空港土木施設設計要領 (構造設計編)

平成31年4月 (令和4年4月一部改正)

国土交通省航空局

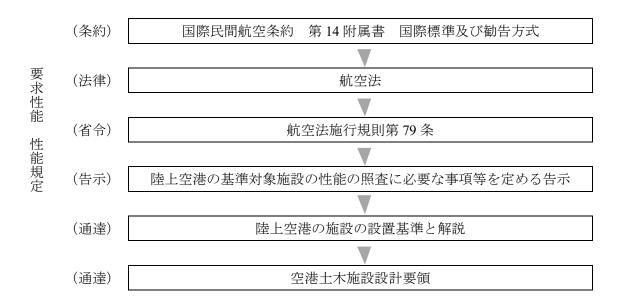
空港土木施設設計要領 (構造設計編) 改正履歴表

改正番号	改正年月日	適用年月日	項番号	改正概要
国空計第 135 号	平成 31 年 3 月 29 日	平成31年4月1日	全体	空港土木施設設計
国空空技第 561 号	十八 31 午 3 万 29 日	十八 31 午 4 月 1 日	土件	要領の制定
国空計第 29 号	令和3年4月28日	令和3年4月30日	付録-2	一部改正
国空空技第 34 号	7 7 11 3 午 4 月 28 日	77年4月30日	付録-4	一即以正
国党社等 200 旦			3.4.12	
国空計第 288 号 国空空技第 540 号	令和4年3月18日	令和4年4月1日	付録-6	一部改正
国生全权弗 340 万			設計例	

背 景

空港土木に関する技術基準は、昭和 43 年 9 月に「空港土木施設設計施工基準作成委員会」を設置して検討を開始し、「空港アスファルト舗装構造設計要領」及び「空港コンクリート舗装構造設計要領」を作成した後、昭和 48 年 3 月に最初の「空港土木施設設計基準」をとりまとめ、その後、航空輸送需要の増大などの航空界の発展に伴う空港を取りまく情勢の変化を踏まえ、昭和 56 年 3 月に「空港土木に関する技術問題協議会」及びその下部機関の「空港土木技術基準等整備委員会」を設置して技術基準の整備体系の強化を図り、昭和 57 年 10 月に「空港土木施設設計基準」を全面的に見直し、昭和 59 年 10 月には「空港舗装補修要領(案)」を、昭和 60 年 8 月には「空港排水施設・地下道・共同溝設計要領」を作成し、その後も、新型航空機の導入や国際民間航空条約第 14 付属書の改正に呼応して、平成 11 年 4 月に「空港舗装構造設計要領」を作成し、適時「空港土木施設設計基準」等の一部改訂を実施している。

平成 20 年 3 月,WTO (世界貿易機構)における「政府調達協定」や、TBT 協定 (貿易の技術的障害に関する協定)などを背景とした国際規格との整合を図りつつ、「土木・建築にかかる設計の基本」に基づく性能設計に沿った設計手法(性能規定)を導入するため、外部有識者で構成する「空港土木施設の設計手法検討委員会」を設置し、平成 20 年 6 月に、空港土木施設の要求性能を示す基準(航空法施行規則第 79 条)と性能の照査に必要な事項を定めた告示(国土交通省告示第 800 号)を定め、これまでの「空港土木施設設計基準」を、基準(航空法施行規則第 79 条)の解説書と位置付けて「空港土木施設の設置基準解説」に改め、性能の照査の方法の例などを示す「空港舗装設計要領」、「空港土木施設構造設計要領」及び「空港土木施設耐震設計要領」をとりまとめ、抜本的な技術基準の体系の見直しを図っている。


基準(航空法施行規則第79条)の解説書の「空港土木施設の設置基準解説」は、空港土木施設の設計に際して各施設が具備すべき位置、形状、強度等を決定するための事項を示すとともに設計の合理化並びに効率化を図ることを目的として定めたものであるが、近年、国際民間航空機関(ICAO)では、ICAOUSOAP(国際航空安全監視監査プログラム)等を導入して、さらなる航空の安全の確保や規制の強化に取り組んでおり、このような国際的な動向を踏まえ、航空機の航行の安全の確保ために最低限遵守しなければならない事項をより明確に示すことを目的として、平成31年3月に規制の内容に特化した基準(航空法施行規則第79条)の解説書となる「陸上空港の施設の設置基準と解説(以下「基準解説」という。)」が策定された。

「基準解説」の策定に伴い、これまで設計の合理化並びに効率化を図ることを目的として作成した「空港土木施設の設置基準解説」は、「基準解説」の規定や、計画・設計上の留意事項等を示す「空港土木施設設計要領(施設設計編)」に改め、また、施設に求められる性能の照査方法の例などを示す「空港舗装設計要領・空港舗装補修要領」、「空港土木施設構造設計要領」及び「空港土木施設耐震設計要領」は、「空港土木施設設計要領(舗装設計編)」、「空港土木施設設計要領(構造設計編)」及び「空港土木施設設計要領(耐震設計編)」に改め、全4編で構成する「空港土木施設設計要領(以下「設計要領」という。)」を定めて、基準と要領の明確化を図ることとした。

基準体系

わが国の空港土木に関する基準は、下図に示すとおり、国際民間航空条約の規定並びに同条約の附属書として採択された国際標準及び勧告方式に準拠して定めた航空法、陸上空港等の設置の基準を規定する航空法施行規則第79条、陸上空港の基準対象施設の性能の照査に必要な事項等を定める告示、「基準解説」により構成している.

「設計要領」は、「基準解説」の下部に位置付けられているが、その内容は、空港土木施設の計画・設計の合理化並びに効率化を図ることを目的とし、これまでの実績を踏まえた標準的な考え方や推奨する方法、施設に求められる性能の照査方法の例などを示すものであって、計画・設計の方法等を拘束するものではない。

要領の構成

「設計要領」は、次の4編により構成する.

施設設計編:「基準解説」の規定(施設の要求性能,性能規定),計画・設計上の留意事項等

舗装設計編:舗装の設計方法,性能照査の方法の例等構造設計編:構造物の設計方法,性能照査の方法の例等

耐震設計編:空港の施設等の耐震設計方法等

施設設計編は、「基準解説」の規定を明記した上で、計画・設計上の留意事項等を併記する構成を基本とし、実線枠囲いに【基準】を、その下に【解説】と【要領】を示している。なお、「基準解説」に規定されていない施設については、「設計要領」のみの記載となるが、この場合の実線枠囲いには、設計上の原則や基本的な事項を示している。また、舗装設計編、構造設計編及び耐震設計編については、実線枠囲いに設計上の原則や基本的な事項を示し、枠囲いの下に、細部の手法や考え方を示している。

字句の意味

「設計要領」で用いる字句の意味は、下表に示すとおりとする.

分類	適用上の位置づけ	末尾に置く字句の例
必須	技術的に明確であり遵守すべき事項	~とする (こと). ~である (こと).
考え方	目的や概念、考え方を記述した事項	~としている. ~必要がある.
標準	条件によって一律に規制することはできないが、特段の事情がない限り記述に従い実施すべき事項	~を標準とする. ~による.
推奨	条件によって実施することがよい事項	〜望ましい. 〜することができる. 〜としてもよい.
例示	・適用範囲や実施効果について確定している 段階ではないが、条件等によっては導入する ことが可能な技術等の例示 ・条件等によって限定的に実施できる技術等 の例示 ・具体的に例示することにより、技術的な理解 を助ける事項	〜場合がある. 〜に示している. 例えば〜.

目 次

空港土木施	ā設設計要領(構造設計編)	
第1章	総則	
1. 1	目的	1
1. 2	適用	1
第2章	構造設計の基本	
2. 1	総説	2
2. 2	要求性能	2
2. 3	性能の照査	3
2. 3.	1 構造設計で考慮する限界状態	5
2. 3.	——————————————————————————————————————	5
2. 3.		
2. 3.		
2. 4	安全係数	
2. 5	対象施設の構造形式	7
第3章	作用	
3. 1	一般	8
3. 2	作用の特性値	8
3. 3	作用係数	9
3.4	作用の種類と特性値 1	0
3. 4.	1 一般 1	0
3. 4.	2 載荷重1	0
3. 4.	3 自重1	9
3. 4.	4 地盤条件 2	0
3. 4.	5 土圧及び水圧 2	1
3. 4.	6 地震動	2
3. 4.	7 波浪	3
3. 4.	8 津波	3
3. 4.	9 地盤の沈下	3
3. 4.	10 地盤の液状化 2-	4
3. 4.	11 環境作用 2	4
3. 4.	12 風及びブラスト 2	5
3. 4.	13 その他 2	6
第4章	材料の設計用値	
4. 1	総則2	7
4. 2	コンクリート	7
4. 2.	1 一般	7
4. 2.	2 強度2	8

	4.	. 2.	3	疲労強度	29
	4.	. 2.	4	ヤング係数	30
	4.	. 2.	5	ポアソン比	30
	4.	. 2.	6	その他	30
4	. 3		鋼材		30
	4.	. 3.	1	一般	30
	4.	. 3.	2	強度	31
	4.	. 3.	3	疲労強度	32
	4.	. 3.	4	ヤング係数	33
	4.	. 3.	5	ポアソン比	33
	4.	. 3.	6	その他	33
4	. 4		管材		33
4	. 5		盛土	材料	40
4	. 6		埋立	材料	41
第:	章	<u> </u>	¬ :	ンクリート構造物	
5	. 1		一般	· · · · · · · · · · · · · · · · · · ·	42
5	. 2			·	
	5.	. 2.	1	載荷重	43
	5.	. 2.	2	土圧	43
5	. 3		設計	・応答値の算定	45
	5.	. 3.	1	一般	45
	5.	. 3.	2	構造物のモデル化	45
	5.	. 3.	3	作用のモデル化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	45
5	. 4		性能	:照査	46
	5.	. 4.	1	一般	46
	5.	. 4.	2	安全性に関する照査	47
	5.	. 4.		使用性に関する照査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	5.	. 4.	4	耐久性に関する照査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	47
5	. 5		構造	細目	48
	5.	. 5.	1	一般	48
	5.	. 5.	2	かぶり	48
	5.	. 5.	3	鉄筋の配置	48
第 (章	<u> </u>	管村	溝造物	
6	. 1		一般		49
6	. 2		基礎	構造	49
6	. 3		作用	[50
	6.	. 3.	1	一般	50
	6.	. 3.	2	載荷重	50
	6.	. 3.	3	土圧	50
6	. 4		性能	照査	53

	6.	. 4.	1	一般	53
	6.	. 4.	2	剛性管の性能照査!	53
	6.	. 4.	3	たわみ性管の性能照査!	55
第7	1 章	<u> </u>	道路	各舗装	
7	. 1		一般		58
7	. 2		作用	······································	59
7	. 3		性能	照査	59
第 8	章	重	フュ	こンス構造	
8	. 1		一般		61
8	. 2		作用		61
8	. 3		性能	照査(62
	8.	. 3.	1	場周柵	62
	8.	. 3.	2	ブラストフェンス	63
第(章	<u></u>	橋翔		
9	. 1		一般		66
9	. 2		作用		66
9	. 3		性能	照査	67
		-		構造物・護岸	
1	0.	1	一般	······································	70
1	0. 2	2	盛土	地盤	70
	10	0. 2	. 1	一般	70
	10	0. 2	. 2	作用	72
	10	0. 2	. 3	性能照査	72
	10	0. 2	. 4	構造細目	76
1	0. 3	3	切土	地 <u>盤</u>	77
	1(0. 3	. 1	一般	77
		0. 3		作用	
		0. 3		性能照査	
				構造細目	
1				地盤	
				一般	
		0. 4		作用	
				性能照査	
				構造細目	
1					
				一般	
				作用	
				性能照査	32
		-		レスティングシステム	
1	1. '	1	一般		84

11. 2	作用	84
11.3	性能照査	84
付録		
付録-	-1 航空機荷重の諸元	付- 1
付録-	-2 弾性解析による鉛直方向地中応力の算出方法の例	付- 9
付録-	-3 ボストンコード法を利用した鉛直方向地中応力の考え方の例	付-21
付録-	-4 既設表面排水溝グレーチングの構造照査の例	付-23
付録-	-5 材料及び許容応力度	付-35
付録-	-6 設計風速の設定例	付-48
付録-	-7 航空機ブラストコンター	付-54
付録-	-8 アレスティングシステム	付-55
参考文献	₹	
設計例等		
例-1	構造物の地盤支持力の設計例	例- 1
例-2	法面保護工の選定方法および維持管理方法例	例- 4
例-3	埋立地盤の改良範囲の検討例	例- 15
例-4	限界状態設計法によるボックスカルバートの設計例	例- 16
例-5	限界状態設計法によるエプロン内 U 型側溝の設計例	例- 61
例-6	既設ボックスカルバートの構造照査例	例- 78
例-7	既設エプロン内 U 型側溝の構造照査例	例-133
例-8	アレスティングシステムの設計例	例-146

第1章 総則

1.1 目的

空港土木施設設計要領(構造設計編)(以下「構造設計編」という.) は、空港土木施設の構造設計における各施設の設計手順の例及び性能照査の方法の例等を示したものであり、施設の設計の合理化並びに効率化を図ることを目的としている.

- (1) 構造設計編は、技術的な観点から空港土木施設が満たすべき性能を示すとともに、現在の技術水準を考慮した性能照査の方法の例等を示したものであり、設計者において各施設に求められる性能を十分に理解し、その性能を満足することが合理的に証明できれば、必ずしも設計方法をある一定の方法に限定するものではない.
- (2) 構造設計編では、現時点の設計技術水準において、限界状態設計法の適用が可能と考えられるコンクリート構造物の性能照査は、限界状態設計法によることを標準とし、それ以外の構造形式に対する性能照査方法は、従来の許容応力度設計法の適用を可能としている。

1.2 適用

- (1) 構造設計編は、空港土木施設設計要領(施設設計編)(以下「施設設計編」という.) に規定する「その他の施設」を対象としている.
- (2) 構造設計編は、上記の施設に関する、材料と設計用値、作用、各構造形式の設計方法、性能照査の方法の例等について規定している.
- (1) 構造設計編では、設計の基本事項、設計に必要な材料と設計用値、作用等について記載するとともに、各施設において一般的な構造物の設計方法、性能照査方法の例を記載している.
- (2) 耐震性を考慮する必要性、考慮すべき設計地震動、求められる耐震性能の詳細は、空港土木 施設設計要領(耐震設計編)(以下「耐震設計編」という.) に示している.

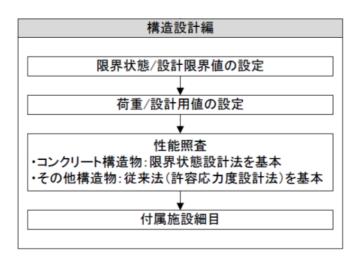


図-1.2.1 本要領の基本構成

第2章 構造設計の基本

2.1 総説

空港土木施設の構造設計においては、設計供用期間において当該施設が要求性能を満足することを確認するため、当該施設に想定される作用に対し、構造物や部材が限界状態に達しないことを適切な方法により照査する必要がある.

- (1) 構造物の設計にあたっては、当該施設の設計供用期間を設定し、施設の目的、周辺利用状況との関係等、当該施設の利用状況を適切に考慮した上で、構造物が安全性、使用性、修復性、耐久性、環境等に関して要求された性能を満足することを照査する必要がある。なお、設計供用期間が、性能照査における作用の想定及び材料の選定等に影響を与えることに留意する必要がある。
- (2) 構造物の設計は、設定された各施設の構造種別・構造形式、規模・形状等に対し、要求性能の設定、構造詳細の設定、要求性能の照査を行う一連の作業で構成される.
- (3) 構造物の要求性能は、構造物の使用目的、重要度などを考慮して、適切に設定する必要がある.
- (4) 構造詳細の設定では、設定された構造形式に対して、部材寸法、使用材料等の性能の照査で 必要とされる情報の設定を行うものとする.
- (5) 要求性能の照査では、設定された構造詳細の情報を用いて、設定された要求性能に対する照査を行うものとする.

2.2 要求性能

- (1) 構造物には、施工中及び設計供用期間内において、構造物の使用目的に適合するために要求される全ての性能を設定するものとする.
 - 1) 安全性

安全性は、想定されるすべての作用のもとで、構造物が使用者や周辺の人の生命や財産を脅かさないための性能とする。安全性には、構造物の構造体としての安全性と機能上の安全性があり、これらの両者の要求性能を設定すること。

2) 使用性

使用性は、想定される作用のもとで、構造物の使用者や周辺の人が快適に構造物を使用するための性能、及び構造物に要求される諸機能に対する性能をそれぞれ設定すること.

3) 修復性

修復性は、地震の影響等の偶発荷重等によって低下した構造物の性能を回復させ、継続的な使用を可能にする性能とする. 修復性は、構造物の修復の難易度や、性能の低下が及ぼす全ての要因を考慮して設定すること.

4) 耐久性

耐久性は、想定される作用のもとで、構造物中の材料の劣化により生じる性能の経時的な低下に対して構造物が有する抵抗性をいう。耐久性は、設計供用期間にわたり安全性、使用性、修復性の要求性能を満足するように設定すること。

5) その他の要求性能

環境や景観などの要求性能は必要に応じて設定するものとする.

(2) 構造物の設計供用期間は、構造物に要求される供用期間を適切に定めるものとする.

(1) 設計供用期間の設定にあたっては, 表-2.2.1 に示す ISO2394「構造物の信頼性に関する一般原則」における設計供用期間の概念分類を参考にすることができる.

クラス	想定設計供用期間(年)	例	
1	1-5	仮設構造物	
2	25	交換構造要素,	
2	23	例えば橋台梁やベアリング	
3	50	建物と他の公共構造物、	
3	50	下記以外の構造物	
		記念的建物,	
4	100 又はそれ以上	特別の又は重要な構造物,	
		大規模橋梁	

表-2.2.1 ISO2394 における設計供用期間の概念分類の例

- (2) 安全性は、変動作用や地震等偶発作用の影響による破壊や崩壊等の構造物の力学上定まる性能と使用目的や機能の喪失から定まる性能に大別される.機能上の安全性とは、構造物の破壊や崩壊等には影響がないが、人の生命や財産を脅かすような事象が生じないための性能である.
- (3) 使用性は、快適に構造物を使用するための性能と通常の状態での諸機能に対する性能である.
- (4) 修復性は、地震の影響等の偶発作用等により構造物の性能低下が生じた場合の性能回復の難易度を表す性能である。修復性は、構造物の損傷に対する修復の難易度のみならず、被災後の点検のしやすさ、復旧資材の確保、復旧技術の向上などのハード面や、復旧体制などのソフト面の整備の有無に大きく左右される。また、修復しないで使用可能な状態や、機能が短期間で回復できる程度の修復の必要な状態を念頭において、作用の規模に応じた要求性能のレベルを設定するのがよい。
- (5) 耐久性は、安全性、使用性、修復性等の要求性能が設計供用期間中の全ての期間にわたり確保されることを目的に設定されるものであり、これらの性能と独立ではなく、これらの性能の経時変化に対する抵抗性となる。一般的には、設計供用期間中には環境作用による構造物中の各種材料劣化により不具合が生じないことを構造物の耐久性の要求性能として設定し、この前提が満足されているもとで、安全性、使用性、修復性等の要求性能に関する照査を行う方法がとられている。

2.3 性能の照査

空港土木施設の性能照査においては、当該施設の要求性能に対し限界状態を設定し、当該施設に想定される作用に対して、当該施設の構造物又は部材が限界状態に達しないことを確認する.また、性能照査にあたっては、施工中及び設計供用期間中の作用の経時変化を考慮する必要がある.

(1) 航空需要増加による航空機材の大型化等により,当初の想定を上まわる作用が想定される場合には,必要な性能照査を行い,当該施設の構造物又は部材に対しての限界値を上まわる場合には,改良,補強等の対策を講じる必要がある.ただし,耐震性は,耐震設計編における

- 空港全体の総合的な耐震性の検討を踏まえた照査を行う必要がある.
- (2) 限界状態は、一般に要求性能である安全性、使用性、修復性及び耐久性に対して、2.3.1「構造設計で考慮する限界状態」を参照して設定することができる.
- (3) 現在の技術的知見が不十分等の理由により、設計応答値や設計限界値及び構造物係数等を設定しがたい場合は、適合みなし規定として、過去の経験に基づく方法によることができる。また、小規模な構造物などにおいては詳細な調査、設計を行い合理的な断面で施工するよりも、多少、安全側に配慮された仕様であっても、設計を簡素化した方がトータルコストが小さくなる場合が多い。
- (4) 本要領の照査方法は、限界状態設計法を基本としているが、現在の空港土木施設の技術的知見において、限界状態設計法の適用が可能な構造物は、コンクリート構造物である。そこで、コンクリート構造物に対しては限界状態設計法を、その他の構造物に対しては許容応力度設計を標準的な照査方法としている。コンクリート構造物に対する要求性能、照査項目、照査内容の例を表-2.3.1 に示す。

表-2.3.1 コンクリート構造物に対する要求性能、照査項目、照査内容の例

要求性能	目標性能 の項目	照査項目 (限界状態)	照査内容	備考(照査実施の判断等)		
		NC == 10 4m	断面力	設計荷重のもとですべての構成部材が断面破壊の限界		
		断面破壊	変位・変形量	状態に至らないことを照査することが原則		
	構造物または 部材の破壊	疲労破壊	断面力·応力度	設計荷重のもとですべての構成部材が疲労破壊の限界 状態に至らないことを照査		
安全性		構造物の安定	変位•変形量	設計荷重のもとで構造物の安定の限界状態に至らない		
		将起物00女定	地盤反力・揚圧力	ことを照査することが原則		
	公衆安全性	コンクリート剥落	塩化物イオン濃度	必要に応じて実施 耐久性の検討を満足すれば公衆安全を満足するとみなし		
	ANSTE		中性化深さ	てよい		
	機能性	水密性	ひび割れ幅	地下構造物, 水理構造物, 貯水槽, トンネル等 水密性を要求しない場合は照査必要なし		
	100 HE II	23×144 (at.	構造体の透水量	防水シート・防水処置等の施工対策による代替可		
	快適性	外観	ひび割れ幅	ひび割れが不安感等を与えず構造物の使用を妨げない		
使用性			変位•変形量	PC構造はひび割れ幅による照査を省略可		
		1大週1生	1大週1生	走行性·歩行性	変位•変形量	快適性の保持,過大な変位による損傷防止,美観等 部材長さが断面高さに比べて十分に短い場合照査省略 可
		振動	周期•変位	必要に応じて実施(とくに重要な場合に実施) 一般にコンクリート構造物の騒音・振動は、鋼構造等他 の構造形式と比較し、問題になることは少ない		
	公衆安全性	損傷	断面力·変形等	耐火性等必要に応じて実施		
			ひび割れ幅	塩害及び中性化による鋼材腐食を防止 鋼材腐食は耐久性低下、水密性等機能低下、過大な変:		
		鋼材腐食	塩化物イオン濃度	形,美観の低下などの要因となる 塩害及び中性化のおそれがない環境の場合,イオン濃 度及び中性化深さによる照査は省略可		
耐久性	_		中性化深さ	ただしひび割れ幅照査は実施が望ましい		
川八江			相対動弾性係数	劣化因子の侵入によりコンクリートに有害な損傷が発生 しないことを照査 コンクリート凍結の恐れがない場合相対動弾性係数によ		
		コンクリート劣化	化学的浸食深さ	る照査は省略可 化学的浸食の恐れがない一般の環境の場合、化学的浸 食による照査は省略可		
			アルカリ骨材反応	アルカリ骨材反応に対する定量的評価方法は確立され ておらず、施工時の対策実施により照査は省略可		

2.3.1 構造設計で考慮する限界状態

構造設計で考慮する限界状態としては以下があり、要求性能を考慮して適切に選定する必要がある.

(1) 終局限界状態:安全性の照査

(2) 使用限界状態:使用性・耐久性の照査

(3) 疲労限界状態:安全性の照査(4) 修復限界状態:修復性の照査

- (1) 限界状態に対する検討は、材料強度、作用の特性値及び安全係数を用いて行うことを標準とする.
- (2) 終局限界状態は、最大耐荷性能に対応する限界状態であり、安全性の照査に用いる限界状態である。
- (3) 使用限界状態は、通常の使用性や機能確保又は耐久性に関連する限界状態であり、使用性あるいは耐久性の照査に用いる.
- (4) 疲労限界状態は、繰返し荷重により疲労破壊を生じて安全性が損なわれる状態であり、終局限界状態に含めて考える場合もあるが、ここでは別個に取り扱うことにした.
- (5) 修復限界状態は、地震の影響等の偶発作用により修復性が損なわれる限界状態であり、修復性の照査に用いる.

2.3.2 性能照査の方法

性能照査は、設計応答値が設計限界値以下であることを合理的な方法により確認する必要がある.

- (1) 限界状態に関する検討は、2.4「安全係数」に定める安全係数を用い、各限界状態に対する 安全性、使用性等の検討方法に基づいて行うものとする.
- (2) 作用及び作用の組み合わせは、第3章「作用」に基づいて行うものとする.
- (1) 構造物に関する性能照査は、次式により行うことができる.

 $\gamma_i \cdot S_d / R_d \le 1.0$ (2.3.1) $\subset \subset \mathcal{C}$,

 S_d : 設計応答値 R_d : 設計限界値

γ_i : 構造物係数 (「コンクリート標準示方書 設計編」¹⁷⁾)

2.3.3 設計応答値

性能照査に用いる設計応答値は、性能照査項目や性能指標に応じて、材料特性や構造物を適切にモデル化し、算出する必要がある.

- (1) 性能照査では、構造物や構造部材の破壊や変形等を性能指標として設定する必要があり、その具体的な数値として、載荷重等が作用する場合に構造物に生じる力(断面力)や変位、曲率、ひずみ等の設計応答値を精度よく算出する必要がある。なお、構造物の設計応答値を精度よく求めるためには、材料特性をモデル化し、構造物を適切な力学モデルにより表現し、合理的に算出できる応答解析法を用いる必要がある。
- (2) 荷重は、応答値の算定では、照査結果に対して最も不利となるように考慮する必要がある.

2.3.4 設計限界値

性能照査に用いる設計限界値は、当該施設の要求性能や構造形式、材料、影響する作用の特性に応じて適切に設定する必要がある.

- (1) 設計限界値は、当該施設の要求性能に応じて設定する限界状態を具体的な数値として表したものであり、変動作用、偶発作用等の特性や、構造物、部材の状態、材料強度のばらつき、施設の限界状態に及ぼす影響の度合い、限界値の不確実性等を考慮し設定する必要がある. なお、この値は、全体系を考える必要がある構造物であるか否か、あるいは、コンクリート構造物であるか鋼構造物であるか等によっても異なる.
- (2) 本要領では、各施設の要求性能に応じた性能照査方法の例や、設計用値等を示しているが、本要領に示すもの以外については、適切な方法によって設定する必要がある.

2.4 安全係数

- (1) 安全係数は、材料係数 γ_m 、作用係数 γ_f 、構造解析係数 γ_a 、部材係数 γ_b 及び構造物係数 γ_i と する.
- (2) 材料係数 γ_m は、材料強度の特性値からの望ましくない方向への変動、供試体と構造物中との材料特性の差異、材料特性が限界状態に及ぼす影響、材料特性の経時変化等を考慮して定めるものとする.
- (3) 作用係数 γ_fは,作用の特性値からの望ましくない方向への変動,作用の算定方法の不確実性,設計耐用期間中の作用の変化,作用の特性が限界状態に及ぼす影響等を考慮して定めるものとする.
- (4) 構造解析係数 γ_a は、設計応答値算定時の構造解析の不確実性等を考慮して定めるものとする. 構造解析係数 γ_a は、一般に 1.0 としてよい.
- (5) 部材係数 γ_b は、部材耐力の計算上の不確実性、部材寸法のばらつきの影響、部材の重要度、すなわち対象とする部材がある限界状態に達したときに、構造物全体に与える影響等を考慮して定めるものとする。部材係数 γ_b は、限界値算定式に対応して、それぞれ定めるものとする。
- (6) 構造物係数 γ_i は、構造物の重要度、限界状態に達したときの社会的影響等を考慮して定めるものとする。
- (7) 非線形解析法を用いて性能照査を行う場合は、解析法に用いる照査指標に応じて上記の安全係数の主旨を考慮して適切に設定すること.
- (1) 本要領では、コンクリート構造物の照査は、限界状態設計法に基づくことを基本としている。 部材断面の破壊を対象とする限界状態による安全性照査においては、作用の特性値から設計 応答値を求める過程で作用係数 γ_t と構造解析係数 γ_a の 2 つの安全係数を、また、材料強度 から設計限界値を求める過程で材料係数 γ_m と部材係数 γ_b の 2 つの安全係数を設定し、さら に設計応答値と設計限界値を比較する段階で構造物係数 γ_t を設けている.
- (2) その他の施設に対する安全係数は、限界状態、設計荷重区分に応じて表-2.4.1 を参考にして設定することができる. なお、既設構造物の照査においては、作用係数を 1.0 とすることができる. また構造物係数は、構造物の重要度や社会的影響に基づき、1.0~1.2 の間で設定することも可能である.

表-2.4.1 安全係数の例

		甘淮争力	材料係数		如壮松米	+#\/+.4m+c.15/*/-	作用係数	##\#\#\#\#\#\
		基準書名	コンクリート	鋼材	部材係数	構造解析係数	TF用係数	構造物係数
		W荷重		1.0 1.1		1.0	1.2	1.2
	断面破壊	W' 荷重	1.3		1.1~1.3		1.0	1.0
安全性		LT·LF·T-25 荷重					1.0~1.2	1.0~1.2
女主性		W荷重	1.3	1.05	1.0~1.3	1.0	1.0	1.1
	疲労破壊	W' 荷重						1.0
		LT·LF·T-25 荷重						1.0~1.1
		W荷重	1.0	1.0	1.0	1.0	1.0	1.0
使是	用性	W' 荷重						
		LT・LF・T-25 荷重						
		W荷重		1.0	1.0~1.3	1.0	1.0	1.2
修行	复性	W' 荷重	1.3					1.0
		LT・LF・T-25 荷重						1.0~1.2

注1:断面破壊は線形解析を用いる場合の係数を表記した

注2:鋼材は通常鉄筋を使用する場合の係数を表記した

注3:部材係数はせん断耐力も含めて表記した

注 4: 荷重が小さい方が不利になる場合の係数 0.8~1.0 は便宜上省略した

注 5: 地震時の安全係数は省略した

2.5 対象施設の構造形式

構造形式の選定にあたっては、その特徴を理解し、使用目的、内空断面や土被りの他、接地 箇所の地形・地質、土質・地盤、施工条件等を考慮のうえ、合理的かつ経済的となるよう選定 するものとする.

- (1) 本要領で対象とする構造形式は、次のとおりとしている.
 - 1) コンクリート構造物:ボックスカルバート, U型側溝, 排水施設等接続桝
 - 2) 管構造物:剛性管,たわみ性管
 - 3) 道路舗装
 - 4) 複合構造物
 - 5) 橋梁形式の構造物
 - 6) 土構造物・護岸

第3章 作用

3.1 一般

設計作用は、設計の対象とする施設が置かれる状況を十分考慮して設定する必要があり、複数の作用が同時に働く場合は、構造物や部材の状態が最も厳しくなる状態について考慮する必要がある。また、その際、当該施設において考慮すべき作用の再現期間等の特性や設計供用期間を考慮する必要がある。

(1) 設計作用は、その大きさの時間的変動及び社会的に対応すべきリスク等に応じて、以下に示す、永続作用、変動作用、偶発作用に区分することができる。空港土木施設において、設計供用期間中に想定される主な作用は表-3.1.1 に示すとおりであり、各施設がおかれる状況や環境によっては、これ以外の作用も考慮する必要がある。

分類 作用					
永続作用	自重、土圧、腐食・凍結融解や温度変化等の環境作用 等				
変動作用	航空機・車両等による載荷重、レベルー地震動、水圧、変動波浪 等				
偶発作用	レベル二地震動,偶発波浪,津波 等				

表-3.1.1 主な作用の分類

- (2) 設計作用は、施工中及び設計供用期間中に想定される作用を、要求性能に対する限界状態に 応じて、適切に組み合わせる必要がある. 設計作用の組合せの例を表-3.1.2 に示す. なお、 必要に応じて施工時の作用も適切に考慮する必要がある.
- (3) 設計作用は、作用の特性値に作用係数を乗じて定める必要がある.

限界状態	考慮すべき組み合わせ
終局限界状態	永続作用+主たる変動作用+従たる変動作用
於何似外仍態	永続作用+偶発作用+従たる変動作用
使用限界状態	永続作用+変動作用
疲労限界状態	永続作用+変動作用

表-3.1.2 設計作用の組み合わせの例

(4) 地震動の影響(レベルー地震動,レベル二地震動)については、参考とする基準類により考え方が異なる場合があるため、対象とする施設に応じて適切に設定する必要がある.なお、耐震性能の詳細については、耐震設計編に示している.

