.789	4AT (E·LTC)	9.4	247.0	1280 ~ 1330	2445 ~ 2495			3W+ EGR	R	ダブルタイヤ	-
			TC- SK82MN	F8	1.789	5MT	9.4	247.0	1380 ~ 1430	2445 ~ 2495			3W+ EGR	A		-
			TC- SK82MN	F8	1.789	4AT (E·LTC)	9.4	247.0	1390 ~ 1480	2405 ~ 2495			3W+ EGR	A		
			TC- SK82TN	F8	1.789	5MT	10.4	223.2	1190 ~ 1250	2205 ~ 2415			3W+ EGR	R		
			TC- SK82TN	F8	1.789	4AT (E・LTC)	9.9	234.5	1200 ~ 1250	2215 ~ 2415			3W+ EGR	R		
			TC-	F8	1.789	5MT	9.4	247.0	1340 ~ 1360	2355 ~ 2375			3W+ EGR	A	シングルタイヤ	-
			SK82LN										EGR			+
																-
																+
																-
																+
																+
																+
																+

(注) *印の付いている通称名については、マツダ株式会社が製造事業者である。

ガソリン貨物車

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 三菱自動車工業株式会社

			原	動機	変速装置の	エネルギー	1km 走行に			土要燃	自動車			ネルギー消費 なる要因	(参考 - 低排出
通称	名	型式	型式	総排気量 (ℓ)	型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	車両総重量 (kg)	主要燃費向上対策	勤 車 の 構 造	主要 排出 ガス 対策	駆動形式	その他	ガス 認定 レベJ
		DBE-CS2V	4G15	1.468	CVT (LTC)	15.8	146.9	1160 ~ 1170	1670 ~ 1695	С		3W+ EGR	F		
ランサ	-	DBE-CS2V	4G15	1.468	5MT	16.0	145.1	1130 ~ 1140	1640 ~ 1665			3W+ EGR	F		
		DBE-CS2V	4G15	1.468	4AT (LTC)	14.0	165.8	1250 ~ 1260	1660 ~ 1685			3W+ EGR	А		
		TC- SK82VM	F8	1.789	5MT	10.6	219.0	1240 ~ 1260	2155 ~ 2175		構造 B	3W+ EGR	R	シングルタイヤ 1250kg	
		TC- SK82VM	F8	1.789	5MT	10.2	227.6	1270 ~ 1340	2110 ~ 2255			3W+ EGR	R	シングルタイヤ 1500kg	
		TC- SK82VM	F8	1.789	4AT (E·LTC)	9.9	234.5	1250 ~ 1260	2165 ~ 2175		構造 B	3W+ EGR	R	シングルタイヤ 1250kg	
		TC- SK82VM	F8	1.789	4AT (E・LTC)	9.4	247.0	1270 ~ 1360	2115 ~ 2265			3W+ EGR	R	シングルタイヤ 1500kg	
		TC- SK82VM	F8	1.789	5MT	9.8	236.9	1270 ~ 1330	2400 ~ 2495			3W+ EGR	R	ダブルタイヤ	
デリ	力 *	TC- SK82VM	F8	1.789	4AT (E・LTC)	9.4	247.0	1280 ~ 1330	2445 ~ 2495			3W+ EGR	R	ダブルタイヤ	
		TC- SK82MM	F8	1.789	5MT	9.4	247.0	1380 ~ 1430	2445 ~ 2495			3W+ EGR	А		
		TC- SK82MM	F8	1.789	4AT (E・LTC)	9.4	247.0	1390 ~ 1480	2405 ~ 2495			3W+ EGR	А		
		TC- SK82TM	F8	1.789	5MT	10.4	223.2	1190 ~ 1250	2205 ~ 2415			3W+ EGR	R		
		TC- SK82TM	F8	1.789	4AT (E・LTC)	9.9	234.5	1200 ~ 1250	2215 ~ 2415			3W+ EGR	R		
		TC- SK82LM	F8	1.789	5MT	9.4	247.0	1340 ~ 1360	2355 ~ 2375			3W+ EGR	А	シングルタイヤ	
	_														
	_														

