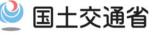

第3回 空港除雪の省力化・自動化に向けた実証実験検討委員会

- 1. 実証実験概要
 - (1)目的等
 - (2) 実施概要
 - (3) 実験装置概要



○資料概要

- 1. 実証実験概要・・・・・・・・・・・・・・・・(資料1)
 - (1)目的等
 - (2)実施概要
 - (3)実験装置概要
- 2. 実証実験結果の報告・・・・・・・・・・・・(資料2)
 - (1)検証内容
 - (2)検証方法
 - (3)検証結果(結果概要、各社報告)
- 3. 今後の取組概要・・・・・・・・・・・・・・・(資料3)

(1)目的等

1. 背景•目的

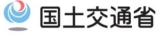
現在、我が国の空港では、2030年の訪日旅客6,000万人の目標達成に向けて、積極的な機能強化が進められている一方で、生産年齢人口の減少に伴う労働力不足が顕在化しおり、供給面での制約が懸念されている。航空局では、この課題に対応するため、官民が役割分担しながら、IoT、AI、自動化技術等の先端技術を活用した"航空イノベーション"を推進し、今後の我が国航空輸送の拡大を支えていく方針としている。

空港運用分野においては、除雪作業の労働力不足が懸念されており、省力化・自動化が求められている。航空局では、空港除雪作業の省力化・自動化を進めるにあたり、自車位置測定技術について、空港制限区域内において降雪・積雪状況で、実際運用する速度(最高40km/h)で実験を行うことで、実装に向けた課題を抽出することを目的とする。

- - · 省力化·自動化 対象車両(案)【運転操作、運転支援、除雪装置操作】

プラウ除雪車

スイーパー除雪車



ロータリー除雪車

凍結防止剤散布車

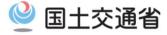
【参考】実証実験参加者 応募要件

【応募資格】

応募者は、次の何れかを満たす者とし、日本での法人格又は支店を有し、ホームページ・パンフレットなどで事業内容を確認出来るものとする。

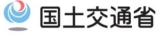
- ① 自車位置測定技術を開発又は製造している民間企業
- ② 自車位置測定技術を販売しており、かつ技術的な問合せに対応できる民間企業
- ③ ①又は②を代表とする企業共同体

【応募要件】


応募者は、以下の要件を満たすこと。

(1) 自車位置測位技術の要件

実証実験の対象とする自車位置測位技術として、以下の要件を満たす技術を提供できること。


- ア) 乾燥路面において、車両に取り付けた GPS、レーダーセンサー、カメラ等で、自 車位置を精度よく測定(誤差±50cm)した実績を有するもので、空港除雪の自動 化で効果が期待できるもの
- イ) 測定した自車位置を車載のモニター上に表示し、運転者が認識できるもの
- (2) 実証実験計画の要件
- ① 実証実験場所(新千歳空港 制限区域内のエプロン*1(駐機場)の一部エリア、広さ4が約20,000 m(200m×100m))において実施可能な計画を立案できること。(詳細 の場所は、空港の運用状況に応じて調整予定)
 - ※1 エプロン内の作業は、空港管理者と調整の上、実施すること。
- ② 実験に使用する機材の設置は、車両に穴あけ等の加工を要しない方法で計画を立案できること。

【参考】実証実験参加者一覧

				応募	專要件			
No.	ウラギのなが	応募	(1)自車位置	(2)実証実験計画				
INO.	応募者の名称	資格	方式	(ア)測定精	度	 (イ)モニタ表示	①実証実験範囲	②機材の
			7110	誤差±50 c m	実績	(1)[二分表示	(200m×100m内)	設置方法
1)	【A社】 (株)エルムデータ	0	● RTK-GNSS (実験フィルード内に基地局を設置)	○ ±40cm	0	○ タブレット	0	0
2)	【B社】 パナソニックシステム ソリューションズジャパン(株) (株)三英技研	0	● RTK-GNSS (みちびきを含むGNSS航法衛星から送 信される信号のうちL1周波数帯利用)	○ ±10cm	0	○ タブレット	0	0
3)	【C社】 アイサンテクノロジー(株) (株)建設技術研究所 (株)マップフォー	0	● 高精度3次元地図とLiDARのスキャンマッチングによる位置推定● GNSS及びIMUを用いた複合航法システム● 上記技術の環境に応じた切り替えとフュージョン	○ ±10~30cm	0	○ 外付け ディスプレイ	0	0
4)	【D社】 ㈱NTTドコモ 北海道支社	0	 RTK-GNSS (docomo IoT高精度GNSS位置情報サービス対応) 準天頂衛星みちびき対応CLAS (参考) 航空機向け次世代SBAS 	○ ±2cm (SBAS除〈)		○ ノートPC	0	0