3.2 作用の特性値

- (1) 作用の特性値は、検討すべき要求性能に対する限界状態について、それぞれ定めるものとする.
- (2) 作用の規格値又は公称値がその特性値とは別に定められている場合には、作用の特性値は、 その規格値又は公称値に作用修正係数 ρ_f を乗じた値とする.
- (1) 安全性に関する照査に用いる永続作用,主たる変動作用及び偶発作用の特性値は,構造物の

施工中及び設計耐用期間中に生じる最大値の期待値とする. ただし, 小さい方が不利となる場合には, 最小値の期待値とする必要がある. また, 従たる変動作用の特性値は, 主たる変動作用及び偶発作用との組合せに応じて定める必要がある. なお, 疲労の照査に用いる作用の特性値は, 構造物の設計耐用期間中の作用の変動を考慮して定める必要がある. 従たる変動作用は, 主たる変動作用や偶発作用と組み合わせて, 付加的に考慮すべき作用である. したがって, その特性値は, 同じ変動作用を主たる変動作用とした場合よりも一般的に小さい値に設定してよい.

- (2) 使用性に関する照査に用いる作用の特性値は、構造物の施工中及び設計耐用期間中に比較的 しばしば生じる大きさのものとし、検討すべき要求性能に対する限界状態及び作用の組合せ に応じて定める必要がある.ここで、比較的しばしば生じる大きさの作用とは、その作用の 大きさでは、ひび割れ、変形などの限界状態に達しないこととする値である.したがって、 それぞれの構造物の特性や作用の種類、検討すべき限界状態に応じて定める必要がある.
- (3) 修復性に関する照査に用いる作用の特性値は、構造物の設計耐用期間中に生じる最大値の期待値を上限値として、設定された性能の限界状態に応じた値を標準とする.
- (4) 耐久性に対する照査に用いる作用の特性値は、構造物の施工中及び設計耐用期間中に比較的しばしば生じる大きさのものとする必要がある.

3.3 作用係数

設計作用として作用の特性値に乗じる作用係数は、表-3.3.1を標準とする.

限界状態の種別	作用の種類	作用係数
	永続作用	1.0
終局限界状態	主たる変動作用	1.0~1.2**
於何似外仍思	従たる変動作用	1.1~1.2
	偶発作用	1.0
使用限界状態	すべての作用	1.0
疲労限界状態	すべての作用	1.0

表-3.3.1 作用係数

※自重以外の永続作用が小さい方が不利となる場合には、永続 作用に対する作用係数を 0.9~1.0 とするのがよい.

- (1) 作用係数とは,作用の特性値からの望ましくない方向への変動,作用の算定方法の不確実性,設計耐用期間中の作用の変化,作用特性が限界状態に及ぼす影響,環境作用の変動等を考慮するための安全係数である.
- (2) 航空機による設計載荷重 (W 荷重) は、新機材の開発や滑走路延長等に伴い、設計耐用期間 中の変動が大きく、適切に設定する必要がある.
- (3) 新設される構造物設計の終局限界状態の照査に用いる W 荷重の作用係数は 1.2 とすることができる。また、既設構造物の照査において、設計機材を限定することができる場合、作用係数を 1.0 としてよい。
- (4) W 荷重は、一時荷重扱いであり、航空機荷重の影響を受ける頻度が極めて小さいことから 作用係数を 1.0 としてよい.

3.4 作用の種類と特性値

3.4.1 一般

空港土木施設の構造設計にあたっては、一般に以下に示す作用を考慮する.

- (1) 載荷重
 - 航空機荷重
 - ·車両荷重
- (2) 死荷重(自重)
- (3) 土圧
- (4) 水圧
- (5) 風荷重
- (6) 雪荷重
- (7) 地震の影響
- (8) 施工時荷重
- (9) その他

3.4.2 載荷重

【基準】

(告示 4 条関係)

航空機,車両等の載荷重については,予想される航空機の予想される回数の運航等想定される当該施設の利用状況等を考慮して,適切に設定するものとする.

【解説】

- (1) 公共の用に供する空港にあっては、複数の航空会社により利用されることや、機材繰り等により同規模の異なる航空機を発着させることもあるため、特定の航空機のみを想定するのではなく、当該空港で想定される利用状況から航空機グループを想定し、計画する必要がある.
- (2) 各施設の設計にあたって、対象とすべき航空機の特性にはそれぞれ違いがあるため、各航空機の設計対象機材の区分はそれぞれの特性(運航特性、大きさ、荷重)毎に留意する必要がある.たとえば、施設の規模及び平面設計にあたって重要な特性は航空機の運航特性と大きさであり、舗装等の構造物の設計にあたっては航空機の載荷重である.
- (3) 各施設の設計にあたっては、その施設を使用する最大の航空機が所属する航空機グループを 設計対象航空機グループとすることとする.また、航空機の走行が想定されない区域につい ては、当該施設を使用する最大の車両を対象とする.ただし、その決定にあたっては、その 空港の将来の発展性、当該施設の将来の使用方法、経済性等を十分考慮する必要がある.な お、航空機及び車両の諸元については、施設設計編に示している.

3.4.2.1 航空機

- (1) 当該空港に現在就航している航空機や就航を予定している航空機及び就航が予想される航空機を考慮し、設計載荷重区分を適切に選定する.
- (2) 航空機荷重により地下構造物に作用する鉛直方向地中応力は、弾性解析等の適切な方法により算出する必要がある.

- (1) 地下構造物に対する載荷重は、地中の荷重分散を考慮して設定する必要があり、弾性解析等の適切な方法で算定する。
- (2) 航空機荷重による鉛直方向地中応力は、当該空港への就航が予想される航空機の最大機材のコード文字区分に応じて表-3.4.1の値を用いることができる.

ただし、表-3.4.1 はアスファルト舗装や着陸帯等に適用するものであり、荷重分散効果が期待できるコンクリート舗装直下の鉛直方向地中応力については、付録-2「弾性解析による鉛直方向地中応力の算定方法の例」を参照し、別途設定する必要がある.

なお、土被り4m以上の鉛直方向地中応力の最小値は、10kPaを標準とする.

- (3) 表中の地中応力は、例えば、コード文字Fの場合は、コード文字F以下の全ての機材を、コード文字Eの場合は、コード文字E以下の全ての機材を対象として、弾性解析等により主脚全車輪を考慮した鉛直方向地中応力の最大値である。
 - ① 表中の地中応力は、二次元 FEM 解析結果を元に弾性解析で得られた応力を 1.3 倍している. これは、構造物の反力による応力増加を考慮したものであり、後述する衝撃荷重は別途考慮する必要がある. なお構造物に直接荷重が載荷する地表構造物の場合は、1.3 倍を考慮しなくてよい.
 - ② 表-3.4.1 の作成において対象とした航空機の車輪配置や荷重諸元等及び弾性解析による鉛直方向地中応力の算出例は、付録-1「航空機荷重の諸元」及び付録-2「弾性解析による鉛直方向地中応力の算定方法の例」に記載している.
 - ③ 特定機種に対する既設構造物の照査では,対象機材の諸元等に基づき鉛直方向地中応力 を別途設定してもよい.

深度	コード F	コードE	コード D	コード C
1.0m	196.2	196.2	171.1	171.1
1.5m	134.9	134.9	112.6	98.1
2.0m	110.5	110.5	82.8	61.2
2.5m	89.3	89.3	61.5	41.3
3.0m	72.3	72.3	46.9	29.6
3.5m	61.8	58.9	36.6	22.2
4.0m	54.5	48.6	29.2	17.4
4.5m	48.7	40.6	23.9	14.0
5.0m	44.0	34.9	19.9	11.6
5.5m	40.1	31.7	16.8	10.0
6.0m	36.8	28.8	14.5	10.0
6.5m	34.1	26.3	12.7	10.0
7.0m	31.7	24.2	11.2	10.0
8.0m	27.5	20.5	10.0	10.0
9.0m	24.0	17.6	10.0	10.0
10.0m	21.0	15.3	10.0	10.0

表-3.4.1 鉛直方向地中応力(kPa)

- (4) 土被り 4m 未満の地下構造物においては衝撃荷重等を考え,鉛直地中応力を 30%割り増しすることを標準とする.
- (5) コンクリートスラブ等,荷重分散効果の高い構造下に構造物が埋設される場合は,その効果 を考慮することができる.このような場合の鉛直方向地中応力の算定方法は,**付録-2「弾性**

解析による鉛直方向地中応力の算出方法の例」に記載している.

- (6) 荷重分散角は、構造物の規模・土被り等により異なるため、弾性解析等の結果に基づき適切に設定する必要があるが、一般的には 45 度としてよい.
- (7) 航空機荷重により地下構造物側面に作用する水平方向地中応力は、式(3.4.1)により算出することができる.

$$P_{hl} = P_{vl} \times K_0 \cdots (3.4.1)$$
 $\subset \subset \mathcal{C},$

Phl: 水平方向地中応力(kN/m²)

 P_{vl} : 鉛直方向地中応力(kN/m²)

 K_0 :静止土圧係数 (標準 0.5)

なお, 地表構造物の場合は, 次式による.

$$P_{hl} = P_{vl} \times K_a \cdots (3.4.2)$$

$$\subset \subset \mathcal{C},$$

$$K_a$$
: 主働土圧係数で $an^2\left(45^\circ - rac{\phi}{2}
ight)$ により求める.

3.4.2.2 トーイングトラクター

- (1) トーイングトラクターにより地中構造物に作用する鉛直方向地中応力は、弾性解析等の適切な方法により算出することができる.
- (2) トーイングトラクターは、就航予定の航空機に応じて適切に選定する必要がある.
- (1) トーイングトラクターによる地中応力は、基本的に航空機と同様の方法で算出することができる.
- (2) トーイングトラクター荷重の諸元は、表-3.4.2 に示す値を用いることができる.
- (3) 表-3.4.2 のトーイングトラクター荷重は、当面使用される予定のトーイングトラクターの機種に合わせて選定することを基本としている。これは、GSE 通行帯等では将来より大きな荷重のGSE 車両が導入されたとしても補強工事等が比較的容易であるためである。ただし、構造物の補強工事等が空港に大きな影響を及ぼすと考える場合や施設機能の代替等が困難な場合等を勘案して、将来想定される荷重を設計載荷重として選択する方が望ましいと判断されれば十分な検討を行って将来荷重を採用することもできる。

表-3.4.2 トーイングトラクター荷重の諸元

区分	区分車輪の配置	総質量	輪荷重	接地圧	接地幅	接地長
运 为	位力 早期の配直 		(kN)	(N/mm^2)	(mm)	(mm)
LTK-0	5.555	70	172	0.55	460	680
LTK-1	3,500	50	123	0.88	400	350
LTK-12	3, 300	25	62	0.69	350	260
LTK-2	2, 130	16	39	0.86	300	150

(4) トーイングトラクター荷重により地下構造物に作用する鉛直方向地中応力は,ボストンコード法により算出した表-3.4.3 に示す値を用いることができる.ただし,土被りが 1m 未満の場合の鉛直方向地中応力は,弾性解析等の適切な方法により算定する必要がある.なお,表-3.4.3 は,土被り 4m 未満で衝撃荷重を考慮し,鉛直方向地中応力を 30%割り増した値を示している.

表-3.4.3 トーイングトラクター荷重による鉛直方向地中応力

(単位: KN/m²)

土被り (m)	LTK-0	LTK-1	LTK-12	LTK-2
1.0	76	70	39	43
1.5	60	55	30	20
2.0	43	34	18	12
2.5	29	23	12	10
3.0	21	16	10	10
3.5	16	12	10	10
4.0	13	10	10	10
4.5	10	10	10	10
5.0 以上	10	10	10	10

(5) 表-3.4.3 の値は、トーイングトラクター1 台によるものであり、複数のトーイングトラクター荷重が作用する場合には、別途検討する必要がある. なお、鉛直方向地中応力は、トーイングトラクターの車輪の配置の違いから、深さによっては荷重の小さいものの方が大きな応

力となる場合があり、**表-3.4.3** において で囲んだ部分の応力は大きい方を用いる必要がある.

- (6) 地下構造物は土被り厚 1m 以上を確保できる位置に設置することが望ましいが、施設配置計画上土被り厚が 1m 未満となる場合で、コンクリートスラブ等、荷重分散効果の高い構造下に構造物が埋設される場合は、その効果を考慮することができる。このような場合の鉛直方向地中応力の算定方法は、付録-2「弾性解析による鉛直方向地中応力の算出方法の例」に記載している。
- (7) トーイングトラクターにより地下構造物側面に作用する水平方向地中応力の算出は, 航空機 荷重の場合と同様の方法で求めることができる.

3.4.2.3 自動車·大型消防車

自動車及び大型消防車により地下構造物に作用する地中応力は,適切な方法で算定する必要がある.

(1) 自動車及び大型消防車により地下構造物に作用する鉛直方向地中応力は,式(3.4.3)で算出することができる.ただし,鉛直方向地中応力は,10kN/m²以上を標準とする.

$$P_{\text{vl}} = \frac{P_{\text{l}} \cdot \beta}{W} = \frac{2 \times \text{輪荷重}}{\text{車両1組の占有幅}} \times (1+i) \times \frac{\beta}{2h + \text{車輪接地長}}$$
 (3.4.3)

ここで

 $P_{v'}$: 鉛直方向地中応力 (kN/m^2)

β: 断面力の低減係数

i: 衝擊係数

表-3.4.4 衝擊係数

2 27/1/20						
カルバートの種類	土被り(h)	衝擊係数				
・ボックスカルバート ・アーチカルバート	h<4m	0.3				
・門型カルバート・コルゲートメタルカルバート	4m≦h	0				
	h<1.5m	0.5				
・パイプカルバート	1.5m≦h<6.5m	0.65-0.1h				
	6.5m≦h	0				

表-3.4.5 断面力の低減係数

	土被り h≦1m かつ 内空幅 B≧4m	左記以外
低減係数	1.0	0.9

(2) 自動車荷重により構造物側面に作用する水平方向地中応力は、以下のとおりとしてよい.

$$P_{hl} = 10 \cdot K_0$$
 (3.4.4)

ここで

 P_{hl} : 水平方向地中応力 (kN/m^2) K_0 : 静止土圧係数(標準0.5)

- (3) 大型消防車荷重により構造物側面に作用する水平方向地中応力は, 航空機荷重の場合と同様の方法により算出することができる.
- (4) 自動車及び大型消防車の荷重諸元は,表-3.4.6,表-3.4.7に示す値としてよい.

マハ	古絵の町墨	総質量	輪荷重	接地圧	接地幅	接地長		
上 万	区分 車輪の配置		(kN)	(N/mm^2)	(mm)	(mm)		
自動車荷重	6.000	25	100	1.0	500	200		

表-3.4.6 自動車荷重の諸元

_	1 minuted
悪_? / /	大型消防車荷重の諸元
48 U. T. I	7 + MM = M = V/

区分	区分 車輪の配置		輪荷重	接地圧	接地幅	接地長
四 万	単₩♥ク貿に固	(t)	(kN)	(N/mm^2)	(mm)	(mm)
LF-1	4. 200 1. 800 06F 7	44.1	72.7	0.45	360	450
LF-2	3.800 1.700 080 2	39.5	65.9	0.43	365	420

- (5) 自動車荷重を使用して設計を行う場合には、大型消防車の通行等を考慮し、十分に検討する 必要がある.
- (6) 大型消防車荷重は,自動車荷重より鉛直方向地中応力が大きくなる2つのタイプに分類される. LF-1 は大型消防車の12,500ℓクラス, LF-2 は, 8,500ℓクラスを示している. なお, 4,500ℓクラスの消防車は自動車荷重より鉛直方向地中応力が小さくなるので対象としていない. また,その他の大型消防車荷重を使用する場合は,自動車荷重との比較を行い,鉛直方向地中応力が大きい方を採用する必要がある.
- (7) 大型消防車荷重を考慮して設計を行う地下構造物は、日常の消防訓練の際に消防自動車が走行する経路の下に設置される地下構造物である. ただし、それ以外の区域に設置される地下

構造物についても、非常時を想定して、大型消防車荷重の一時的な作用を採用し、3.4.2.4 「載荷重の選択」の考え方に準拠して、性能照査を行うことができる.

3.4.2.4 載荷重の選択

3.4.2.4-1 一般

構造物の設計載荷重は、構造物の重要度、設置位置、深度、要求性能に応じて適切に設定する必要がある.

(1) 構造物の設計載荷重区分は、次のように分類される.

1) W 荷重: 航空機荷重

2) W'荷重:航空機荷重(一時荷重)

3) LT 荷重: トーイングトラクター荷重

4) LF 荷重:大型消防車荷重

5) LF'荷重: 大型消防車荷重(一時荷重)

6) T25 荷重:自動車荷重

7) T25'荷重: 自動車荷重(一時荷重)

(2) 一時荷重の W'荷重, LF'荷重, T25'荷重について, 荷重そのものは W 荷重, LF 荷重, T25 荷重と同じであるが, 作用頻度が極めて少ないため, 安全係数(許容応力度設計法を適用する場合は安全率)を低減させる範囲である. 中でも W'荷重の作用頻度は極めて稀であることから, 限界状態設計法において, W'荷重による使用限界状態の照査は省略できる.

3.4.2.4-2 着陸帯, 誘導路帯及び滑走路端安全区域周辺の構造物

(1) 着陸帯及び誘導路帯周辺に設置される構造物の設計載荷重は、同構造物の性格及び設置位置に応じて下図に従い設定することができる.

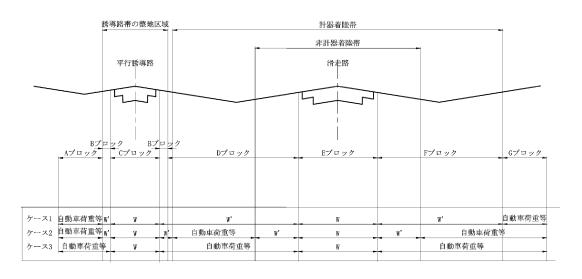


図-3.4.1 構造物の種類、設置位置別載荷重

- (2) 構造物の種類はそれぞれ次のとおりである
 - 1) ケース1

地下道・共同溝等,航空機が逸脱した場合,構造物が破壊又は損傷することにより,航空機の損傷や人命に危害が生じる恐れが大きい構造物,あるいは,給油管,ライフライン等,航空機の逸脱による構造物の破壊等が空港の機能上に甚大な被害を与えるような構造物

2) ケース 2

マンホールや貯水槽等, 航空機が逸脱した場合, 構造物の破壊等が航空機に大きな損傷 を及ぼさず, また, その施設の機能を代替できる等, 他の箇所又は空港機能に大きな影響 を及ぼさない構造物

3) ケース 3

ハンドホール等, 航空機が逸脱した場合, 構造物の破壊等が航空機に損傷を及ぼさず, また, その空港機能への影響が小さい構造物

- (3) C, E ブロックの範囲は、航空機荷重が滑走路又は誘導路の本体端から土中に 45°の角度で分散するものとして、一般に滑走路幅又は誘導路幅と構造物の土被りを加えた長さ以上とする. なお、W'範囲端は分散角を考慮しなくてもよい.
- (4) 滑走路端安全区域のうち滑走路幅の 2 倍の区域に設置される構造物の設計載荷重は、図-3.4.1 に示す非計器用着陸帯のうち E ブロックを除く区域の設計載荷重に準じて設定することができる。また、それ以外の区域に設置される構造物の設計載荷重は、図-3.4.1 に示す計器用着陸帯のうち非計器用着陸帯を除く区域の設計載荷重に準じて設定することができる。
- (1) ケース2の荷重は、非計器用の着陸帯の区域外にまで航空機が逸走する確率は少なく、かつ、 そこに達するまでには航空機の脚が折れ、胴体でスライディングしている例が多いというこ と、また、たとえ破壊・損傷しても滑走路の閉鎖を伴わない修復作業となる可能性が高いこ とから、ケース1と比較して載荷重を小さくしている。なお、この場合、次の条件が満たさ れる構造物である必要がある。
 - 1) 万一破壊・損傷しても修復が完了するまでの間,空港機能に大きな影響が生じないもの.
 - 2) 滑走路の閉鎖を伴わず修復工事が可能であることを確認できるもの.
- (2) 貯水槽は非計器用着陸帯の区域外で、かつ滑走路にできるだけ近い適切な位置に設けることが望ましく、その場合、設計荷重は自動車荷重等とすることができる。また、誘導路帯のうち整地区域のBブロックは、高速離脱誘導路帯を除き自動車荷重等とすることができる。
- (3) 皿型排水溝の設計載荷重は、一般には無載荷とするが、保安道路と兼用するような場合は自動車荷重等とすることができる.
- (4) W, W', 自動車荷重等の範囲は, 構造物の施工目地・マンホール等の関係で荷重条件が安全側になる方向に拡げることができる. また, B ブロックの W' 区域は, ブロック区間が短い場合, 施工性も考慮して W 区域とすることができる.
- (5) 航空機が滑走路や誘導路を逸脱し着陸帯や誘導路帯を逸走することや自動車が場周道路,保 安道路等以外の芝部などを走行することは,まれな事例として考えられることから,その時 の載荷重は「コンクリート標準示方書 [構造性能照査編]」¹⁸に示されている一時的荷重と みなし,それに応じた限界状態や安全係数を設定することができる.

- (6) 過走帯下の地下構造物に対する設計載荷重は、将来における滑走路の延長、航空機荷重のオーバーランやアンダーシュート時における安全性などを考慮して滑走路に準じて設定することを標準とする.
- (7) 一般的なその他の施設の設置位置別の設計載荷重区分の例を表-3.4.8に示す.

表-3.4.8 その他の施設の設計載荷重区分の例

						設置位置			
対象施設·構造形式		基本施設 舗装下	非計器用着陸帯、 誘導路帯の整地 区域、 滑走路端安全区 域のうち滑走路幅 の 2 倍の区域	非計器用を除く 計器用着陸帯、 滑走路端安全区 域のうち滑走路 幅の2倍以外の 区域	GSE 通行帯等	消防車訓練時 移動経路 ^{注2}	場周保安道路道路駐車場	緑地帯	
	開渠	皿型排水溝 (道路兼用)	ı	- T25		ı	LF ^{注 5}	T25	-
)x	U 型排水溝	W	W' ^{注 3}	T25	LT ^{注5}	LF ^{注 5}	T25	T25' ^{注 1}
排水施設	暗渠	ボックス 剛性管 たわみ性管	W	W ^{注3}		LT ^{注 5}	LF ^{注 5}	T25	T25' ^{注 1}
	接続桝注4	立上り部	W	W' ^{注3}	舗装部:T25 緑地部:T25′	LT ^{注5}	LF ^{注 5}	T25	T25' ^{注 1}
	190177	本体部	W	W' ²	±3	LT ^{注5}	LF ^{注 5}	T25	T25' ^{注 1}
******	地下道	ボックス	W	W' ²	± 3	LT ^{注 5}	LF ^{注 5}	T25	T25' ^{注 1}
道路駐車場	橋梁	コンクリート橋 鋼橋	-	-		LT ^{注 5}	LF ^{注 5}	T25	-
共同流	構	ボックス	W	W' ²	± 3	LT ^{注 5}	LF ^{注 5}	T25	T25' ^{注 1}
消防水利 施設	貯水槽	ボックス	W	W ^{注3} ※整地区域 のうち高速離脱 以外は T25	T25	LT ^{注5}	LF ^{注 5}	Т25	T25' ^{注 1}
	消火栓	配水管	W	W ^{注3}		LT ^{注5}	LF ^{注 5}	T25	T25' ^{注 1}
進入灯村	喬梁	鋼橋	-	-	-	-	-	-	協議

注 1: T25'とは自動車荷重の一時的荷重を示す

注 2: LF の対象エリアの具体的な設定は、各空港の運用を考慮し決定する

注 3: W'について、T25 等の常時荷重及び LF'(消防荷重の一時的荷重)等の一時荷重を加えた中で構造断面に最も影響を与える荷重を適用する

注 4: 接続桝が本体部と立上り部で構成されているものについては、それぞれに応じた荷重を適用するが、マンホールのみで構成されるものについては、 立上り部の荷重を適用する

注 5: LT·LF は、T25を加えた中で構造断面に最も影響を与える荷重を適用する

注 6: 場周柵、ブラストフェンスは風荷重が対象のため、本表から除いている

3.4.2.4-3 エプロン及び GSE 通行帯の構造物

- (1) エプロンに設置される表面排水溝及びマンホール等の構造物(以下,地表構造物)の設計 載荷重は、地下構造物と同様に、当該空港に現在就航している航空機や就航を予定してい る航空機及び就航が予想される航空機を考慮し、設計荷重区分を適切に選定する.ただし、 エプロン誘導路部分及びその周辺は、誘導路帯に準じるものとする.
- (2) GSE 通行帯等に設置される構造物の設計載荷重は、トーイングトラクター荷重又は自動車 荷重等のうち大きい方の荷重を用いるものとする.
- (1) 航空機荷重による鉛直方向地中応力は、当該空港への就航が予想される航空機の最大機材のコード文字区分に応じて表-3.4.1の値を用いることができる.
- (2) 特定機種に対する既設構造物の照査では,対象機材の諸元等に基づき鉛直方向地中応力を別途設定してもよい.
- (3) エプロンの舗装下に埋設される地下構造物は、3.4.2.4-2「着陸帯、誘導路帯及び滑走路端 安全区域周辺の構造物」の構造物の種類区分ケース1の施設を対象としているが、それ以外 の施設であっても、その施設位置によって構造物が破壊又は損傷した際にその施設機能の代 替等が困難な場合や構造物の修復工事が工事期間によって空港の運用に大きな影響を及ぼ すと考える場合には同様に取扱うことができる.

3.4.2.4-4 道路及び駐車場の構造物

道路及び駐車場に設置される構造物の設計載荷重は、自動車荷重とする.

(1) 大型消防車が配置される空港の消防車通行区域の設計載荷重は、大型消防車荷重とする.

3.4.2.4-5 その他区域の構造物

その他の区域に設置される構造物の設計載荷重は、自動車荷重とする. ただし、明らかに車両等の走行が想定されない場合には、無載荷の場合や群集荷重による作用等を考慮して適切に設定するものとする.

3.4.3 自重

【基準】

(告示 5 条関係)

自重については、材料の単位体積重量をもとに、適切に設定するものとする.

【要領】

(1) 自重の算出に用いる単位体積重量は、表-3.4.9に示す値を用いることができる。また、土の単位体積重量については、当該箇所の地盤より採取した試料の土質試験結果に基づき設定することができるが、これが困難な場合は、表-3.4.10に示す値を用いることができる。

表-3.4.9 材料の単位体積重量

材料	単位体積重量 (kN/m³)
鋼・鋳鋼・鍛鋼	77.0
鋳鉄	71.0
アルミニウム	27.5
鉄筋コンクリート	24.5
プレストレストコンクリート	25.0
コンクリート	23.0
セメントモルタル	21.0
木材	8.0
瀝青材 (防水用)	11.0
アスファルト舗装	22.5

表-3.4.10 土の単位体積重量

 (kN/m^3)

			(K1 1/111)
地盤	土質	緩いもの	密なもの
	砂・砂れき	18	20
自然地盤	砂質土	17	19
	粘性土	14	18
	砂・砂れき	2	20
盛土	砂質土	1	9
	粘性土	1	8

※地下水位以下にある土の単位体積重量は、表中の値から9を差し引いた値としてよい

3.4.4 地盤条件

【基準】

(告示 6 条関係)

地盤条件については、地盤調査及び土質試験の結果をもとに、土の物理的性質、力学的特性 等を適切に設定するものとする.

【解説】

- (1) 地盤条件は、性能照査において考慮する地盤の特性を表す諸条件であり、適切な方法により 行われた地盤調査及び土質試験の結果をもとに、適切に設定する必要がある. なお、設定に あたっては、調査及び試験結果のばらつき等の信頼性を考慮する必要がある.
- (2) 地盤条件の詳細については、施設設計編に示している.

【要領】

① 考慮すべき地盤条件は、支持層の深さ、工学的基盤面の深さ、軟弱層の厚さなどの地盤の成層状態、地下水位(残留水位)、密度、物理特性、せん断特性、圧密特性、透水性、液状化特性等であり、適切な方法により設定する必要がある.

- ② 性能照査に用いる地盤定数の設計用値は、地盤調査及び土質試験の特性を踏まえた合理的な理由がある場合には、調査・試験結果を特性値とすることができる.
- ③ 地盤条件を設定するための地盤調査は、対象施設の構造、規模及び当該施設を設置する地点周辺の地盤の性状を適切に考慮する必要がある.
- ④ 地盤条件を設定するための土質試験は、対象施設の性能照査において考慮する地盤条件を適切に設定できる方法により行う必要がある.

3.4.5 土圧及び水圧

【基準】

(告示 7, 24 条関係)

- (1) 土圧については、地盤条件をもとに、当該施設の構造、載荷重、レベルー地震動、レベル 二地震動による作用等を考慮して、適切に設定するものとする.
- (2) 残留水圧については、当該施設の構造、周囲の地盤条件等を考慮して、適切に設定するものとする.
- (3) 動水圧については、当該施設の構造、レベル一地震動、レベル二地震動による作用等を考慮して、適切に設定するものとする.

【要領】

- (1) 考慮すべき土圧は、鉛直土圧、水平土圧、地盤反力等であり、その特性値は、構造物の種類とその剛性、土圧の種類や要求性能等に応じて設定する必要がある.
- (2) 構造物に作用する土圧は、土被り厚、土の質量、構造物の種類を考慮して設定する必要がある.
- (3) 土圧には、鉛直土圧と側方土圧があり、後者はさらに静止土圧、主働土圧、受働土圧がある.
- (4) 地震時の土圧については、耐震設計編に示している.

3.4.5.1 鉛直土圧

構造物に作用する鉛直土圧の特性値は、構造形式や形状に応じて、地表から構造物上面まで の深さ、埋戻し土や舗装の重量、地表面の荷重等を考慮して設定するものとする.

- (1) 構造物に作用する鉛直土圧の特性値は、地下構造物の形態と、それが地中に設置されたときの状態によって、異なっており、構造物の形態としては、箱型と管型に分けられる.
- (2) 鉛直土圧の特性値の算定は第5章及び第6章を参照することができる.
- (3) 構造物に作用する鉛直土圧の算定にあたっては、ボックスカルバートのような箱型の構造物においては、構造物の支持条件によって土圧が変化するので注意する必要がある.
- (4) 管渠のような管型の構造物に対しては、マーストンによる式を用いているが、構造物を杭で支持した場合には、箱型と同様に土圧が変化する傾向があるので注意する必要がある.

3.4.5.2 水平土圧

構造物に作用する水平土圧は、構造物周辺の地盤、載荷重を考慮して設定するものとする.

3.4.5.3 基礎反力

躯体構造物底面の基礎反力は、地盤の特性、構造物底面の形状等を考慮して適切に設定する ものとする.

3.4.5.4 水圧

構造物が水際に配置される場合や地下水位以下となる場合は、水圧を適切に考慮する必要がある.

- (1) 水位が一定の場合は、水位面より深さ方向に直線的に増加する静水圧分布と考えてよいが、地盤の成層状況等によっては、静水圧分布とならない場合がある.
- (2) 構造物の前面と背面で水位差を生じる場合や地震動の影響により構造物に作用する水圧分布が変化する場合は、残留水圧や動水圧等を考慮する必要がある.
- (3) 構造物が地下水位以下に設置される場合は、構造物底面に作用する上向きの静水圧や地震動による過剰間隙水圧が浮力(揚圧力)として生じるため、土被りが小さい場合には浮力を適切に考慮する必要がある。

3.4.5.5 残留水圧

水際に配置する構造物が水密な構造である場合や裏込めの透水性が小さい場合には、前面の 水位と背面の裏込め内の水位に水位差を生じることがある。裏込め内の水位が前面の水位より も高く、しかも水位差が最大となる場合に構造物に作用する水圧が残留水圧である。

- (1) 残留水位差の大きさは、構造物の形式及び、その周囲の透水性、潮差等により異なる.
- (2) 残留水圧を考慮する場合については、「港湾の施設の技術上の基準・同解説」²⁸⁾を参考とすることができる.

3.4.5.6 動水圧

常時水に接する構造物の場合は、地震による動水圧を考慮する必要がある.

- (1) 動水圧の算定方法は、定常振動に対する動水圧を基にした方法が一般的であるが、他の作用等の位相関係を考慮し、必要に応じて不規則振動に対する動水圧を算定する必要がある.
- (2) 動水圧を考慮する場合については、「港湾の施設の技術上の基準・同解説」²⁸⁾を参考とする ことができる.

3.4.6 地震動

【基準】

(告示 8, 24 条関係)

- (1) レベルー地震動については、地震動の実測値をもとに、震源特性、伝播経路特性及びサイト特性を考慮して、確率論的時刻歴波形を適切に設定するものとする.
- (2) レベル二地震動については、地震動の実測値、想定される地震の震源パラメータ等をもとに、震源特性、伝播経路特性及びサイト特性を考慮して、時刻歴波形を適切に設定するものとする.

【解説】

- (1) 地震動の設定にあたっては、震源特性、伝播経路特性及びサイト特性を考慮する必要がある.
- (2) レベルー地震動及びレベル二地震動の設定方法に関する詳細については、耐震設計編に示している.