(注) *印の付いている通称名については、マツダ株式会社が製造事業者である。

菱

Ξ

ガソリン貨物車

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 マッダ株式会社

עע		-	-	臣	動機				動単の裂道又に		主		その	つ他エ	ネルギー消費	(参考)
通	称	名	型式	型式	総排気量	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ l)	1km 走行に おける CO2排出量	車両重量 (kg)	車両総重量 (kg)	要燃費向上対策	自動車の構造	主要 排出	馭	なる要因 その他	低 排 出 ガス 認定
			UC-		(ℓ)			(g-CO₂/km)			対策	造	ガス 対策	坣		レベル
			BVHNY11	QG18	1.769	5MT	15.0	154.8	1220 ~ 1250	1730 ~ 1775		1#1/4	3W	A		
			CBF- BVHNY11	QG18	1.769	5MT	15.0	154.8	1220 ~ 1250	1730 ~ 1775		構造 A	3W	A		
			UC- BVHNY11	QG18	1.769	4AT (LTC)	13.6	170.7	1240 ~ 1260	1750 ~ 1785			3W	A		
			UC- BVHNY11	QG18	1.769	4AT (LTC)	13.0	178.6	1270	1780 ~ 1795			3W	A		
			CBF- BVHNY11	QG18	1.769	4AT (LTC)	13.6	170.7	1240 ~ 1260	1750 ~ 1785		構造 A	3W	A		
			CBF- BVHNY11	QG18	1.769	4AT (LTC)	13.0	178.6	1270	1780 ~ 1795			3W	A		
ファ	ミリ		UB- BVFY11	QG15	1.497	5MT	16.6	139.9	1090 ~ 1130	1600 ~ 1655			3W	F		
		*	UB- BVFY11	QG15	1.497	4AT (LTC)	15.4	150.8	1110 ~ 1150	1620 ~ 1675			3W	F		
			CBE- BVFY11	QG15	1.497	5MT	16.6	139.9	1090 ~ 1130	1600 ~ 1655			3W	F		
			CBE- BVFY11	QG15	1.497	4AT (LTC)	15.4	150.8	1110 ~ 1150	1620 ~ 1675			3W	F		
			UB-BVY11	QG13	1.295	5MT	16.8	138.2	1070 ~ 1100	1480 ~ 1525			3W	F		
			UB-BVY11	QG13	1.295	4AT (LTC)	14.6	159.0	1100 ~ 1130	1610 ~ 1655			3W	F		
			CBE- BVY11	QG13	1.295	5MT	16.8	138.2	1070 ~ 1100	1480 ~ 1525			3W	F		
			CBE- BVY11	QG13	1.295	4AT (LTC)	14.6	159.0	1100 ~ 1130	1610 ~ 1655			3W	F		
		-	TC-SK82V	F8	1.789	5MT	10.6	219.0	1240 ~ 1260	2155 ~ 2175		構造 B	3W+ EGR	R	シングルタイヤ 1250kg	
			TC-SK82V	F8	1.789	5MT	10.2	227.6	1270 ~ 1340	2110 ~ 2255			3W+ EGR	R	シングルタイヤ 1500kg	
			TC-SK82V	F8	1.789	4AT (E・LTC)	9.9	234.5	1250 ~ 1260	2165 ~ 2175		構造 B	3W+ EGR	R	シングルタイヤ 1250kg	
			TC-SK82V	F8	1.789	4AT (E・LTC)	9.4	247.0	1270 ~ 1360	2115 ~ 2265			3W+ EGR	R	シングルタイヤ 1500kg	
			TC-SK82V	F8	1.789	5MT	9.8	236.9	1270 ~ 1330	2400 ~ 2495			3W+ EGR	R	ダブルタイヤ	
ボ	ン	ゴ	TC-SK82V	F8	1.789	4A⊤ (E・LTC)	9.4	247.0	1280 ~ 1330	2445 ~ 2495			3W+ EGR	R	ダブルタイヤ	
			TC-SK82M	F8	1.789	5MT	9.4	247.0	1380 ~ 1430	2445 ~ 2495			3W+ EGR	А		
			TC-SK82M	F8	1.789	4AT (E・LTC)	9.4	247.0	1390 ~ 1480	2405 ~ 2495			3W+ EGR	А		
			TC-SK82T	F8	1.789	5MT	10.4	223.2	1190 ~ 1250	2205 ~ 2415			3W+ EGR	R		
			TC-SK82T	F8	1.789	4AT (E・LTC)	9.9	234.5	1200 ~ 1250	2215 ~ 2415			3W+ EGR	R		
			TC-SK82L	F8	1.789	5MT	9.4	247.0	1340 ~ 1360	2355 ~ 2375			3W+ EGR	А	シングルタイ ヤ	
				1	1					1			1	I	1	

(注) *印の付いている通称名については、日産自動車株式会社が製造事業者である。

ガソ	IJ	ン貨物車

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 本田技研工業株式会社

カソリン員物	<u> </u>	原	動機										ネルギ なる要		(参考)
通称名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルキー 消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	車両総重量 (kg)	主要燃費向上対策	 	主要 排出 ガス 対策	駆動形		の 他	- 低排出 ガス 認定 レベル
	ABE-EY8	D16A	1.590	5MT	14.0	165.8	1160 ~ 1180	1570 ~ 1605	FI		3W	А			
パートナー	ABE-EY8	D16A	1.590	4AT (E·LTC)	12.0	193.5	1180 ~ 1200	1590 ~ 1625	FI		3W	А			
	ABE-EY7	D15B	1.493	5MT	15.4	150.8	1090 ~ 1110	1565 ~ 1620	FI		3W	F			
	ABE-EY7	D15B	1.493	4AT (LTC)	13.4	173.3	1110 ~ 1130	1585 ~ 1640	FI		3W	F			
															<u> </u>
															<u> </u>
															<u> </u>

(2) 軽自動車

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 日産自動車株式会社

ッ
サ
ン

			原	動機	またたち		1km 走行に			王要	自	その 効率	⊃他エ ≊の異	ネルギー消費 なる要因	(参考
通 称	名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ℓ)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	車両総重量 (kg)	主要燃費向上対策	自動車の構造	主要 排出 ガス 対策	駆動形式	その他	- 低排は ガス 認定 レベル
		GBD-U71T	3G83	0.657	3A T	16.4	141.6	710 ~ 760	1170 ~ 1220		構造 B	3W	R	IW = 875kg	
		GBD-U71T	3G83	0.657	5MT	17.4	133.4	700	1160		構造 B	3W	R	IW = 750kg	
		GBD-U71T	3G83	0.657	5MT	16.8	138.2	710 ~ 740	1170 ~ 1200		構造 B	3W	R	IW = 875kg	
		GBD- U71TP	3G83	0.657	5MT	16.4	141.6	830 ~ 850	1290 ~ 1310		構造 B	3W	R	IW = 1000kg	
		GBD- U71TP	3G83	0.657	3AT	15.8	146.9	830 ~ 870	1290 ~ 1330		構造 B	3W	R	IW = 1000kg	
		GBD- U71TP	3G83	0.657	5MT	16.8	138.2	810 ~ 820	1270 ~ 1280		構造 B	3W	R	IW = 875kg	
		GBD-U71V	3G83	0.657	5MT	16.4	141.6	840 ~ 900	1300 ~ 1370		構造 B	3W	R	IW = 1000kg	
クリッノ	۳ <u>–</u>	GBD-U71V	3G83	0.657	3A T	15.8	146.9	860 ~ 920	1320 ~ 1390		構造 B	3W	R	IW = 1000kg	
, , , , ,	*	GBD-U71V	3G83	0.657	4AT	15.8	146.9	910 ~ 920	1370 ~ 1390		構造 B	3W	R	IW = 1000kg	
		GBD-U72T	3G83	0.657	5MT	16.8	138.2	750 ~ 800	1210 ~ 1260		構造 B	3W	А	IW = 875kg	
		GBD-U72T	3G83	0.657	3AT	15.8	146.9	770 ~ 810	1230 ~ 1270		 構造 B	3W	А	IW = 875kg	
		GBD- U72TP	3G83	0.657	5MT	16.4	141.6	870 ~ 910	1330 ~ 1370		構造 B	3W	А	IW = 1000kg	
		GBD- U72TP	3G83	0.657	3A T	15.2	152.7	890 ~ 930	1350 ~ 1390		構造 B	3W	А	IW = 1000kg	
		GBD-U72V	3G83	0.657	5MT	16.4	141.6	900 ~ 960	1360 ~ 1430		構造 B	3W	А	IW = 1000kg	
	-	GBD-U72V	3G83	0.657	4AT	15.8	146.9	970 ~ 980	1430 ~ 1450		」 構造 B	3W	A	IW = 1000kg	
		GBD-U72V	3G83	0.657	3AT	15.2	152.7	920 ~ 980	1380 ~ 1450		」 構造 B	3W	A	IW = 1000kg	
											D				
															<u> </u>