(2) 実施概要

l. <u>実験方法</u>

- 場所:新千歳空港ノースナイトステイエプロン

- 方法: 200m×98mのフィールド内において車両を走行させ、データを取得

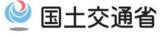
- 車両:一般車両

Ⅱ. 期間

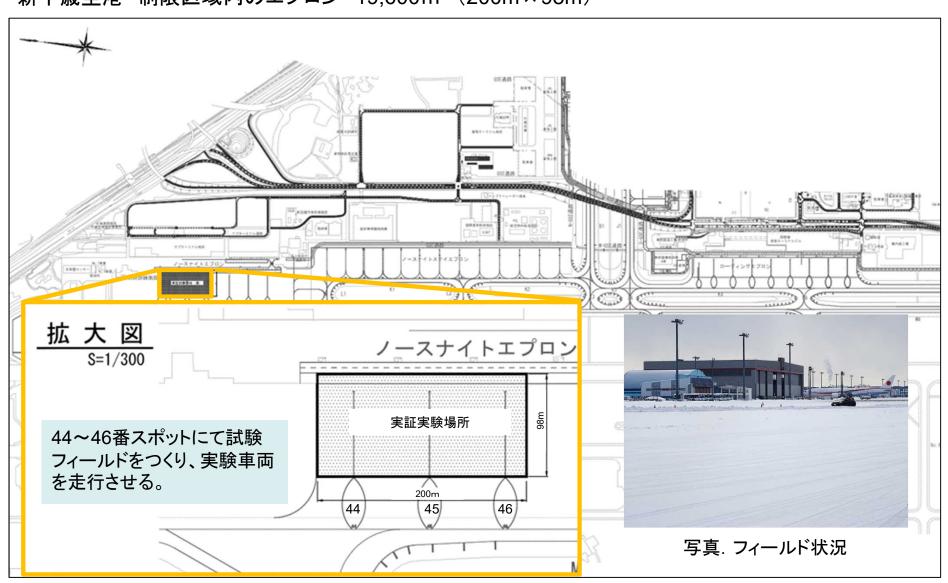
- 準備期間:2月1日(月)~2月2日(火)

- 実験期間:2月2日(火)~2月5日(金)

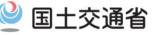
- 機材撤去:2月5日(金)


Ⅲ. 検証内容 (結果は【資料2-実証実験結果】で説明)

1) 精度 : 停止時の位置精度、移動時の位置精度、電波の干渉有無

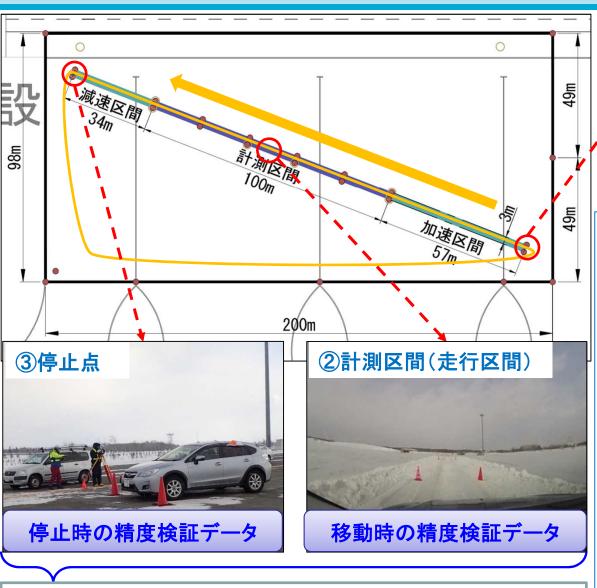

2)耐久性: 気温に依る影響、防水性能、耐振動性能

- 3) 測位の遅延性*(第2回委員会での指摘事項)
- 4) その他応募者からの提案により必要と考えられる事項
- LTE通信を用いた映像伝送試験((株)NTTドコモ北海道支社からの提案)
- ※募集要項には記載無