3.4.7 波浪

【基準】

(告示 9, 24 条関係)

- (1) 変動波浪については、長期間の実測値又は推算値をもとに、統計的解析等により波高、周期、波向等を適切に設定するものとする.
- (2) 偶発波浪については、長期間の実測値又は推算値をもとに、統計的解析等により波高、周期、波向等を適切に設定するものとする.

【要領】

- (1) 波浪の影響を考える場合は、長期間の実測値又は推算値に基づいた統計的解析を行い、波高・ 周期・波向などの波浪条件を適切に設定する必要がある。また、津波の影響を考える場合は、 既往の津波災害時の記録又は想定される地震等による津波の初期条件を踏まえた数値解析 モデル等に基づき設定する必要がある。
- (2) 空港土木施設に作用する波浪の影響を考える場合,時間の経過に伴い波高と周期が変化する 不規則波として取り扱い,一般的な代表波として有義波を用いている.
- (3) 波浪の影響を作用として考慮する場合については、「港湾の施設の技術上の基準・同解説」 28)を参考とすることができる.

3.4.8 津波

【基準】

(告示 24 条関係)

津波については、既往の津波記録又は数値解析をもとに、津波の高さ等を適切に設定するものとする.

【要領】

(1) 津波の影響を作用として考慮する場合については、「港湾の施設の技術上の基準・同解説」 28)を参考とすることができる.

3.4.9 地盤の沈下

【基準】

(告示 10 条関係)

地盤の沈下の影響については、地盤条件をもとに、当該施設の構造、載荷重及び当該施設の 周辺の状況を考慮して、適切な手法により評価するものとする.

【要領】

(1) 施工期間中や設計供用期間中に圧密沈下等による地盤の変動が予想される場合は、沈下の影響を考慮する必要がある.

- (2) 当該箇所の地盤の軟弱な層厚のばらつきや土層構成の違いにより、構造物に影響を与える不同沈下が発生する可能性がある場合は、その変位差を作用として考慮する必要がある.
- (3) 構造物の設置による基礎地盤の沈下には、即時沈下、圧密沈下及び長期沈下があり、式(3.4.5) により全沈下量を算出することができる。なお、各沈下量は、土質条件、載荷条件などを考慮し、適切な方法によって算出する必要がある。

 $S = Si + Sc + Ss \cdots (3.4.5)$

 S
 : 全沈下量

 Si
 : 即時沈下量

 Sc
 : 圧密沈下量

 Ss
 : 長期沈下量

(4) 即時沈下量, 圧密沈下量等の算出方法は, **第 10 章「土構造物・護岸」**等を参考にすること ができる.

3.4.10 地盤の液状化

【基準】

(告示 11, 24 条関係)

地盤の液状化については、地盤条件をもとに、レベルー地震動又はレベル二地震動による作用を考慮して、適切な手法により評価するものとする.

【解説】

(1) 地盤の液状化の影響に関する実績等を踏まえた予測及び判定手法については、耐震設計編に示している.

3.4.11 環境作用

【基準】

(告示 12 条関係)

環境作用の影響については、当該施設の設計供用期間、材料特性、自然状況、維持管理の方法その他の当該施設が置かれる諸条件を考慮して、適切な手法により評価するものとする.

【要領】

- (1) 考慮すべき環境作用の影響は、温度変化による作用や気象の影響による材料劣化、海水の作用による腐食、凍結融解環境が引き起こす凍害等であり、当該施設の設計供用期間、材料特性、自然状況、維持管理の方法、その他、当該施設が置かれる諸条件を考慮し、適切な方法により評価する必要がある。
- (2) 温度や湿度等の変化による作用が、コンクリート等の体積変化に影響を与え、構造物によっては温度応力等の拘束応力となって作用するため、設置状況や構造形式を考慮して影響を評価する必要がある.
- (3) アスファルト混合物中のアスファルトは、日照による紫外線等の影響により材料劣化するため、材料特性や維持管理の方法等を考慮して影響を評価する必要がある.
- (4) 鋼材が沿岸部に設置される場合は、海水の作用による腐食環境の影響を受ける可能性があるため、材料特性や設置状況等を考慮して影響を評価する必要がある.

- (5) 当該地域で凍結融解環境が想定される場合は、当該地域の気象特性や施設の設置状況等を考慮して影響を評価する必要がある.
- (6) コンクリートは、複合的な作用因子により塩害や中性化、アルカリ骨材反応等、種々の劣化を生じる可能性があることから、材料特性や設置状況等を考慮して影響を評価する必要がある.

3.4.12 風及びブラスト

【基準】

風及びブラストによる作用については、当該施設の設置位置等を考慮して適切に設定するものとする.

【要領】

- (1) 考慮すべき風及びブラストによる荷重は、当該区域の地域特性や、対象とする航空機の特性を踏まえ適切に設定する必要がある.
- (2) ブラストフェンスや場周柵(立入禁止柵)の支柱等に作用する風荷重,速度圧の算出にあたっては,式(3.4.6)によって算出することができる.各空港における設計風速は,過去の実績をもとに算出しこれを使用することができる.設計風速の算出方法及び各主要空港での算出結果を付録-6「設計風速の設定例」に示す.なお,設計風速の下限値は,解析では扱うことが困難な気象要因による強風の影響を考慮し,30m/sを標準とする.

$$R = q \times Cf \times A \cdots (3.4.6)$$

 $q = 0.6 \times Er^2 \times Gf \times Vo^2$

R : 風荷重 (N)

q : 速度圧 (N/m²)

Cf: 風力係数(金網その他網状の構造物 1.4)

A : 断面積 (m²)

Vo:設計風速 (m/sec)

Er : 平均風速の高さ方向の分布を表す係数 1.7(Z_b/Z_G)^α

 Z_b , Z_G , α の値は空港の位置より表-3.4.11 に示す値を用いる.

Gf:ガスト影響係数(空港の位置より表-3.4.11 に示す値を用いる.)

表-3.4.11 地表面粗度区分に対するパラメータ

地表面粗度区分	Z_{b}	Z_{G}	α	Gf
区分 I:海上及び海岸に接する空港	5	250	0.10	2.0
区分Ⅱ:区分Ⅰ以外の空港	5	350	0.15	2.2

%Cf, Er, Gf は、高さ 5m 以下の構造物に対しての値を示しており、5m 以上の場合には「平成 12 年建設省告示第 1454 号」により設定する.

- (3) 道路橋の性能照査においては、構造形式によって式(3.4.6)によらず、適切に設定する必要があり、その詳細については、「道路橋示方書・同解説 I 共通編」 $^{1)}$ を参考とすることができる。
- (4) ブラストの速度圧は、一般にエンジンからの距離に反比例して小さくなり、エンジンの稼働

状態によっても大きく異なる. 航空機のブラストの速度圧と距離の関係については、Airplane Characteristics 等を参考に適切に設定する必要がある. Airplane Characteristics には、各航空機材のブラスト風速とエンジンからの距離の関係を示すコンターが示されており、対象機材のエンジンの出力に応じたコンターを用い、ブラスト風速を算出することができる. なお、B777 のエンジンの出力状態が Breakaway (発進時) の場合の例を付録-7「航空機ブラストコンター」に示している.

3.4.13 その他

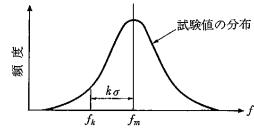
その他考慮すべき項目は、降雨、降雪、施工時、火災等であり、各特性を踏まえて適切に設 定する必要がある.

- (1) 降雨は、一般的に短期間に降雨量が集中する場合と、台風に代表されるように長時間継続する場合に分けられるため、排水施設の性能照査にあたっては、施設の特性に応じ、適切に降雨強度を設定する必要がある. なお、詳細については、施設設計編 4.2.3「排水施設の規模」に示している.
- (2) 積雪の予想される地域では、降雪量によっては、施設上の積雪が積載荷重となる場合がある. 一般に積雪荷重は、1kN/m²とすることが多い.
- (3) 施工時に完成時と異なる作用が生じる場合には、その施工時の構造と施工方法とを考慮して 施工時の作用を定める必要がある.
- (4) 火災の影響は、必要に応じて、高温による構造物の損傷と被災後の構造物の要求性能との関係を考慮し作用の特性値を定める必要がある.

第4章 材料の設計用値

4.1 総則

- (1) 空港土木施設に使用する材料は、作用、劣化、設計供用期間、形状、施工性、経済性、環境に及ぼす影響等を考慮して、適切な材料を選定する必要がある.
- (2) 材料の品質は、性能照査上の必要性に応じて、圧縮強度や引張強度に加え、その他の強度特性、ヤング係数その他の変形特性、熱特性、耐久性、水密性等の材料特性によって表わされる。
- (3) 材料強度の特定値 f_k は、試験値のばらつきを想定した上で、大部分の試験値がその値を下回らないことが保証される値とする.
- (4) 材料の設計強度 f_a は、材料強度の特定値 f_k を材料係数 γ_m で除した値とする.
- (5) 材料強度の規格値 f_n は、その特性値とは別に定められている場合には、材料強度の特性値 f_k は、その規格値に材料修正係数 ρ_m を乗じた値とする.
- (1) 空港土木施設に使用する材料の選定にあたっては、その材質及び耐久性を考慮し、必要な品質を満たす必要がある.
- (2) 日本産業規格に適合する材料は、施設の要求性能を満足するために必要な品質を有するものとみなすことができる.
- (3) 材料強度の特性値 f_k は、一般に式(4.1.1)で求めることができる.


 $f_k = f_m - k\sigma = f_m(1 - k\delta) \qquad (4.1.1)$ $\subset \subset \mathcal{C}, \qquad \qquad \uparrow \qquad \qquad |$

fm :試験値の平均値

σ : 試験値の標準偏差

 δ : 試験値の変動係数

k :係数

係数 k は、特性値より小さい試験値が得られる確率と試験値の分布形より定まるものであり、試験値の分布形を正規分布とし、試験値の非超過確率を 5%とすると係数 k は 1.64 となる. 係数 k は、材料に応じて適切に設定する必要がある.

4.2 コンクリート

4.2.1 一般

- (1) 空港土木施設に使用するコンクリートの材料は、施設の要求性能を確保するために必要な 品質を有するものとする. なお、この条件を満足するものの一例として、日本産業規格に 適合するものがある.
- (2) 性能照査において必要なコンクリート強度の特性値には、圧縮強度、引張強度、付着強度、 支圧強度等があり、適切な試験に基づいて、又は、コンクリートの種類、当該施設のおかれる自然状況、施工条件等を考慮して、適切に設定する必要がある.
- (1) 本要領において、コンクリート構造物の構造照査は、限界状態設計法に基づくことを標準としているが、許容応力度設計法により照査する場合の許容応力度、安全率等の設計用値は、 付録-5「材料及び許容応力度」を参考にして設定してよい。

4.2.2 強度

- (1) コンクリート強度の特性値は、原則として材齢 28 日における試験強度に基づいて定めるものとする.
- (2) 圧縮試験は、JISA1108「コンクリートの圧縮強度試験方法」による. 引張試験は、JISA1113 「コンクリートの割破引張強度試験方法」による.
- (3) JIS A 5308 に適合するレディーミクストコンクリートを用いる場合には、購入者が指定する呼び強度を、一般に圧縮強度の特性値 f'_{ck} としてよい.
- (4) コンクリートの付着強度及び支圧強度の特性値は、適切な試験方法により求めた試験強度に基づいて定めるものとする.
- (5) コンクリートの曲げひび割れ強度は、乾燥、水和熱、寸法等の影響を考慮して適切に定めるものとする.
- (6) コンクリートの材料係数 γ_c は、照査する性能に応じて適切に設定するものとする.
- (1) コンクリート強度の特性値は、原則として材齢 28 日における試験強度に基づいて定めるものとするが、構造物の使用目的、主な荷重の作用する時期及び施工計画等に応じて、適切な材齢における試験強度に基づいて定めてもよい.
- (2) 耐久性よりコンクリートの最低設計基準強度は一般に次のとおりである.
 - ・無筋コンクリート部材:18N/mm²
 - ・鉄筋コンクリート部材: 21N/mm²
 - ・プレストレストコンクリート部材: $36N/mm^2$ (プレテンション方式), $30N/mm^2$ (ポストテンション方式)
- (3) コンクリートの引張強度 f_{tk} は、圧縮強度の特性値 f'_{ck} (設計基準強度) に基づいて、式(4.2.1) で求めることができる.
 - 引張強度: $f_{tk} = 0.23 \cdot f'_{ck}^{2/3}$ (4.2.1)
- (4) コンクリートの付着強度の特性値 f_{bok} は、圧縮強度の特性値 f'_{ck} (設計基準強度) に基づいて、式(4.2.2)で求めることができる.

(JIS G 3112 の規定を満足する異形鉄筋)

- ・引張強度: f_{bok} = 0.28 f'_{ck}^{2/3} ただし, f_{bok}≤4.2N/mm²······(4.2.2)
- ・普通丸鋼の場合は、異形鉄筋の場合の40%を標準とする.
- (5) コンクリートの支圧強度の特性値 f'_{ak} は、圧縮強度の特性値 f'_{ck} (設計基準強度) に基づいて、式(4.2.3)で求めることができる.
 - 支圧強度: $f'_{ak} = \eta \cdot f'_{ck}^{2/3}$ (4.2.3)

 $\eta = \sqrt{A/A_a} \le 2$

A: コンクリート面の支圧分布面積

A_a: 支圧を受ける面積

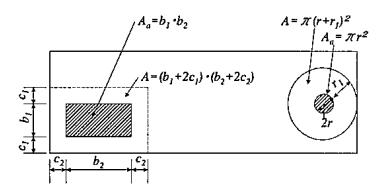


図-4.2.1 圧面積のとり方

(6) コンクリートの曲げひび割れ強度は、式(4.2.4)により求めることができる.

$$f_{bck} = k_{0b} \cdot k_{1b} \cdot f_{tk} \quad \cdots \quad (4.2.4)$$

$$k_{0b} = 1 + \frac{1}{0.85 + 4.5 \times (h/l_{ch})}, \quad k_{1b} = \frac{0.55}{\sqrt[4]{h}}, \quad f_{tk} = 0.23 f_{ck}^{\prime 2/3}$$

$$l_{ch} = G_F \cdot E_c / f_{tk^2}$$
 , $G_F = 10 (d_{max})^{1/3} \cdot f_{ck}'^{1/3}$

ここで、 f_{bck} : コンクリートの曲げひび割れ強度 (N/mm^2)

 f_{tk} : コンクリートの引張強度の特性値 (N/mm²)

 f_{ck} : コンクリートの圧縮強度の特性値 (N/mm²)

h : 部材高さ (m)

lch :特性長さ (m)

 G_F : コンクリートの破壊エネルギー (N/m)

 E_c : コンクリートの弾性係数 (N/mm²)

dmax:粗骨材の最大粒径 (mm)

(7) コンクリートの材料係数 γ_c は、一般に、断面破壊の限界状態等の照査においては 1.3 $(f'_{ck} \le 80 \text{N/mm}^2)$ を標準とする。また、通常の使用時の限界状態の照査においては 1.0 としてよい。

4.2.3 疲労強度

コンクリートの疲労強度の特性値は、コンクリートの種類、構造物の露出条件等を考慮して 行った試験による疲労強度に基づいて定めるものとする.

- (1) コンクリートの材料係数 γ_c は、一般に疲労限界状態に対して 1.3 としてよい.
- (2) コンクリートの圧縮、曲げ圧縮、引張及び曲げ引張の設計疲労強度 f_{rd} は、一般に、疲労寿命 N と永続作用による応力度 σ_p の関数として、次式により求めてよい.

$$f_{rd} = k_{1f} f_d (1 - \sigma_p / f_d) \left(1 - \frac{\log N}{K} \right)$$
 (4.2.5)

ここで、 f_{rd} : コンクリートの設計疲労強度

fa:コンクリートの設計強度

K: 材料と状態を考慮する係数. 一般の場合は、K=17、普通コンクリートで継続してしばしば水で飽和される場合及び軽量骨材コンクリートの場合は K=10 としてよい.

 k_{lf} : 圧縮及び曲げ圧縮の場合は, k_{lf} =0.85, 引張及び曲げ引張の場合は k_{lf} =1.0 としてよい.

N:疲労寿命

σ_p : 永続作用によるコンクリートの応力度であるが,交番荷重を受ける場合(永 続作用と変動作用による応力の正負が一致しない場合)には,一般に 0 とし てよい.

4.2.4 ヤング係数

コンクリートのヤング係数は、JIS A 1149「コンクリートの静弾性係数試験法」によって求めることを標準とする.

(1) 試験によらない場合, 普通コンクリートのヤング係数は, 圧縮強度の特性値 f'_{ck} より表-4. 2. 1 に示す値を用いてもよい.

 f'_{ck} (N/mm²) 18 21 24 27 30 40 60 70 80 E_c (kN/mm²) 22 23.5 25 26.5 28 31 33 35 37 38

表-4.2.1 圧縮強度の特性値とヤング係数

4.2.5 ポアソン比

コンクリートのポアソン比は、弾性範囲内では一般に 0.2 としてよい. ただし、引張を受け、 ひび割れを許容する場合は 0 とする.

4.2.6 その他

(1) コンクリート構造物の照査において、応力-ひずみ曲線、熱物性、収縮、クリープ特性等が必要な場合には、「コンクリート標準示方書[設計編]」17)を参照してよい.

4.3 鋼材

4.3.1 一般

- (1) 空港土木施設に使用する鋼材は、施設の要求性能を確保するために必要な品質を有するものとする. なお、この条件を満足するものの一例として、日本産業規格に適合するものがある.
- (2) 性能照査において必要な鋼及び鋳鋼の特性値は、鋼材の機械的性質を考慮して適切に設定する必要がある.
- (1) 本要領において、コンクリート構造物の構造照査は、限界状態設計法に基づくことを標準としているが、許容応力度設計法により照査する場合の許容応力度、安全率等の設計用値は、 付録-5「材料及び許容応力度」を参考にして設定してよい.

4.3.2 強度

- (1) 鋼材の引張降伏強度の特性値 f_{vk} 及び引張強度の特性値 f_{uk} は、それぞれの試験強度に基づいて定めるものとする、引張試験は、JIS Z 2241「金属材料引張試験方法」による.
- (2) JIS 規格に適合するものは、特性値 f_{yk} 及び f_{uk} を JIS 規格の下限値としてよい。また、限界 状態の照査に用いる鋼材の断面積は、一般に公称断面積としてよい。
- (3) 鋼材の材料係数 γ_c は、照査する性能に応じて適切に設定するものとする.
- (1) 鋼材の圧縮降伏強度の特性値 f'_{yk} は、鋼材の引張降伏強度の特性値 f_{yk} に等しいものとしてよい.
- (2) 鋼材のせん断降伏強度の特性値 f_{vvk} は、一般に式(4.3.1)により求めてよい.

$$f_{vyk} = f_{yk} / \sqrt{3}$$
(4.3.1)

- (3) 鋼材の材料係数 γ_s は、断面破壊の限界状態等の照査においては、一般に次の値としてよい. 鉄筋及び PC 鋼材: 1.0 それ以外の鋼材: 1.05
- (4) 疲労破壊に対する限界状態の照査においては、一般に 1.05 としてよい. また、使用性の限界状態の照査においては、一般に 1.0 としてよい.
- (5) 構造用鋼材の機械的性質は、一般に鋼種及び板厚に応じて、表-4.3.1 の値を用いることができる。また、せん断降伏応力は Von Mises の降伏条件により算出することができ、支圧降伏応力度は、鋼材と鋼材の接触機構を考慮して設定する必要がある。

		引張試験				
		降伏点又は耐	·力(N/mm²)			
鋼種		鋼材の厚	さ (mm)		引張強さ	
	16 以下	16 をこえ	40 をこえ	75 を	(N/mm^2)	
	10以下	40 以下	75 以下	こえるもの		
SS400	245 以上	235 以上	215 以上	215 以上	400~510	
SM400	245 以上	235 以上	215 以上	215 以上	400~510	
SMA400W	245 以上	235 以上	215 以上	215 以上	400~540	
SM490	325 以上	315 以上	295 以上	295 以上	490~610	
SM490Y	365 以上	355 以上	335 以上	325 以上	490~610	
SMA490W	365 以上	355 以上	335 以上	325 以上	490~610	
SM520	365 以上	355 以上	335 以上	325 以上	520~640	
SM570	460 以上	450 以上	430 以上	420 以上	570~720	
SMA570W	460 以上	450 以上	430 以上	420 以上	570~720	

表-4.3.1 構造用鋼材の機械的性質

(6) 構造用鋼管の機械的性質は、一般に管種に応じて、表-4.3.2の値を用いることができる.

表-4.3.2 構造用鋼管の機械的性質

機械的性質		引張	試験
	種類の記号	降伏点又は耐力	引張強さ
材質		(N/mm^2)	(N/mm^2)
	STK400	235 以上	400 以上
一般構造用炭素鋼管	STK490	315 以上	490 以上

(7) 鋳鋼品の機械的性質は、一般に材種に応じて、表-4.3.3の値を用いることができる.

表-4.3.3 鋳鋼品の機械的性質

機械的性質		引張	 試験	
	種類の記号	(14A 号試験片又は 4 号試験片)		
	性類の記方	降伏点又は耐力	引張強さ	
材質		(N/mm^2)	(N/mm^2)	
炭素鋼鍛鋼品	SF490A	245 以上	490~590	
火糸剄斑剄印	SF540A	275 以上	540~640	
炭素鋼鋳鋼品	SC450	225 以上	450	
次拉 排 ,宋田存砌 L	SCW410	235 以上	410	
溶接構造用鋳鋼品	SCW480	275 以上	480	
構造用高張力炭素鋼	SCMn1A	275 以上	540	
及び低合金鋼鋳鋼品 (低マンガン鋼鋳鋼品)	SCMn2A	345 以上	590	
機械構造用炭素鋼鋼材	S35CN	305 以上	510	
微微稱坦用火糸婀娜的	S45CN	345 以上	570	
ねずみ鋳鉄品	FC250	_	250	
74.11\ FI 01\ 04.04. FI	FCD400	250 以上	400	
球状黒鉛鋳鉄品	FCD450	280 以上	450	

4.3.3 疲労強度

鋼材の疲労強度の特性値は、鋼材の種類、形状及び寸法、継手の方法、作用応力の大きさと 作用頻度、環境条件等を考慮して行った試験による疲労強度に基づいて定めるものとする.

- (1) 鋼材の疲労強度は、試験によって定めることを標準とする.
- (2) 試験によらない場合, 異形鉄筋の設計疲労強度 f_{srd} は, 疲労寿命 N と永続作用による鋼材の 応力度 σ_{sp} の関数として, 式(4.3.2)により求めてよい.

$$f_{srd} = 190 \frac{10^a}{N^k} \left[1 - \frac{\sigma_{sp}}{f_{ud}} \right] / \gamma_s \quad (\text{N/mm}^2) \quad \dots$$
 (4.3.2)

ただし、 $N \le 2 \times 10^6$

ここに、 f_{ud} :鉄筋の設計引張強度で、材料係数を 1.05 として求めてよい.

γ。: 鉄筋に対する材料係数で、一般に 1.05 としてよい.

a及びkは、試験により定めることを標準とする.

疲労寿命が 2×10^6 回以下の場合は、a 及び k を、一般に次式の値としてよい。

 $a = k_{0f}(0.81 - 0.003\varphi)$

k = 0.12

ここに, φ : 鉄筋直径 (mm)

 k_{M} :鉄筋のふしの形状に関する係数で、一般に 1.0 としてよい.

- (3) ガス圧接部の設計疲労強度は、一般に母材の場合の70%としてよい。また、溶接により組立を行う鉄筋及び折曲げ部を有する鉄筋の疲労強度は、母材の場合の50%としてよい。
- (4) PC 鋼材の疲労強度は、「コンクリート標準示方書[設計編]」17)を参照することができる.

4.3.4 ヤング係数

鋼材のヤング係数は、原則として JIS Z 2241「金属材料引張試験方法」によって引張試験を行い、応力-ひずみ曲線を求め、この結果に基づいて設定するものとする.

(1) 試験によらない場合,鋼材のヤング係数は,200kN/mm²を用いることができる.

4.3.5 ポアソン比

鋼材のポアソン比は、室内試験などにより求めた適切な値を用いるものとする.

(1) 試験によらない場合,鋼材のポアソン比は,0.3を用いることができる.

4.3.6 その他

(1) 鋼材の応力-ひずみ曲線, 熱膨張係数, PC 鋼材のリラクセーション率等が必要な場合には, 「コンクリート標準示方書「設計編」」 「17)を参照してよい.

4.4 管材

- (1) 排水施設等に使用する管材は、施設の要求性能を確保するために必要な品質を有するものとする. なお、この条件を満足するものの一例として、日本産業規格に適合するものがある.
- (2) 性能照査において必要な管材の特性値は、強度特性等を考慮して適切に設定する必要がある。
- (1) 遠心力鉄筋コンクリート管やプレストレストコンクリート管等,剛性管の自重及び管厚中心 半径,ひびわれ荷重に関しては,表-4.4.1~表-4.4.4に示す値を用いることができる.
- (2) 強化プラスチック複合管 (FRPM 管) や硬質塩化ビニル管 (VP 管, VU 管) の管厚中心半径, 断面係数等の諸数値は表-4.4.5, 表-4.4.6 に示す値を用いることができる.
- (3) 荷重,土被り,資材調達,施工性などの諸条件により管渠に比べてボックスカルバートの方が経済的に有利になることもあるので,両者を比較検討した上でその採用を決定する必要がある.
- (4) 現在の空港土木施設設計分野においては、管材の構造照査を限界状態設計法で行うための知 見が十分ではないため、性能照査は、従来の設計法により行ってよい。その場合の許容応力 度、許容たわみ率や安全率の考え方については、第6章「管構造物」に記載している。

表-4.4.1 設計に用いる諸数値(遠心力鉄筋コンクリート管)

15モブド	管の自重 V	V (kN/m)	管厚中心半	半径 r (m)
呼び	B,NB 形管	NC 形管	B,NB 形管	NC 形管
150	0.35	_	0.0880	_
200	0.46	_	0.1135	_
250	0.59	_	0.1390	_
300	0.75	_	0.1650	_
350	0.92	ı	0.1910	_
400	1.15	_	0.2175	_
450	1.40	_	0.2440	_
500	1.72	_	0.2710	_
600	2.45	_	0.3250	_
700	3.31	_	0.3790	_
800	4.31	_	0.4330	_
900	5.51	_	0.4875	_
1000	6.69	_	0.5410	_
1100	7.88	_	0.5940	_
1200	9.28	_	0.6475	_
1350	11.28	_	0.7265	_
1500	13.61	17.31	0.8060	0.8200
1650	16.01	20.36	0.8850	0.9000
1800	18.45	23.64	0.9635	0.9800
2000	23.45	28.70	1.0725	1.0875
2200	28.47	34.24	1.1800	1.1950
2400	33.98	40.26	1.2875	1.3025
2600	39.97	46.78	1.3950	1.4100
2800	46.45	53.78	1.5025	1.5175
3000	53.41	61.26	1.6100	1.6250

表-4.4.2 設計に用いる諸数値 (プレストレストコンクリート管)

ルエンド	管の	自重 W(kN	/m)	管厚	中心半径 r	(m)
呼び	S 形管	C 形管	NC 形管	S形管	C 形管	NC 形管
150	_	_	_	_	_	_
200	_	_	_	_	_	_
250	_	_	_	_	_	_
300	_	1	_	_	_	_
350	_	1	_	_	_	_
400	_		_	_	_	_
450	_		_	_	_	_
500	3.14		_	0.278	_	_
600	3.82		_	0.330	_	_
700	4.51		_	0.381	_	_
800	5.49		_	0.433	_	_
900	6.86	7.55	_	0.485	0.495	_
1000	7.84	8.92	_	0.538	0.549	_
1100	9.12	10.30	_	0.590	0.602	_
1200	10.88	11.96	_	0.643	0.655	_
1350	12.94	14.22	_	0.720	0.734	_
1500	16.47	16.87	20.69	0.800	0.814	0.828
1650	18.93	19.61	24.03	0.880	0.893	0.908
1800	21.97	22.36	27.65	0.958	0.971	0.988
2000	26.77	27.75	33.15	1.063	1.080	1.095
2200		33.24	39.13		1.188	1.203
2400	_	39.22	45.50	_	1.295	1.310
2600	_	45.60	52.27	_	1.403	1.418
2800	_	52.46	60.02	_	1.510	1.525
3000	_	59.71	67.66	_	1.618	1.633

表-4.4.3 設計に用いる諸数値(遠心力鉄筋コンクリート管のひび割れ荷重)

形		呼び	ひび書	割れ荷重(ki	N/m)
The state of the s	形		1種	2種	3種
		150	16.7	23.6	_
		200	16.7	23.6	_
		250	16.7	23.6	_
		300	17.7	25.6	_
		350	19.7	27.5	_
	ND TZ	400	21.6	32.4	_
	NB 形	450	23.6	36.3	_
D TK		500	25.6	41.3	_
B形		600	29.5	49.1	_
		700	32.4	54.0	_
		800	35.4	58.9	_
		900	38.3	63.8	_
		1000	41.3	68.7	_
			43.2	72.6	_
			45.2	75.6	_
			47.1	79.5	_
		1500	50.1	83.4	110
		1650	53.0	88.3	117
		1800	56.0	93.2	123
	NC 形		58.9	98.1	130
NC			61.9	104	137
		2400	64.8	108	143
			67.7	113	150
		2800	70.7	118	155
		3000	73.6	123	162

表-4.4.4 設計に用いる諸数値(プレストレストコンクリート管のひび割れ荷重)

	ひび割れ荷重 (kN/m)					
呼び	高圧1種	高圧2種	高圧3種	1種	2種	3種
500	_	_	_	112	97	80
600	_	_	_	110	95	78
700	_	_	_	113	96	79
800	_	_	_	120	102	84
900	240	200	170	130	110	88
1000	240	200	170	138	117	94
1100	240	200	170	144	121	100
1200	240	200	170	151	128	105
1350	240	200	170	157	133	108
1500	300	240	200	169	143	118
1650	300	240	200	180	155	127
1800	300	240	200	190	161	129
2000	300	250	230	200	165	137
2200	300	250	230	210	177	143
2400	_	300	250	220	185	149
2600	_	300	250	230	193	155
2800	_	_	300	240	201	161
3000	_		300	250	209	167

表-4.4.5 設計に用いる諸数値 (FRPM 管 (B 形及び C 形))

	管厚中心半径	管の曲け	「剛性 EI	断面係数
呼び径	r	(N·mı	m ² /mm)	Z
	(mm)	1種	2種	(mm^3/mm)
200	103.50	491,630	322,990	8.17
250	128.75	604,690	397,270	9.38
300	154.00	793,600	524,800	10.67
350	179.25	951,890	629,480	12.04
400	204.50	1,190,700	801,900	13.50
450	229.75	1,400,400	943,110	15.04
500	255.00	1,841,700	1,225,000	16.67
600	306.00	3,182,400	2,116,800	24.00
700	357.00	5,053,500	3,361,400	32.67
800	408.00	7,543,500	5,017,600	42.67
900	459.00	10,741,000	7,144,200	54.00
1,000	510.00	14,733,000	9,800,000	66.67
1,100	561.00	19,610,000	13,044,000	80.67
1,200	612.00	25,459,000	16,934,000	96.00
1,350	688.50	36,250,000	24,112,000	121.50
1,500	765.00	49,725,000	33,075,000	150.00
1,650	841.50	66,184,000	44,023,000	181.50
1,800	918.00	85,925,000	57,154,000	216.00
2,000	1,020.00	117,870,000	78,400,000	266.67
2,200	1,122.00	156,880,000	104,350,000	322.67
2,400	1,224.00	203,670,000	135,480,000	384.00
2,600	1,326.00	258,950,000	172,240,000	450.67
2,800	1,428.00	323,430,000	215,130,000	522.67
3,000	1,530.00	397,800,000	264,600,000	600.00

表-4.4.6 設計に用いる諸数値(VP管及びVU管)

	2X T. T. U	1771. 711. 011.		
		管厚中心半径	断面係数	断面二次
種類	呼び径	r	Z	モーメント I
		(mm)	(mm^3/mm)	(mm ⁴ /mm)
	100	53.45	8.40	29.80
	125	66.25	9.38	35.20
VP	150	77.70	15.40	73.70
VF	200	102.50	20.20	111.00
	250	126.70	30.80	210.00
	300	150.90	43.70	354.00
	100	55.25	2.04	3.57
	125	67.75	3.38	7.59
	150	79.75	5.04	13.90
	200	104.50	8.17	28.60
	250	129.30	11.80	49.40
VU	300	154.10	16.30	80.90
VU	350	179.40	20.90	117.00
	400	203.70	26.50	167.00
	450	228.00	33.10	234.00
	500	252.20	40.60	316.00
	600	305.40	61.40	589.00
	700	354.70	85.10	962.00

4.5 盛土材料

盛土材料は、切土による発生材料又は土取場からの搬入材料について盛土材料としての材質を事前に十分調査し、適用性を検討する必要がある.