(注) *印の付いている通称名については、三菱自動車工業株式会社が製造事業者である。

ガソリン貨物車

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 三菱自動車工業株式会社

Ξ

菱

	<u>v</u>	原	動機			1km 走行に			主要	自			ーーーーー ネルギー消費 なる要因	(参考)
通称名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ <i>l</i>)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	車両総重量 (kg)	主要燃費向上対策	自動車の構造	主要 排出 ガス 対策	駆動形式	その他	低排出 ガス 認定 レベル
	GBD-H42V	3G83	0.657	5MT	22.5	103.2	670 ~ 700	980 ~ 1020			3W	F		
	GBD-H42V	3G83	0.657	5MT	22.0	105.5	710	1020 ~ 1030			3W	F		
ミニカ	GBD-H42V	3G83	0.657	ЗАТ	20.0	116.1	680 ~ 700	990 ~ 1020			3W	F		
/	GBD-H42V	3G83	0.657	3A T	19.4	119.7	710 ~ 720	1020 ~ 1040			3W	F		
	GBD-H47V	3G83	0.657	5MT	19.2	120.9	720 ~ 760	1030 ~ 1080			3W	А		
	GBD-H47V	3G83	0.657	ЗАТ	18.2	127.6	730 ~ 770	1040 ~ 1090			3W	A		
	GBD-U61T	3G83	0.657	ЗАТ	16.4	141.6	710 ~ 760	1170 ~ 1220		構造 B	3W	R		
	GBD-U61T	3G83	0.657	5MT	17.4	133.4	700	1160		構造 B	3W	R		
	GBD-U61T	3G83	0.657	5MT	16.8	138.2	710 ~ 740	1170 ~ 1200		構造 B	3W	R		
	GBD- U61TP	3G83	0.657	5MT	16.4	141.6	830 ~ 870	1290 ~ 1330		構造 B	3W	R		
	GBD- U61TP	3G83	0.657	3A T	15.8	146.9	830 ~ 890	1290 ~ 1350		構造 B	3W	R		
	GBD- U61TP	3G83	0.657	5MT	16.8	138.2	810 ~ 820	1270 ~ 1280		構造 B	3W	R		
	GBD-U61V	3G83	0.657	5MT	16.4	141.6	840 ~ 920	1300 ~ 1380		構造 B	3W	R		
~ - +	GBD-U61V	3G83	0.657	3A T	15.8	146.9	860 ~ 940	1320 ~ 1400		構造 B	3W	R		
ミニキャフ	GBD-U61V	3G83	0.657	4AT	15.8	146.9	910 ~ 920	1370 ~ 1390		構造 B	3W	R		
	GBD-U62T	3G83	0.657	5MT	16.8	138.2	750 ~ 800	1210 ~ 1260		構造 B	3W	А		
	GBD-U62T	3G83	0.657	ЗАТ	15.8	146.9	770 ~ 810	1230 ~ 1270		構造 B	3W	А		
	GBD- U62TP	3G83	0.657	5MT	16.4	141.6	870 ~ 930	1330 ~ 1390		構造 B	3W	А		
	GBD- U62TP	3G83	0.657	ЗАТ	15.2	152.7	890 ~ 950	1350 ~ 1410		構造 B	3W	А		
	GBD-U62V	3G83	0.657	5MT	16.4	141.6	900 ~ 980	1360 ~ 1440		構造 B	3W	А		
	GBD-U62V	3G83	0.657	4AT	15.8	146.9	970 ~ 980	1430 ~ 1450		構造 B	3W	А		
	GBD-U62V	3G83	0.657	ЗАТ	15.2	152.7	920 ~ 1000	1380 ~ 1460		構造 B	3W	A		

89

				原	動機			1km 走行に			主要	自動	その 効率	の異	ネルギー なる要因	消費	(参考
通	称	名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ℓ)	おける CO ₂ 排出量 (g-CO ₂ /km)	車両重量 (kg)	車両総重量 (kg)	主要燃費向上対策	動車の構造	末 主 要 排出 ガス 対策	駆動形式	その		- 低排 ガス 認定 レベ
			LE-DG63T	K6A	0.658	5MT	17.2	135.0	690 ~ 700	1110 ~ 1160	FI	構造 B	3W	R			
			LE-DG63T	K6A	0.658	5MT	16.8	138.2	710 ~ 730	1120 ~ 1180	FI	構造 B	3W	R			
			LE-DG63T	K6A	0.658	5MT × 2	16.8	138.2	740 ~ 770	1200 ~ 1230	FI	構造 B	3W	А			
			LE-DG63T	K6A	0.658	3AT (E)	16.2	143.3	700	1160	FI	構造 B	3W	R			
			LE-DG63T	K6A	0.658	3AT (E)	15.8	146.9	710 ~ 730	1170 ~ 1190	FI	構造 B	3W	R			
			LE-DG63T	K6A	0.658	3AT (E)	15.8	146.9	750 ~ 780	1210 ~ 1240	FI	構造 B	3W	А			
			LE-DG62V	K6A	0.658	5MT	17.0	136.6	810 ~ 820	1270 ~ 1290	FI	構造 B	3W	R			
			LE-DG62V	K6A	0.658	5MT	16.0	145.1	860 ~ 910	1320 ~ 1380	FI		3W	А			
			LE-DG62V	K6A	0.658	3AT (E)	15.8	146.9	820	1280	FI	構造 B	3W	R			
			LE-DG62V	K6A	0.658	3AT (E)	15.4	150.8	830 ~ 870	1290 ~ 1340	FI		3W	R			
ス	クラ	Д	LE-DG62V	K6A	0.658	3AT (E)	15.0	154.8	870 ~ 920	1330 ~ 1390	FI		3W	А			
~	, ,	*	TE-DG62V	K6A	0.658	4AT (E)	15.0	154.8	870 ~ 920	1330 ~ 1390	FI		3W	R			
			TE-DG62V	K6A	0.658	4AT (E)	15.0	154.8	920 ~ 970	1380 ~ 1440	FI		3W	А			
			GBD- DA62V	K6A	0.658	5MT	17.0	136.6	810 ~ 820	1270 ~ 1290	FI	構造 B	3W	R			
			GBD- DA62V	K6A	0.658	5MT	16.0	145.1	860 ~ 910	1320 ~ 1380	FI		3W	А			
			GBD- DA62V	K6A	0.658	3AT (E)	15.8	146.9	820	1280	FI	構造 B	3W	R			
			GBD- DA62V	K6A	0.658	3AT (E)	15.4	150.8	830 ~ 870	1290 ~ 1340	FI		3W	R			
			GBD- DA62V	K6A	0.658	3AT (E)	15.0	154.8	870 ~ 920	1330 ~ 1390	FI		3W	А			
			LE-DG62V	K6A	0.658	5MT	16.6	139.9	830 ~ 860	1290 ~ 1330	FI		3W	R			
			TE-DG62V	K6A	0.658	5MT	17.0	136.6	850 ~ 900	1310 ~ 1370	FI		3W	R			
			TE-DG62V	K6A	0.658	5MT	17.0	136.6	900 ~ 950	1360 ~ 1420	FI		3W	A			
			GBD- DG62V	K6A	0.658	5MT	16.6	139.9	830 ~ 860	1290 ~ 1330	FI		3W	R			
																	-
						<u> </u>											-
																	+
																	+
																	-

