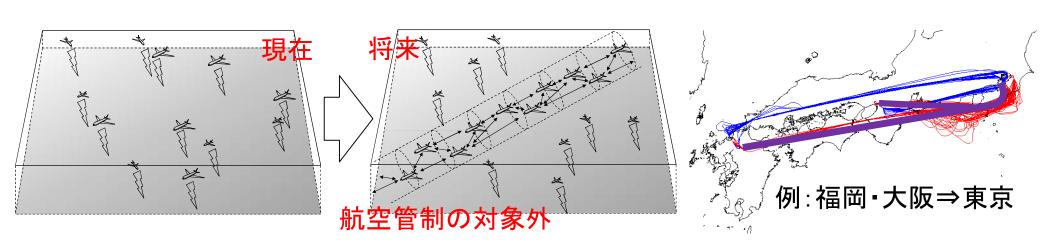
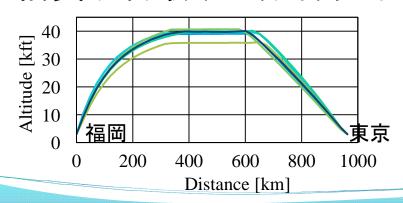
オープンデータを用いた 将来の航空交通管理の評価事例

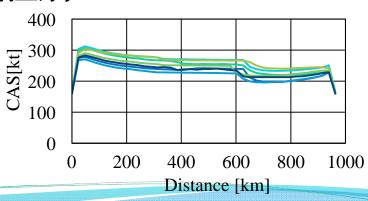
武市 昇 首都大学東京 システムデザイン研究科 航空宇宙工学域 准教授


CARATSオープンデータ活用促進フォーラム 2015年9月4日

将来の航空交通管理

- 当研究室でのオープンデータを用いた取り組み
 - (1) 自律間隔維持の応用:フローコリドー
 - (2) 四次元航法の応用:継続降下運用 (CDO)
- オープンデータの使用事例
 - 将来の運航方式がもたらし得る便益の評価
 - 燃料消費量の削減:比較対象として
 - 現在の燃料消費量 vs 将来の運航方式における消費量の比較
 - 飛行時間の精度向上:どの程度の精度になるか?
 - 将来の運航方式を検証する実験のデータソースとしての活用


フローコリドーの概要


- CARATS & NextGenで計画されている運航方式
- 混雑空港および都市圏間を接続する "細長い空域"
- フローコリドーの内部
 - 自律間隔維持(セルフセパレーション)の性能を持つ機体のみが飛行
 - 管制官の介入は不要 ⇒ 全ての航空機がほぼ最適な経路を飛行可能
- フローコリドーの外部
 - 従来通りの航空管制:自律間隔維持の性能を持たない機体
- 空域全体としての交通容量を拡大
- 装備レベルの異なる機体の混在する航空交通の取り扱いが可能

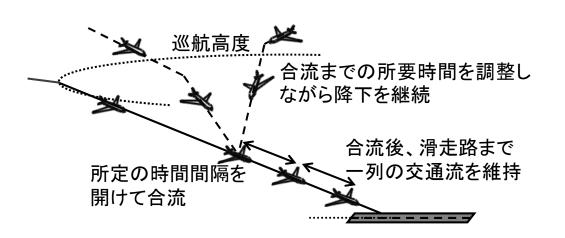
フローコリドーの便益評価

- 便益評価
 - "全ての航空機が最適経路を飛行できる"ことを想定
 - 現在と比べてどの程度の便益をもたらすか?
- ・燃料消費量の推定方法
 - 対気速度 ⇒ 抗力 ⇒ 推力 ⇒ 燃料流量
 - 位置・高度:オープンデータ
 - 気象数値予報:気象庁
 - BADAモデル: EUROCONTROL
- 消費燃料最小の飛行経路:機種別