- (1) 盛土材料は、その材質が盛土の形状・構造決定の要因となることから、できるだけ良質な材料を選んで使用することが望ましい.しかし、盛土材料として好ましくない材料であっても、施工方法や改良の工夫により有効に利用することについて検討する必要がある.
- (2) 良質な盛土材料とは、敷均し、締固めの施工が容易で、締固め後のせん断強度が大きく、圧縮性が少なく、雨水などの浸食に対して強く、吸水による膨張性の低い材料である。盛土材料として適する材質であるかどうかの判断は、表-4.5.1を目安とすることができる。

表-4.5.1 盛土材料としての土質特性の一般的評価の目安

分類	路体材料	路床材料・ 裏込め材料	備考
岩塊・玉石	Δ	×	破砕の程度によって使用区分を考える.
礫 (G)	0	0	
礫質土(GF)	0	Δ	有機質,火山灰質の細粒土を含む(GO, GV 等)材料の場合:△
砂 (S)	0	0	粒径が均質な場合には降雨の作用により法面崩壊・侵食を受けやすいため、法面付近に用いる場合:△
砂質土(SF)	0	0	有機質,火山灰質の細粒土を含む(SO, SV 等)材料の場合:△
シルト (M)	Δ	\triangle	
粘性土 (C)	Δ	\triangle	
火山灰質粘性土(V)	\triangle	\triangle	
有機質土(O)	Δ	×	
高有機質土(Pt)	Δ	×	

○:ほぼ問題ないもの

△:注意して用いるか、何らかの処理を必要とするもの

×:用いられないもの

- (3) 盛土材料として使用してはならない土は、以下に示すような土である.
 - 1) ベントナイト,蛇紋岩風化土,温泉余土,酸性白土などの吸水性が大きく圧縮性が大きい土
 - 2) 凍土, 腐植土など
 - 3) 自然含水比が液性限界を超えている土(ただし,乾燥すれば使用場所を限定して使用可能)
- (4) 施工時に特別な注意を必要とする土は、以下に示すような土である.
 - 1) 粒度の悪い砂は、水や振動に対して極めて不安定であるので、使用する際には、良質の材料で表面を被覆したり、排水に対して十分注意する必要がある.
 - 2) 関東ローム、シラス等の火山灰土を盛土材料として使用する場合は、締固め特性、力学

特性等について、資料調査及び土質調査を十分に行う必要がある.

3) 軟岩ずりは締固め時の接地圧が大きくないと間隙比の小さい盛土を施工することは困難であり、たとえ比較的密に施工できたとしても長期にわたる風化や、繰返し荷重に対する疲労に対して問題が残る. そのため、路床や路床付近で使用する場合には、十分注意する必要がある.

4.6 埋立材料

埋立材料は、埋立後安定した地盤となり、所要の強度を有する必要があるため、使用する埋立材料の材質を事前に十分調査し、適用性を検討する必要がある.

- (1) 埋立材料の材質にバラツキがある場合及び異なる材質の埋立材料を用いる場合は、空港諸施設の具備すべき特性を勘案しゾーニングを行い、滑走路、誘導路、エプロン及びターミナル地域等のうち特に重要な区域はできるだけ良質な埋立材料を用いる必要がある.
- (2) 経済性等から土取場が限定され、埋立材料全部を良質土砂でまかなうことが不可能なために 軟弱な土砂を用いる場合は、その土砂の使用区域を制限したり、あるいは地盤改良を行うな どについて検討を行う必要がある.
- (3) 埋立材料として岩塊を用いる場合の最大粒径は、次の事項を総合的に勘案して決定する必要がある.
 - 1) 運搬及び捨土の施工性
 - 2) 建物の基礎 (例えば杭基礎) の施工性
 - 3) 岩塊間の空洞を残さないような施工法の可否
 - 4) 経済性など

第5章 コンクリート構造物

5.1 一般

コンクリート構造物の設計は、その施設の形状、設置される地形、地質、施工方法等を考慮し、安全かつ経済的に行う必要がある.

- (1) 空港土木施設の内,舗装を除いたコンクリート構造物として整備される施設としては,一般的に排水施設,消防水利施設,地下道,共同溝としてのボックスカルバート,U型排水溝等がある.
- (2) コンクリート構造物としては、プレキャスト構造物、現場打ちコンクリート構造物に大別されるが、本要領では、一般的に用いられる現場打ちコンクリート構造物を対象としている.
- (3) 設計に際して設定する基礎形式として,直接基礎,杭基礎,あるいは地盤改良後の直接基礎等が考えられるが,地盤の支持力を十分検討して経済性を考慮する必要がある.なお,ボックスカルバートを設置する地盤が比較的良好な場合には,直接基礎とすることができる.また,杭基礎を用いる場合,周辺の地盤が沈下することによりボックスカルバートがそれに抵抗し,荷重条件が厳しくなる傾向があるため,特に載荷重が大きい場合等は,地盤改良後の直接基礎とすることが望ましい.
- (4) U型排水溝に蓋を付ける場合は、設計対象荷重に対し蓋及び U型排水溝の安全性が確保できるよう設計する必要がある.
- (5) マンホール等に開口部を設ける場合には、十分な補強を行い、応力集中による破壊を起こすことのないように注意する必要がある.
- (6) 地下道が設置される場所によっては、導入部にウイング構造を設ける場合があり、その場合の設計については、「道路土工 カルバート工指針」⁸⁾、「道路橋示方書・同解説」^{1)2)3)4)5)を参考とすることができる。}
- (7) コンクリート構造物の設計は、図-5.1.1 に示す手順で行うことができる. なお、各施設の設計において考慮すべき設計地震動や求められる耐震性能の詳細については、耐震設計編に示している.

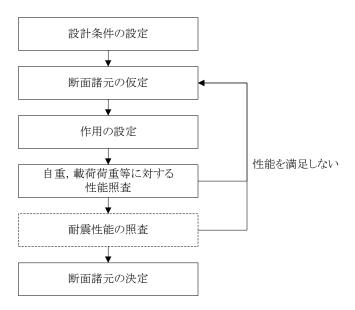


図-5.1.1 コンクリート構造物の設計手順の例

5.2 作用

コンクリート構造物の性能照査で考慮する主な作用は、載荷重、自重、土圧、基礎反力、地 震動等があり、対象施設に求められる性能、コンクリート構造物を設置する場所の諸条件及び 構造により適切に設定する必要がある.

- (1) コンクリート構造物の設計において考慮すべき作用の詳細については, 第3章「作用」を参照することができる. また, 第3章「作用」に記載していない影響については,「道路土工カルバート工指針」⁸⁾,「共同溝設計指針」¹⁵⁾,「道路橋示方書・同解説 I 共通編、IV下部構造編」¹⁾⁴⁾等を参考とすることができる. また, 第3章「作用」に記載していない影響として, 地盤の沈下等による変位が想定される場合の影響についても考慮する必要がある.
- (2) 性能照査における作用の組み合わせは、主たる作用が土圧である永続状態や主たる作用が載荷重である変動状態を考慮する必要がある.
- (3) コンクリート構造物における地震時の性能照査では、載荷重を除く作用を考慮し、土圧等、地震動が影響する作用は、耐震設計編を参照して設定する必要がある.
- (4) 温度応力は土被りの増加とともに急激に減少し、土被り 50cm 程度以上になれば周期的変化 が著しく少なくなるので、その影響を考慮する必要はない.

5.2.1 載荷重

航空機,自動車及び大型消防車等による載荷重は,構造物の形状や設置位置,土被り厚を考慮して適切に設定する必要がある.

(1) 航空機,自動車及び大型消防車等により構造物に作用する鉛直荷重,水平荷重については, 第3章「作用」を参照することができる.

5.2.2 土圧

コンクリート構造物の設計において、考慮すべき土圧は鉛直土圧、水平土圧、地盤反力等であり、その特性値は、構造物の支持条件、形状、地盤条件等を考慮して適切に設定する必要がある.

(1) コンクリート構造物に作用する鉛直土圧は、式(5.2.1)によって算出することができる.

 $P_{vd} = \alpha \cdot \gamma \cdot h$ (5.2.1)

 P_{vd} : 構造物上面に作用する鉛直土圧 (kN/m^2)

γ : 構造物上面の土及び舗装体の単位体積重量 (kN/m³)

h : 構造物の土被り (m)

α :係数

 α は構造物の支持条件及び構造物の土被り h と構造物の幅 B の比(h/B)の値に応じて表-5.2.1 の値を用いることを標準とする.

表-5.2.1 係数αの値

構造物が杭基礎などの剛性基礎で支持		
されておらず、盛土の沈下と並行して	1.00	
同時に沈下する場合		
	$h/B \le 1.0$	1.00
構造物が杭基礎などの剛性基礎で支持	$1.0 \le h/B < 2.0$	1.20
されており、盛土の沈下にある程度抵	$2.0 \le h/B < 3.0$	1.35
抗する場合	$3.0 \le h/B < 4.0$	1.50
	4.0≦ <i>h</i> / <i>B</i>	1.60

(2) コンクリート構造物に作用する水平土圧は、式(5.2.2)によって算出することができる.

$$P_{hd} = K_0 \cdot \gamma \cdot h \cdot \cdots (5.2.2)$$
 $\subset \subset \mathcal{C},$

 P_{hd} :水平土圧 (kN/m²)

y : 構造物上面の土の単位体積重量(kN/m³)

h : 構造物の土被り (m) K_{θ} : 静止土圧係数 0.5

静止土圧係数は、土質や締固めの方法によって異なり 0.4~0.7 程度であるといわれている が, 通常の砂質土や粘性土(LL<50%)に対しては, 0.5 とすることができる. なお, これ 以外の材料を用いる場合や締固め条件などによっては、静止土圧係数を変える等の検討をす る必要がある. なお、開渠の側壁などについては主働土圧係数を用いる必要がある.

(3) 躯体構造物底面の基礎反力は、圧縮性地盤(土砂)の場合均一等分布するものとし、式(5.2.3) により算出することができる.

$$P'_{vd} = P_{vdl} + \frac{D_{\theta}}{B}$$
(5.2.3)

ここで,

P'vd: 構造物底面に作用する基礎反力(kN/m²) P_{vdl} : 構造物上面に作用する鉛直土圧 (kN/m^2) D₀ : 構造物の単位長さ当りの重量 (kN/m)

B:構造物の外幅 (m)

図-5.2.1のように底版を拡幅した場合の基礎反力は、式(5.2.4)により算出することができる.

$$P'_{vd} = \frac{P_{vd1} \cdot B + \Box P_{vd2} \cdot b + Do}{B'} \dots (5.2.4)$$

 $egin{pmatrix} P_{vd2} &:$ 底版上面に作用する鉛直土圧(kN/m^2) B' : 底版全幅(B+2b)(m) b : 底版の拡幅部の幅(m)

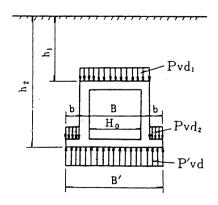


図-5.2.1 排水構造物に働く基礎反力(圧縮性地盤の場合)

- 1) 非圧縮性地盤(岩盤)の場合の躯体構造物底面の基礎反力は、両側壁の下端に集中して生ずるものと仮定して算出することができる.
- 2) 躯体構造物の底版に作用する曲げモーメントを計算する場合に用いる基礎反力の算出にあたっては、式(5.2.3)の D_{θ} を D'_{θ} (底版を除いた構造物の単位長さ当りの重量) に置き換える必要がある.

5.3 設計応答値の算定

5.3.1 一般

構造物の性能照査に用いる設計応答値は、構造物の形状、境界条件、作用の状態及び考慮する限界状態に応じ、構造物をモデル化し、信頼性と精度があらかじめ検証された解析モデルを 用いて算定する必要がある.

(1) 構造物の性能照査にあたっては、作用による構造物の応答を精度よく算定する必要がある. そのためには、構造物や作用を適切なモデルで表現するとともに、信頼性と精度が検証された解析モデルにより断面力や変位等の照査指標を求める必要がある.

5.3.2 構造物のモデル化

- (1) 構造物は、構造要素を一体としてモデル化することを標準とするが、構造要素の境界条件を適切にモデル化できる場合は、構造要素ごとに分離してモデル化してもよい.
- (2) 構造物は、一般に二次元にモデル化してよい. ただし、構造物の形状、荷重の載荷状態等によって三次元にモデル化することが合理的な場合や、詳細な検討を行う場合は、三次元にモデル化するのがよい.
- (3) 構造物は、その形状、支持条件に応じて、スラブ、梁、柱、ラーメン、アーチ、シェル、及びこれらの組合せからなる単純化した構造モデルを仮定して解析を行ってもよい.

5.3.3 作用のモデル化

- (1) 作用は、作用の特性並びに照査する各限界状態に及ぼす影響に応じ、適切にモデル化する 必要がある.
- (2) 荷重は、分布状態を単純化する等して、実際の影響と等価又は安全側にモデル化してよい.

(1) 航空機荷重による作用のモデル化は、航空機荷重が 45° に分散すると仮定して設定してもよい. この時の航空機荷重による鉛直方向地中応力は、3.4.2「載荷重」を参照することができる.

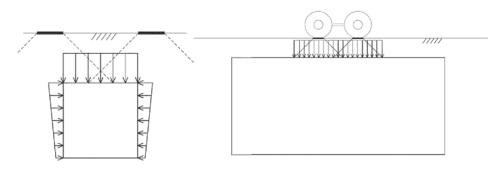


図-5.3.1 地中構造物に対する載荷重のモデル化の例

(2) U型側溝等の地表構造物の側壁に作用する航空機荷重のモデル化は、一般に図-5.3.2 に示すとおりである. 地表構造物がコンクリート舗装内に設置される場合には、コンクリート舗装版内の水平荷重は考慮しないこともできる.

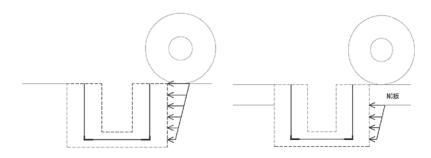


図-5.3.2 Ⅱ型側溝等の地表構造物の側壁に対する載荷重のモデル化の例

5.4 性能照査

5.4.1 一般

- (1) コンクリート構造物が所要の性能を確保されていることを確認するため、構造物及び構造 部材が限界状態に達しないことを照査するものとする.
- (2) コンクリート構造物が軟弱地盤上に建設される場合,あるいは載荷重が大きい場合は、支持地盤が限界状態に達しないことを照査するものとする.
- (1) コンクリート構造物の設計においては、断面、縦方向(構造物軸方向)、地盤支持力について、要求性能に応じて設定する終局限界状態、使用限界状態、疲労限界状態に対して照査する必要がある.
- (2) コンクリート構造物のレベル一及びレベル二地震動に対する限界状態や性能照査方法,基礎地盤の液状化の検討や液状化対策については、耐震設計編に示している.
- (3) コンクリート構造物は、築造による排土重量よりも内部荷重を含めた自重の方が軽いため、 地盤の支持力が設計上問題となることは少ないが、構造物上部に荷重が載る場合あるいは、 軟弱地盤に設置する場合には支持力が問題となることがある. 地盤支持力及び基礎形式を選 定する場合については、「道路土工 カルバート工指針」⁸⁾や「道路橋示方書・同解説 I共 通編、IV下部構造編」¹⁾⁴⁾を参考とすることができる.

- (4) コンクリート構造物の性能照査は、限界状態設計法によることを基本とするが、構造物の性能照査にあたっては、主たる作用が土圧である永続状態、主たる作用が載荷重である変動状態において部材に発生する応力度が、付録-5「材料及び許容応力度」に規定する許容応力度以下であり、かつ、必要な耐震性能の照査を行う場合は、所要の性能を満足するとみなすことができる。
- (5) 支持地盤の限界状態の性能照査にあたっては、直接基礎とする場合に基礎底面の鉛直地盤反力が許容支持力以下であり、かつ、耐震性能の照査を行う場合は、所要の性能を満足するとみなすことができる.

5.4.2 安全性に関する照査

- (1) コンクリート構造物が、所要の安全性を設計耐用期間にわたり保持することを照査するものとする.
- (2) 安全性に関する照査は、設計作用のもとで、すべての構成部材が断面破壊の限界状態及び 疲労破壊の限界状態に至らないこと、並びに構造物の安定の限界状態に至らないことを確 認することにより行うことを標準とする.
- (1) 構造物の安全性の照査は、物理的特性に基づく安全性と機能上の安全性に対して行うことを標準とするが、一般に構造物の物理的特性に対して行ってよい.
- (2) 安全性に関する照査は、設計作用のもとで、構造物が破壊の限界状態に至らないことを確認 することを標準とする.
- (3) 破壊の限界状態は、構造物の耐荷力や安定等の限界状態とし、断面力、ひずみ、変位変形等の物理量を指標として設定することを標準とする.
- (4) 耐荷力に対する照査は、一般的に、断面破壊、疲労破壊の限界状態に至らないことを確認することを標準とする.
- (5) 安定に対する照査は、変位・変形、メカニズム等の限界状態に至らないことを確認することを標準とする.
- (6) 安全性に関する照査の具体的な方法は、「コンクリート標準示方書 [設計編]」 17 、「道路橋示方書・同解説 I 共通編、IV下部構造編」 $^{1)4)$ を参照することができる.

5.4.3 使用性に関する照査

使用性に関する照査は、設計耐用期間内中にしばしば生じる設計作用に対し、限界状態に至らないことを照査するものとする.

- (1) 使用性に関しては、一般に、応力、ひび割れ、変位変形等を指標として構造物の機能や使用 目的に応じて、使用上の快適性として外観、変位・変形に対する照査、水密性に対する性能 項目がある.
- (2) 構造物の使用性に関する照査の具体的な方法は、「コンクリート標準示方書[設計編]」¹⁷⁾を参照することができる。

5.4.4 耐久性に関する照査

(1) 環境条件,使用目的等に応じ、構造物の性能に影響を及ぼす環境の影響のうち、必要な因

- 子に関して、耐久性の検討を行うものとする.
- (2) 設計耐用期間が特に短い構造物,仮設構造物等に対しては,一般に耐久性の検討を省略してよい.
- (1) 耐久性に関しては、一般に、鋼材腐食に対する照査を行うものとし、コンクリート表面のひび割れ幅が限界値以下であることを照査する.
- (2) 鋼材腐食に対するひび割れ幅の限界値は、鉄筋コンクリートの場合には、一般に 0.005c (c はかぶり) としてよい. ただし、上限値は 0.5mm を標準とする.
- (3) ひび割れ幅に対する照査の具体的な方法は、「コンクリート標準示方書 [設計編]」 17 、「道路橋示方書・同解説 I 共通編、IV下部構造編」 $^{1)4)$ を参照することができる.

5.5 構造細目

5.5.1 一般

鉄筋コンクリート部材の設計にあたっては、構造物に損傷が生じないための措置、構造上の 弱点を作らない配慮、弱点と考えられる部分の補強方法、施工方法等を考慮し、設計に反映さ せるものとする.

5.5.2 かぶり

かぶりは、コンクリート構造物の性能照査の前提である付着強度を確保するとともに、要求される耐火性、耐久性、構造物の重要度、施工誤差等を考慮して定めること.

5.5.3 鉄筋の配置

構造物には、要求性能を満足するように、照査方法に応じて必要となる鉄筋量を配置すること.

- (1) 標準的な性能照査の方法を用いる場合には、その前提を確保するように鉄筋を配置する必要がある. 例えば、ぜい性的な破壊を防止するために鉄筋量が過多又は過小とならないように、あるいは有害なひび割れを制御できるように、鉄筋を配置する必要がある.
 - 1) 曲げモーメントの影響が支配的な棒部材の引張鉄筋比は、0.2%以上を標準とする.
 - 2) 曲げモーメントの影響が支配的な棒部材の引張鉄筋量は、釣り合い鉄筋比の 75%以下を標準とする.
 - 3) 棒部材には、0.15%以上のせん断補強鉄筋を部材全長にわたって配置するものとする.また、その間隔は部材有効高さの3/4倍以下、かつ400mm以下を標準とする.

第6章 管構造物

6.1 一般

管構造物の設計は、敷設する場所の土質、施工方法等を考慮し、安全かつ経済的に行う必要がある.

- (1) 管構造物には、剛性管とたわみ性管があり、使用材料や形状などから多くの種類に分類される.
- (2) 管構造物の基礎形状は、管の種類、地盤条件、土かぶり厚等を考慮して適切に設定する必要がある.
- (1) 管構造物の設計は、図-6.1.1 に示す手順で行うことができる. なお、耐震性を考慮する必要性、考慮すべき設計地震動、求められる耐震性能の詳細については、耐震設計編に示している.

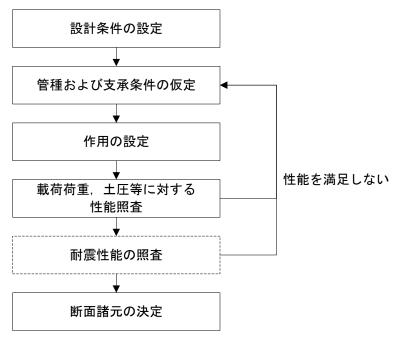


図-6.1.1 管構造物の設計手順の例

6.2 基礎構造

管構造物の基礎構造は、管の種類、地盤条件、土かぶり厚等を考慮して適切に設定する必要がある.

- (1) 管構造物の基礎の形式としては、砕石基礎、砂基礎、コンクリート基礎があり、管の種類、土かぶり厚等を考慮して、設定する必要がある.
- (2) 舗装体内にやむを得ず剛性管を設置する場合は、舗装施工時における管の損傷防止等の安全 確保のため鉄筋コンクリートの全巻(360°巻)とする必要がある.
- (3) 基礎コンクリートの設計基準強度は、一般に 18N/mm² としている.
- (4) 基礎地盤が軟弱な場合の対策については、「道路土工 カルバート工指針」8)が参考になる.
- (5) たわみ性管は、舗装本体への影響を考慮し、極力舗装体内に入れることを避けることが望ま しいが、やむを得ず舗装体内に設置する場合には、下層路盤以下に設置する必要がある。ま た、航空機荷重が作用する基本施設舗装の下ではたわみ性管のたわみが大きくなるため舗装

本体に悪影響を与えることがあり、これを防止する方法としてたわみ性管の管周材には、 HMS(水硬性粒度調整スラグ)等のように流動性のないものを使用することができる.

- (6) 複数のたわみ性管を並列で敷設する場合は、単独で敷設する場合に比べてより大きなたわみを生じる可能性もあるため、設計にあたっては十分に配慮する必要がある.
- (7) 一般に硬質塩化ビニル管の基礎の支承条件は、施工支承角を360°としている.
- (8) 消防水利施設等としての配水管の基礎形式は、一般的に「水道施設設計指針」²⁶⁾を参考とすることができる.

6.3 作用

6.3.1 一般

管構造物の性能照査で考慮する主な作用は、載荷重、土圧、基礎反力、地震動があり、管構造物を設置する場所の諸条件、種類、寸法、埋設形式を考慮して適切に設定する必要がある.

- (1) 管構造物に作用する載荷重,土圧等は,管の種類,形状,土被り,埋設形式等により異なることに留意する必要がある.
- (2) 性能照査における作用の組み合わせは、主たる作用が土圧である永続状態や主たる作用が載荷重である変動状態を考慮する必要がある。また、地震時の性能照査では、載荷重を除く作用を考慮し、土圧等、地震動が影響する作用は、別途検討する必要がある。
- (3) 考慮すべき作用の詳細については、第3章「作用」を参照することができる。また、第3章 「作用」に記載していない影響については、「道路土工 カルバート工指針」⁸⁾や「水道施設 設計指針」²⁰⁾を参考とすることができる。

6.3.2 載荷重

航空機,自動車及び大型消防車による載荷重は,構造物の形状や設置位置,土被り厚を考慮して適切に設定する必要がある.

(1) 航空機,自動車及び大型消防車等により構造物に作用する鉛直荷重,水平荷重については, 第3章「作用」を参照することができる.

6.3.3 土圧

鉛直土圧及び水平土圧の特性値は、土被り厚、土や舗装の自重を考慮して適切に設定する必要がある。

(1) 遠心力鉄筋コンクリート管とプレストレストコンクリート管のような剛性管に作用する鉛直土圧は、設置する土中の状態により、溝型と突出型の算出方法に分けられる.

図-6.3.1 埋設形式

1) 溝型

原地盤又は良く締め固めた盛土地盤に溝を掘削して埋設する形式である. なお, 矢板使用の有無により設計条件が異なるため, 矢板を使用する場合については, 日本下水道協会規格「JSWAS A-1 (下水道用鉄筋コンクリート管)」²⁴⁾の土圧算定式等を参考にしてよい.

2) 突出型

突出型とは、管を直接地盤又はよく締め固められた地盤上に設置し、その上に盛土をする形式である.なお、溝を掘って管を埋設する場合でも、溝幅が管の外径の2倍以上ある場合や、原地盤からの土かぶりが溝幅の1/2以下の場合には、突出型とみなす.

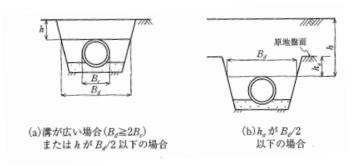


図-6.3.2 突出型とする場合の埋設形式

- (2) 遠心力鉄筋コンクリート管とプレストレストコンクリート管のような剛性管に作用する鉛直土圧は、マーストンによる式を用いることができるが、構造物を杭で支持した場合には、 箱型と同様に土圧が変化する傾向があるので注意する必要がある.
 - 1) 溝型の鉛直土圧算定式

溝型の埋設形式における剛性管に作用する鉛直土圧は, 次式によって算出することができる.

$$q = C_d \cdot \gamma \cdot \frac{B_d^2}{B_c} \qquad (6.3.1)$$

$$C_d = \frac{1 - e^{-2K \cdot \mu' \cdot \frac{H}{Bd}}}{2K \cdot \mu'}$$

ここで,

q : 構造物に働く鉛直土圧 (kN/m²)

C_d: 溝型の場合の土圧係数

γ : 土の単位体積重量 (kN/m³)

B_d:管頂部の溝幅 (m)

Bc:管の外径(m)

H : 構造物の土被り (m)

 μ' :自然地盤(又は盛土)と埋戻し材との間のすべり摩擦係数 (通常 $\mu'=\mu$:(埋戻し材の内部摩擦係数, $\mu=\tan \varphi$))

 φ : 埋戻し材の内部摩擦角で試験に因らない場合,表-6.3.1を用いてもよい

$$K : ランキンの係数 K = \frac{\sqrt{\mu^2 + 1} - \mu}{\sqrt{\mu^2 + 1} + \mu}$$

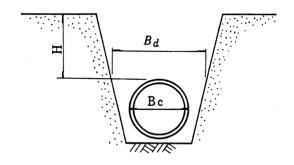


図-6.3.3 溝型の説明図

表-6.3.1 埋戻し材の内部摩擦角 Φの例

埋戻し材の種類	内部摩擦角 φ
良質粘性土	10°
砂	17°
粒状材	30°

2) 突出型の鉛直土圧算定式

突出型の埋設形式における剛性管に作用する鉛直土圧は、次式によって算出することができる.

$$q = C_c \cdot \gamma \cdot B_c \cdot \cdots \cdot (6.3.2)$$

$$extit{H}$$
 \leq H $_{e}$ のとき $extit{C}_{c}=rac{e^{2K\cdot\murac{H}{Bc}}-1}{2K\cdot\mu}$

$$H > H_e$$
のとき $C_c = \frac{e^{2K \cdot \mu \cdot \frac{He}{Bc}} - 1}{2K \cdot \mu} + (\frac{H}{Bc} - \frac{He}{Bc}) e^{\Box K \cdot \mu \cdot \frac{He}{Bc}}$

ここで,

Cc: 突出型の場合の土圧係数

 H_e : 仮想の沈下面より暗渠上端までの深さ (m) で式(6.3.3)による.

$$e^{2K \cdot \mu \cdot \frac{He}{Bc}} - 2K \cdot \mu \cdot \frac{He}{Bc} = 2K \cdot \mu \cdot \gamma_{sd} \cdot P + 1 \cdot \dots \cdot (6.3.3)$$

P: 突出比,盛土基面上から暗渠上端までの高さ(h)と暗渠外径(Bc)との比 h/B_c

γ_{sd}: 沈下比(図-6.3.4参照,普通地盤では一般に0.7)

K:ランキンの係数

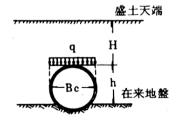


図-6.3.4 突出型の説明図

表-6.3.2 沈下比(ysd)

埋設条件	γsd
岩盤,硬質地盤	1.0
普通地盤	0.5~0.8
軟弱な地盤	0~0.5

- (3) 溝型の埋設形式であっても、溝の掘削幅を拡げてゆくと、ある幅のところで溝型の土圧でなく、突出型の土圧が働くようになる.この幅を転移幅といい、溝型の土圧は掘削幅の拡がりにともない突出型の土圧に等しくなるまで増加する.したがって、広い溝を掘削したときは、溝型の土圧と突出型の土圧とのどちらが作用するかを判別する必要がある.この場合、溝型と突出型の両方を計算し、そのうちの小さい方の値を、管にかかる鉛直土圧として採用すればよい.
- (4) たわみ性管に作用する鉛直土圧は、次式によって算出することができる.

 $q = \gamma \cdot h \qquad (6.3.4)$

ここで,

q:鉛直土圧 (kN/m2)

γ: 土の単位体積重量 (通常 18 kN / m3)

h: 土被り厚 (m)

6.4 性能照査

6.4.1 一般

管構造物の安全性等は、管の種類、想定する作用、限界状態に応じて適切な方法で照査する ものとする.

- (1) 管構造物の安全性等の照査は、強度、変形、応力等について行うことを標準とする.
- (2) 性能照査にあたっては、主たる作用が土圧である永続状態、主たる作用が載荷重である変動 状態において、管構造物が所要の安全率を有する場合、求められる性能を満足すると見なす ことができる.

6.4.2 剛性管の性能照査

- (1) 剛性管の安全性等が確保されていることを確認するため、強度等について照査するものとする.
- (2) 性能照査にあたっては、主たる作用が土圧である永続状態、主たる作用が載荷重である変動状態において、作用する曲げモーメントに対する抵抗曲げモーメントの比として表わされる安全率が、対象荷重で区別された安全率を超えている場合には、(1)を満足するとみなすことができる.
- (1) 剛性管の安全性等は、次式で求められる安全率が、対象荷重区分に対して規定する安全率以上であることにより照査することができる.

$$Fs = \frac{\text{抵抗曲げモーメント}}{\text{曲げモーメント}} = \frac{Mr}{M}$$
(6.4.1)

ここで,

Fs : 安全率

M:曲げモーメント (kN・m)

Mr: 抵抗曲げモーメント (kN・m)

(2) 剛性管の 1m あたりの抵抗曲げモーメントは、式(6.4.2)により算出することができる.

$$Mr = 0.318 P \cdot r + 0.239 W \cdot r$$
(6.4.2)

Mr: 抵抗曲げモーメント (kN・m/m)

P: 管のひび割れ荷重 (kN/m)

r : 管厚中心半径 (m)

W:管長 1m あたりの管自重 (kN/m)

管径・管種別のひび割れ荷重は、付録-5「材料及び許容応力度」を参照することができる.

(3) 剛性管の 1m あたりの曲げモーメントは、式(6.4.3)により算出することができる.

$$M = k \cdot (q+p) \cdot r^{2}$$
 (6.4.3)

M:曲げモーメント (kN・m/m)

k:基礎形式及び基礎の有効支承角に対する係数(表-6.4.1)

q:埋戻し土による鉛直土圧(kN/m^2)

p : 載荷重による鉛直土圧 (kN/m²)

r : 管厚中心半径 (m)

表-6.4.1 係数 kの値

	砂・砕石基礎			コ	ンクリート基	、 礎
有効支承角	60°	90°	120°	90°	120°	180°
k	0.378	0.314	0.275	0.303	0.243	0.220

- (4) 剛性管の安全率は、一般に以下の数値としている.
 - 1) 航空機荷重のかかる範囲 Fs=1.5 ただし、W 荷重の安全率 Fs=1.0
 - 2) 自動車荷重等のかかる範囲 Fs=1.25 (トーイングトラクター荷重を含む) ただし、一時荷重とみなすことができる範囲の安全率 Fs=1.0
- (5) トーイングトラクター荷重や自動車荷重等が作用する範囲の安全率は、「道路土工 カルバート工指針」。8に示されている 1.25 とすることができるが、一時的荷重とみなすことができる範囲の安全率は、許容応力の割増しに対応して 1.0 とすることができる. なお、Wで荷重が作用する範囲において、トーイングトラクター荷重や自動車荷重等が作用する場合は、Wで荷重では安全率 1.0、トーイングトラクター荷重や自動車荷重等の安全率 1.25 のいずれの安全率も満足するように設計する必要がある.
- (6) 他の構造物に接続する場合は、不同沈下や地震等による相対変位によって取付部分が折損す

るのを防ぐ対策を行う.

- (7) 剛性管のレベル一及びレベル二地震動に対する限界状態や性能照査方法については,「下水 道施設の耐震対策指針と解説」²³⁾等を参考とすることができる.
- (8) レベル一及びレベル二地震動が作用する場合の断面力等の設計応答値については、震度法や 応答変位法により算出することができ、その詳細については耐震設計編を参照し、「下水道 施設の耐震対策指針と解説」²³⁾を参考とすることができる.