(注) *印の付いている通称名については、スズキ株式会社が製造事業者である。

ガソリン貨物車

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 本田技研工業株式会社

		原	動機	変速装置の	エネルギー	1km 走行に			主要燃	自動車			ネルギー消費 なる要因	(参考) 低排出
通称(型式	型式	総排気量 (ℓ)	夏速表直の 型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	車両総重量 (kg)	主要燃費向上対策	動車の構造	主要 排出 ガス 対策	駆動形式	その他	10,31F山 ガス 認定 レベル
	GBD-HA6	E07Z	0.656	ЗАТ	16.2	143.3	810 • 820	1270 • 1280	Fŀ EP	構造 B	3W	R		
	GBD-HA7	E07Z	0.656	5MT	16.6	139.9	840 ~ 870	1300 ~ 1330	Fŀ EP		3W	А		
	GBD-HA6	E07Z	0.656	ЗАТ	15.6	148.8	830	1290	Fŀ EP		3W	R		
アクティ	GBD-HA6	E07Z	0.656	5MT	17.6	131.9	790 ~ 820	1250 ~ 1280	Fŀ EP	構造 B	3W	R		
, , , , ,	GBD-HH6	E07Z	0.656	5MT	16.4	141.6	950 ~ 990	1410 ~ 1450	Fŀ EP		3W	А		
	GBD-HH5	E07Z	0.656	5MT	17.0	136.6	910 ~ 940	1370 ~ 1410	Fŀ EP		3W	R		
	GBD-HH5	E07Z	0.656	ЗАТ	15.8	146.9	930 ~ 960	1390 ~ 1420	Fŀ EP		3W	R		
	GBD-HH6	E07Z	0.656	4AT	14.6	159.0	1020 • 1030	1380 ~ 1490	Fŀ EP		3W	А		
	GBD-HJ2	E07Z	0.656	5MT	16.4	141.6	1000	1310 • 1320	Fŀ EP		3W	A		
VAMOS	GBD-HJ1	E07Z	0.656	5MT	17.0	136.6	950 • 960	1260 ~ 1280	Fŀ EP		3W	R		
Hobio	GBD-HJ1	E07Z	0.656	ЗАТ	15.8	146.9	970	1280 · 1290	Fŀ EP		3W	R		
	GBD-HJ2	E07Z	0.656	4AT	14.6	159.0	1040 • 1050	1350 ~ 1370	Fŀ EP		3W	R		

				原	動機			1km 走行に			主要	自動			ネルギー消費 なる要因	(参考
通	称	名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ℓ)	おける CO2 排出量 (g-CO2/km)	車両重量 (kg)	車両総重量 (kg)	主要燃費向上対策	動車の構造	× 主要 排出 ガス 対策		その他	低排 ガン 認定 レベ
			LE-TT1	EN07	0.658	5MT	17.2	135.0	730 ~ 770	1190 ~ 1230	FI, EP	構造 B	3W	R		
			LE-TT1	EN07	0.658	3AT (E)	16.0	145.1	750 ~ 790	1210 ~ 1250	FI, EP	構造 B	3W	R		
			LE-TT1	EN07	0.658	5MT	17.0	136.6	770 ~ 780	1230 ~ 1240	FI, EP	構造 B	3W	R	スーパーチャージャ	
			LE-TT1	EN07	0.658	3AT (E)	15.8	146.9	790 ~ 800	1250 ~ 1260	FI, EP	構造 B	3W	R	スーパーチャージャ	
			LE-TT2	EN07	0.658	5MT	17.0	136.6	780 ~ 810	1240 ~ 1270	FI, EP	構造 B	3W	А		
			LE-TT2	EN07	0.658	3AT (E)	15.8	146.9	790 ~ 820	1250 ~ 1280	FI, EP	構造 B	3W	А		
	ンバ		LE-TT2	EN07	0.658	5MT	16.8	138.2	790 ~ 820	1250 ~ 1280	FI, EP	構造 B	3W	А	スーパーチャージャ	
サ	<i>)</i>	_	LE-TT2	EN07	0.658	3AT (E)	15.6	148.8	800 ~ 820	1260 ~ 1280	FI, EP	構造 B	3W	А	スーパーチャージャ	
			LE-TT2	EN07	0.658	3AT (E)	15.0	154.8	830	1290	FI, EP		3W	А	スーパーチャージャ	
			LE-TV1	EN07	0.658	3AT (E)	15.2	152.7	900 ~ 910	1360 ~ 1370	FI, EP		3W	R	スーパーチャージャ	
			LE-TV2	EN07	0.658	3AT (E)	15.4	150.8	900 ~ 960	1360 ~ 1430	FI, EP		3W	А		
			LE-TV1	EN07	0.658	5MT	16.8	138.2	830 ~ 910	1290 ~ 1380	FI, EP		3W	R		
			LE-TV1	EN07	0.658	3AT (E)	15.6	148.8	840 ~ 920	1300 ~ 1390	FI, EP		3W	R		
			LE-TV2	EN07	0.658	5MT	16.6	139.9	890 ~ 950	1350 ~ 1420	FI, EP		3W	А		
			LE-RV1	EN07	0.658	5MT	22.0	105.5	790 ~ 810	1110 ~ 1130	FI, EP	構造 A	3W	F		
			LE-RV1	EN07	0.658	CVT (E・LTC)	21.5	108.0	820	1140	FI EP, C	構造 A	3W	F		
プ	V	オ	LE-RV1	EN07	0.658	CVT (E・LTC)	20.0	116.1	840	1160	FI EP, C		3W	F		
			LE-RV2	EN07	0.658	5MT	20.0	116.1	840 ~ 860	1160 ~ 1180	FI, EP		3W	А		
			LE-RV2	EN07	0.658	CVT (E・LTC)	20.0	116.1	880	1200	FI EP, C		3W	A		
									<u> </u>							

