S36 引張軸力が作用する鉄筋コンクリート造 連層壁部材の耐力評価に関する検討

令和3年度 成果報告会 5/11 オンライン会議

研究組織

引張軸力が作用する鉄筋コンクリート造連層壁部材の耐力評価に関する検討 全体委員会 委員構成(令和3年度)

亩 娄 수 / ╁	委員長	壁谷澤寿一	東京都立大学大学院都市環境科学研究科建築学域 准教授						
尹未土 14	委員	壁谷澤寿海	東京大学地震研究所 名誉教授						
共同研究	//	谷 昌典	京都大学大学院工学研究科建築学専攻准教授						
	//	五條 涉	(一財) 日本建築防災協会 技術総括参与						
	//	時本 和則	(一般) 日本建築防災協会 保全調査部長						
	//	向井 智久	(国研) 建築研究所 構造研究グループ 主任研究員						
	//	渡邊 秀和	(国研) 建築研究所 構造研究グループ 主任研究員						
	//	中村 聡宏	(国研) 建築研究所 構造研究グループ 主任研究員						
国交省	国土交通省								
	委員	坂下 雅信	国土技術政策総合研究所 建築研究部						
	//	福井 武夫	住宅局参事官(建築企画担当)付建築設計環境適正化推進官						
	//	中田清史	住宅局参事官(建築企画担当)付構造認定係長						

研究スケジュール

	R3年								R4年			
調査検討項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月
(イ)数値解析に		解析モデル検		討								
よる連層壁部材					解析的	検討		解析結	果			
の最下層に作用する応力状況の							_	データ整理				
検討											告書作用	戉
(口)部材実験に		文	献調査									
よる引張軸力が												
作用する壁部材				実	験計画	事前解	析	試験体作成				
力の検討										報	告書作品	ŧ.
③委員会の運営												

を両方低下する

せん断剛性は変わらない

耐力壁全体が引張だと負担できる曲げモーメントと曲げ剛性は低下する

→ 引張下での耐力壁のせん断剛性の低下はモデル上考慮されていない

→ 実際は引張壁はせん断力を負担せず隣接するピロティ柱が破壊する危険性がある

実際

モデル

実設計事例の収集

従来の骨組モデルでは引張側耐力壁の応力状態が 評価困難とみられる設計事例について情報収集し 実験試験体への設計に反映させた

Ds算定時のピロティ柱のせん断余裕度

片側壁架構から両側壁架構に修正した理由

ピロティ柱や接合部周りの損傷状況が負担率に与える影響が少ない 枠梁を十分な断面を取ることで1枚の有開口耐力壁として強度検討が可能 圧縮側と引張側が対称なためせん断力負担の差異が明確になる

- ・試験体は40%縮小スケールの連層試験体と単層試験体とする
- ・圧縮側・引張側の壁の負担せん断力を把握するため<u>荷重計</u>を設置する

(期待される成果)

- ・左右の耐力壁の引張軸力時における<u>負担せん断力(せん断剛性)を把握</u>する
- ・
 梁断面性能の違いによる負担せん断力の変化を把握する

文献調査(個別事例)

文献調査では下記の既往の研究を中心に検討した

- (a) 引張軸力が作用する壁部材のせん断強度に関する実験的研究
- (b) 引張軸力が作用する壁部材のせん断強度に関する解析的研究
- (c) 引張軸力が作用する柱部材のせん断強度に関する実験的研究
- (d) 引張軸力が作用する柱部材のせん断強度に関する解析的研究
- ・実験結果では主筋量が少ない場合に広沢平均式を下回る
- ・FEM解析ではせん断強度は広沢平均式を若干下回る程度となる
- <u>・引張軸力下の耐力壁単体の実験はあるが、耐力評価式は提案されていない</u>
- <u>・引張軸力下の壁のせん断剛性について検討された事例は無い</u>

→ 応力評価自体が現行モデルで可能であるか検討が必要

文献調査(建研データベース*1)

対象試験体は等価壁厚/壁厚が大きい試験体で,軸力比が高い状態が大きい状態 で実験が行われたものはほとんどない。

有開口耐力壁は連層かつせん断破壊型の試験体が多い。連層で1層のみを有開口 とし、上層を無開口とした本試験体に対する既往の知見はない。

有開口耐力壁試験体(158体)の内訳

*1 鉄筋コンクリート造構造実験データベース https://www.kenken.go.jp/japanese/research/str/rc_str_expdb.html 10

試験体載荷計画

耐力壁を圧縮側と引張側で並列した試験体で実験を実施する → 基本的な形状で圧縮壁と引張壁の負担せん断力を比較する

耐力壁を圧縮側と引張側で並列し、2階梁を有する試験体で実験を実施する → 枠梁の有無によって負担せん断力がどう変化するかについて検討する

13

荷重計設置計画

試験体等 製作状況

単連層試験体①

連層試験体

有限要素法解析 (京都大学)