6.4.3 たわみ性管の性能照査

- (1) たわみ性管渠の安全性が確保されていることを確認するため、強度及びたわみ率について 照査するものとする.
- (2) (1)の性能照査にあたっては、主たる作用が土圧である永続状態、主たる作用が載荷重である変動状態において、たわみ性管に生ずる曲げ応力度、管のたわみ率が、付録-5「材料及び許容応力度」に規定する管の許容曲げ応力度、許容たわみ率以下であれば、(1)を満足するとみなすことができる.
- (1) たわみ性管は、曲げに対する安全性のほか、たわみに対する安全性も十分に考慮する必要がある.
- (2) 鉛直土圧及び載荷重による鉛直荷重によって生じる曲げ応力度は、強化プラスチック複合管及び硬質塩化ビニル管の場合、式(6.4.4)により算出することができる.

$$\sigma = \frac{(k_1 \cdot q_d + k_2 \cdot q_l) \quad r^2}{Z} \qquad (6.4.4)$$

ここで,

σ : 曲げ応力度 (N/mm²)

 k_1 : 埋戻し土に対する曲げモーメント係数 (表-6.4.2)

k2: 載荷重に対する曲げモーメント係数 (表-6.4.2)

 q_d :鉛直土圧 (N/mm^2)

q_l:載荷重による鉛直土圧 (N/mm²)

r : 管厚中心半径 (mm)

Z: 管の断面係数 (mm³/mm)

なお、最大曲げ応力度は、標準的に管頂部と管底部の両方について計算を行いその大きい 方の値とすることができる

(3) 鉛直土圧及び載荷重による鉛直荷重によって生じる管のたわみ率は、強化プラスチック複合管及び硬質塩化ビニル管の場合、式(6.4.5)により算出することができる.

$$V = \frac{50(k_3 \cdot q_d + k_4 \cdot q_l)r^3}{EI}$$
 (6.4.5)

ここで,

V:たわみ率(%)

k3: 埋戻し土に対するたわみ係数(表-6.4.2)

k₄: 載荷重に対するたわみ係数 (表-6.4.2)

EI: 管の曲げ剛性 (N·mm²/mm) VP, VU 管の場合は $EI = E \times I$

E:硬質塩化ビニルの弾性係数 2,942N/mm²

I : 管の断面二次モーメント (mm⁴/mm)

 q_d :鉛直土圧 (N/mm^2)

 q_l : 載荷重による鉛直土圧 (N/mm²)

表-6.4.2 曲げモーメント係数及びたわみ係数

施工支承角	有効支承角	管の位置	曲げモース	メント係数	たわみ	ケ係数
θ	2α	官少位區	k_1	k_2	k_3	k_4
90°	60°	管頂	0.132	0.079	0.102	0.030
90	00	管底	0.223	0.011	0.102	
180°	90°	管頂	0.120	0.079	0.005	0.020
		管底	0.160	0.011	0.085	0.030
360° 120°	管頂	0.107	0.079	0.070	0.020	
300	360° 120°	管底	0.121	0.011	0.070	0.030

硬質塩化ビニル管の施工支承角は360°を標準する.

- (4) 管厚中心半径,管の断面係数,管の曲げ剛性,管の断面二次モーメントに関する管渠の諸元は付録-5「材料及び許容応力度」を参照することができる.
- (5) たわみ性管に関する設計の詳細等については、「道路土工 カルバート工指針」 8 、「下水道用強化プラスチック複合管 (K-2)」 25 等を参考とすることができる.
- (6) 他の構造物に接続する場合は、不同沈下や地震等による相対変位によって接続部分に過大な 応力が発生するのを防ぐ対策を行う.
- (7) たわみ性管のレベル一及びレベル二地震動に対する限界状態や性能照査方法については、「下水道施設の耐震対策指針と解説」²³⁾を参考とすることができる。また、地震動が作用する場合の断面力等の設計応答値については、震度法や応答変位法により算出することができ、その詳細については耐震設計編を参照し、「下水道施設の耐震対策指針と解説」²³⁾を参考とすることができる。
- (8) FRPM 管の許容曲げ応力度や許容たわみ率は、表-6.4.3を参照することができる.

表-6.4.3 FRPM 管の許容曲げ応力度

呼び径	B形及びC形 (N/mm²)		
呼び往	1種	2種	
200~250	85.0	55.7	
300~350	90.0	60.3	
400~450	94.6	65.3	
500~900			
1,000~1,500	105.0	72.0	
1,650~3,000			

表-6.4.4 FRPM 管の許容たわみ率

基礎の種類	砕石基礎	砂基礎
許容たわみ率(%)	5.0	4.0

(9) 硬質塩化ビニル管 (VP 管, VU 管) の許容曲げ応力度, 許容たわみ率は, **表-6.4.5** に示す値を用いることができる.

表-6.4.5 硬質塩化ビニル管の許容曲げ応力度及び許容たわみ率

許容曲げ応力度	17.7N/mm ²
許容たわみ率 (%)	5%

- (10) 第3章「作用」に示す一時荷重とみなす範囲における FRPM 管や VP 管・VU 管の許容曲げ 応力度及び許容たわみ率は、割増しを考慮し 1.5 倍とすることができる.
- (11) 配水管の上部に荷重が載る場合には、管体強度やたわみ量に関する検討を行なう必要があり、 その検討については、「水道施設設計指針」²⁶⁾を参考とすることができる.
- (12) 配水管のレベルー地震動に対する性能照査方法については、「水道施設設計指針」²⁶⁾を参考とすることができる。また、地震動が作用する場合の変形量等の設計応答値については、震度法や応答変位法により算定することができ、その詳細については耐震設計編を参照し、「水道施設耐震工法指針・解説」²⁷⁾を参考とすることができる。耐震対策は、管本体の構造だけではなく、継ぎ手構造にも配慮する必要がある。

第7章 道路舗装

7.1 一般

空港の道路舗装には、一般にアスファルト舗装が用いられ、その設計は、舗装の性能指標の 値を満足するように、経済性、施工性を考慮して、その層構成、材料、その他の詳細構造を決 定する必要がある.

(1) 空港の場周道路,保安道路,構内道路,駐車場の舗装設計は**図-7**.1.1 に示す手順で行うことができる.

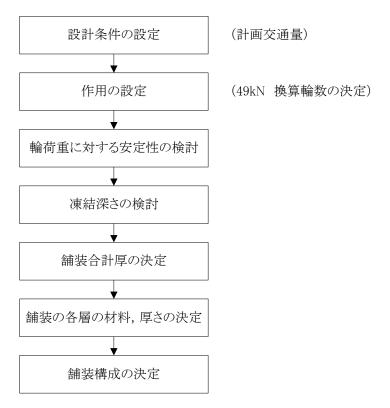


図-7.1.1 舗装の設計手順の例(アスファルト舗装)

- (2) 標準的に設定する舗装の性能指標は、疲労破壊輪数、塑性変形輪数及び平坦性等があり、その詳細については、「舗装の構造に関する技術基準・同解説」¹²⁾を参考とすることができる。
- (3) 舗装の設計期間は、当該舗装の施工及び管理にかかる費用、施工時の道路交通等への影響を総合的に勘案して、設定する必要がある.
- (4) 舗装の設計に際しては、設計期間に応じた舗装計画交通量や基盤条件を設定する必要がある. 特に、基盤は、舗装の出来形、品質及び舗装としての性能の確保に大きな影響を与えるため、 適切に基盤条件を設定する必要がある. なお、基盤条件として、路床の設計 CBR、弾性係数、設計支持力係数等を設定する必要があり、その際に必要となる試験方法や設定方法の詳細については、「舗装設計便覧」 ¹³⁾を参考とすることができる.
- (5) 積雪地域の舗装で凍結の可能性のある場合は、路床土の凍結融解の影響により破損することがあるので、その対策が必要である。凍結融解の影響がある場合、冬季には路床土の凍上により路面のひび割れや平坦性の悪化を招き、春先には路床土の融解によって支持力が低下して舗装の破損につながる。したがって凍結融解の可能性がある場合は、その場所の凍結深さから求めた必要な置換え深さと荷重の支持性能の面から必要な舗装厚さを算出し、前者が後

者よりも大きい場合には、その厚さの差に相当する凍上抑制層を路盤の下に設ける必要がある.

(6) 空港の道路が臨海部を埋め立てて造成する等軟弱な地盤上に建設される場合は、残留沈下あるいは不同沈下により、舗装が悪影響を受ける可能性があるため、地盤の沈下が舗装に及ぼす影響を考慮する必要がある.

7.2 作用

道路舗装の性能照査で考慮する主な作用は、車両交通による繰返し載荷重であり、舗装構造を決定するための舗装計画交通量を適切に設定する必要がある.

(1) 舗装計画交通量は、舗装の設計期間における大型車の平均的な交通量(台・日・方向)に基づいて設定される交通量であり、「舗装設計便覧」¹³⁾では、表-7.2.1 のとおり区分している.

舗装計画交通量	:(単位:台/日)
3,000 以上	
1,000 以上	3,000 未満
250 以上	1,000 未満
100 以上	250 未満
40 以上	100 未満
15 以上	40 未満
	15 未満

表-7.2.1 舗装計画交通量の区分

- (2) 舗装計画交通量は、需要予測や交通量調査等に基づき適切に設定することが望ましい.
- (3) 場周道路及び保安道路の舗装計画交通量は、一般的な空港においては実態として 100 台/日 未満であるが、当該場周道路を使用予定の車両交通量及び将来の維持・補修の見通し等を十 分に考慮することにより、これ以外の交通量とすることができる.
- (4) 構内道路及び駐車場の舗装計画交通量に関する資料が不足している国管理空港及び地方管理空港においては、これまでの全国的な実績が概ね100台/日以上250台/日未満であり、一般にこれを舗装計画交通量として設計している。ただし、大型車両の進入が予想されない従業員駐車場等では、100台/日未満とすることもできる。

7.3 性能照査

- (1) 舗装構造が荷重支持性能を有していることを確認するため、舗装構造が疲労限界に達しないことについて照査するものとする.
- (2) 路面が安全、円滑かつ快適な走行性を有していることを確認するため、路面の平坦性及び 塑性変形抵抗性について照査するものとする.
- (1) 舗装構造が疲労限界に達しないことの性能照査は、主たる作用が載荷重である変動状態において、舗装構造が疲労破壊しないことについて確認することを標準とする.
- (2) 路面の平坦性及び塑性変形抵抗性の照査は、施工直後の平坦性指標及び塑性変形輪数が規定値以下であることについて確認することを標準とする.
- (3) 舗装構造の疲労限界に関する性能指標として疲労破壊輪数,路面の平坦性や塑性変形抵抗性

に関する性能指標として平坦性、塑性変形輪数があり、各性能指標の規定値及び性能照査方法の詳細については、「舗装の構造に関する技術基準・同解説」¹²⁾を参考とすることができる.

- (4) 「舗装の構造に関する技術基準・同解説」 $^{12)}$ では、疲労破壊輪数の基準に適合する舗装構造として、必要等値換算厚 (T_A) を下回らないよう舗装構造を決定する必要があるとしており、「舗装設計施工指針」 $^{14)}$ において、実態調査結果に基づき信頼性を考慮した T_A の算出方法が示されている.
- (5) 疲労破壊輪数は、設計年数 10 年の場合、舗装計画交通量の区分に応じて、表-7.3.1 に示す値とすることができる.

表-7.3.1 疲労破壊輪数の基準値 (標準荷重 49kN)

舗装計画交通量 (単位:台/日)		疲労破壊輪数 (単位:回/10年)
3,000 以上		35,000,000
1,000 以上	3,000 未満	7,000,000
250 以上	1,000 未満	1,000,000
100 以上	250 未満	150,000
40 以上	100 未満	30,000
15 以上	40 未満	7,000
	15 未満	1,500

(6) 空港における道路舗装構造の設定については、一般に信頼性 90%に相当する T_A 式を用いている.

第8章 フェンス構造

8.1 一般

- (1) 空港土木施設として設置されるフェンス構造には、場周柵やブラストフェンスがある.
- (2) 場周柵の設計は、空港用地の地形、地質、電波干渉の有無、施工方法等を考慮し、安全かつ経済的に行う必要がある.
- (3) ブラストフェンスの設計は、航空機の走行経路、空港内外の車両走行道路、歩行者動線等 や施工方法等を考慮し、安全かつ経済的に行う必要がある.
- (1) 場周柵やブラストフェンス等のフェンス構造の設計は、図-8.1.1 に示す手順で行うことができる. なお、考慮すべき設計地震動や求められる耐震性能の詳細については、耐震設計編に示している.

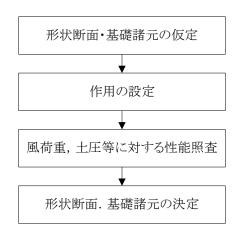


図-8.1.1 フェンス構造の設計手順の例

(2) 設計に際して設定する基礎形式として,直接基礎,あるいは地盤改良後の直接基礎等が考えられるが,地盤の支持力を十分検討して経済性を考慮する必要がある.

8.2 作用

フェンス構造の性能照査で考慮する主な作用は、風荷重、ブラスト風荷重、自重、土圧、地震動があり、フェンスを設置する場所の諸条件及び構造により適切に設定する必要がある.

- (1) 考慮すべき作用の詳細については、第3章「作用」を参照することができる.
- (2) 場周柵の作用には風荷重の他に波浪や雪, 凍上による影響も考えられるため, 地域特性に応じて適切な荷重条件を設定する必要がある.
- (3) 場周柵の性能照査における作用の組み合わせは、主たる作用が風荷重である変動状態を考慮する必要がある。また、地震時の性能照査では、レベルー地震動と自重による慣性力を考慮し、土圧等、地震動が影響する作用は、別途検討する必要がある。
- (4) ブラストフェンスの性能照査では、主たる作用がブラスト風荷重又は風荷重である変動状態を考慮する必要がある。この際、設計ブラスト風荷重は、想定される航空機のうちで最もブラストの影響が大きな航空機によることを標準とする。また、地震時の性能照査では、レベルー又はレベル二地震動と自重による慣性力とブラスト風荷重及び風荷重以外の作用を考慮する必要があり、土圧等、地震動が影響する作用は、別途検討する必要がある。

8.3 性能照査

8.3.1 場周柵

- (1) 場周柵の安全性が確保されていることを確認するため、構造物及び構造部材が限界状態に達しないことを照査するものとする.
- (2) 場周柵の安定性が確保されていることを確認するため、転倒に対する危険性が限界値に達しないことを照査するものとする.
- (1) 安全性の性能照査にあたっては、主たる作用が風荷重である変動状態において、支柱及び胴縁等の部材に発生する応力度が、付録-5「材料及び許容応力度」に規定する許容応力度以下である場合は、求められる性能を満足するとみなすことができる.
- (2) 安定性の性能照査にあたっては、主たる作用が風荷重である変動状態において、転倒の安定性に関して、次式より求められる安全率が1.0以上である場合には、求められる性能を満足するとみなすことができる.なお、設置される地盤が平坦でなく、法肩又は法面の途中に設置される場合においては、転倒に対する検討について十分注意する必要がある.

$$Fs = \frac{Mr_1 + Mr_2}{Me} \tag{8.3.1}$$

ここで,

Fs : 安全率

Me : 転倒モーメント $(kN \cdot m)$ $(=M_0+H_0 \times (h+h_0))$

Mr1: 自重による抵抗モーメント (kN・m)

(= コンクリートの単位体積重量× (h+h₀) ×b×d×d/2)

Mr2: 側圧抵抗モーメント (kN・m) (=1/3×h× (fe'×h×b-H₀))

 M_0 :基礎上面に作用するモーメント (kN・m)

H₀ : 基礎上面に作用する水平力 (kN)

h : 基礎の根入れ長 (m)
 h₀ : 基礎の突出長 (m)
 b : 基礎の奥行き (m)
 d : 基礎の幅 (m)

fe': 地盤の短期許容横方向地耐力(kN/m²)

 $(=2/3\times fe)$

fe : 地盤の許容鉛直方向地耐力 (kN/m²)

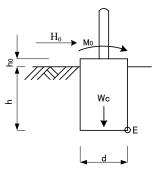


図-8.3.1 基礎に作用する荷重の例

- (3) 基礎地盤が軟弱な場合は、地盤の支持力について検討する必要がある.
- (4) 支柱に作用する曲げモーメントにより基礎の支圧破壊や,基礎地盤の支持力不足が懸念されるような場合等,その他必要な照査を行う必要がある.
- (5) 安全性及び安定性における耐震性能の照査は、解説(1)、解説(2)による性能照査を行う場合は、主たる作用がレベルー地震動に関する耐震性能を満足するとみなすことができる.

8.3.2 ブラストフェンス

- (1) ブラストフェンスの安全性が確保されていることを確認するため、構造物及び構造部材が 限界状態に達しないことを照査するものとする.
- (2) ブラストフェンスの安定性が確保されていることを確認するため、支持、転倒、滑動に対する危険性が限界値に達しないことを照査するものとする.
- (1) 安全性の性能照査にあたっては、主たる作用がブラスト風荷重又は風荷重である変動状態に おいて、部材に発生する応力度が、**付録-5「材料及び許容応力度」**に規定する許容応力度以 下である場合は、求められる性能を満足するとみなすことができる.
- (2) 部材に関する性能照査は構造形式により異なり、斜壁型鋼構造や直壁型複合コンクリート構造の場合は、以下の方法により行うことができる。また、照査方法については、「鉄筋コンクリート構造 計算規準・同解説」²¹⁾、「鋼構造設計規準」²²⁾を参考とすることができる。
 - 1) 斜壁型鋼構造

斜壁型鋼構造の場合の部材の性能照査は、上部構造を構成する各部材の曲げやせん断、たわみ量等に対して行う必要があり、下部構造については、アンカーボルトや底版部等について行う必要がある。なお、上部構造の設計応答値は、骨組み構造解析により算出することができ、下部構造の設計応答値は、上部構造を介してブラスト風荷重等による曲げモーメントが伝達されると考えることができる。

2) 直壁型複合コンクリート構造

直壁型複合コンクリート構造の場合の部材の性能照査は、上部構造を構成する枠材(溶接部を含む)、取付版、支柱、支柱根入れ部等の曲げやせん断、たわみ量等に対して行う必要があり、下部構造については、柱脚部、底版部等について行う必要がある。なお、上部構造の設計応答値は、取付版は4辺を単純支持された版として計算することができ、下部構造の設計応答値は、上部構造を介してブラスト風荷重等による曲げモーメントが伝達されると考えることができる。

- (3) 安定性の性能照査にあたっては、主たる作用がブラスト風荷重又は風荷重である変動状態において、支持及び転倒、滑動に対する安全性が、所要の安全率以上である場合は、求められる性能を満足するとみなすことができる.
- (4) 直接基礎とする場合の安定性の照査は以下の方法による行うことができる.
 - 1) 支持に関する照査

支持に関する照査では、基礎地盤底面における鉛直地盤反力が、許容鉛直支持力以下であることを確認する必要がある.なお、直接基礎とする場合の許容鉛直支持力は、式(8.3.2)に示す支持力式や平板載荷試験により得られる極限支持力に対して、表-8.3.1に示す安全率を確保した値とすることができる。式(8.3.2)の支持力式は、Terzaghiの支持力式に対して、基礎形状、荷重の偏心傾斜、支持力係数の寸法効果の影響を考慮したものである。

$$Q_{u} = \left(\alpha \cdot \kappa \cdot c \cdot N_{c} \cdot S_{c} + \kappa \cdot q \cdot N_{q} \cdot S_{q} + \frac{1}{2} \gamma_{1} \cdot \beta \cdot B_{e} \cdot N_{r} \cdot S_{r}\right) \cdot A_{e} \cdot \cdots (8.3.2)$$

Qu:直接基礎の極限支持力(kN)

c : 地盤の粘着力 (kN/m²)

q : 上載荷重(kN/m^2)で、 $q = \gamma_2 \cdot D_f$

 A_e :有効載荷面積(m^2)

γ1 : 支持力地盤の単位体積重量(kN/m³)

γ2 : 根入れ部分の土の単位体積重量 (kN/m³)

ただし、 γ1. γ2 地下水位以下では水中単位体積重量を用いる.

Be: 荷重の偏心を考慮した基礎の有効載荷幅 (m)

 $B_e = B - 2e_B$

B:基礎幅.荷重の偏心がある場合には有効幅 B_e (m)

e_B : 荷重の偏心量 (m)

 D_f :基礎の有効根入れ深さ(m)

α,β:基礎の形状係数

κ:根入れ効果に対する割増し係数

 N_c, N_q, N_r : 荷重の傾斜を考慮した支持力係数.「道路橋示方書・同解説 IV下部構造編」

4)を参考とすることができる.

 S_c, S_q, S_r : 支持力係数の寸法効果に関する補正係数「道路橋示方書・同解説 IV下部構

造編」4)を参考とすることができる.

表-8.3.1 極限支持力に対する安全率

ブラスト風荷重時	暴風時, レベルー地震時
3	2

表-8.3.2 形状係数

基礎底面の形状 形状係数	帯状	正方形,円形	長方形,楕円形, 小判型
α	1.0	1.3	$1+0.3\frac{Be}{De}$
β	1.0	0.6	$1-0.4\frac{Be}{De}$

注) Be, De は, 有効載荷幅

2) 転倒に関する照査

基礎の転倒モーメントに対する安定性は、作用による合力の作用位置で照査するものとする. その際、直接基礎に作用する合力の作用位置は、ブラスト風荷重時には底面の中心より底面幅の 1/6 以内とし、暴風時及びレベルー地震時には底面の中心より底面幅の 1/3 以内とする必要がある.

3) 滑動に関する照査

基礎の滑動に関する照査では、想定される作用により発生する荷重の水平成分が、基礎 底面のせん断抵抗力に対して表-8.3.3 に示す安全率が確保されていることを確認する必要がある.その際、周囲の舗装体の影響は考慮しなくてもよい.

基礎底面のせん断抵抗力は、地盤条件を十分考慮して求める必要があり、式(8.3.3)で求めることができる. 基礎底面と支持地盤の付着及び摩擦角(摩擦係数)の一般的な値として、表-8.3.4に示す値を用いることができる.

表-8.3.3 せん断抵抗力に対する安全率

ブラスト風荷重時	暴風時, レベルー地震時
1.5	1.2

 $H_{u} = c_{B} \cdot A_{e} + V \cdot tan \phi_{B} \cdot \cdots (8.3.3)$

H_u:基礎底面と地盤との間に働くせん断抵抗力(kN)

 c_B :基礎底面と地盤との間の付着力 (kN/m^2)

φ₈: 基礎底面と地盤との間の摩擦角 (°)

 A_e :有効載荷面積 (m^2)

V:基礎底面に作用する鉛直荷重(kN).ただし、浮力を差し引いた値.

表-8.3.4 摩擦角と付着力

条件	摩擦角 ϕ_B (摩擦係数 $tan \phi_B$)	付着力 СВ
土とコンクリート	$\phi_B = \frac{2}{3}\phi$	$c_{\scriptscriptstyle B}$ =0
土とコンクリートの間に栗石を 敷く場合	$tan\phi_B = 0.6$ $\phi_B = \phi$ の小さい方	c_B =0
岩とコンクリート	$tan \phi B = 0.6$	$c_{\scriptscriptstyle B}$ =0
土と土又は岩と岩	$\phi B = \phi$	$c_{\scriptscriptstyle B}=c$

- 注) ϕ : 支持地盤のせん断抵抗角 (°), c: 支持地盤の粘着力 (kN/m²)
- (5) 溶接部分の安全性等が構造物の安定性に大きく影響することが想定される場合や用地の制 約等より特殊な基礎形状を採用する場合等,基礎形式に応じて,その他必要な照査を行う必 要がある.
- (6) 安全性及び安定性における耐震性能の照査は、(1)、(3)による性能照査を行う場合は、主たる作用がレベルー地震動に関する耐震性能を満足するとみなすことができる. なお、主たる作用がレベル二地震動である偶発状態において、構造や基礎形式とその限界状態に応じて、適切な方法に基づいて照査する必要がある.

第9章 橋梁

9.1 一般

- (1) 空港土木施設における橋梁構造は、一般的には進入灯の基盤として設置されることが多いが、道路・駐車場や空港の施設の基盤として設置されることもある.
- (2) 橋梁構造の設計は、地形・地質、線形・勾配、施工方法等を考慮し、安全かつ経済的に行う必要がある.

【解説】

- (1) 橋梁構造の作用,性能照査方法は,「道路橋示方書・同解説」¹⁾²⁾³⁾⁴⁾⁵⁾を参照することができる。
- (2) 本要領では、空港施設特有の進入灯橋梁を対象とした作用、性能照査について記載している。

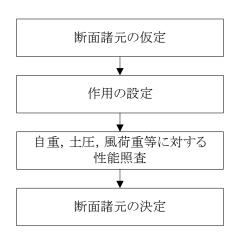


図-9.1.1 進入灯橋梁の設計手順の例

9.2 作用

進入灯橋梁の性能照査で考慮する主な作用は、載荷重、自重、土圧、風荷重、雪、波浪、地震動、環境作用があり、進入灯橋梁を設置する場所の諸条件及び構造により作用を適切に設定する必要がある.

- (1) 考慮すべき作用の詳細や、その組み合わせについては「道路橋示方書・同解説」¹⁾²⁾³⁾⁴⁾⁵⁾を参考とすることができる.
- (2) 自重として、橋梁本体以外に灯器、ケーブル等の重さがある。主なものでは、センターバーは 1 箇所あたり 300kg 程度、クロスバーは 1 箇所あたり 1,200kg 程度、ケーブルは 40kg/m 程度である。これら灯器等の重量はその種類によって異なるので、航空灯火施設の担当者と協議して設定する必要がある。
- (3) 維持・点検作業時に発生する載荷重については、作業員3名と台車1台及び補修材の計として300kg程度としている事例が多い.空港ごとの実荷重を適切に考慮するため、航空灯火施設の担当者と協議の上決定する必要がある.
- (4) 必要に応じて、橋脚や桁に作用する水平波力や揚圧力を考慮する必要がある. 詳細については「港湾の施設の技術上の基準・同解説」²⁸⁾を参考とすることができる.
- (5) 風荷重については「道路橋示方書・同解説 I 共通編」¹⁾ においては、設計基準風速を 40m/s として設定している. しかし、進入灯橋梁では一般的な橋梁に比べて、風荷重の影響が相対

的に大きくなるため,特に強風地域では橋梁が位置する地形等を考慮し設計基準風速について適切な検討を行う必要がある.

(6) 進入灯橋梁に作用する風により生じる共振等が安全,使用上の問題となることがあるので,架橋位置・地形及び地表条件を考慮して橋梁の構造特性・断面形状を適切に決定する必要がある.

9.3 性能照査

進入灯橋梁構造物の性能が確保されていることを確認するため、構造物及び構造部材が限界 状態に達しないことを照査するものとする.

【解説】

- (1) 性能照査にあたっては、主たる作用が自重、土圧等である永続状態、主たる作用が風荷重、 波浪等である変動状態において、部材に発生する応力度が許容応力度以下であり、その他上 部構造、下部構造の形式等に応じた必要な照査、及び必要に応じて耐風性による照査、耐震 性能の照査を行う場合は、求められる性能を満足するとみなすことができる.
- (2) 上部構造,下部構造を考慮し,風による振動が問題となる場合は,必要な耐風性についての 照査を行う必要がある.
- (3) 耐震性能の照査は、主たる作用がレベルー地震動である変動状態、主たる作用がレベル二地震動である偶発状態において、構造や基礎形式とその限界状態に応じて、適切な方法に基づいて行うことを標準とする。
- (4) たわみの許容値については航空灯火の性能等と密接に関連しているため, 航空灯火施設の担当者と協議の上決定する必要がある.
- (5) 進入灯橋梁構造物の許容応力度や耐力,性能照査の方法の詳細については,「道路橋示方書・同解説」^{1)2)3)4/5)}を参考とすることができる.
- (6) 地震時を除き,進入灯橋梁の変形の許容値としては,「ICAO ANNEX 14 添付物 A」(添付 A-17, A-18, A-23) の進入灯の設置許容範囲を参考とすることができる.
- (7) たわみやすい構造物は、風によりその周囲に発生する渦による渦励振や構造物と共振し振動が急激に大きくなる発散振動を起こすことがある. 渦励振や発散振動が発現する可能性の推定にあたっては、「道路橋耐風設計便覧」のにおける振動発現の推定結果、表-9.3.1 を参考とすることができる. 振動発現の可能性が推定される場合は、風洞試験やシミュレーション等の適切な方法を用いて耐風性を検討する必要がある.

表-9.3.1 振動発現の推定結果

	橋種		振動の発現風速が照査風速を下回ると 概略推定される場合の条件式	発現の可能性のある現象
	トラ	ラス	L×Ud/B>347	ねじれ発散振動 (フラッター)
			L×Ud/B>200ただし, Iu<0.20	たわみ渦励振
吊		開断	L×Ud/B>333	たわみ発散振動
橋		面	ただし,鋼げたで B/d<5 かつ Iu<0.15	(ギャロッピング)
斜斜	箱げ		L×Ud/B>347	ねじれ発散振動 (フラッター)
斜張橋	た		L×Ud/B>200 ただし,Iu<0.20	たわみ渦励振
間		閉断	L×Ud/B>333	たわみ発散振動
		面	ただし,鋼げたで B/d<5 かつ Iu<0.15	(ギャロッピング)
			L×Ud/B>521	ねじれ発散振動 (フラッター)
	箱げた		L×Ud/B>200 ただし,Iu<0.20	たわみ渦励振
			L×Ud/B>333	たわみ発散振動
			ただし,B/d<5かつ Iu<0.15	(ギャロッピング)
			L×Ud/B>292	たわみ発散振動
鋼			ただし、1.9≦B/d<5かつ Iu<0.15	(ギャロッピング)
げ			$L \times Ud/B > (6.0-B/d) \cdot 76$	ねじれ発散振動
た 橋			ただし、1.9≦B/d<3.5	(フラッター)
1163	Iけ	「た	L×Ud/B>191 ただし, 3.5≦B/d<4.5	
			$L \times Ud/B > (3.5 - 0.62 (B/d)) \cdot 110$	
			ただし、1.9≦B/d<3.5 かつ Iu<0.20	 ねじれ渦励振
			L×Ud/B>146	4 0 4 0 HAMBO 112
			ただし、3.5≦B/d<4.5 かつ Iu<0.20	
		۲	こに, L:最大支間長 (m) B:総幅 (m)	
			Ud:設計基準風速(m/s) Iu:風の	の乱れ強さ

Ud:設計基準風速 (m/s) Iu:風の乱れ強さ

- (8) 上部工の防錆は、耐用年数とライフサイクルコストを考慮して適切に選定する必要がある.
- (9) 防錆方法の詳細については、「鋼道路橋防食便覧」 $^{\eta}$ を参考とすることができる. なお、「鋼道路橋防食便覧」 $^{\eta}$ に示されている代表的な鋼道路橋の防食法を表 $^{-9}$. 3. 2 に示す.
- (10) 耐震性能の照査方法については、耐震設計編による他、「道路橋示方書・同解説 V耐震設計編」、5を参考とすることができる.
- (11) 落橋防止システムの詳細については、「道路橋示方書・同解説 V耐震設計編」5)を参考とすることができる.

表-9.3.2 代表的な鋼道路橋の防食法例

防食法	塗装		耐候性鋼材	溶融亜鉛	金属溶射	
例及伝	一般塗装	重防食塗装	111071天71生到470	めっき	並禹俗別	
防食原理	塗膜による環境 遮断	塗膜による環境 遮断とジンクリ ッチペイントに よる防食	緻密なさび層に よる腐食速度の 低下	亜鉛皮膜による 環境遮断と亜鉛 による防食	溶射皮膜による 環境遮断と亜鉛 による防食	
劣化因子	紫外線,塩分,水 分(湿潤状態の 継続)	紫外線,塩分,水 分(湿潤状態の 継続)	塩分,水分(湿潤 状態の継続)	塩分,水分(湿潤 状態の継続)	塩分,水分(湿潤 状態の継続)	
防食材料	塗料	塗料	腐食速度を低下 する合金元素の 添加	亜鉛	亜鉛,アルミニ ウム,亜鉛・アル ミニウム	
施工方法	スプレーや刷 毛, ローラによ る塗付	スプレーや刷 毛,ローラによ る塗付	製鋼時に合金元素を添加	めっき処理槽へ の浸漬 (めっき 工場)	溶射ガンによる 溶射	
構造, 施工上の制限 (原則)	温度,湿度等施 工環境条件の制 限	温度,湿度等施 工環境条件の制 限	滞水・湿気対策	めっき処理槽に よる寸法制限と 熱ひずみ対策	溶射ガンの運行 上の制限	
外観 (色彩)	色彩は自由	色彩は自由	色彩は規定(茶 褐色)	色彩は限定(灰 白色)	色彩は限定(梨 地状の銀白色)	
維持管理	さびの発生や塗 膜の消耗,変退 色の調査.塗膜 劣化が進行した 場合は塗替え.	さびの発生や塗 膜の消耗,変退 色の調査. 塗膜 劣化が進行した 場合は塗替え.	異常なさびが形成されていないことの確認.腐食が進行した場合は塗装等による防食※	亜鉛層の追跡調 査. 亜鉛層の消 耗後は塗装等に よる防食※	亜鉛・アルミニ ウム等ででは 追跡調査. 溶後は を属溶射も は塗装 防食※	
複合防食	_	_	_	塗装との併用	塗装との併用	

注) 1.※塗装によって補修する場合は、施工方法や施工条件の検討が必要である.