ス バ ル

ガ	11	~	貨物	庙
13 -	/ /	-	貝 17	

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 ダイハツ工業株式会社

		原	動機	本は社会の	** 11 **	1km 走行に			主要燃	自動			ネルギー消費 なる要因	(参考)
通称名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルキー 消費効率 (km/ℓ)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	車両総重量 (kg)	主要燃費向上対策	 	主要 排出 ガス 対策	形	その他	- 低排出 ガス 認定 レベル
	LE-S320V	EF	0.659	5MT	16.0	145.1	850 ~ 860	1310 ~ 1330	FI		3W	R		
	LE-S320V	EF	0.659	3A T	15.6	148.8	860 ~ 870	1320 ~ 1340	FI		3W	R		
	LE-S320V	EF	0.659	5MT	15.8	146.9	880 ~ 900	1340 ~ 1370	V, FI		3W	R		
	LE-S320V	EF	0.659	ЗАТ	15.4	150.8	890 ~ 910	1350 ~ 1380	V, FI		3W	R		
	LE-S320V	EF	0.659	5MT	16.2	143.3	920	1240	FI		3W	R	ターボ付	
	LE-S320V	EF	0.659	4AT	14.6	159.0	930	1250	FI		3W	R	ターボ付	
	LE-S330V	EF	0.659	5MT	15.6	148.8	900 ~ 910	1360 ~ 1380	FI		3W	А		
	LE-S330V	EF	0.659	3A T	15.0	154.8	920 ~ 960	1380 ~ 1430	V, FI		3W	А		
	LE-S330V	EF	0.659	5MT	15.6	148.8	940 ~ 950	1400 ~ 1420	V, FI		3W	А		
	LE-S330V	EF	0.659	5MT	15.8	146.9	970	1290	FI		3W	А	ターボ付	
	LE-S330V	EF	0.659	4AT	14.4	161.2	980	1300	FI		3W	А	ターボ付	
ハイゼット	LE-S200P	EF	0.659	5MT	16.6	139.9	740	1200	V, EP	構造 B	3W	R		
	LE-S200P	EF	0.659	ЗАТ	16.0	145.1	720 ~ 770	1180 ~ 1230	V, EP	構造 B	3W	R		
	LE-S210P	EF	0.659	3AT	15.2	152.7	770 ~ 820	1230 ~ 1280	V, EP	構造 B	3W	А		
	LE-S210P	EF	0.659	5MT	16.2	143.3	790	1250	V, EP	構造 B	3W	А		
	LE-S200C	EF	0.659	ЗАТ	15.2	152.7	850	1310	V, EP		3W	R		
	TE-S200P	EF	0.659	5MT	17.0	136.6	700	1160	EP, FI	構造 B	3W	R		
	TE-S200P	EF	0.659	5MT	16.4	141.6	720 ~ 750	1180 ~ 1210	EP, FI	構造 B	3W	R		
	TE-S210P	EF	0.659	5MT	16.0	145.1	750 ~ 800	1210 ~ 1260	EP, FI	構造 B	3W	A		
	TE-S200C	EF	0.659	5MT	15.6	148.8	830	1290	EP, FI		3W	R		
	TE-S210C	EF	0.659	5MT	15.4	150.8	890	1350	EP, FI		3W	А		
	GBD- S320V	EF	0.659	3A T	15.4	150.8	880	1340 ~ 1350	V, FI		3W	R		
	GBD- S330V	EF	0.659	3A T	15.0	154.8	930	1390 ~ 1400	V, FI		3W	А		
	LE-S320W	EF	0.659	5MT	16.0	145.1	870	1340	FI		3W	R		
	LE-S320W	EF	0.659	3A T	15.6	148.8	880	1350	FI		3W	R		
ハイゼットデッキバン	LE-S330W	EF	0.659	5MT	15.6	148.8	920	1390	FI		3W	А		
	LE-S330W	EF	0.659	ЗАТ	15.0	154.8	940	1410	V, FI		3W	А		
	LE-L250V	EF	0.659	5MT	23.5	98.8	690	1000 ~ 1010	FI	構造 A	3W	F		
	LE-L250V	EF	0.659	3A T	21.0	110.6	700	1010 ~ 1020	FI	構造 A	3W	F		
≅ ₹	LE-L260V	EF	0.659	5MT	21.0	110.6	740	1050 ~ 1060	FI	構造 A	3W	A		
	LE-L260V	EF	0.659	3AT	18.4	126.2	750	1060 ~ 1070	FI	A 構造 A	3W	A		
	GBD- L250V	EF	0.659	4AT	20.5	113.3	710	1020 ~ 1030	V, FI	構造 A	3W	F		

ガソリン貨物車		当該自	動車の製造又は輸入の)事業を行う	者の氏名又は名称	スズキ株式会社
通称名	原動機) エネルギー 消費効率 ^{1km} 走行に おける	車両重量 車両約	主 要 燃重量 費	自 その他エネ 効率の異な 車 主要	ルギー消費 る要因 低排出