1) 実験場所

新千歳空港 制限区域内のエプロン 19,600㎡ (200m×98m)

2) 実験方法(1/2)



各社仕様機材の電波等が干渉しないよう、1社ずつ実証実験フィールドに入場させて検証を実施した。

2) 実験方法(2/2)

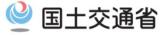
1社1回の走行実験において3回データ(静止時・移動時の検証データ)を取得

【フィールド概要】

- フィールド範囲: 200m×98m
- コース幅:3m
- コース長:191m(うち計測区間100m)

【走行方法】 以下手順で走行

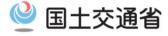
- ① 左図の右下から左上に向かって加速 区間で40km/hまで加速
- ② 計測区間を定速40km/h走行
- ③ 停止点で停車(1分30秒間停止)


【走行回数】

- 4日間のうち初日・最終日除いて、1社 あたり1日3回の走行実験実施
- ・ 1回の走行実験あたり3回走行を実施

【その他】

- ステアリングの影響を最小限にするため、コース幅を3mに狭めて走行
- ・ 停止の度に車両アンテナ位置をトータ ルステーション(以下TS)で測位


3)実施環境

実証実験時の時間・天候・気温・路面状況の概要は以下のとおり

大証夫級中	美証美験時の時間・大阪・気温・路面状況の概要は以下のとおり									
日にち	時間	天候	気温※	路面状況	兄の変化					
2月2日(火)	14:10~ 16:30	曇り	Min -5.1°C Max -3.1°C	路面降雪無						
2月3日(水)	9:30~ 16:40	時々雪	Min -10.2°C Max -8.1°C	午前1回目(10:00)迄積雪有	10:30以降路面降雪無					
2月4日(木)	9:10~ 22:00	時々雪	Min -12.8°C Max -4.4°C	18:00迄路面積雪無し	20:00以降人工圧雪コース走行					
2月5日(金)	10:15~ 12:40	曇り時々雪	Min -7.1°C Max -4.9°C	人工圧雪コース走行	<u>—</u>					

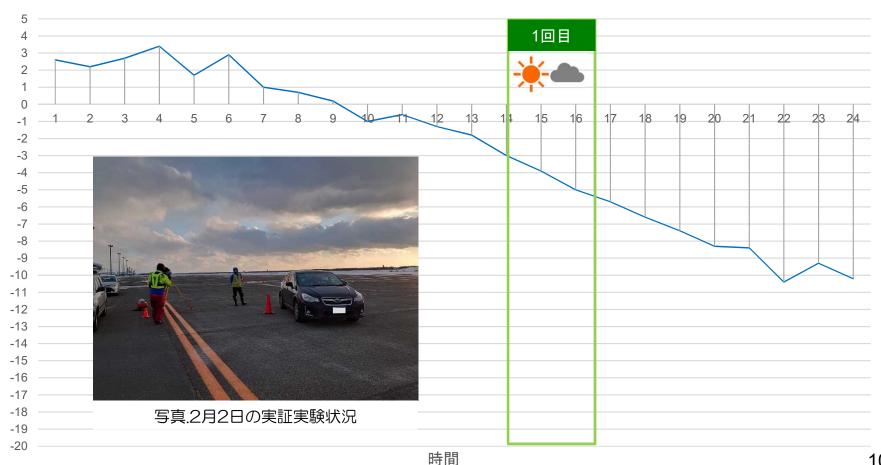
①実施環境の詳細 (2月2日(火))