^{2.}耐候性鋼材は JIS G3114 W 仕様に規定する溶接構造用耐候性熱間圧延鋼材を示す.

第10章 土構造物・護岸

10.1 一般

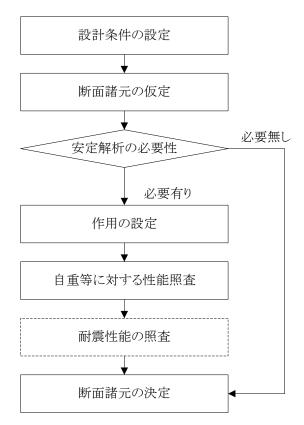
空港用地の基盤となる土構造物や護岸は、その目的に適合し、安全かつ経済的に行うものとする. 土構造物や護岸の設計は、設計供用期間内において、設定された要求性能を満足することを照査するものとするが、実験や解析もしくは経験的に設定された要求性能を満足することが確認されている場合には、要求性能を満足するとみなすことができる.

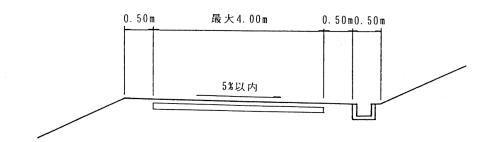
10.2 盛土地盤

10.2.1 一般

盛土地盤の設計は、地形・地質、施工方法等を考慮し、安全かつ経済的に行う必要がある。

(1) 盛土地盤の設計は、図-10.2.1 に示す手順で行うことができる.




図-10.2.1 盛土地盤の設計手順の例

- (2) 盛土地盤の設計は、以下の項目について検討する必要がある.
 - 1) 法面勾配
 - 2) 法面の安定及び小段の設置高さ・幅員
 - 3) 排水性の確保
 - 4) 法面保護

なお、盛土の安定検討に際し、一般的な盛土は安定解析の必要性がなく、「道路土工 盛土 工指針」¹⁰⁾等に示される標準法面勾配を参考とすることができるが、標準法面勾配が適用で きる高さを超える場合、盛土材料の間隙水圧が増加しやすい土の場合、地山からの湧水の影響を受けやすい場合、基礎地盤が軟弱地盤や地すべり地のような不安定な場合、又は崩壊に より隣接する施設等に重大な損害を与える恐れがある場合等には、安定解析を行う必要がある. なお、安定解析にあたり、高盛土は検討が多岐にわたるため、各設計段階における着眼点や相互の関連性を十分に理解したうえで、計画地の気象・地形・地質条件や地下水条件、周辺環境等の自然条件を把握する必要がある.

- (3) 高盛土の法面勾配は、安定計算の結果のみを重視して決定することは避け、近隣あるいは類似土質条件の地点の法面施工実績・災害事例等を十分に調査し、総合的な観点から判断する必要がある. なお、盛土高が極端に高い場合は、法尻に近い程勾配を緩くした方が経済的であるが、盛土材料の材質や盛土斜面の安定・法面保護等について留意する必要がある.
- (4) 高盛土の安定には小段の設置が有効であり、以下のことに配慮して高さ $5\sim7m$ 毎に設置することが望ましい.
 - 1) 点検・管理,必要に応じた維持補修あるいは災害復旧などの足場用地の確保
 - 2) 降雨による法面浸食を防止するための排水溝の設置

このため、法長に応じて、図-10.2.2に示すように点検・管理用道路を設け、一般に積雪地域以外では大型車の通行が予想されない場合の保安道路と同様に 3.0m、積雪地域では除雪や堆雪の余裕幅を考慮して 4.0m の有効幅員とし安全管理上の柵を備えることとしている。なお、盛土体が岩砕材料によって構成され、盛土表面が岩座張り(リップラップ)のように法面が流下する表面水によって浸食される恐れのない場合には、必ずしも排水溝を設ける必要はなく、小段幅は管理に必要な幅 1.5m とすることが望ましい。また、岩座張り以外の小段幅は、法面の降雨排水に必要な溝幅に、管理に必要な 1.5m を加えた数値とするが、小段延長が短い狭小な谷を埋める高さ 20m 程度の高盛土法面においては、小段幅 1.5m の中に溝幅を含めることができる。なお、小段の法尻と排水溝の間には、凍上や越流を考慮して必要な余裕幅を設けることが望ましい。

小段の維持・点検道路の設置に必要な用地幅

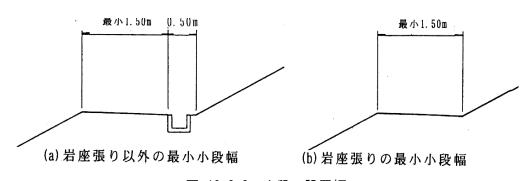


図-10.2.2 小段の設置幅

(5) 考慮すべき設計地震動や、求められる耐震性能の照査については、耐震設計編に示している.

10.2.2 作用

盛土地盤の設計で考慮する主な作用は、自重、地震動があり、盛土場所の諸条件により適切 に設定する必要がある.

(1) 考慮すべき作用の詳細については、**第3章「作用」**を参照することができる. また, **第3章** 「作用」に記載していない影響については「道路土工 盛土工指針」¹⁰⁾を参考とすることができる.

10.2.3 性能照査

- (1) 盛土地盤に設置される空港施設の機能が確保されていることを確認するため、盛土地盤が平坦性を有することを照査するものとする.
- (2) 盛土地盤及び基礎地盤の安定性が確保されていることを確認するため、地盤の安定が損なわれないことを照査するものとする.
- (1) 盛土地盤の平坦性の照査にあたっては、主たる作用が自重である永続状態において発生する 沈下が、限界値以下である場合は、求められる性能を満足するとみなすことができる.
- (2) 盛土地盤の安定性の照査にあたっては、主たる作用が自重である永続状態において、地盤のすべり破壊の生じる危険性が限界値以下であり、かつ、耐震性能の照査を行う場合には、求められる性能を満足するとみなすことができる.
- (3) 盛土地盤の安定性の耐震性能の照査は、主たる作用がレベルー地震動である変動状態において、地盤のすべり破壊の生じる危険性が限界値以下であること、又は主たる作用がレベルニ地震動である偶発状態において、発生する残留変形量が限界値以下であること。
- (4) 盛土地盤の表面勾配の限界値は、常時においては施設設計編に定める値を満足するとともに、それ以外については、耐震設計編に示す耐震性能に係る性能を考慮して適切に設定する必要がある. なお、平坦性に影響を及ぼす盛土の沈下は、通常、施工期間中に終了するが、沈下の規模によっては、地中埋設物に影響が及ぶ場合もあり、必要に応じて検討を行う必要がある. また、基礎地盤の土層構成や分布状況及び盛土高が変化する場合は、不同沈下の影響があるため、空港機能を損なうことのないように慎重に検討を行い、必要に応じて余盛りなどの対策を講じる必要がある.
- (5) 盛土の安定性の性能照査に際して用いる地盤定数は、解析結果に直接関与し、大きな影響を 及ぼす要因であるため、地形・地質状況、盛土体と基礎地盤の土質、設計条件、解析方法、 施工条件、すべり安全率等の解析等の照査方法に応じて最も適切と考えられる調査・試験に よって設定する必要がある.
- (6) 一般の盛土地盤においては、「道路土工 盛土工指針」10)を参考とすることができる.
- (7) 高盛土地盤の沈下量等は、以下の方法により算出することができるが、残留沈下量が、盛土上の施設や地下構造物が許容する範囲に収まらない場合には、対策工を検討する必要がある。また、埋設物等への影響が考えられる場合や、拡張等における既設構造物との接合部などでは、その機能を損なわないような許容する沈下量を規定する必要がある。なお、沈下解析では多くの仮定や不確定要素が含まれているため、解析で求めた沈下量が小さい場合には、解析値は一つの目安値にとどめ、施工段階で動態観測を行って沈下量の予測値を修正していくことが合理的である。

- 1) 即時沈下量は、「道路土工 軟弱地盤対策工指針」¹¹⁾あるいは「設計要領第一集 土工・ 保全編」²⁹⁾に示される方法を参考とすることができる.
- 2) 圧密沈下量は、式(10.2.1)に示すとおり、e-logp 法によって算出することができる. ただし、正規圧密土からなる軟弱層の場合で、区分された圧密層毎に圧縮指数 C_C 、又は体積圧縮係数 m_v が求められている場合には、それぞれ式(10.2.2)、式(10.2.3)によって圧密沈下量を求めることができる.

$$S_c = \sum \frac{e_0 - e}{1 + e_0} \cdot H$$
(10.2.1)

$$S_c = \sum_{c} H \cdot \frac{C_c}{1 + e_0} \log \frac{p_0 + \Delta p}{p_0}$$
 (10.2.2)

$$S_c = \sum m_v \cdot \Delta p \cdot H \quad \dots \qquad (10.2.3)$$

Sc: 圧密沈下量

e₀:圧密層の初期間隙比

e : 圧密層の圧密後の間隙比で、中央深度の $p0+\Delta p$ に対して設計 e-logp 曲線 から求める.

H: 圧密層厚 Cc: 圧縮指数

po:盛士前士かぶり厚

△p:盛土荷重による増加応力

mv: 体積圧縮係数

3) 設計条件や土質条件等から長期沈下が無視できない場合には、長期沈下を考慮する必要 がある.

長期沈下とは二次圧密沈下とも呼ばれ、土中の過剰間隙水圧の消散過程を主要因とする一次圧密沈下の終了後も長期に続くクリープ沈下のことをいうが、一次圧密沈下と二次圧密沈下を明確に区分する方法は未だ確立していない。しかし、二次圧密沈下は、時間の対数と比例関数にあることが経験的に知られており、沈下実測データから長期沈下量を推定する場合には、「設計要領第一集 土工・保全編」 29 に示される推定式を利用することが望ましい。なお、二次圧密沈下を含めた全沈下量の推定が困難な場合には、「道路土工 軟弱地盤対策工指針」 11 に示されるように基準時 t (盛土の場合、舗装完成時又は供用開始時)から時間 t 124 経過するまでに生ずる圧密沈下量 t 28 をとって残留沈下量とすることができる。

4) 飽和粘性土の圧密沈下速度は、Terzaghiの一次元圧密理論から求めることができ、鉛直方向の排水のみによる一次元圧密の場合、平均圧密度は、図-10.2.3 から求めることができる. なお、時間係数と実際の時間との関係は、式(10.2.4)で示されるが、圧密係数の異なる層が互層となっている場合の圧密沈下速度は、換算層厚法から求めることができる.

$$T_{v} = \frac{C_{v} \cdot t}{H^{2}} \qquad (10.2.4)$$

Tv:時間係数Cv: 圧密係数t: 実際の時間H:最大排水長さ

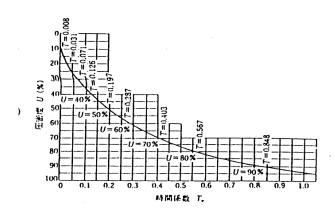


図-10.2.3 リと T₂の関係 (△u₀=一定)

(「道路土工 軟弱地盤対策工指針」11))

- 5) 高盛土が設置されている部分等基礎地盤にかかる荷重が数年におよび、漸増載荷過程を 特に考慮する必要がある場合には、三笠の一次元圧密理論による方法を用いることがで きる.
- 6) 変形と圧密沈下速度の関係を有限要素法によって求める場合には、圧密連成解析により 検討することができる.
- 7) 施工中あるいは施工後に雨水が地盤内へ浸透することによって、盛土材料が脆弱化(スレーキング現象)し、細粒化することによる沈下や、土粒子(あるいは岩塊)の接触点でのスリップによる沈下(コラプス現象)が発生することがある。これら沈下を水浸沈下というが、室内あるいは現場の水浸沈下試験により推定することができる。
- (8) 常時や地震時の盛土のすべり安定性の照査は、円弧すべり面法や有限要素法によって行うことができ、施工中や完成後等の検討条件に応じて適切な方法により行う必要がある。なお、すべり面法による安定解析は、以下に示す方法により行うことができる。
 - 1) すべり面法による常時の安定解析

すべり面法による常時の安定解析は、式(10.2.5)に示す円弧すべり面を仮定した場合を基本とするが、盛土体の材質、盛土と地山の形状により、円弧すべり面による方法で適切に判断できない場合には直線すべり面、あるいは円弧と円弧、円弧と直線等を組み合わせた複合すべり面を仮定して計算することができる。なお、式(10.2.5)は、各分割片間の鉛直面に作用する力の釣り合いを無視しているが、これ以外にも円弧すべり面に対してはBishop、Spencerによる解析法、任意のすべり面形状に対してはJanbu、Morgenstern and Price などの解析法がある。

$$F_{S} = \frac{\sum \{c \cdot l + (W - u \cdot b)\cos\alpha \cdot \tan\phi\}}{\sum (W \cdot \sin\alpha)} \dots (10.2.5)$$

Fs:安全率

c : 土の粘着力 (k N/m²)

φ:土のせん断抵抗角(度)

l :分割片で切られたすべり面の長さ (m)

W:分割片の全重量(kN/m),載荷重を含む

u : 間隙水圧 (kN/m²)b : 分割片の幅 (m)

 α : 分割片で切られたすべり面の中点とすべり面の中心を結ぶ直線と鉛直線の

なす角 (度)

2) すべり面法による地震時の安定解析

常時の安定解析と同様に、地震時の安定解析は、式(10.2.6)に示す円弧すべり面を仮定した場合を基本とし、震度法による安定解析を行うことを標準とするが、盛土の材質、盛土と地山の形状により、円弧すべり面による方法で適切に判断できない場合には、直線すべり面、あるいは円弧と円弧、円弧と直線等を組み合わせた複合すべり面を仮定して計算することができる.

$$Fs = \frac{\sum \left\{ c \cdot l + \left[(W - u \cdot b) \cos \alpha - k_h \cdot W \cdot \sin \alpha \right] \tan \phi \right\}}{\sum \left(W \cdot \sin \alpha + \frac{h}{r} \cdot k_h \cdot W \right)} \dots (10.2.6)$$

ここで,

Fs:安全率

c : 土の粘着力 (kN/m²)

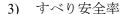
φ: 土のせん断抵抗角(度)

1 : 分割片で切られたすべり面の長さ (m)

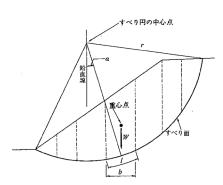
W:分割片の全重量(kN/m),載荷重を含む

u : 間隙水圧 (kN/m²)

b:分割片の幅 (m)


α :分割片で切られたすべり面の中点とすべり面の中心を結ぶ直線と鉛直線の

なす角 (度)


k,: 設計水平震度

h : 各分割片の重心とすべり円の中心との鉛直距離 (m)

r : すべり円弧の半径 (m)

すべり安全率は、一般的に常時の場合は 1.2 以上、地震時の場合は 1.0 以上とすることができるが、構造物の重要度、解析モデルの作成条件や地盤定数等の設計条件と密接な関係があるため、それらの条件を総合的に勘案して設定する必要がある。なお、盛土施工範囲が広く、盛土高が高くなるために種々の不確定要素がある場合、あるいはすべり破壊により人的被害や公共施設等への影響が大きい場合等には、すべり安全率を大きく取ることが望ましい。

すべり円の中心点

- (9) すべり面法による安定解析の結果,所要のすべり安全率が得られないことにより,対策工を 考慮した上で構造物全体の安定性を照査する必要がある場合や,レベル二地震動に対する安 定性を照査する必要がある場合は,盛土体の変形が許容できる範囲に収まっていることを確 認するため,有限要素法等を用いて,許容変位量やせん断ひずみ量等の指標により安定性を 評価することができる。また,この評価の結果を踏まえ,効率的な改良等の対策を検討し, その効果を評価する必要がある。
- (10) 地盤に緩い飽和砂質土層等,地震時に液状化を生じるような土層が存在する場合は,液状化の影響を照査する必要があり,その詳細については,耐震設計編に示している.
- (11) 地盤の安定解析の結果、必要に応じ液状化対策を講じるが、対策工法の選定にあたっては、施工期間の長短・対策工に使用する機材入手の難易度・施工機械のトラフィカビリティー・施工深度等の施工条件・施工中の騒音・振動・周辺地盤の変動・地下水の変化・排泥水あるいは使用する粉体や薬液による地下水の汚染などの液状化対策が周辺に及ぼす影響について検討する必要がある.

10.2.4 構造細目

盛土地盤の安定性を確保するためには、排水性の確保及び法面保護が必要である.

10.2.4.1 排水性の確保

- (1) 盛土の崩壊原因の多くは、地下水や雨水等の浸透水によるものであることから、盛土高が高いほど排水対策が重要になり、地形・地質等の条件に応じて、盛土内排水対策と法面排水対策を講ずる必要がある。
- (2) 盛土天端の平坦地から盛土体内部に浸透する表面水に対しては、法面への影響も含めて検討を行う必要がある.特に、凍結融解のおそれがある地域では、盛土体内部への浸透水の凍結融解によって法面崩壊を引き起こす可能性があるため、十分検討する必要がある.
- (3) 盛土内の浸透水を排除するためには水平排水層を設け、地山から盛土への水の浸透を防止するためには地山表面に基盤排水層を設ける必要がある.水平排水層は、高い排水機能を有する不織布や砕石や砂等を小段毎に設置することが標準とされている.また、基盤排水層には、透水性が高くせん断強さの大きい砕石や砂等の土質材料を用いる.基盤排水層は一般的に50cm 程度とされている.地下排水工の詳細は「道路土工 盛土工指針」10)を参考とすることができる.

10.2.4.2 法面保護

- (1) 法面保護は、法面の浸食・洗掘や風化等を防止するための植生・岩座張(リップラップ)もしくは法枠等の構造物による法面の被覆、又は排水構造物の設置及び法尻の洗掘を防止するための法留工の設置によって法面の安定を図ることを目的として行う。また、凍結融解の可能性がある地域の盛土法面は、凍結融解作用を受けて、脆弱化(劣化)することが避けられないため、適性材料の選択・利用や法面保護によって、その影響を緩和すること、外部からの誘因を抑制することなど必要な対策を講じる必要がある。
- (2) 法面保護工としては「道路土工 盛土工指針」10)を参考にすることができる.

10.3 切土地盤

10.3.1 一般

切土地盤の設計は、地形・地質、施工方法等を考慮し、安全かつ経済的に行う必要がある.

(1) 切土地盤の設計は、**図-10**. **3**. **1** に示す手順で行うことができる. なお、切土地盤の法面はその構造によって多くの種類に分類されるが、本要領においては、一般的に用いられる自立する切土法面を対象としている.

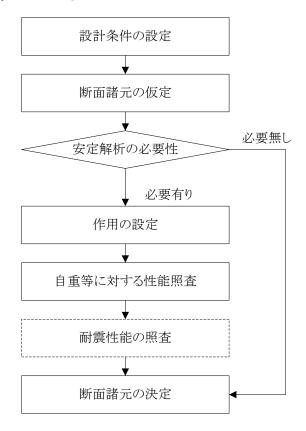


図-10.3.1 切土地盤の設計手順の例

- (2) 自立する切土法面の設計では、以下の項目について検討を行う必要がある.
 - 1) 法面勾配
 - 2) 法面の安定(長大法面や崩壊した場合の被害が大きい法面の場合)
 - 3) 排水性の確保
 - 4) 法面保護
- (3) 切土法面は、地盤を構成する地層の種類、状態及び切土高等に応じた適切な勾配とする必要があり、「道路土工 切土工・斜面安定工指針」のを参考とすることができる.
- (4) 考慮すべき設計地震動や,求められる耐震性能の詳細については,耐震設計編に示している.
- (5) 切土法面がそれ自体で自立しない場合には、土圧に抵抗するためにコンクリート擁壁やブロック積擁壁、またコンクリート枠工等により切土法面を構成することとなるが、この場合には、「道路土工 切土工・斜面安定工指針」のを参考とすることができる.

10.3.2 作用

切土地盤の設計で考慮する主な作用は、自重、地震動があり、切土場所の諸条件により適切に設定する必要がある.

(1) 考慮すべき作用の詳細については、**第3章「作用」**を参照することができる。また**,第3章「作用」**に記載していない影響については「鉄道構造物等設計標準・同解説 土構造物」¹⁶⁾を参考とすることができる。

10.3.3 性能照査

切土地盤の安定性が確保されていることを確認するため、地盤の安定が限界状態に達しないことを照査するものとする.

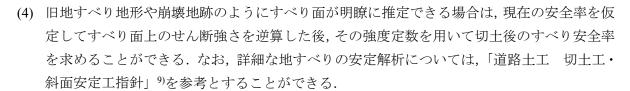
- (1) 切土地盤の安定性の照査にあたっては、主たる作用が自重である永続状態において、地盤のすべり破壊が生じる危険性が限界値以下であり、かつ、耐震性の照査を行う場合には、求められる性能を満足するとみなすことができる.
- (2) 切土地盤の安定性の耐震性能の照査は、主たる作用がレベルー地震動である変動状態、主たる作用がレベル二地震動である偶発状態において、適切な方法に基づいて行うことを標準とする.
- (3) 切土法面を構成する土質が比較的均質で単純な地層構造であり、土質試験(室内試験,原位置試験)によって強度定数が求められる場合は、式(10.3.1)に示すように、複数のすべり面を仮定してすべり面法によって最小安全率を求めることができる。なお、切土法面では時間とともに地盤の強度が低下するので長期の安定性について解析を行う必要があり、式(10.3.1)で用いる地盤定数、間隙水圧分布は、切土後長期間経過した状態に対応するものを用いる必要がある。

$$Fs = \frac{\sum \{c \cdot l + (W - ub)\cos\alpha \cdot \tan\phi\}}{\sum W \cdot \sin\alpha}$$
 (10.3.1)

ここで,

Fs : 安全率

c: 土の粘着力(kN/m²)φ: 土のせん断抵抗角(度)


l:分割片で切られたすべり面の長さ (m)

W : 分割片の全重量(kN/m)

u : 間隙水圧 (kN/m²)

b:分割片の幅(m)

α : 分割片で切られたすべり面の中点とすべり面の中心を結ぶ直線と鉛直線の なす角(度)

- (5) 切土法面の安定解析におけるすべり安全率は、法面の規模、すべり崩壊時の被害の程度、他機関での基準値などを総合的に考慮して設定する必要があり、「道路土工 切土工・斜面安定工指針」9、「鉄道構造物等設計標準・同解説 土構造物」10を参考とすることができる。なお、岩盤切土斜面の安定解析については、「岩盤斜面の安定解析と計測」19)を参考とすることができる。
- (6) 切土地盤の法面のレベル一及びレベル二地震動に対する限界状態や照査方法については, 「鉄道構造物等設計標準・同解説 土構造物」¹⁶⁾を参考とすることができるほか,有限要素 法等による応力・変形解析を行い,その結果に基づいて評価を行うこともできる.

10.3.4 構造細目

切土地盤の安定性を確保するためには、排水性の確保及び法面保護を行う必要がある.

10.3.4.1 排水性の確保

- (1) 切土地盤の法面の排水性を確保するためには、地形・地質等の条件に応じて、法面表面水の 排水対策もしくは地下排水対策(湧水対策)を講じる必要があり、10.2.4「構造細目」、 10.2.4.1「排水性の確保」を参照することができる.
- (2) 転移表面を確保するための切土地盤の法面は、勾配が 1:7 と緩やかなため、長大な緩斜面になる場合には、表面浸食を防止するために縦排水溝を適切な間隔で設置する等の対策を講じる必要がある。
- (3) 浸食に弱い土質,透水層と不透水層の互層,崩積土地帯,地山と盛土の境界等は一般に湧水が多く,切土を行うと不安定になることが多いため,注意する必要がある.地表面に近い浸透水に対しては,目詰まりを起こしにくい材料を用い,法面蛇かご,暗渠などで排水対策を行う必要がある.なお,深部から湧水が浸出する場合には,孔口付近を蛇かごやコンクリート壁で保護した上で,水抜きボーリング工を行い,有孔管を挿入した水平排水孔等で排水を行う必要がある.
- (4) 地すべり地のように、浸透水が法面安定に著しい悪影響を及ぼす場合には、浸透経路の途中に遮水壁を設ける等の対策を講じることもある.

10.3.4.2 法面保護

(1) 法面保護工の種類には、植生工、張工、法枠工、モルタル吹付工等があり、「道路土工 切土工・斜面安定工指針」⁹⁾を参考とすることができる. なお、ターミナル地区進入道路、場周道路等で切土法面と道路が近接している場合に、切土法面と交通の状況によっては、落石防止網の併用を検討する必要がある.

10.4 埋立地盤

10.4.1 一般

埋立地盤の設計は、埋立材料、海象条件、地盤条件、施工方法等を考慮し、安全かつ経済的 に行う必要がある.

(1) 埋立地盤の設計は、図-10.4.1 に示す手順で行うことができる.

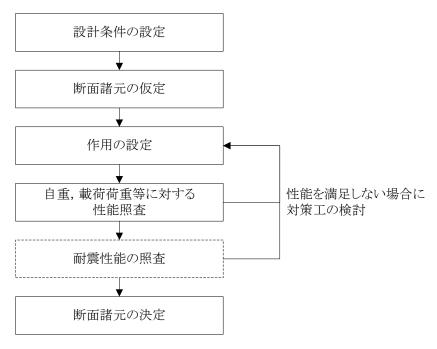


図-10.4.1 埋立地盤の設計手順の例

(2) 埋立地盤の沈下により発生する舗装,埋設物等の構造物の破損,地表勾配の変化等が,航空機の航行の障害や空港の排水機能の低下等の原因になる可能性があるため,地盤改良工法や埋立材料等について検討する必要がある.特に,既設の空港の拡張を埋立により行う場合には,拡張部の地盤が沈下すると新旧地盤間に高低差が生じ,空港の施設の勾配規定に抵触するなど施設の利用に支障をきたす可能性があることから,あらかじめ適切な沈下対策を講じる必要がある.また,拡張の埋立においては,空港運用に重大な支障を及ぼすことがないように注意し,既設護岸の処置などにも注意する必要がある.

10.4.2 作用

埋立地盤の設計で考慮する主な作用は、自重、載荷重、地震動等があり、埋立場所の諸条件 により適切に設定する必要がある.

(1) 考慮すべき作用の詳細については、**第3章「作用」**を参照することができる. また, **第3章「作用」**に記載していない影響については「港湾の施設の技術上の基準・同解説」²⁸⁾を参考とすることができる.

10.4.3 性能照査

埋立地盤の安定性が確保されていることを確認するため、地盤の沈下が限界値以下であることを照査するものとする.

- (1) 埋立地盤の安定性の耐震性能の照査は、主たる作用がレベルー地震動である変動状態、主たる作用がレベル二地震動である偶発状態において、適切な方法に基づいて行うものとする.
- (2) 埋立地盤の沈下限界値は、施設設計編に示す空港の施設の勾配や沈下が空港の機能に与える影響を考慮して適切に設定する必要がある.
- (3) 埋立地盤の沈下対策は広範囲に及ぶことが多いことから,経済性を検討し,対策範囲及び対

策工法を決定する必要がある. なお,対策工法については,「港湾の施設の技術上の基準・同解説」²⁸⁾を参考とすることができる. また,検討にあたっては,異なる対策工法による地盤の不同沈下を起こさないように注意する必要がある.

- (4) 埋立地盤では地盤改良等の対策を実施した場合であっても、残留沈下が発生することが多いため、地下構造物(ハイドラント、排水施設等)は、沈下による変化を吸収できる構造とするか、沈下が設定した程度に収束するまで暫定的な施設にする等の検討をする必要がある。また、表面排水についても、排水勾配が確保できなくなることや、排水施設が破損する恐れがあるため、あらかじめ残留沈下量を予測し対策を講じる必要がある。
- (5) 埋立材料に砂質土を用いる場合,砂質土が十分締固められていない状態では地震時に埋立地 盤が液状化する恐れがあるので,地震の地域特性を十分考慮し液状化の検討を行う必要があ る. なお,液状化の可能性のある埋立地盤は,空港機能が確保できるよう,液状化対策を行 う必要がある.
- (6) 通常の埋立地盤の沈下については「港湾の施設の技術上の基準・同解説」²⁸⁾を参考にすることができ、レベルー及びレベル二地震動に対する埋立地盤の液状化については、耐震設計編に示している。

10.4.4 構造細目

埋立地盤の機能を確保するためには降雨,越波等に対する排水性を確保する必要がある.

- (1) 埋立地盤の排水は、できるだけ速やかに空港外に排出する観点から、直接海域に排水することが望ましい.なお、この場合において、放流口の高さは設計潮位以上とし、波浪により逆流することがないようにする必要がある.
- (2) 海象条件,地盤の勾配,護岸の構造,環境への配慮等から,直接海域に排水できない場合には,施設計画編 4.2「排水施設」を参考とし,着陸帯側に排水施設を設置する必要がある.なお,この場合の降雨の流出量は,10年確率降雨量と,10年確率波による越波量を比較し,大きい流出量に合わせて排水施設を設置する必要がある.ただし,降雨と越波が同時に起こる頻度が多い地域等特別の事情がある場合には,降雨量と越波量の双方を考慮した流出量にあわせて設置する必要がある.
- (3) 着陸帯側に排水施設を設置する必要がある場合であっても、埋立地盤においては、ポンディングは極力避けることが望ましい。ただし、降雨量あるいは越波量が多いと、排水施設の規模が極端に大きくなる場合があるため、一時的なポンディングについて検討することができる。なお、この場合、着陸帯の洗掘、芝枯れが生じないよう配慮する必要がある。

10.5 護岸

10.5.1 一般

護岸の設計は、地形・地質、海象条件、施工方法等を考慮し、安全かつ経済的に行う必要がある.

(1) 護岸の設計は、**図-10**. **5**. **1** に示す手順で行うことができる. なお、護岸は、その構造形式により多くの種類に分類されるが、本要領においては、一般的に用いられている重力式護岸を対象としている.

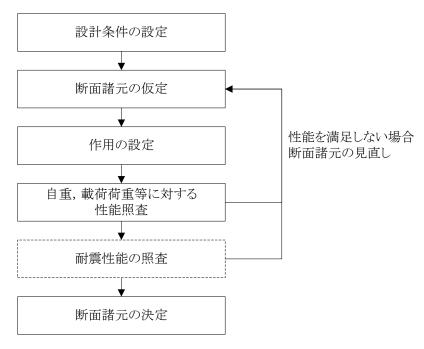


図-10.5.1 護岸の設計手順の例

- (2) 重力式護岸の設計では、以下の項目について検討する必要がある.
 - 1) 基礎地盤における地質・土質条件
 - 2) 構造物の安定
 - 3) 基礎地盤の支持力
- (3) 重力式護岸の設計では、「港湾の施設の技術上の基準・同解説」²⁸⁾を参考とすることができる。なお、考慮すべき設計地震動や求められる耐震性能の詳細については、耐震設計編に示している。

10.5.2 作用

重力式護岸の設計で考慮する主な作用は、自重、載荷重、土圧、波圧、地震動等があり、重力式護岸を設置する場所の諸条件等により適切に設定する必要がある.

- (1) 考慮すべき作用の詳細については、**第3章「作用」**を参照することができる. また, **第3章「作用」**に記載していない影響については「港湾の施設の技術上の基準・同解説」²⁸⁾等を参考とすることができる.
- (2) 重力式護岸の完成時の載荷重は、背後の土地利用状況にもよるが、道路敷には常時 10kN/m²、 地震時 5kN/m² 程度を考慮する必要がある.

10.5.3 性能照査

- (1) 重力式護岸の安定性が確保されていることを確認するため、構造物や構造部材が限界状態に達しないことを照査するものとする.
- (2) 重力式護岸を支持する地盤が限界状態に達しないことを照査するものとする.
- (1) 重力式護岸の安定性の照査にあたっては、主たる作用が土圧である永続状態において、構造物の滑動、転倒による破壊の生じる危険性が限界値以下であり、かつ、耐震性の照査を行う

- 場合には、求められる性能を満足するとみなすことができる.
- (2) 支持地盤の照査にあっては、主たる作用が自重、土圧である永続状態において、基礎地盤の 支持力不足による破壊の生じる危険性、地盤のすべり破壊の生じる危険度、及び沈下が限界 値以下であり、かつ、耐震性の照査を行う場合には、求められる性能を満足するとみなすこ とができる.
- (3) 重力式護岸の安定性及び支持地盤の安定性における耐震性能の照査は、レベルー地震動である変動状態、主たる作用がレベル二地震動である偶発状態に対して、適切な方法に基づいて行うことを標準とする.
- (4) 重力式護岸の設計においては、構造物の滑動・転倒、基礎地盤の支持力、円弧すべり、沈下の検討を行う必要があり、その設計にあたっては、「港湾の施設の技術上の基準・同解説」²⁸⁾を参考とすることができる.