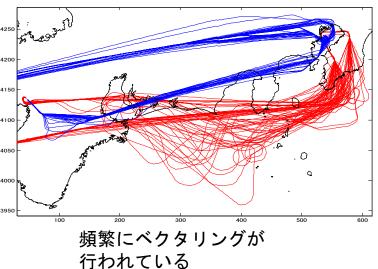
フローコリドーの便益評価

• 消費燃料・飛行時間の低減効果の評価

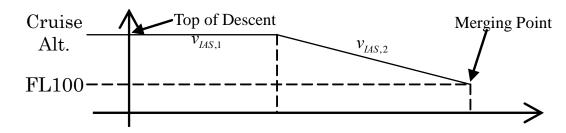
※全て標準質量を仮定

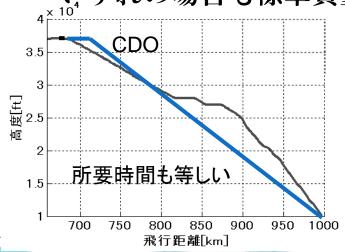

機種	機数	燃料消費量 (平均) [kg]	燃料消費量 (最適)[kg]	飛行時間 (平均) [sec]	飛行時間 (最適) [sec]
平均	2099	6.61 × 10^3	5.38×10^3	4.56×10^3	4.39×10^3
B772	877	8.15×10^3	6.62×10^3	4.54×10^3	4.37×10^3
B738	419	3.30×10^3	2.70×10^{3}	4.61×10^3	4.61×10^3
B763	263	6.63×10^3	5.41×10^3	4.56×10^3	4.16×10^3
A320	274	3.15×10^3	2.52×10^{3}	4.66×10^3	4.51×10^3
B74D	132	12.21×10^3	9.85×10^{3}	4.42×10^3	4.05×10^3
B773	81	9.59×10^{3}	8.01×10^3	4.55×10^3	4.24×10^3
B788	53	6.51×10^3	5.44×10^3	4.46×10^3	4.44×10^3

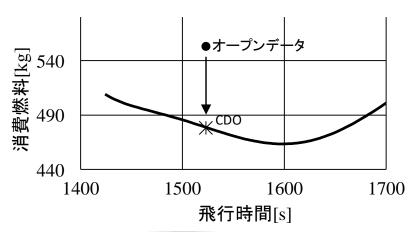
- 運航局面ごとの効果の分析
 - 巡航だけでなく降下経路にもフローコリドーの導入効果が高い
 - では降下経路の自律間隔維持は? ⇒ 新たな課題の導出


燃料消費量

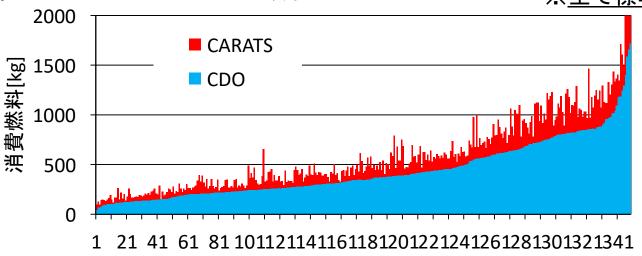
	機種	平均[kg]	最適[kg]	低減 [kg]
. [上昇	3.27×10^3	3.54×10^3	2.73×10^{2}
٠ [巡航	2.20×10^{3}	1.21×10^3	-9.92×10^2
	降下	1.15×10^3	0.63×10^3	-5.25×10^2
	全体	6.61×10^3	5.38×10^3	1.23×10^3

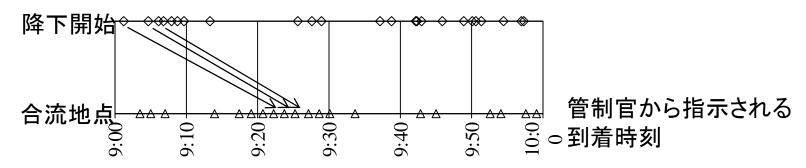

- 継続降下運用(Continuous Descent Operation: CDO)
 - 特定地点で時間基準の間隔を確保して合流
 - 特定地点:中間高度の合流地点・FAP/FAFなど
 - 降下開始から合流地点までの飛行時間を調整
 - コンフリクトを避けながら低推力で降下を継続
 - ⇒ 燃料消費量・騒音を低減できる


福岡・大阪 ⇒東京便の現在の軌跡



- CDOの効果の解析
 - 最小数の経路
 - 巡航高度 ⇒ 高度10000ft

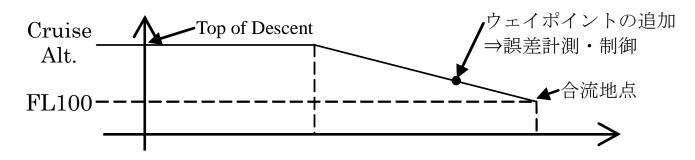

- オープンデータと等しい飛行時間・飛行距離のCDO経路
 ⇒ オープンデータの解析結果と比較 ⇒ 燃料削減効果
- 解析対象:羽田着の349便(B772・B763・A320・B738他)
 - オープンデータと同じ風況を使用
 - いずれの場合も標準質量を仮定