平面2次元有限要素による静的漸増載荷解析を行った

上部構造を剛体として外力高さ8m, 10m, 12mとして検討した

コンクリート 修正Ahmadモデル, 埋込鉄筋 修正 Menegotto-Pintoモデル (トラス)

各部材の負担せん断力

各部材の負担軸力

破壊モードは靭性型の曲げ圧縮破壊

計算強度(1枚の有開口壁と見なした場合)

外力高さ(M/Q) =10m, 軸力比(\sigma_0/F_c) = 0.1と想定する 算定される終局曲げせん断力Q_{mu}は 1126 (kN)

$$M_{wu} = 0.9a_t\sigma_y D + 0.4a_w\sigma_{wy} D + 0.5ND\left(1 - \frac{\sigma_0}{F_c}\right)$$

外力高さ(M/Q) =10m, 軸力比(σ_0/F_c) = 0.1, コンクリート強度 σ_b = 42 MPa 平均広沢式で算定される終局せん断力 Q_{su1} は 1964 (kN)

$$Q_{su1} = \left(\frac{0.068 p_t^{0.23}(\sigma_b + 18)}{\sqrt{\frac{M}{QD} + 0.12}} + 0.85\sqrt{p_w\sigma_{wy}} + 0.1\sigma_0\right)t_e j$$

計算強度(圧縮壁のみせん断力負担と仮定)

コンクリート強度**o**_b = **42 MPa**

(圧縮側壁の負担軸力)=(上載(常時)軸力)+(引張側縦筋全降伏耐力)とする せん断スパンは不明のため最小値の1とする 平均広沢式で算定される終局せん断力Q_{su2}は 844 (kN)

$$Q_{su2} = \left(\frac{0.068 p_t^{0.23} (\sigma_b + 18)}{\sqrt{\frac{M}{QD} + 0.12}} + 0.85 \sqrt{p_w \sigma_{wy}} + 0.1 \sigma_0\right) t_e j$$

(FEMでは1400kN)

圧縮側壁のみせん断力を負担する場合、合計せん断力は850kNを超えない

曲げ破壊先行し、圧縮側の負担せん断力が大幅に超過するようであれば

高軸力下での壁のせん断強度式の評価精度にも同様に問題がある

従来の骨組解析モデル(せん断破壊なし)

従来の耐力壁のモデルでは軸曲げ相関を考慮することで3:2程度のせん断力負担

→ 有限要素解析結果程の負担比率の差は出ていない

軸せん断モデルによる検討

陳,松井,Hosseinらの研究は柱または壁のを1要素の面材として扱い、反曲
 点位置の1つのガウス点における主応力方向の応力歪関係からせん断剛性の
 低下性状を評価できることを示している (ひび割れ回転モデル)
 (→格子分割した各要素で計算しているのが有限要素法)

軸せん断モデルによる検討

$$\begin{pmatrix} \sigma_{x} \\ \sigma_{y} \\ \tau \end{pmatrix} = \begin{bmatrix} \bigcirc & \bigcirc & \bigcirc \\ \bigcirc & \bigcirc & \bigcirc \\ K_{1} & K_{2} & K_{3} \end{bmatrix} \begin{pmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma \end{pmatrix} \quad \bigoplus \quad \begin{pmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma \end{pmatrix} = \begin{bmatrix} \bigcirc & \bigcirc & \bigcirc \\ \bigcirc & \bigcirc & \bigcirc \\ F_{1} & F_{2} & F_{3} \end{bmatrix} \begin{pmatrix} \sigma_{x} \\ \sigma_{y} \\ \tau \end{pmatrix}$$
 水平応力は 0

せん断剛性
$$K_s = \frac{\tau}{\gamma} = \frac{\tau}{F_1 \sigma_x + F_3 \tau} = \frac{1}{\left(2F_1 \frac{(\sigma_x/2)}{\tau} + F_3\right)} = \frac{1}{\left(2F_1 \frac{1}{tan 2\theta} + F_3\right)}$$

 $K_{s} = \frac{E_{c1}E_{c2}}{2(E_{c1}sin^{2}\theta + E_{c2}cos^{2}\theta)} \quad (主応力度方向とコンクリート軸剛性の関数)$

軸せん断モデルによる検討

全体委員会

11月および2月に合計2回の委員会をオンラインで実施した

検討委員会

合計8回の委員会をオンラインで実施した

検討WG

合計5回の委員会をオンラインで実施した

次年度の検討(一部)について

(実験関係)

- ・製作試験体の実験により繰返載荷に対する性状を把握する
- ・次シリーズ試験体(柱+壁架構等)の設計・製作を行う

(解析関係)

- ・骨組解析でせん断剛性の低下させる方法の反映
- ・有限要素解析での事前解析や高軸力下での解析