第11章 アレスティングシステム

11.1 一般

アレスティングシステムの設計は、設計対象機材、地盤・勾配、施工方法などを考慮し、安全かつ経済的に行う必要がある.

- (1) アレスティングシステムの設計は、米国連邦航空局 (FAA) の AC 第 150/5220-22B を参考に することができる.
- (2) アレスティングシステムは, **付録-8「アレスティングシステム」**に示す, 性能が実証された システムを使用することができる.
- (3) アレスティングシステムの設計は、図-11.1.1 に示す手順で行うことができる.

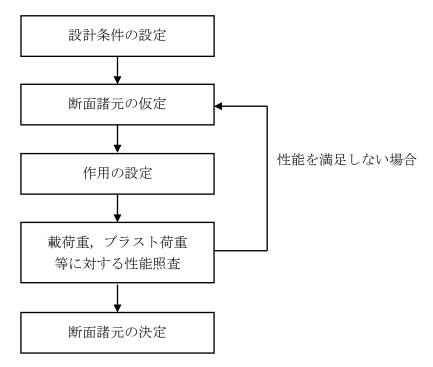


図-11.1.1 アレスティングシステムの設計手順の例

11.2 作用

アレスティングシステムの性能照査で考慮する主な作用は、載荷重、ブラスト荷重があり、 アレスティングシステムを設置する場所の諸条件及び構造により適切に設定する必要がある.

- (1) 考慮すべき作用の詳細については、第3章「作用」を参照することができる.
- (2) アレスティングシステムの性能照査では、主たる作用が載荷重、ブラスト荷重である変動状態を考慮する必要がある. 載荷重は、維持・点検時に発生する荷重とし、5.0kN/m²を標準とする. また、ブラスト荷重は、設計対象機材のうちで最もブラストの影響が大きな航空機によるものとする.

11.3 性能照査

アレスティングシステムの安全性が確保されていることを確認するため,構造部材が限界状態に達しないことを照査するものとする.

(1) 性能照査にあたっては、主たる作用が載荷重である変動状態において、構造部材に発生する

- 応力度が許容応力度以下である場合は、求められる性能を満足するとみなすことができる.
- (2) 航空機のブラスト荷重に対する舗装とアレスティングシステムとの接合部材の安定性は、滑走路終端から 10.5m 以上の離隔を確保した位置にアレスティングシステムを設置する場合、求められる性能を満足するとみなすことができる. 施工期間中のブラストの影響については、別途検討する必要がある.

付 録

付録-1 航空機荷重の諸元

総質量 脚荷重/輪荷重 機材 接地圧 機種 脚・車輪の配置 番号 (N/mm^2) (t) (kN)NOSE LANDING GEAR W-1068/267 1 F A380-800 577.0 B-1602/267 1.50 1.050 m (3.445 ft) (5.085 f) 1.530 m (5.020 ft) 注 1) 28.605 m (93.848 ft) 1.350 m (4.429 ft) 31.881 m (104.596 ft) F 1030/258 2 B747-8 443.6 1.50 777-9 : 106 FT 1 IN (32.33 M) $F \cdot E$ 3 352.4 1630/272 1.58 B777-9 注 2) Е B747-400 397.8 910/228 1.38 4 W-1187/297 5 Е A340-600 381.2 C-1076/269 1.61 注 3)

付図-1.1 航空機荷重の諸元(1)

注 1) W: Wing Gear Tire, B: Body Gear Tire

注2) ウィングチップ折りたたみ時はコード文字 E

注 3) W:Wing Gear Tire, C:Center Gear Tire

付図-1.2 航空機荷重の諸元(2)

機材 番号	コード	機種	脚・車輪の配置	総質量 (t)	脚荷重/輪荷重 (kN)	接地圧 (N/mm²)
6	Е	A340-500	1.98 1.98 28.34 27.59	381.2	W-1183/296 C-1079/270 注1)	1.61
7	Е	B777-300ER	1.45 1.48 1.48	352.4	1598/266	1.52
8	E	B747-SP	18.99 1 3.07	318.9	685/171	1.40
9	Е	A350-1000	1,474 m 1,307 m (4,585 t)	316.9	1450/242	1.52
10	Е	B777-300	31.22	300.3	1396/233	1.48

注 1) W:Wing Gear Tire, C:Center Gear Tire

付図-1.3 航空機荷重の諸元(3)

機材 番号	コード	機種	脚・車輪の配置	総質量 (t)	脚荷重/輪荷重 (kN)	接地圧 (N/mm²)
11	Е	B777-200ER	1.45 1.45 25.88	298.5	1344/224	1.41
12	Е	A350-900	25.665 m (91.915 ft) 1.755 m (31.771 ft) (31.771 ft) (31.771 ft) (31.771 ft) (31.771 ft) (31.771 ft) (31.771 ft) (31.771 ft)	280.9	1283/321	1.71
13	Е	B747-400D	24.07 j 3.07	278.3	658/165	1.13
14	Е	A340-300	26.37	277.4	W-1080/270 C-394/197 注 1)	W-1.42 C-1.20
15	Е	B787-10	787-8 74 FT 9 N C28 N0 7797-9 34 FT 9 N C25 N0 789-19 34 FT 9 N C25 N0 789-19 34 FT 1 N N C25 N0 22 FT 2 N 23 FT 1 N 26 FT 1	254.7	1165/291	1.56

注 1) W:Wing Gear Tire, C:Center Gear Tire

付図-1.4 航空機荷重の諸元(4)

機材	コード	機種	脚・車輪の配置	総質量	脚荷重/輪荷重	接地圧
番号		7及7里		(t)	(kN)	(N/mm ²)
16	Е	B787-9	737-4 71 7 9 N C28 8 7 797-3 8 17 9 N C28 8 7 797-3 1 N C28 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	254.7	1155/289	1.56
17	E	B777-200	1.45 1.45 1.45 25.88	248.1	1140/190	1.25
18	Е	A330-300	25.375 m (63.251 ft) (63.251 ft) (716 m (2.399 ft) (4.553 ft) (4.553 ft)	242.9	1117/279	1.49
19	Е	A330-200	22 160 m (72.766 fg. 0.770 m (2.322 fg) 1,357 m (4.553 fg) 1,597 m (4.553 fg) 1,698 m	242.9	1104/276	1.47
20	Е	B787-8	1.50 08 6	228.4	1023/256	1.57
21	D	B767-300ER	1.42	187.3	849/212	1.38

付図-1.5 航空機荷重の諸元(5)

機材 番号	コード	機種	脚・車輪の配置	総質量 (t)	脚荷重/輪荷重 (kN)	接地圧 (N/mm²)
22	D	A300-600	18.60	172.6	804/201	1.34
23	D	A310-300	1.40 99 66	164.9	764/191	1.29
24	D	B767-300	1.42 08 6 22.76	159.7	722/181	1.34
25	D	B767-200	19.69	143.8	651/163	1.31
26	D	B757-300	1.14 0 1.14 0 0 1.14 0 0 1.25 1.2	122.9	558/140	1.34
27	С	A321NEO	16.906 m (55.465 ft) 7.7590 m (24.60 ft) 0.927 m (3.041 ft)	97.4	454/227	1.57

付図-1.6 航空機荷重の諸元(6)

機材	コード	機種	脚・車輪の配置	総質量	脚荷重/輪荷重	接地圧
番号 28	С	A321-200	16.91	93.9	(kN) 439/220	1.50
29	С	B737-9	737-7: 43FT 10IN (13.36 M) 737-8: 1-8: 200 / BBJ8: 51FT 2IN (15.60 M) 18 FT 9 IN (5.72 M) (5.72 M) 1FT 4 IN (0.41 M) 2 FT 10 IN (0.86 M) (7.00 M)	88.5	409/205	1.59
30	С	B737-900ER	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	85.4	396/198	1.52
31	С	B737-8	737-7.43FT 10IN (13.36 M) -737-8.1-8-200 / BBJ8: 51FT 2IN (15.60 M) -737-9.56 FT 4 IN (17.17 M) -1 FT 4 IN (0.41 M) -1 FT 4 IN	82.4	377/189	1.45
32	С	A320NEO	12.840 m (41.489 ft) 7.550 m (24.501 ft) 0.500 m (1.840 ft)	79.4	361/181	1.44
33	С	B737-800	0.00	79.2	363/182	1.41

付図-1.7 航空機荷重の諸元(7)

機材 番号	コード	機種	脚・車輪の配置	総質量 (t)	脚荷重/輪荷重 (kN)	接地圧 (N/mm²)
34	С	A320-200	569 Z 560 12.64	78.4	357/179	1.44
35	С	A319-100	05.0 05.0 11.04	76.9	346/173	1.38
36	С	MD90-30	98.0 23.50	71.2	337/169	1.38
37	С	B737-700	12.60	70.3	316/158	1.41
38	С	A318-100	10.252 m (33.635 ft) 7.590 m (24.901 ft) 0.927 m (3.041 ft)	68.4	299/150	1.24
39	С	B737-400	22.5	68.3	314/157	1.28

付図-1.8 航空機荷重の諸元(8)

機材 番号	コード	機種	脚・車輪の配置	総質量 (t)	脚荷重/輪荷重 (kN)	接地圧
40	С	B737-300	12.45	63.5	283/142	(N/mm²) 1.39
41	С	B737-500	11.08	60.8	275/138	1.34
42	С	ERJ-170	10.62	36.2	166/83	0.986 (内圧) 0.896
43	С	DHC8-400	88 0 13.94	28.8	132/66	1.52
44	В	CRJ100/200	929	21.6	101/51	1.21

付録-2 弾性解析による鉛直方向地中応力の算出方法の例

本編において、航空機による鉛直方向地中応力は、主脚全車輪を考慮し、着目深度における鉛直方向地中応力の最大値としている。以下に弾性解析による地中応力の算出として、舗装の構造解析理論で使用される多層弾性理論を用いた算出例を示す。

2.1 弾性解析方法による算出例 (A350-900 の例)

(1) 解析プログラム

ひずみ,応力及び変位を計算する多層弾性理論プログラムには,ELSA,GAMES 等があり,多層弾性理論及びソフトの利用法については,「多層弾性理論による舗装構造解析入門」 (平成17年4月:土木学会)²⁰⁾を参考とすることができる.

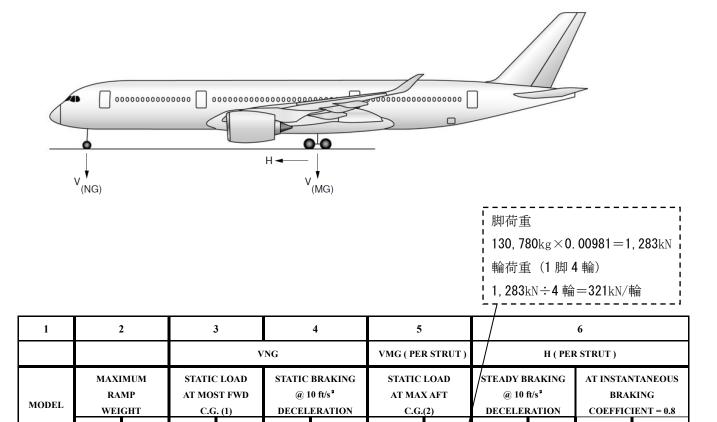
ダウンロードサイト http://www.jsce.or.jp/committee/pavement/downloads/(令和 2 年 9 月現在)

(2) 対象航空機の諸元の設定

多層弾性解析による算出において必要となる対象航空機の輪荷重,主脚車輪の配置,タイヤ接地半径*の諸元を設定する.

※多層弾性解析では、タイヤの接地形状を円として模擬するため接地半径を設定する.

各航空機の諸元は、**付録-1** に示すものが参考となるが、最新の諸元については、航空機メーカーの Airplane Characteristics より入手する.


例えばボーイング社とエアバス社の航空機であれば、以下の場所より入手することができる。 (令和 2 年 9 月現在)

BOEING: http://www.boeing.com/commercial/airports/plan manuals.page

「AIRBUS: https://www.airbus.com/aircraft/support-services/airport-operations-and-technical-data/aircraft-characteristics.html

	MAXIMUM RAMP WEIGHT	280 900 kg	
		(619 275 lb)	
	PERCENTAGE OF WEIGHT	SEE SECTION 7-4-0	
	ON MAIN GEAR GROUP		
	NOSE GEAR TIRE SIZE	1 050x395R16 28PR	
	NOSE GEAR TIRE PRESSURE	12.2 bar (177 psi)	
	MAIN GEAR TIRE SIZE	1 400x530R23 42PR	
	MAIN GEAR TIRE PRESSURE	17.1 bar (248 psi)	
	メインギアタイヤ接地圧 1.71N/mm ²	•	
0.748 m (2.454 ft)		1.735 m (5.692 ft) 2.040 m (6.693 ft)	10.600 m (34.777 ft)

付図-2.1 A350-900の荷重諸元(1) 「Airplane Characteristics」より引用

V MAXIMUM VERTICAL NOSE GEAR GROUND LOAD AT MOST FORWARD CG (NG)

lb

288 325

kg

130 780

96 225

kg

43 650

230 650

W MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT MOST AFT CG (MG)

H MAXIMUM HORIZONTAL GROUND LOAD FROM BRAKING

kg

39 800

(1) MRW = $280\ 900\ \text{kg}$ FWD CG = $25.5\ \%$ MAC AT A/C WEIGHT = $280\ 900\ \text{kg}$

(2) $MRW = 280\ 900\ kg$ $AFT\ CG = 33\ \%\ MAC\ AT\ A/C\ WEIGHT = 280\ 900\ kg$

 $\ensuremath{\mathbf{NOTE}}$: ALL LOADS CALCULATED USING AIRCRAFT MAXIMUM RAMP WEIGHT

【メインギア 輪荷重諸元】

kg

280 900

55 300

-900

619 275

kg

25 080

87 750

輪荷重:321kN/輪

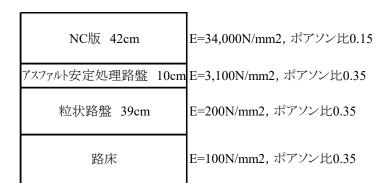
タイヤ接地圧: 1.71N/mm²

タイヤ接地面積: 321÷0.171=1,877cm² タイヤ接地半径: (1,877/π) ^{0.5}=24.4cm

付図-2.2 A350-900 の荷重諸元 (2)

「Airplane Characteristics」より引用

Kg


104 620

(3) 地盤条件の設定

地盤特性として検討断面の各層の弾性係数とポアソン比を設定し土被りごとの鉛直方向 地中応力の算定を行う.

本算定例では、地中構造物がコンクリートスラブ等の荷重分散効果が高い構造下に埋設される場合とアスファルト舗装や着陸帯等の荷重分散効果が期待できない構造下に埋設される場合の2ケースとした。コンクリート舗装下部の地中応力算定用の地盤条件を付図-2.3に示す。

コンクリート舗装版による荷重分散効果が期待できないアスファルト舗装や着陸帯等に おける地中応力算定を行う場合には、一層系で解析するか、各層の弾性係数、ポアソン比を 同一にすればよい.

付図-2.3 地盤条件の例(コンクリート舗装下部の地中応力計算時)

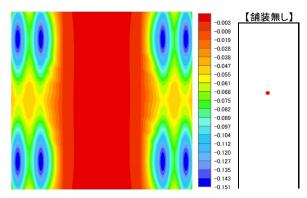
(4) 解析着目点

鉛直方向地中応力が最大値となる点は、深度、車輪や脚の配置により異なるため、最大応力となる点を解析着目点とする必要がある。舗装構造設計においては、脚荷重による路床やアスファルト混合物層に生じる最大ひずみへの主脚相互の影響は小さいため、最大応力は主脚の車輪直下の脚中心で生じるが、地中応力においては、深度が深くなるにしたがい脚荷重の主脚相互の影響が無視できなくなり、最大値が生じる平面的位置も変化することになる。

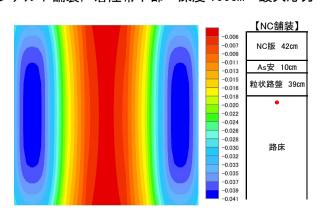
解析は GAMES の初期設定画面の【グラフィック】を選択して行う.この解析機能では、 車輪間隔,接地半径を考慮して、解析着目点の平面位置が自動的に設定される.

なお、解析の深度は、地中応力の変化が大きい土被り 1m 程度までは 10cm 間隔とし、土 被り 1m 以深では 50cm 程度の間隔が望ましい.

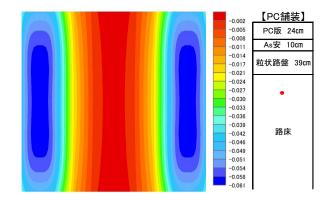
(5) 解析結果の整理


GAMES は舗装構造解析を主目的しているため、画面上には、着目深度における水平ひずみ又は鉛直ひずみの最大値のみが表示され、鉛直方向の応力は出力されないが、初期設定で選択したフォルダ内に「GAMES_VB.BRE」というテキストファイルが作成され、それには変位、応力を含む全ての計算結果が出力されている。そのファイルより鉛直応力の最大値を抽出すれば、その深度における鉛直方向地中応力が得られる。

(6) 解析結果の例


深度 100cm における算定結果より作成した地中応力の平面コンターを以下に示す.

なお,多層弾性解析の場合には,特定の地中構造物が存在する場合の応力増加を反映した 算定が難しいため,これを反映した割り増し分を考慮する必要がある.


FEM 解析において地下構造物をモデル化した場合の例では、コンクリート舗装版の有無及びコンクリート舗装版の厚さによって、地中構造物に作用する鉛直方向地中応力の増加率が異なる傾向が見られた. 具体的には、コンクリート舗装版がない場合には、多層弾性解析結果の 1.3 倍、コンクリート舗装版厚が 42cm の場合には 1.8 倍、コンクリート舗装版厚が 24cm の場合に 1.6 倍程度となったことから、地中構造物が剛性構造物の場合には、GAMESの解析結果にコンクリート舗装版の有無、コンクリート舗装版厚に応じて、割増しする.

付図-2.4 アスファルト舗装. 着陸帯下部 深度 100cm 最大応力: 150.9kPa

付図-2.5 NC(42 c m)舗装下部 深度 100cm 最大応力: 41.1kPa

付図-2.6 NC(24cm)舗装下部 深度100cm 最大応力:60.6kPa

付表-2.1 鉛直方向地中応力表(1) 単位:kPa

	A380-	800 (機材者	昏号1)	B747	-8(機材番	号2)	B777	-9 (機材番	号3)
深度 (m)	アスファルト 舗装・着陸	コンクリ	一卜舗装	アスファルト 舗装・着陸	コンクリ	一卜舗装	アスファルト 舗装・着陸	コンクリ	一ト舗装
(III)	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm
1.0	178.7	98.3	114.9	185.6	91.8	113.2	196.1	96.8	131.0
1.5	114.9	88.2	99.4	127.8	80.9	94.0	134.9	82.0	107.5
2.0	96.1	79.4	86.3	101.9	71.8	79.4	110.5	69.6	88.0
2.5	82.2	71.8	75.6	81.5	64.2	68.5	89.3	59.3	72.4
3.0	70.9	65.4	66.9	67.0	57.8	60.3	72.3	50.9	60.1
3.5	61.8	59.9	59.9	56.7	52.5	53.9	58.9	44.0	50.4
4.0	54.5	55.1	54.0	49.4	48.0	48.5	48.6	38.3	42.7
4.5	48.7	51.0	49.1	43.9	44.0	43.9	40.6	33.7	36.6
5.0	44.0	47.5	45.0	39.5	40.4	39.8	34.4	29.9	31.6
5.5	40.1	44.2	41.5	35.8	37.2	36.3	29.4	26.7	27.6
6.0	36.8	41.1	38.5	32.6	34.3	33.2	25.5	24.0	24.4
6.5	34.1	38.3	35.7	29.8	31.7	30.5	22.4	21.7	21.7
7.0	31.7	35.7	33.2	27.3	29.4	28.0	19.8	19.8	19.5
8.0	27.5	31.1	28.8	23.2	25.3	24.0	15.9	16.7	16.0
9.0	24.0	27.2	25.1	20.0	22.0	20.7	13.2	14.4	13.5
10.0	21.0	23.9	21.9	17.3	19.2	17.9	11.3	12.7	11.7

	B747-	B747-400 (機材番号4)		A340-600 (機材番号5)			A340-500 (機材番号6)			
深度 (m)	アスファルト 舗装・着陸	コンクリー	ート舗装	アスファルト 舗装・着陸	コンクリ・	一卜舗装	アスファルト 舗装・着陸	コンクリ	一ト舗装	
(111)	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm	
1.0	168.4	82.4	101.3	190.4	77.1	98.8	189.7	77.1	98.4	
1.5	116.6	72.0	83.7	114.6	67.6	83.0	115.1	67.8	82.7	
2.0	91.8	63.8	70.4	86.8	59.6	69.0	86.5	59.7	68.8	
2.5	72.8	57.3	60.7	71.0	53.0	57.9	70.7	53.1	57.7	
3.0	59.6	52.0	53.3	58.2	47.6	49.7	58.0	47.7	49.8	
3.5	50.3	47.4	47.6	48.2	43.2	43.8	48.2	43.2	43.9	
4.0	43.7	43.3	42.9	41.3	39.4	39.1	41.4	39.4	39.1	
4.5	38.8	39.6	38.8	36.2	36.1	35.2	36.2	36.1	35.3	
5.0	34.9	36.3	35.2	32.2	33.2	32.0	32.2	33.2	32.0	
5.5	31.7	33.4	32.1	29.0	30.6	29.2	29.0	30.6	29.2	
6.0	28.8	30.8	29.3	26.3	28.3	26.8	26.3	28.3	26.8	
6.5	26.3	28.5	26.9	24.1	26.2	24.7	24.1	26.2	24.7	
7.0	24.2	26.4	24.8	22.1	24.3	22.8	22.1	24.3	22.8	
8.0	20.5	22.7	21.2	18.9	21.0	19.6	18.9	21.0	19.6	
9.0	17.6	19.7	18.3	16.3	18.3	16.9	16.3	18.3	16.9	
10.0	15.3	17.2	15.9	14.2	16.0	14.7	14.2	16.0	14.7	

	B777-3	00ER (機材	'番号7)	B747	-SP(機材番	号8)	A350-	1000(機材	番号9)
深度 (m)	アスファルト 舗装・着陸	コンクリ	一卜舗装	アスファルト 舗装・着陸	コンクリ	一卜舗装	アスファルト 舗装・着陸	コンクリ・	一卜舗装
(III)	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm
1.0	191.5	94.6	125.3	127.5	61.8	76.0	176.4	87.1	118.4
1.5	131.9	80.2	103.0	87.6	54.0	62.8	121.0	73.9	97.3
2.0	108.1	68.0	84.5	68.9	47.8	52.9	99.9	62.6	79.5
2.5	87.4	57.9	69.7	54.7	43.0	45.5	80.9	53.2	65.3
3.0	70.6	49.7	57.9	44.7	39.0	40.0	65.4	45.6	54.1
3.5	57.6	43.0	48.6	37.8	35.6	35.7	53.2	39.4	45.3
4.0	47.5	37.5	41.3	32.8	32.5	32.2	43.8	34.4	38.3
4.5	39.7	32.9	35.4	29.1	29.7	29.1	36.5	30.2	32.8
5.0	33.6	29.1	30.6	26.2	26.8	26.4	30.9	26.7	28.3
5.5	28.8	26.0	26.8	23.8	24.6	24.0	26.4	23.9	24.8
6.0	24.9	23.3	23.6	21.6	22.7	22.0	22.9	21.5	21.8
6.5	21.8	21.1	21.0	19.7	21.0	20.2	20.0	19.4	19.4
7.0	19.3	19.2	18.9	18.1	19.4	18.6	17.7	17.7	17.4
8.0	15.5	16.2	15.6	15.4	16.8	15.9	14.3	15.0	14.3
9.0	12.9	13.9	13.1	13.2	14.6	13.7	11.9	12.9	12.1
10.0	11.0	12.2	11.3	11.5	12.7	11.9	10.1	11.4	10.4

付表-2.2 鉛直方向地中応力表(2) 単位:kPa

	B777-	300 (機材番	号10)	B777-20	00ER (機材	番号11)	A350-9	900 (機材番	号12)
深度 (m)	アスファルト 舗装・着陸	コンクリ・	ート舗装	アスファルト 舗装・着陸	コンクリ・	一卜舗装	アスファルト 舗装・着陸	コンクリ・	一卜舗装
(111)	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm
1.0	169.2	83.3	110.4	162.6	80.1	106.2	196.2	74.0	97.0
1.5	116.5	70.6	90.8	112.0	67.8	87.3	107.4	64.1	82.8
2.0	95.4	59.8	74.4	91.7	57.5	71.5	80.4	54.8	68.9
2.5	77.0	50.9	61.3	74.0	48.9	58.9	67.8	46.8	57.1
3.0	62.2	43.6	50.9	59.8	42.0	49.0	56.2	40.3	47.5
3.5	50.7	37.7	42.7	48.7	36.3	41.1	46.3	34.8	39.9
4.0	41.8	32.9	36.2	40.2	31.6	34.8	38.4	30.4	33.8
4.5	34.9	28.9	31.1	33.5	27.8	29.9	32.1	26.7	29.0
5.0	29.5	25.5	26.9	28.3	24.6	25.9	27.2	23.7	25.1
5.5	25.2	22.8	23.5	24.3	21.9	22.6	23.3	21.2	21.9
6.0	21.9	20.4	20.7	21.0	19.7	19.9	20.2	19.1	19.4
6.5	19.2	18.5	18.5	18.4	17.8	17.7	17.8	17.3	17.2
7.0	17.0	16.9	16.6	16.3	16.2	15.9	15.7	15.7	15.5
8.0	13.6	14.2	13.6	13.1	13.7	13.1	12.7	13.3	12.8
9.0	11.3	12.2	11.5	10.9	11.8	11.1	10.6	11.5	10.8
10.0	9.6	10.6	9.9	9.3	10.2	9.6	9.0	10.2	9.3

	B747-4	00D (機材	番号13)	A340-	300 (機材番	\$号14)	B787-	10 (機材番	号15)
深度 (m)	アスファルト 舗装・着陸	コンクリ	ート舗装	アスファルト 舗装・着陸	コンクリ・	一ト舗装	アスファルト 舗装・着陸	コンクリ・	一卜舗装
(111)	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm
1.0	122.3	59.6	73.3	172.6	68.1	89.5	190.4	77.6	110.5
1.5	84.4	52.1	60.6	102.1	58.5	74.7	117.9	65.0	89.1
2.0	66.5	46.2	51.0	78.4	49.9	61.5	95.9	54.3	71.3
2.5	52.7	41.5	43.9	63.7	42.8	50.8	75.6	45.7	57.5
3.0	43.1	37.7	38.6	51.7	37.1	42.4	59.4	38.8	46.9
3.5	36.4	34.3	34.5	42.3	32.4	35.9	47.2	33.3	38.9
4.0	31.6	31.3	31.0	35.0	28.6	30.7	38.2	29.0	32.6
4.5	28.1	28.7	28.0	29.4	25.5	26.7	31.5	25.4	27.8
5.0	25.3	26.3	25.5	25.1	22.9	23.4	26.4	22.5	23.9
5.5	22.9	24.2	23.2	21.8	20.7	20.8	22.4	20.1	20.8
6.0	20.9	22.3	21.2	19.1	18.9	18.6	19.3	18.1	18.4
6.5	19.0	20.6	19.5	17.0	17.4	16.8	16.9	16.4	16.3
7.0	17.5	19.1	18.0	15.2	16.0	15.3	15.0	15.0	14.7
8.0	14.9	16.5	15.3	12.6	13.9	13.0	12.0	12.7	12.1
9.0	12.8	14.3	13.2	10.8	12.3	11.2	10.0	11.1	10.3
10.0	11.1	12.5	11.5	9.5	10.9	10.0	8.6	9.8	9.0

	B787	-9 (機材番-	号16)	B777-	200 (機材番	号17)	A330-	300 (機材番	5号18)
深度 (m)	アスファルト 舗装・着陸	コンクリ・	一卜舗装	アスファルト 舗装・着陸	コンクリ・	一卜舗装	アスファルト 舗装・着陸	コンクリ・	一卜舗装
(III)	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm
1.0	189.2	77.1	109.7	138.2	67.9	90.1	178.5	69.0	94.3
1.5	117.1	64.5	88.5	95.0	57.5	74.0	105.2	58.8	78.3
2.0	95.2	53.9	70.8	77.8	48.8	60.7	80.5	49.7	63.9
2.5	75.1	45.3	57.1	62.8	41.5	50.0	65.2	42.1	52.2
3.0	59.0	38.5	46.6	50.7	35.6	41.5	52.7	36.0	43.1
3.5	46.9	33.1	38.6	41.3	30.8	34.8	42.6	31.0	35.9
4.0	38.0	28.8	32.4	34.1	26.8	29.6	34.9	26.9	30.2
4.5	31.3	25.2	27.6	28.4	23.5	25.3	28.9	23.6	25.8
5.0	26.2	22.3	23.8	24.0	20.8	21.9	24.4	20.9	22.2
5.5	22.3	19.9	20.7	20.6	18.6	19.2	20.8	18.6	19.4
6.0	19.2	18.0	18.2	17.8	16.7	16.9	17.9	16.7	17.0
6.5	16.8	16.3	16.2	15.6	15.1	15.1	15.7	15.1	15.1
7.0	14.8	14.9	14.6	13.8	13.8	13.5	13.8	13.8	13.6
8.0	12.0	12.6	12.0	11.1	11.6	11.1	11.1	11.6	11.1
9.0	10.0	11.0	10.2	9.2	10.0	9.4	9.2	10.0	9.4
10.0	8.5	9.8	8.9	7.9	8.7	8.1	7.8	8.8	8.1

付表-2.3 鉛直方向地中応力表(3) 単位:kPa

	A330-2	200 (機材番	号19)		MD11		B787-8(機材番号20)			
深度 (m)	アスファルト 舗装・着陸	コンクリ	一卜舗装	アスファルト 舗装・着陸	コンクリ・	一卜舗装	アスファルト 舗装・着陸	コンクリ・	ート舗装	
(111)	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm	
1.0	176.6	68.3	93.3	180.3	74.7	101.8	176.1	71.2	100.8	
1.5	104.0	58.2	77.4	113.4	63.0	82.5	115.4	58.9	80.1	
2.0	79.6	49.2	63.2	90.9	53.2	66.6	91.3	48.8	63.5	
2.5	64.5	41.7	51.7	71.9	45.3	54.4	70.3	40.9	51.0	
3.0	52.1	35.6	42.6	56.8	39.1	45.1	54.4	34.6	41.5	
3.5	42.2	30.7	35.5	45.6	34.1	37.9	42.8	29.7	34.3	
4.0	34.5	26.6	29.9	37.3	30.1	32.4	34.4	25.7	28.8	
4.5	28.6	23.4	25.5	31.2	26.8	28.1	28.2	22.5	24.5	
5.0	24.1	20.7	22.0	26.5	24.1	24.6	23.5	19.9	21.1	
5.5	20.5	18.4	19.2	22.9	21.9	21.8	20.0	17.7	18.4	
6.0	17.7	16.5	16.9	20.1	20.0	19.6	17.2	16.0	16.2	
6.5	15.5	14.9	15.0	17.9	18.4	17.7	15.0	14.5	14.4	
7.0	13.7	13.6	13.4	16.1	17.0	16.2	13.2	13.2	12.9	
8.0	11.0	11.5	11.0	13.4	14.9	13.7	10.6	11.2	10.7	
9.0	9.1	9.9	9.3	11.5	13.1	12.0	8.9	9.6	9.1	
10.0	7.8	8.7	8.0	10.1	11.6	10.6	7.6	8.6	7.9	

	B767-30	00ER (機材	番号21)	A300-	600 (機材番	5号22)	A310-300 (機材番号23)			
深度 (m)	アスファルト 舗装・着陸	コンクリ・	一卜舗装	アスファルト 舗装・着陸	コンクリ	一卜舗装	アスファルト 舗装・着陸	コンクリ・	一卜舗装	
(111)	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm	
1.0	155.5	61.5	88.7	166.0	60.4	88.6	157.8	57.4	84.2	
1.5	107.1	50.3	69.3	112.6	48.9	68.1	107.0	46.4	64.7	
2.0	81.8	41.4	54.4	82.8	39.9	52.9	78.7	38.0	50.3	
2.5	61.5	34.5	43.3	60.9	33.2	41.9	57.9	31.5	39.8	
3.0	46.9	29.2	35.1	45.9	27.9	33.8	43.6	26.6	32.1	
3.5	36.6	25.0	29.0	35.5	23.9	27.8	33.7	22.7	26.4	
4.0	29.2	21.7	24.3	28.2	20.6	23.2	26.8	19.6	22.0	
4.5	23.9	19.0	20.6	22.9	18.0	19.6	21.8	17.1	18.7	
5.0	19.9	16.8	17.8	19.0	15.9	16.9	18.1	15.1	16.0	
5.5	16.8	15.0	15.5	16.1	14.2	14.7	15.3	13.5	14.0	
6.0	14.5	13.5	13.6	13.8	12.7	12.9	13.1	12.1	12.3	
6.5	12.7	12.3	12.2	12.0	11.5	11.5	11.4	11.0	10.9	
7.0	11.2	11.2	10.9	10.6	10.5	10.3	10.0	10.0	9.8	
8.0	9.0	9.5	9.1	8.5	8.9	8.5	8.1	8.4	8.1	
9.0	7.6	8.3	7.7	7.1	7.7	7.2	6.7	7.3	6.9	
10.0	6.5	7.4	6.8	6.1	6.8	6.3	5.8	6.5	6.0	