実施概要:(午前)各社機材設置 (午後)実証実験実施

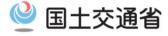
実験は計1回(14:10~16:30)のみ

実証実験中気象状況:晴れ後曇り

実証実験中路面状況:積雪無し


1日の気温変化

Min-10.6°C Max3.4°C


実証実験中気温変化

Min-5.1°C Max-3.1°C

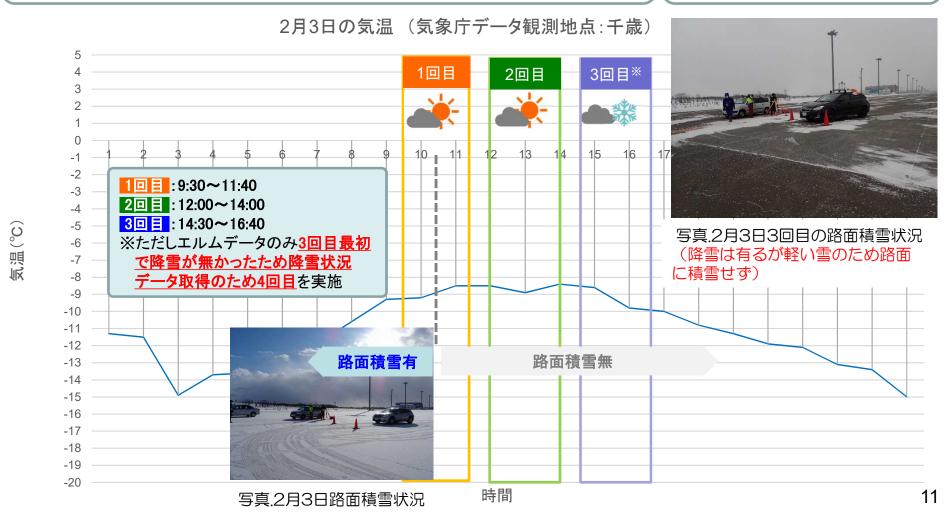
2月2日の気温 (気象庁データ観測地点:千歳)

②実施環境の詳細 (2月3日(水))

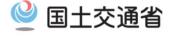
実施概要:(午前)・(午後)実験実施

実験は計3回(9:30~16:40)※1社のみ4回目実施

実証実験中気象状況:15時迄晴れ時々曇り、15時以降積雪


実証実験中路面状況:1回目途中(2社)迄積雪有り、その後無

1日の気温変化


Min-15.2°C Max-8.1°C

実証実験中気温変化

Min-10.2°C Max-8.1°C

③実施環境の詳細 (2月4日(木))

実施概要:(午前)・(午後)・(夜間)実験実施

実験は計3回(9:10~22:00)

実証実験中気象状況:1回目晴れ後曇り、2回目雪、3回目晴れ

実証実験中路面状況:3回目迄路面積雪無、3回目以降人工圧雪

1日の気温変化

Min-18.0°C Max-4.4°C

実証実験中気温変化

Min-12.8°C Max-4.4°C

2月4日の気温 (気象庁データ観測地点:千歳)

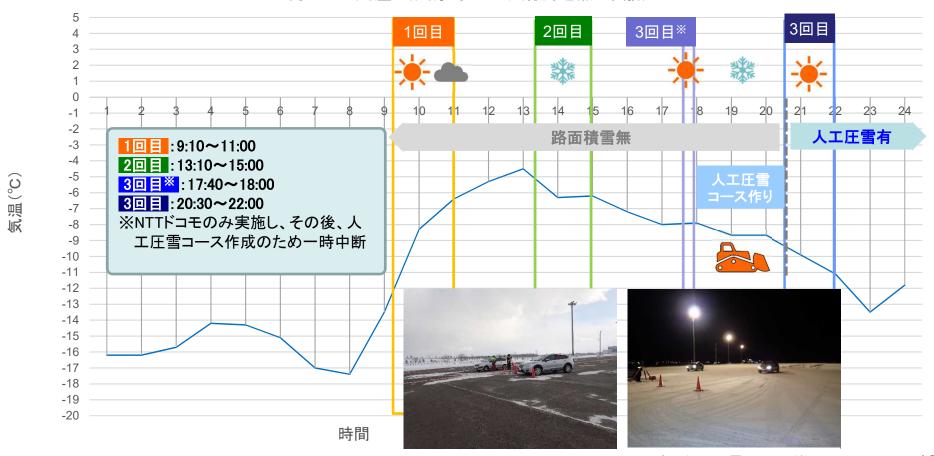
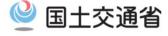