		原	<u>動</u> 機	変速装置の	エネルギー	1km 走行に			要燃	自動	効率	阿男	なる要	要因	~ (参考) — 低排出
通称名	型式	型式	総排気量 (ℓ)	2 型式及び 変速段数	消費効率 (km/ℓ)	おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	車両総重量 (kg)	要燃費向上対策	勤 車 の 構 造	主要 排出 ガス 対策	駆動形式	そ	ወ f	ガス
	LE-DA63T	K6A	0.658	5MT	17.2	135.0	690 ~ 700	1110 ~ 1160	FI	構造 B	3W	R			
	LE-DA63T	K6A	0.658	5MT	16.8	138.2	710 ~ 730	1120 ~ 1180	FI	構造 B	3W	R			
	LE-DA63T	K6A	0.658	5MT × 2	16.8	138.2	740 ~ 770	1200 ~ 1230	FI	構造 B	3W	А			
キ ャ リ イ	LE-DA63T	K6A	0.658	3AT (E)	16.2	143.3	700	1160	FI	構造 B	3W	R			
	LE-DA63T	K6A	0.658	3AT (E)	15.8	146.9	710 ~ 730	1170 ~ 1190	FI	構造 B	3W	R			
	LE-DA63T	K6A	0.658	3AT (E)	15.8	146.9	750 ~ 780	1210 ~ 1240	FI	構造 B	3W	А			
	LE-DA62V	K6A	0.658	5MT	17.0	136.6	810 ~ 820	1270 ~ 1290	FI	構造 B	3W	R			
	LE-DA62V	K6A	0.658	5MT	16.6	139.9	830 ~ 860	1290 ~ 1330	FI		3W	R			
	LE-DA62V	K6A	0.658	5MT	16.0	145.1	860 ~ 910	1320 ~ 1380	FI		3W	А			
	LE-DA62V	K6A	0.658	3AT (E)	15.8	146.9	820	1280	FI	構造 B	3W	R			
	LE-DA62V	K6A	0.658	3AT (E)	15.4	150.8	830 ~ 870	1290 ~ 1340	FI		3W	R			
	LE-DA62V	K6A	0.658	3AT (E)	15.0	154.8	870 ~ 920	1330 ~ 1390	FI		3W	А			
	TE-DA62V	K6A	0.658	5MT	17.0	136.6	850 ~ 900	1310 ~ 1370	FI		3W	R			
	TE-DA62V	K6A	0.658	5MT	17.0	136.6	900 ~ 950	1360 ~ 1420	FI		3W	А			
エブリイ	TE-DA62V	K6A	0.658	4AT (E)	15.0	154.8	870 ~ 920	1330 ~ 1390	FI		3W	R			
	TE-DA62V	K6A	0.658	4AT (E)	15.0	154.8	920 ~ 970	1380 ~ 1440	FI		3W	А			
	GBD- DA62V	K6A	0.658	5MT	17.0	136.6	810 ~ 820	1270 ~ 1290	FI	構造 B	3W	R			
	GBD- DA62V	K6A	0.658	5MT	16.6	139.9	830 ~ 860	1290 ~ 1330	FI		3W	R			
	GBD- DA62V	K6A	0.658	5MT	16.0	145.1	860 ~ 910	1320 ~ 1380	FI		3W	А			
	GBD- DA62V	K6A	0.658	3AT (E)	15.8	146.9	820	1280	FI	構造 B	3W	R			
	GBD- DA62V	K6A	0.658	3AT (E)	15.4	150.8	830 ~ 870	1290 ~ 1340	FI		3W	R			
	GBD- DA62V	K6A	0.658	3AT (E)	15.0	154.8	870 ~ 920	1330 ~ 1390	FI		3W	А			
	HBD- HA24V	K6A	0.658	4AT (E・LTC)	21.5	108.0	760 ~ 770	1070 ~ 1090	FI, EP	構造 A	3W	F			
	GBD- HA24V	K6A	0.658	5MT	24.0	96.7	700	1010 ~ 1020	FI, EP	構造 A	3W	F			
	GBD- HA24V	K6A	0.658	5MT	23.5	98.8	710 ~ 730	1020 ~ 1050	FI, EP	構造 A	3W	F			
ア ル ト	GBD- HA24V	K6A	0.658	5MT	21.5	108.0	770 ~ 780	1080 ~ 1100	FI, EP	構造 A	3W	A			
	GBD- HA24V	K6A	0.658	3AT (E)	20.0	116.1	730 ~ 740	1040 ~ 1060	FI, EP	構造 A	3W	F			
	GBD- HA24V	K6A	0.658	3AT (E)	19.0	122.2	780 ~ 790	1090 ~ 1110	FI, EP	構造 A	3W	A			
L	1	1	1	1	1		L	1		I	1		L		1

10. ディーゼル貨物車燃費について

				新山松						主		その)他エ	ネルギー	肖費	(参考)
通	称名	型式	型式	動機 総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ℓ)	1km 走行に おける CO₂ 排出量 (g-CO₂/km)	車両重量 (kg)	車両総重量 (kg)	主要燃費向上対策 D	自動車の構造	効率 主要 排出 ガス 対策	駆動	ネルギー なる要因 その		(低 排 出 ガス 認定 レベル
プロサク	ボックス、 パシード	KP- NLP51V	1ND	1.362	5MT	23.0	113.9	1060 ~ 1080	1570 ~ 1640	FI TC IC P		ссо	F			

ト ヨ タ

				原	動機			1km 走行に			主要	自	その 効率) 他工 図の異	ネルキ なる要	ドー消費 要因	(=
<u>甬</u>	称	名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ℓ)	おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	車両総重量 (kg)	主要燃費向上対策	自動車の構造	主要 排出 ガス 対策	駆動形式		の他	低排 ガン レー 認知 レベ
			KQ- SKF2VN	RF	1.998	5MT	15.4	170.2	1360 ~ 1460	2240 ~ 2375			CCO+ EGR	R			
ŗ	ネッ	F	KQ- SKF2VN	RF	1.998	4AT (E・LTC)	14.0	187.2	1380 ~ 1470	2225 ~ 2385			CCO+ EGR	R			
		*	KQ- SKF2TN	RF	1.998	5MT	15.4	170.2	1310 ~ 1350	2325 ~ 2365			CCO+ EGR	R			
			KQ- SKF2TN	RF	1.998	4AT (E·LTC)	14.0	187.2	1320 ~ 1360	2335 ~ 2375			CCO+ EGR	R			
		_															_
																	+
		_															
		_															
																	_
																	+
																	+
																	_
		_															_
		_															+
																	+
			<u> </u>														+