- 羽田空港に着陸する航空機の燃料の最適化
 - 2012年5月11日の349便を解析

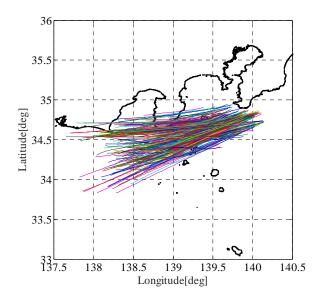
※全て標準質量を仮定

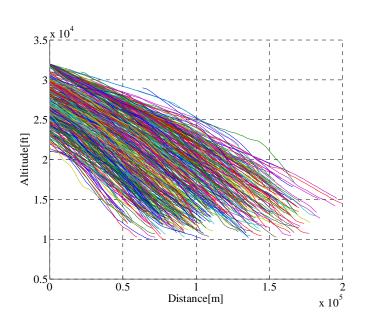
全	平均	A320(36機)	Dフフへ(この+燃)		
		/ (32 (30 pg)	B772(53機)	B763(85機)	B738(99機)
オープン データ 5	587.4	376.9	789.7	740.5	409.6
CDO 4	34.3	303.8	576.6	528.5	306.3
差 1	53.1	73.1	213.1	212.0	103.3

- スケジューリングによる安全化&高効率化
 - ・無駄なく安全な合流地点到着時間の指定
 - 実際の交通流のデータを"実験"で利用

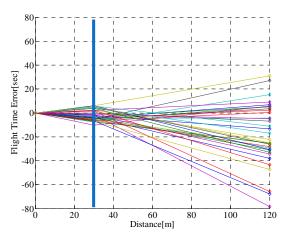


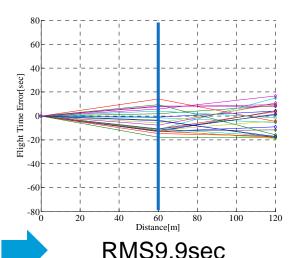
- コストの更なる低減が可能(CI=40に相当する場合)
 - コスト=燃料と飛行時間の重み付き和
 - 到着時間の調整によるコスト最小化を"実験"で実証


四次元航法の降下時間の精度向上


- CDOは到着時間の精度が重要
 - しかし合流地点到着までに誤差が生じる
 - 現在の約半数の機体:降下経路のRTAには非対応
 - 降下中に到着時間を自動的に制御できない
- 途中にウェイポイントを設置
 - 飛行時間誤差を計測
 - 飛行速度を調整して誤差の解消を試みる
 - ⇒ オープンデータで"実験"

四次元航法の降下時間の精度向上


- ・オープンデータから飛行データを抽出
 - IASがほぼ一定のデータを抽出
 - ⇒ 速度指示された実運航を模擬する
 - ・実験対象の範囲のデータを抽出
 - 西方面⇒東京
 - 継続的に降下するデータ



四次元航法の降下時間の精度向上

- 実験内容
 - 高度30000ftから15000ftまで継続的に降下することを想定
 - 途中にウェイポイントを設定し四次元航法の精度を向上
 - 通過時間誤差を計測
 - 通過後に速度を変化させて終端点の到着時刻精度を向上させる
 - ・ "実験"データとして活用:"本当の誤差"を含む

到着時間精度: RMS18.2sec

まとめ

- ・将来の運航方式の便益評価
 - 数値シミュレーションだと
 - 設定した誤差しか考慮できない
 - 誤差の振る舞いも設定できてしまう
 - どんなに詳細にモデル化しても所詮はシミュレーション
 - ・実データの利用
 - ・実際の振る舞い
 - ・単体の航空機として
 - ・交通流として
 - 様々な影響を考慮したことに相当する
 - ・限りなく事実に近い"実験"が可能に

まとめ

- オープンデータに関する考え
 - オープンデータ:事実の記録
 - データ処理により"限りなく本物に近いデータ"になる
 - "研究目的のデータ処理"の範囲では十分
 - 定性的な検証(比較評価)への活用には有意義
 - ・一方、定量的な検証の精度には限界
 - 定量的評価に必要なデータの欠落
 - 研究成果の実用化可能性の検証には別の手段が必要
- 今後の活用に有効なデータ (いずれも無理は承知ですが)
 - 質量情報
 - 有効数字2桁でも
 - 運航意図の情報: "真の誤差"の抽出
 - 航空機のFMSおよびMCPの入力
 - 管制官の指示