写真. 2回目路面積雪状況

写真. 人工圧雪コース状況

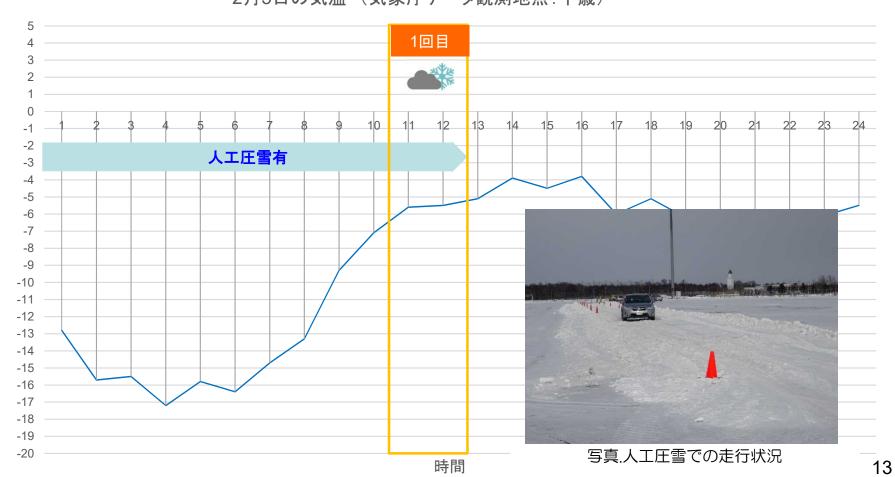
④実施環境の詳細 (2月5日(金))

実施概要: (午前) 実証実験実施・(午後)機材撤去

実験は計1回(10:15~12:40)のみ

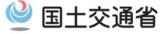
実証実験中気象状況:曇り時々降雪

実証実験中路面状況:人工圧雪コース


1日の気温変化

Min-17.2°C Max-3.7°C

実証実験中気温変化


Min-7.1°C Max-4.9°C

2月5日の気温 (気象庁データ観測地点:千歳)

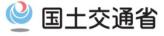
巡询(°C)

4) タイムテーブル

各社基本条件、各種時間帯のデータを取得 できるよう日々順番を入れ替えて実施

【基本条件】

• 降雪 : 有り・無し


路面積雪 : 有り・無し

各社1回あたり3回走行

			9時				12	時				15	時		17	時			21	時	
回数								1回目													
	時間					松壮	設置•	≘田 東攵				14:14	15:04	15:43	16:18	1					
2月2日	天候					1灰12	以但「	ᅃ				晴れ	曇り	曇り	曇り						
(火)	路面	(1.1. = 6	. 				·				積雪無	積雪無	積雪無	積雪無	1					
	メーカー				生によ	り地	欠雪ァ	ータ	以得(0)	ため	旧	アイサ	NTT	エルム	パナソ	1					
	, ,,		目の走行実施								ン	ドコモ	データ	ニック							
	回数 1回日 2回目						3回	目		4回目											
	時間		9:22	9:52	10:26	11:21	11:55	12:25	12:59	13:53	14:27	14:56	15:21	15:59	16:22	降	雪				
	天候		曇り	晴れ	曇り	曇り	晴れ	曇り	曇り	曇り	曇り	降雪	降雪	降雪	降雪	4	する				
(水)	路面		積雪有	積雪有	積雪無	積雪無	積雪無	積雪無	積雪無	積雪無	積雪無	積雪無	積雪無	積雪無	積雪無		-				
	メーカー		エルム	パナソ	アイサ	NTT	エルム	パナソ	アイサ	NTT	エルム	パナソ	アイサ	NTT	エルム	回目実施					
	,,,		データ	ニック	ン	ドコモ	データ	ニック	ン	ドコモ	データ	ニック	ン	ドコモ	データ						
	回数			1 🖻	1目				2回目							3回目 3回			4目		
	時間		9:08	9:36	10:26	11:13			13:13	13:43	14:21	14:47				17:37		20:27	20:57	21:34	21:49
	天候		晴れ	晴れ	晴れ	曇り			降雪	降雪	降雪	降雪				晴れ	中	晴れ	晴れ	晴れ	晴れ
(木)	路面		積雪無	積雪無	積雪無	積雪無			積雪無	積雪無	積雪無	積雪無				積雪無	断	積雪有	積雪有	積雪有	積雪有
	メーカー		パナソ	アイサ	NTT	エルム			パナソ	アイサ	NTT	エルム				NTT		NTT	エルム	アイサ	パナソ
	,,,		ニック	ン	ドコモ	データ			ニック	ン	ドコモ	データ				ドコモ		ドコモ	データ	ン	ニック
	回数						1 🖪	目													
	時間					10:16	11:19	12:04 12:31								人工圧雪コースを作成					
2月5日	天候					曇り	曇り	降雪	曇り												FIX
(金)	路面					積雪有	積雪有	積雪有	積雪有	積雪有 機材撤						し再度試験			、	施	
	メーカー					アイサ	NTT	エルム	パナソ												
					ン	ドコモ	<mark>゠゙゠゙゙゙゙゙゙゙゠゙゙゙゙゙゙゙゚゠゙゙゙゙゙゙゙゠゙゙゙゙゙゙゚</mark> ゠゙゠ゕゟ゠゚゚゚゚゚゙゚゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠														
	•																				