(注) *印の付いている通称名については、マツダ株式会社が製造事業者である。

ニッサン

ディ	ーゼ	ル貨	物車				<u>当</u> 言	核自動車の製	造又は輸入の	事業を行う者の)氏名	又は名			慶自動車		朱式会社
				原	動機			1km 走行に			主要	自	その	の男	ネルギ- なる要団	- 消費	(参考)
通	称	名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ℓ)	たいでたりに おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	車両総重量 (kg)	主要燃費向上対策	自動車の構造	-	<u> いいます</u> 駆動形式	える女2 その		 低排出 ガス 認定 レベル
			KQ- SKF2VM	RF	1.998	5MT	15.4	170.2	1360 ~ 1460	2240 ~ 2375			CCO+ EGR	R			
デ	IJ	力	KQ- SKF2VM	RF	1.998	4AT (LTC)	14.0	187.2	1380 ~ 1470	2225 ~ 2385			CCO+ EGR	R			
		*	KQ- SKF2TM	RF	1.998	5MT	15.4	170.2	1310 ~ 1350	2325 ~ 2365			CCO+ EGR	R			
			KQ- SKF2TM	RF	1.998	4AT (LTC)	14.0	187.2	1320 ~ 1360	2335 ~ 2375			CCO+ EGR	R			
	-																
																	-

(注) *印の付いている通称名については、マツダ株式会社が製造事業者である。

Ξ

菱

ディーゼル貨物車 当該自動車の製造又は輸入の事業を行う者の氏名又は名称 マツダ株式会社 その他エネルギー消費 効率の異なる要因 主要燃費向上対策 原動機 (参考) 自動車の構造 1km **走行に** 変速装置の エネルギー 低排出 車両重量 車両総重量 おける 主要 名 型式及び 消費効率 駆 通 称 ガス 総排気量 CO₂排出量 排出 (kg) (kg) 動形式 型式 型式 変速段数 その他 認定 (km/l) ガス (l) (g-CO₂/km) レベル 対策 CCO+ 2240 ~ 2375 R KQ-SKF2V RF 1.998 5MT 15.4 170.2 $1360 \sim 1460$ EGR 4AT CCO+ KQ-SKF2V RF 1.998 14.0 187.2 1380 ~ 1470 2225 ~ 2385 R $(E \cdot LTC)$ EGR ボ ン ゴ CCO+ R KQ-SKF2T RF 5MT 1.998 15.4 170.2 1310 ~ 1350 2325 ~ 2365 EGR 4AT (E·LTC) CCO+ KQ-SKF2T 1.998 14.0 187.2 2335 ~ 2375 R RF 1320 ~ 1360 EGR

マッダ

11. LP **ガス乗用車燃費について**

		原	動機			4.5. 十年月		主	その他エネル	レギー消	費効率の異なる要因	
通称名	型式	型式	総排気量 (ℓ)	変速装置の 型式及び 変速段数	エネルギー 消費効率 (km/ℓ)	1km 走行に おける CO₂排出量 (g-CO₂/km)	車両重量 (kg)	主要燃費向上対策	主要排出 ガス対策	駆動形式	その他	(参考) 低排出ガス 認定レベル
クラウンコンフォート	ABA- YXS10	3Y	1.998	4MT	10.4	161.6	1290 ~ 1330		3W EGR	R		
クラウンセダン	ABA- YXS10H	3Y	1.998	4AT	9.0	186.7	1380 ~ 1390		3W EGR	R		
クラウンセダン ^{クラウンコンフォート}	ABA- YXS10	3Y	1.998	4AT	9.0	186.7	1300 ~ 1390		3W EGR	R		
	ABA- YXS11	3Y	1.998	5MT	10.6	158.5	1280 ~ 1310		3W EGR	R		
コンフォート	ABA- YXS11	3Y	1.998	4AT	9.3	180.7	1290 ~ 1330		3W EGR	R		

ト ヨ タ

ッ
サ
ン

LP ガス乗用車

原動機

(燃費向上対策 おける 車両重量 消費効率 通 称 名 型式及び 低排出ガス 総排気量 CO₂排出量 主要排出 駆動 (kg) 型式 型式 変速段数 その他 認定レベル (km/l) (l) (g-CO₂/km) ガス対策 形式 4AT GH-BJY31 VG20 1.998 233.4 $1420 \sim 1460$ 3W R 7.2 $(E \cdot LTC)$ GH-4AT 1.998 VG20 233.4 1430 ~ 1460 3W R 7.2 CBJY31 (E·LTC) 3W, LA-QJY31 セドリック NA20 1.998 4AT 8.9 188.8 1360 ~ 1410 R EGR 3W, 減速比3.889、 LA-QJY31 NA20 1.998 4MT 9.9 169.7 1340 ~ 1390 R EGR 減速比4.111 3W. LA-QJY31 NA20 1.998 4MT9.4 178.8 1340 ~ 1390 R 減速比4.375 EGR 3W, LA-QK30 NA20 1.998 4AT 9.4 178.8 1250 ~ 1260 R EGR 3W, LA-QK30 NA20 1.998 4AT 9.3 180.7 1270 ~ 1320 R EGR 3W. ク ル LA-QK30 NA20 1.998 5MT 9.9 169.7 1230 ~ 1260 R 減速比3.916 EGR 3W. LA-QK30 NA20 1.998 5MT 158.5 1230 ~ 1260 減速比3.692 10.6 R FGR 3W LA-QK30 NA20 1.998 5MT 9.9 169.7 1270 ~ 1300 R EGR

1km **走行に**

変速装置の エネルギー

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 日産自動車株式会社

その他エネルギー消費効率の異なる要因

(参考)

主要

12. 自動車の燃費基準について

対象車種毎の燃費基準値及び燃費基準値+5%値

【ガソリン乗用自動車】

目標年度:2010年度

区分 (車両重量kg)	~ 702	703 ~ 827	828 ~ 1015	1016 ~ 1265	1266 ~ 1515	1516 ~ 1765	1766 ~ 2015	2016 ~ 2265	2266 ~
燃費基準値(km/ℓ)	21.2	18.8	17.9	16.0	13.0	10.5	8.9	7.8	6.4
燃費基準+5%値(km/ℓ)	22.3	19.7	18.8	16.8	13.7	11.0	9.3	8.2	6.7

目標年度:2005年度

【ディーゼル乗用自動車】

区分 (車両重量kg)	~ 1015	1016 ~ 1265	1266 ~ 1515	1516 ~ 1765	1766 ~ 2015	2016 ~ 2265	2266 ~
燃費基準値(km/ℓ)	18.9	16.2	13.2	11.9	10.8	9.8	8.7
燃費基準+5%値(km/ℓ)	19.8	17.0	13.9	12.5	11.3	10.3	9.1

【LPガス乗用自動車】

							- 1000 1	~	
区分 (車両重量kg)	~ 702	703 ~ 827	828 ~ 1015	1016 ~ 1265	1266 ~ 1515	1516 ~ 1765	1766 ~ 2015	2016 ~ 2265	2266 ~
燃費基準値(km/ℓ)	15.9	14.1	13.5	12.0	9.8	7.9	6.7	5.9	4.8
燃費基準+5%値(km/ℓ)	16.7	14.8	14.2	12.6	10.3	8.3	7.0	6.2	5.0

【車両総重量2.5t 以下のガソリン貨物自動車】

			軽貨物			軽量	貨物		中量	貨物	
区分 (車両重量kg)	~ 7	702	703 ~	~ 827	828 ~	1015	1016 ~	~ 1	265	1266	1516 ~
(十回圭重的)	構造A	構造 B	3 構造A 構造B		020~	~ 1015		構造A	構造 B	~ 1515	1516~
AT燃費基準値(km/ℓ)	18.9	16.2	16.5	15.5	14.9	14.9	13.8	12.5	11.2	10	.3
燃費基準+5%値(km/ℓ)	19.8	17.0	17.3	16.3	15.6	15.6	14.5	13.1	11.8	10	.8
MT燃費基準値(km/ℓ)	20.2	17.0	18.0	16.7	15.5	17.8	15.7	14.5	12.3	10.7	9.3
燃費基準+5%値(km/ℓ)	21.2	17.9	18.9	17.5	16.3	18.7	16.5	15.2	12.9	11.2	9.8

【車両総重量2.5t以下のディーゼル貨物自動車】目標年度:2005年度

E				中量貨物)	
区分 (車両重量kg)	軽量貨物	~ 1	265	1266	1516	1766 ~
(十円主重い9)		構造A	構造 B	~ 1515	~ 1765	1700~
AT燃費基準値(km/ℓ)	15.1	14.5	12.6	12.3	10.8	9.9
燃費基準+5%値(km/ℓ)	15.9	15.2	13.2	12.9	11.3	10.4
MT燃費基準値(km/ℓ)	17.7	17.4	14.6	14.1	12	.5
燃費基準+5%値(km/ℓ)	18.6	18.3	15.3	14.8	13	5.1

- (注) 軽 貨 物......軽貨物自動車
 - 軽量貨物......車両総重量1.7t 以下の貨物自動車

中量貨物......車両総重量1.7t を超え2.5t 以下の貨物自動車

構 造 A.....、、、、のいずれにも該当する構造のものをいう。

最大積載量を車両総重量で除した値が0.3以下となるもの。

乗車装置及び物品積載装置が同一の車室内に設けられており、かつ、当該車室と車体外とを固定された 屋根、窓ガラス等の隔壁により仕切られているもの。

- 運転者室の前方に原動機を有し、かつ、前軸のみに動力を伝達できるもの又は前軸及び後軸のそれぞれ 一軸以上に動力を伝達できるもの(後軸に動力を伝達する場合において前軸からトランスファ及びプロ ペラ・シャフトを用いて後軸に動力を伝達するものに限る。)。
- 構造 B.....構造A以外の構造のものをいう。

目標年度:2010年度

目標年度:2010年度

対象となる自動車は、その型式について道路運送車両法(昭和26年法律第185号)第75条第1項の型式指定 を受けたものである。

燃費基準 + 5%値……燃費基準値に105/100を掛け少数第2位を四捨五入したもの

13. 燃料消費率向上のための『エコドライブ10のおすすめ』について

一人一人がきづいたことをマメに実行すれば、自動車の燃費が向上し、自動車から排出される CO₂や NOx をかなり減らすことが可能です。地球のために、私たちのために、私たちの子供たちのために、上手な運転を することを心がけて下さい。

無用なアイドリングをしない。(アイドリングストップ)

10分間のアイドリングで約140ccの燃料を浪費します。待ち合わせや荷物の積み下ろしのための駐停車の際には出来るだけアイドリングを止めましょう。

無用な空ぶかしをしない。

10回の空ぶかしで約60ccの燃料を浪費します。無用な空ぶかしは止めましょう。

急発進及び急加速をしない。

10回の急発進で約170cc、10回の急加速で約110ccの燃料を浪費します。 急発進及び急加速は止めましょう。

交通の状況に応じた安全な定速走行に努める。

減速、加速を繰り返し速度を変動させて走行した場合、100kmの走行で約210ccの燃料を浪費します。 交通の状況に応じ、できるだけ速度変化の少ない安全な運転をしましょう。

早めにシフトアップする。

エンジン回転数が高いとより多くの燃料を浪費します。常に高めのギアで走行するようにしましょう。 オートマチック車では、OD (オーバードライブ)を活用するとともに、加速時にあまりアクセルを踏み 込みすぎないようにしましょう。

減速時には、エンジンブレーキを活用する。

エンジンブレーキを使用し、40km/h で1分間下り坂を走行した場合、エンジンブレーキを使わないで 走行した時に比べて約15ccの燃料が節約されます。減速したり、坂道を下る時にはエンジンブレーキを 活用しましょう。

確実な点検・整備を実施する。(タイヤの空気圧、エア・クリーナ・エレメントの状態等)

タイヤの空気圧低下、エア・クリーナ・エレメントのつまりは燃料を浪費します。空気圧0.5kgf/cm²減のタイヤで100km 走行した場合、約240cc の燃料を浪費します。タイヤの空気圧、エア・クリーナ・エレメントを定期的に点検・整備しましょう。

不要な荷物を積まない。また、燃料をむやみに満タンにしない。

10kgの不要な荷物を載せて100km 走行した場合、約21ccの燃料を浪費します。 運ぶ必要のない荷物は、車から下ろしましょう。また、燃料切れとならないように、走行距離に見合った 給油を心掛けましょう。

エアコンの使用を控えめにする。

エアコンの使用時にはエンジンの負荷が大きくなるため、燃料に使用量が増加します。 エアコンの使用を控えるとともに使用する場合にあっても適正な温度に設定しましょう。

計画的なドライブをする。

道に迷って10分余計に走行すると約350ccの燃料が浪費されます。行き先及び走行ルートをあらかじめ 決めた上で計画的なドライブをしましょう。

昭和52年7月 初版発行 平成17年3月 第28版発行 〒100-8918 東京都千代田区霞が関2-1-3 国土交通省自動車交通局 技術安全部環境課 TEL 03-5253-8111 (内 42 524)