赤字:人工圧雪

(3)実験装置概要

No.	実証実験参加者	自車位置測定技術 方式
1)	(株)エルムデータ	RTK-GNSS (実験フィールド内に基地局を設置)
2)	・パナソニックシステムソリュー ションズジャパン(株) ・(株)三英技研	RTK-GNSS (みちびきを含むGNSS航法衛星から送信される信号 のうちL1周波数帯利用)
3)	アイサンテクノロジー(株)(株)建設技研研究所(株)マップフォー	・高精度3次元地図とLiDARのスキャンマッチングによる位置推定 ・GNSS及びIMUを用いた複合航法システム ・上記技術の環境に応じた切り替えとフュージョン
4)	(株)NTTドコモ 北海道支社	RTK-GNSS (docomo IOT高精度GNSS位置情報サービス対応) 準天頂衛星みちびき対応CLAS (参考)航空機向け次世代SBAS

1)(株)エルムデータ(1/2)

今回の実験で使用する装置は、RTK-GNSS方式にて位置を特定するものである。

機器の構成は、位置の補正データを送信する基地局機(K-KST-R02-B)、車両に設置し実際の位置情報を特定する車載器(K-KST-R02-R)、車内で走行状況を確認するために軌跡を表示するタブレット(dtab)となっている。なお、基地局は、事前に実験エリア内に設定した基準点に設置するものである。

基地局機(K-KST-R02-B)

車載機(K-KST-R02-R)

タブレット(dtab)

1)(株)エルムデータ(2/2)

写真1. 車両外観

写真2. アンテナ

写真3. 車両搭載機材

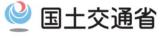
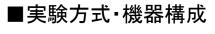


写真4. 表示モニタ(タブレット)

写真5. 基地局


2)パナソニックシステムソリューションズジャパン(株)

(株)三英技研 (1/2)

準天頂衛星「みちびき」を含むGNSS航法衛星から送信される複数 周波数帯の衛星信号のうち、L1周波数帯(1575.42MHz)で送信され る衛星信号情報のみを利用したネットワーク型1周波RTK-GNSS測 位方式になる。

本車載装置は、堅牢タブレットパソコンと2つのGNSSアンテナ及び 2つのGNSS受信モジュールを内蔵したGNSS受信ユニットで構成さ れている。

・ネットワーク型1周波RTK測位

機器名称	型式
タブレットPC	FZ-G1R3001VJ
RTK測位モジュール(アンテナ×2)	_

■取付方法

アンテナ位置

・タブレット固定方法

・自車位置のモニタ表示

2) パナソニックシステムソリューションズジャパン(株)

🥝 国土交通省

(株)三英技研 (2/2)

車両前方メインアンテナサブアンテナ

写真1. 車両外観

写真2. アンテナ

写真3. 車両搭載機材

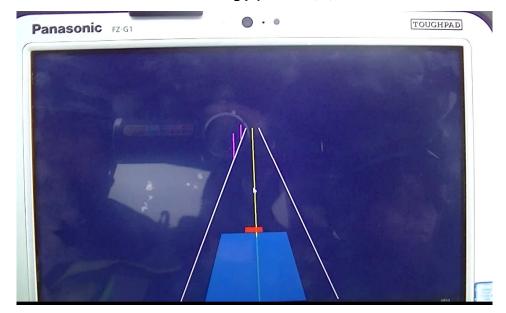
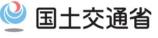
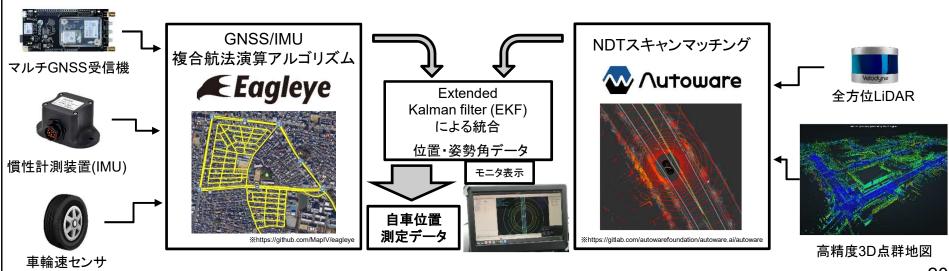



写真4. 表示モニタ(タブレット)

3) アイサンテクノロジー(株)・(株)建設技術研究所 (株)マップフォー (1/2)


1. GNSS/IMUの複合航法演算アルゴリズム

GNSS受信機にて緯度経度の測位情報をセンシングし、並行して慣性計測装置及び車輪速センサデータを複合演算している。車両の運動と辻褄の合わないGNSSデータを除去することで位置精度を向上しているのが特徴。

2. NDTスキャンマッチング(マップマッチング)

あらかじめ作成した高精度3次元地図に対して、走行中のLiDARセンサで計測するマッピングデータをマッチングする手法。3次元形状を照合し、地図内の位置及び姿勢を推定するのが特徴。

* 今回の実証実験では、上記1, 2それぞれの自己位置推定データと統合した形の3パターンを検証。

3) アイサンテクノロジー(株)・(株)建設技術研究所 (株)マップフォー (2/2)

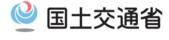


写真2. アンテナ・LiDAR

写真1. 車両外観

写真3. 車両搭載機材

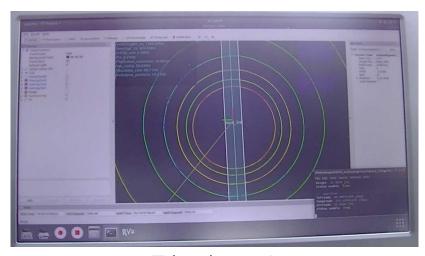
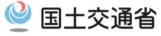
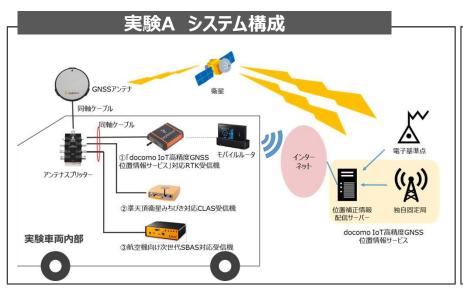
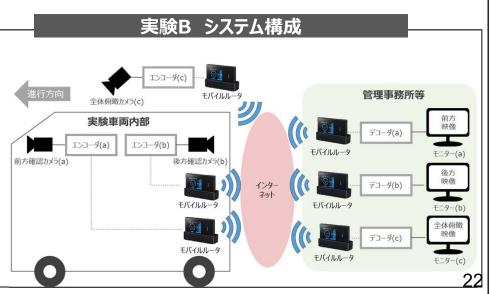



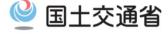
写真4.表示モニタ

4)(株)NTTドコモ 北海道支社(1/3)




■実験A

衛星からの電波を車両天井部に設置したGNSSアンテナが受信し、アンテナスプリッターを通じて3つの受信機がデータを取得する。①はモバイルルータに接続されており、モバイルネットワークを通じてRTKの補正情報(docomo loT高精度GNSS位置情報サービス)を受け取り位置情報を計算する。②③は受信機単独で位置情報を計算する。それぞれの位置情報は接続したPCでリアルタイムに確認することが可能となる。


■実験B

車両内のフロントガラス、リアガラス及び車両外の任意地点にそれぞれ1台、合計3台のカメラを取り付ける。それぞれのカメラにエンコーダを取り付け、モバイルネットワークを通じて管理事務所等の別拠点に映像伝送を行う。別拠点ではデコーダ(ノートPC等)を用いてリアルタイムに映像を確認することが可能となる。

4)(株)NTTドコモ 北海道支社(2/3)

位置精度検証の使用機材・設置状況

写真1. 車両外観

写真2.アンテナ

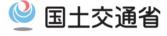


写真3. 車両搭載機材

写真4. 表示モニタ(ノートPC使用)

4)(株)NTTドコモ 北海道支社(3/3)

【追加提案】リアルタイム映像伝送の装置

写真1. 車両後部座席 通信機器

写真2. 車両後部座席(カメラ)

写真4. 北除雪センター内の設置 機材

写真5. 通信状況確認用のPC画面