	B767-3	300 (機材番	号24)		A300-B4		B767-	200 (機材番	号25)
深度 (m)	アスファルト 舗装・着陸	コンクリ	一卜舗装	アスファルト 舗装・着陸	コンクリ	一卜舗装	アスファルト 舗装・着陸	コンクリ・	一卜舗装
(III)	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm
1.0	133.4	52.5	75.8	143.3	52.0	76.3	120.4	47.3	68.3
1.5	91.5	43.0	59.2	97.0	42.1	58.7	82.4	38.7	53.3
2.0	69.9	35.4	46.4	71.3	34.4	45.6	63.0	31.9	41.8
2.5	52.5	29.5	37.0	52.5	28.6	36.1	47.3	26.6	33.3
3.0	40.0	24.9	30.0	39.5	24.1	29.1	36.1	22.5	27.0
3.5	31.3	21.4	24.7	30.6	20.5	23.9	28.2	19.2	22.3
4.0	25.0	18.5	20.7	24.3	17.7	20.0	22.5	16.7	18.7
4.5	20.4	16.2	17.6	19.7	15.5	16.9	18.4	14.6	15.9
5.0	17.0	14.3	15.2	16.4	13.7	14.5	15.3	12.9	13.6
5.5	14.4	12.8	13.2	13.8	12.2	12.6	13.0	11.6	11.9
6.0	12.4	11.6	11.6	11.9	11.0	11.1	11.2	10.4	10.5
6.5	10.8	10.5	10.4	10.3	9.9	9.9	9.7	9.5	9.4
7.0	9.6	9.6	9.3	9.1	9.0	8.9	8.6	8.6	8.4
8.0	7.7	8.1	7.7	7.3	7.6	7.3	6.9	7.3	7.0
9.0	6.4	7.1	6.6	6.1	6.6	6.2	5.8	6.4	6.0
10.0	5.6	6.3	5.8	5.2	5.9	5.4	5.0	5.7	5.2

付表-2.4 鉛直方向地中応力表(4) 単位:kPa

	B757-3	300 (機材番	号26)		B757-200		A321NEO (機材番号27)			
深度 (m)	アスファルト 舗装・着陸	コンクリ・	ート舗装	アスファルト 舗装・着陸	コンクリ・	一卜舗装	アスファルト 舗装・着陸	コンクリ・	一卜舗装	
(III)	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm	
1.0	132.5	44.9	67.1	123.0	41.7	62.4	171.1	40.2	64.9	
1.5	92.3	35.8	50.3	85.7	33.2	46.7	98.1	30.8	46.0	
2.0	64.1	29.2	38.6	59.6	27.1	35.9	61.2	24.6	34.3	
2.5	45.7	24.3	30.4	42.4	22.5	28.3	41.3	20.2	26.4	
3.0	33.8	20.5	24.6	31.4	19.1	22.8	29.6	17.0	21.0	
3.5	26.0	17.7	20.2	24.1	16.5	18.8	22.2	14.6	17.1	
4.0	20.6	15.5	17.0	19.1	14.4	15.8	17.4	12.7	14.2	
4.5	16.8	13.7	14.6	15.6	12.8	13.5	14.0	11.2	12.1	
5.0	14.0	12.3	12.7	13.0	11.4	11.8	11.6	10.0	10.4	
5.5	12.0	11.0	11.2	11.1	10.2	10.4	9.8	9.0	9.1	
6.0	10.4	10.0	10.0	9.6	9.3	9.2	8.5	8.2	8.1	
6.5	9.2	9.2	9.0	8.5	8.6	8.4	7.4	7.5	7.3	
7.0	8.2	8.6	8.2	7.6	8.0	7.6	6.6	6.9	6.6	
8.0	6.8	7.4	7.0	6.3	6.9	6.5	5.4	6.0	5.6	
9.0	5.8	6.4	6.0	5.4	6.0	5.6	4.6	5.2	4.8	
10.0	5.0	5.6	5.2	4.7	5.2	4.8	4.0	4.5	4.2	

	A321-2	200 (機材番	号28)	B737	-9 (機材番·	号29)	B737-	900 (機材番	等号30)
深度 (m)	アスファルト 舗装・着陸	コンクリー	ート舗装	アスファルト 舗装・着陸	コンクリ・	一卜舗装	アスファルト 舗装・着陸	コンクリ	一卜舗装
(III)	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm
1.0	165.7	39.0	60.6	163.3	37.7	59.7	157.6	36.4	55.5
1.5	95.1	29.8	43.2	91.5	29.1	42.3	88.4	28.1	39.6
2.0	59.3	23.8	32.3	56.5	23.6	31.6	54.6	22.8	29.8
2.5	40.0	19.6	25.0	38.0	19.7	24.7	36.7	19.0	23.3
3.0	28.7	16.5	20.0	27.4	16.9	19.9	26.4	16.3	18.9
3.5	21.6	14.1	16.3	20.8	14.8	16.5	20.1	14.3	15.7
4.0	16.8	12.3	13.6	16.5	13.2	14.0	15.9	12.7	13.4
4.5	13.6	10.8	11.6	13.5	11.9	12.1	13.1	11.4	11.6
5.0	11.2	9.6	10.0	11.4	10.8	10.7	11.0	10.4	10.3
5.5	9.5	8.6	8.8	9.8	9.8	9.6	9.5	9.5	9.2
6.0	8.2	7.8	7.8	8.7	9.0	8.7	8.4	8.7	8.4
6.5	7.2	7.1	7.0	7.8	8.2	7.9	7.5	7.9	7.6
7.0	6.4	6.6	6.4	7.1	7.5	7.2	6.8	7.2	6.9
8.0	5.3	5.7	5.4	5.9	6.3	6.0	5.7	6.1	5.8
9.0	4.5	5.0	4.7	4.9	5.3	5.0	4.8	5.2	4.8
10.0	3.9	4.3	4.0	4.2	4.6	4.3	4.0	4.4	4.1

	B737-	-8(機材番-	号31)	A320N	EO(機材番	号32)	B737-	800 (機材番	\$号33)
深度 (m)	アスファルト 舗装・着陸	コンクリ・	一卜舗装	アスファルト 舗装・着陸	コンクリ・	一卜舗装	アスファルト 舗装・着陸	コンクリ・	一卜舗装
(111)	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm
1.0	150.5	34.8	55.0	136.9	32.1	51.8	144.9	33.5	51.0
1.5	84.4	26.8	39.0	78.4	24.6	36.7	81.3	25.8	36.4
2.0	52.1	21.7	29.2	48.9	19.6	27.3	50.2	20.9	27.4
2.5	35.1	18.2	22.7	32.9	16.1	21.1	33.8	17.5	21.4
3.0	25.2	15.6	18.3	23.6	13.6	16.8	24.3	15.0	17.4
3.5	19.2	13.6	15.2	17.7	11.6	13.7	18.5	13.1	14.4
4.0	15.2	12.1	12.9	13.9	10.1	11.4	14.6	11.7	12.3
4.5	12.5	10.9	11.2	11.2	8.9	9.6	12.0	10.5	10.7
5.0	10.5	10.0	9.9	9.3	7.9	8.3	10.1	9.6	9.5
5.5	9.1	9.1	8.8	7.8	7.1	7.3	8.7	8.7	8.5
6.0	8.0	8.3	8.0	6.8	6.5	6.5	7.7	8.0	7.7
6.5	7.2	7.5	7.3	5.9	6.0	5.8	6.9	7.3	7.0
7.0	6.5	6.9	6.6	5.3	5.5	5.2	6.3	6.6	6.4
8.0	5.4	5.8	5.5	4.3	4.8	4.4	5.2	5.6	5.3
9.0	4.5	4.9	4.6	3.7	4.2	3.8	4.4	4.7	4.4
10.0	3.8	4.2	3.9	3.2	3.6	3.3	3.7	4.1	3.8

付表-2.5 鉛直方向地中応力表(5) 単位:kPa

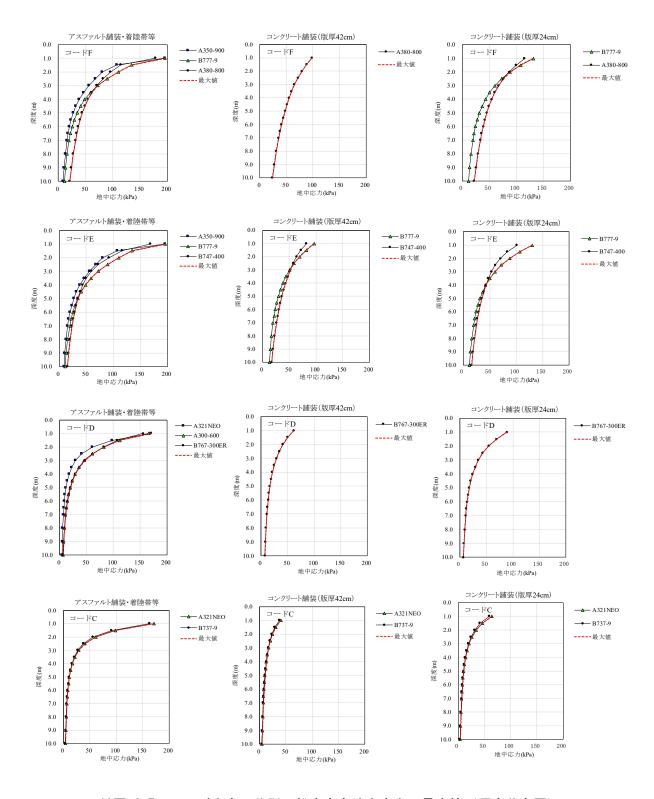
	A320-	200 (機材番	号34)	A319-	100 (機材番	导35)	MD90-	-30 (機材番	号36)
深度 (m)	アスファルト 舗装・着陸	コンクリ	ート舗装	アスファルト 舗装・着陸	コンクリ	一卜舗装	アスファルト 舗装・着陸	コンクリ・	一卜舗装
(III)	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm
1.0	135.4	31.8	49.4	130.8	30.7	47.7	151.3	32.4	49.0
1.5	77.6	24.3	35.2	75.0	23.5	34.0	80.0	24.9	34.7
2.0	48.3	19.4	26.3	46.7	18.8	25.4	48.3	20.3	26.2
2.5	32.6	15.9	20.4	31.5	15.4	19.7	32.3	17.1	20.6
3.0	23.3	13.4	16.3	22.6	12.9	15.7	23.2	14.7	16.8
3.5	17.6	11.5	13.3	17.0	11.1	12.8	17.7	12.8	14.1
4.0	13.7	10.0	11.1	13.3	9.7	10.7	14.1	11.3	12.2
4.5	11.1	8.8	9.4	10.7	8.5	9.1	11.7	10.3	10.7
5.0	9.2	7.8	8.2	8.9	7.6	7.9	9.9	9.3	9.5
5.5	7.7	7.0	7.2	7.5	6.8	6.9	8.7	8.4	8.6
6.0	6.7	6.4	6.4	6.5	6.1	6.1	7.7	7.6	7.7
6.5	5.9	5.8	5.7	5.7	5.6	5.5	6.9	6.9	6.9
7.0	5.2	5.4	5.2	5.0	5.2	5.0	6.3	6.3	6.3
8.0	4.3	4.7	4.4	4.1	4.5	4.2	5.1	5.3	5.2
9.0	3.6	4.1	3.8	3.5	3.9	3.7	4.3	4.5	4.3
10.0	3.2	3.5	3.3	3.1	3.4	3.2	3.6	3.8	3.6

	B737-	700 (機材番	号37)	A318-	100 (機材番	号38)	B737-	400 (機材番	\$号39)
深度 (m)	アスファルト 舗装・着陸	コンクリ・	一卜舗装	アスファルト 舗装・着陸	コンクリ	一卜舗装	アスファルト 舗装・着陸	コンクリ・	一卜舗装
(111)	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm
1.0	126.2	29.1	44.4	113.6	26.6	43.0	134.8	29.7	45.0
1.5	70.7	22.4	31.6	65.0	20.4	30.5	72.8	22.9	32.0
2.0	43.6	18.2	23.8	40.5	16.3	22.7	44.3	18.7	24.1
2.5	29.3	15.2	18.6	27.3	13.4	17.5	29.7	15.7	19.0
3.0	21.1	13.0	15.1	19.6	11.2	13.9	21.4	13.6	15.5
3.5	16.0	11.4	12.5	14.7	9.6	11.3	16.3	12.0	13.0
4.0	12.7	10.1	10.7	11.5	8.4	9.4	13.0	10.7	11.1
4.5	10.4	9.1	9.3	9.3	7.4	8.0	10.7	9.7	9.7
5.0	8.8	8.3	8.2	7.7	6.6	6.9	9.1	8.8	8.7
5.5	7.6	7.6	7.4	6.5	5.9	6.0	7.9	8.0	7.8
6.0	6.7	6.9	6.7	5.6	5.4	5.4	7.0	7.2	7.0
6.5	6.0	6.3	6.1	4.9	5.0	4.8	6.3	6.6	6.4
7.0	5.4	5.8	5.5	4.4	4.6	4.3	5.7	6.0	5.8
8.0	4.5	4.9	4.6	3.6	4.0	3.7	4.7	5.0	4.8
9.0	3.8	4.1	3.9	3.1	3.4	3.2	3.9	4.2	4.0
10.0	3.2	3.5	3.3	2.7	3.0	2.8	3.3	3.6	3.4

	B737-	300 (機材番	号40)	B737-	500 (機材番	号41)	ERJ-1	70 (機材番	号42)
深度 (m)	アスファルト 舗装・着陸	コンクリ	一卜舗装	アスファルト 舗装・着陸	コンクリ	一卜舗装	アスファルト 舗装・着陸	コンクリ・	一卜舗装
(111)	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm
1.0	122.4	26.9	40.8	118.9	26.2	39.6	75.2	15.9	24.2
1.5	66.1	20.7	29.0	64.2	20.2	28.1	39.6	12.2	17.1
2.0	40.2	16.9	21.8	39.0	16.4	21.2	23.8	9.9	12.8
2.5	26.9	14.2	17.2	26.1	13.8	16.7	15.9	8.4	10.1
3.0	19.4	12.2	14.0	18.8	11.9	13.6	11.4	7.2	8.2
3.5	14.7	10.6	11.7	14.3	10.5	11.4	8.7	6.4	6.9
4.0	11.7	9.4	10.1	11.4	9.4	9.8	6.9	5.7	5.9
4.5	9.7	8.5	8.8	9.4	8.5	8.6	5.7	5.1	5.2
5.0	8.2	7.7	7.9	8.0	7.7	7.6	4.8	4.7	4.6
5.5	7.2	7.0	7.1	7.0	7.0	6.9	4.2	4.2	4.1
6.0	6.4	6.3	6.4	6.2	6.3	6.2	3.7	3.8	3.7
6.5	5.7	5.8	5.7	5.6	5.8	5.6	3.4	3.5	3.4
7.0	5.2	5.3	5.2	5.0	5.2	5.1	3.0	3.2	3.1
8.0	4.3	4.4	4.3	4.1	4.4	4.2	2.5	2.6	2.5
9.0	3.5	3.7	3.6	3.4	3.7	3.5	2.1	2.2	2.1
10.0	3.0	3.2	3.0	2.9	3.2	2.9	1.7	1.9	1.8

付表-2.6 鉛直方向地中応力表(6) 単位:kPa

	DHC8-	400 (機材和	番号43)	CRJ10	CRJ100 (機材番号44)			DHC8-300	
深度 (m)	アスファルト 舗装・着陸	コンクリ	一卜舗装	アスファルト 舗装・着陸	コンクリ・	一卜舗装	アスファルト 舗装・着陸	コンクリ・	ート舗装
(III)	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm	帯等	版厚42cm	版厚24cm
1.0	69.1	12.5	19.8	55.7	11.7	16.7	48.7	8.6	13.6
1.5	33.7	9.2	13.7	26.9	9.3	12.2	23.3	6.3	9.4
2.0	19.6	7.3	10.0	16.0	8.0	9.6	13.5	5.0	6.9
2.5	12.8	5.9	7.7	10.9	6.9	8.0	8.8	4.1	5.3
3.0	9.0	4.9	6.1	8.2	6.0	6.8	6.1	3.4	4.2
3.5	6.6	4.2	4.9	6.6	5.2	5.8	4.6	2.9	3.4
4.0	5.1	3.6	4.1	5.5	4.5	4.9	3.5	2.5	2.8
4.5	4.1	3.1	3.4	4.7	4.0	4.2	2.8	2.2	2.4
5.0	3.4	2.8	2.9	4.0	3.5	3.7	2.3	2.0	2.0
5.5	2.8	2.5	2.5	3.4	3.1	3.2	2.0	1.7	1.8
6.0	2.4	2.2	2.2	3.0	2.8	2.8	1.7	1.6	1.6
6.5	2.1	2.0	2.0	2.6	2.5	2.5	1.5	1.5	1.4
7.0	1.8	1.8	1.8	2.3	2.2	2.2	1.3	1.3	1.3
8.0	1.5	1.6	1.5	1.8	1.8	1.8	1.1	1.2	1.1
9.0	1.2	1.4	1.3	1.4	1.5	1.4	0.9	1.0	0.9
10.0	1.1	1.2	1.1	1.2	1.3	1.2	0.8	0.9	0.8


	CRJ700					
深度	アスファルト	コンクリ	ート舗装			
(m)	舗装・着陸 帯等	版厚42cm	版厚24cm			
1.0	41.2	9.4	14.4			
1.5	23.0	7.3	10.2			
2.0	14.2	5.9	7.7			
2.5	9.5	4.9	6.0			
3.0	6.8	4.2	4.9			
3.5	5.2	3.7	4.1			
4.0	4.1	3.3	3.5			
4.5	3.4	3.0	3.0			
5.0	2.8	2.7	2.7			
5.5	2.5	2.4	2.4			
6.0	2.2	2.2	2.2			
6.5	1.9	2.0	2.0			
7.0	1.8	1.9	1.8			
8.0	1.5	1.6	1.5			
9.0	1.2	1.3	1.2			
10.0	1.0	1.1	1.1			

付表-2.7 コード文字区分別の鉛直方向地中応力の最大値 単位:kPa

ア	スファノ	レト舗装	・着陸さ	青等
深度 (m)	コードF	コードE	コードD	コードC
1.0	196.2	196.2	171.1	171.1
1.5	134.9	134.9	112.6	98.1
2.0	110.5	110.5	82.8	61.2
2.5	89.3	89.3	61.5	41.3
3.0	72.3	72.3	46.9	29.6
3.5	61.8	58.9	36.6	22.2
4.0	54.5	48.6	29.2	17.4
4.5	48.7	40.6	23.9	14.0
5.0	44.0	34.9	19.9	11.6
5.5	40.1	31.7	16.8	9.8
6.0	36.8	28.8	14.5	8.7
6.5	34.1	26.3	12.7	7.8
7.0	31.7	24.2	11.2	7.1
8.0	27.5	20.5	9.0	5.9
9.0	24.0	17.6	7.6	4.9
10.0	21.0	15.3	6.5	4.2

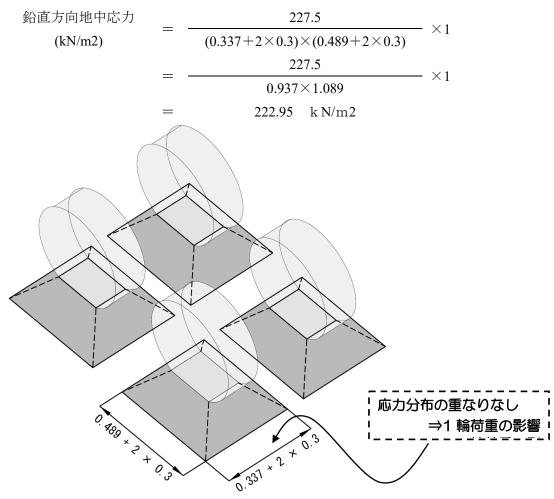
:	ノクリー	ト舗装	(版厚42	cm)
深度 (m)	コードF	기 나 E	고 기	コードC
1.0	98.3	96.8	61.5	40.2
1.5	88.2	82.0	50.3	30.8
2.0	79.4	69.6	41.4	24.6
2.5	71.8	59.3	34.5	20.2
3.0	65.4	52.0	29.2	17.0
3.5	59.9	47.4	25.0	14.8
4.0	55.1	43.3	21.7	13.2
4.5	51.0	39.6	19.0	11.9
5.0	47.5	36.3	16.8	10.8
5.5	44.2	33.4	15.0	9.8
6.0	41.1	30.8	13.5	9.0
6.5	38.3	28.5	12.3	8.2
7.0	35.7	26.4	11.2	7.5
8.0	31.1	22.7	9.5	6.3
9.0	27.2	19.7	8.3	5.3
10.0	23.9	17.2	7.4	4.6

深度 (m) コードF コードE コードE 1.0 131.0 131.0 1.5 107.5 107.5 2.0 88.0 88.0	-ドD 88.7 69.3	コードC 64.9
1.5 107.5 107.5		
	69.3	
2.0 88.0 88.0		46.0
	54.4	34.3
2.5 75.6 72.4	43.3	26.4
3.0 66.9 60.1	35.1	21.0
3.5 59.9 50.4	29.0	17.1
4.0 54.0 42.9	24.3	14.2
4.5 49.1 38.8	20.6	12.1
5.0 45.0 35.2	17.8	10.7
5.5 41.5 32.1	15.5	9.6
6.0 38.5 29.3	13.6	8.7
6.5 35.7 26.9	12.2	7.9
7.0 33.2 24.8	10.9	7.2
8.0 28.8 21.2	9.1	6.0
9.0 25.1 18.3	7.7	5.0
10.0 21.9 15.9	6.8	4.3

付図-2.7 コード文字区分別の鉛直方向地中応力の最大値(深度分布図)

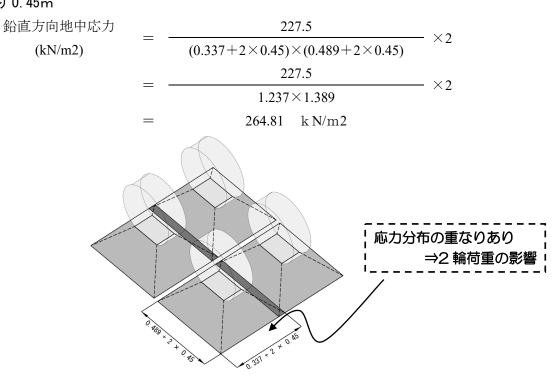
付録-3 ボストンコード法を利用した鉛直方向地中応力の考え方の例

ボストンコード法を用いて、下式により鉛直方向地中応力を算出する.

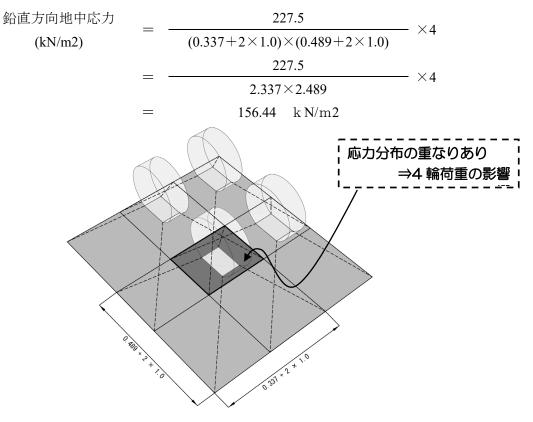

【例題】

(条件) 対象機種 : B747-400

脚荷重 : 910 k N (1 脚 4 輪) 輪荷重 : 910/4=227.5 k N


タイヤの接地幅: 0.337mタイヤの接地長: 0.489m

(1) 土被り 0.3m


付図-3.1 土被り0.3mでの分布状況

(2) 土被り 0.45m

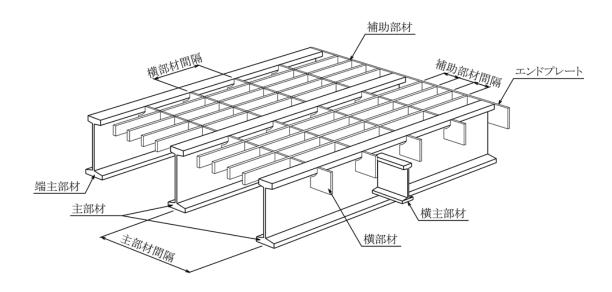
付図-3.2 土被り0.45mでの分布状況

(3) 土被り 1.0m

付図-3.3 土被り1.0mでの分布状況

付録-4 既設表面排水溝グレーチングの構造照査の例

航空機荷重による既設表面排水溝グレーチングの構造照査は、当該空港に現在就航している航空機や就航を予定又は就航が予想される航空機を考慮し、適切に検討する必要がある.

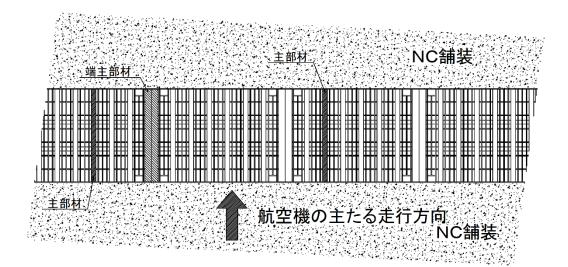

以下に既設表面排水溝グレーチングの構造照査例を示す. なお, 本例は, 集水桝のグレーチングにも適用することができる.

4.1 鋼材グレーチングの概要

本例で照査する鋼材グレーチングの概要を以下に示す.

(1) 各部材の名称

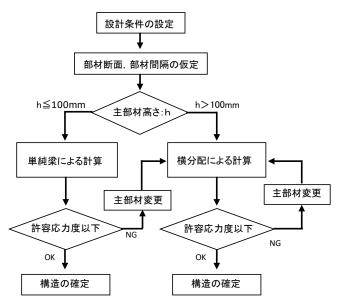
本検討で用いたグレーチングの各部材の名称は、付図-4.1のとおりである.



付図-4.1 グレーチング各部材の名称

(2) グレーチングの部材と航空機の走行方向の関係

空港内の表面排水溝のグレーチングは、エプロンの表面上で航空機の導入線と交差する方向に配置されることが多い.


各部材の配置と航空機の主たる走行方向の関係を付図-4.2に示す.

付図-4.2 グレーチングに対する航空機の主たる走行方向の考え方

4.2 検討フロー

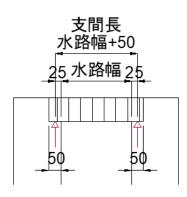
グレーチング構造検討の検討フローを付図-4.3に示す.

※ 主部材高さが 100 mm 以下の場合は、製作方法の違いにより横部材断面が 小さく横分配が期待できないことから計算方法が異なる.

付図-4.3 グレーチング構造の設計フローチャート

4.3 構造照査の検討

表面排水溝グレーチングの構造の検討を以下のとおり実施する.


本例の構造照査は、比較的使用頻度の高い格子状鋼材グレーチングによるものを示している. このため、鋳物等の他の構造の照査については、別途検証(メーカー確認)する必要がある.

4.3.1 検討条件

グレーチングの構造検討に必要な検討条件は、以下のとおりである.

(1) グレーチング受け部の構造寸法

U型側溝のグレーチング受け部の寸法は、付図-4.4 に示すとおり、片側 50 mm とし、その 1/2 (25mm) の位置を構造計算上の支点とする. したがって支間距離は、水路幅+25 mm $\times 2$ とする.

付図-4.4 グレーチング受け部寸法の例

(2) 荷重条件

荷重条件は、下記のとおりとした.

1) 対象航空機

・ 航空機の型式 A350-900 (タイヤ接地圧 1.71 N/mm²の場合)

2) 荷重諸元

輪荷重 : P₀ 321kN
タイヤ接地長: a 52.1 cm
タイヤ接地幅: b 36.0 cm

3) 衝擊係数

衝撃係数は、3.4.2 載荷重 3.4.2.1 航空機に示す土被り 4m 未満の地下構造物の衝撃荷重等の割増し率(30%)を参照し、i=0.3 とする.

(3) 鋼材のヤング係数

鋼材のヤング係数は、E=2.0×10⁵ N/mm² とする.

(4) 許容応力度

鋼材の許容応力度は、以下のとおりとする.

付表-4.1 鋼材の許容応力度 1)

鋼材の種類	鋼材の許容応力度(N/mm²)
SS400、SM400	140
SM490	185

4.3.2 設計例1【主部材高:h≦100mmの場合】

(1) 検討方法

主部材高が h≤100 mm の場合には、製作方法の違いにより横部材断面が小さく、荷重の横分配が期待できないため、主部材を単純梁とした構造検討を行う.

なお、航空機タイヤの接地面の長辺と短辺では、主部材への影響幅が異なる。また、支間 長とタイヤ接地長の関係に留意し、それぞれについて適切な曲げモーメントの算定を実施する。

A350-900 航空機タイヤの接地面寸法

タイヤ接地長:a 52.1 cmタイヤ接地幅:b 36.0 cm

(2) 荷重

1) 単位面積あたりの荷重:w

$$w = \frac{P_0(1+i)}{a \times b} \quad (kN/cm^2)$$

P₀:輪荷重 (= 321kN)

a:タイヤ接地長 (= 52.1 cm)b:タイヤ接地幅 (= 36.0 cm)

i:衝擊係数 (= 0.3)

2) 主部材1本にかかる荷重:W

$$W = w \times p_t \times l$$
 (kN)

 p_t : 主部材間隔 (cm)

l: 支間又はタイヤ接地長のうち長い方 (cm)

(3) 応力

上記の荷重により、支間長とタイヤ接地面を考慮した単純梁の曲げモーメントを算出し、 許容応力度 σ_a により確認する.

$$\sigma = \frac{M}{Z} \downarrow \emptyset$$

M:曲げモーメント²⁾ (kN・cm)

 σ_a : 許容応力度 (kN/cm²)・・・付表-4.1

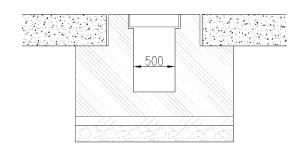
Z:断面係数 (cm³)

 $\sigma < \sigma_a$: OK

4.3.3 設計例2【主部材高:h>100 mm の場合】

(1) 検討方法

主部材高が h>100 mm の場合には,以下に示す格子理論による解法に基づく検討を行う. 格子理論による解法とは,橋梁のような主桁と横桁が弾性支承上の梁の関係にあるものを格子とし,格子に作用する荷重が交差する各桁に弾性的に分配されるものと仮定して計算する方法である.

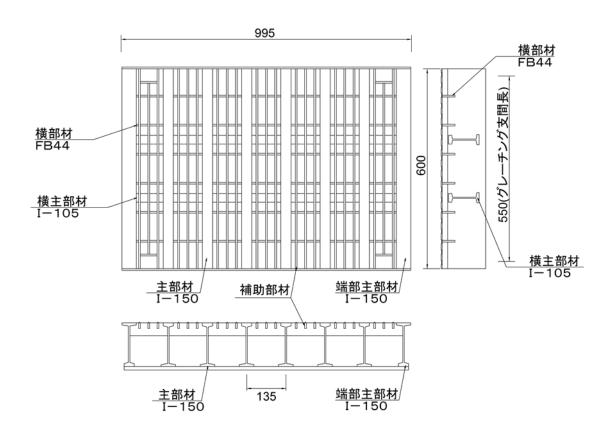

本例では交差する主部材、横主部材、横部材等が、橋梁の桁に相当する。荷重の分配を決める荷重横分配係数は、Leonhardtの式に基づいている。

なお、航空機タイヤの接地面の長辺と短辺では、主部材への影響幅が異なることから、主部材の延長方向に対するタイヤ接地面の長辺方向、短辺方向のそれぞれについて計算を実施するものとする.

(2) 構造寸法

1) U型側溝の構造寸法

U型側溝の溝幅は,500 mm とした.


付図-4.5 U型側溝の構造寸法

2) グレーチング構造の仮定

グレーチングの部材寸法は、付図-4.6 のとおりと仮定する。表面排水溝の受け幅(付図-4.4)を参考にグレーチングの支間長は $550~\mathrm{mm}$ とした。

主部材間隔は 135 mm である (付図-4.6).

なお, 主部材高さは付表-4.2 のとおり 150 mm である.

付図-4.6 グレーチングの構造

(3) 使用部材の断面性能

付図-4.6に示した部材の断面性能は、付表-4.2のとおりである.

付表-4.2 部材の断面性能

部材名称	形状	断面係数 Z (cm³)	断面二次モーメント I (cm ⁴)	配置 間隔 (cm)	材質
主部材	I-150	72.1	561	13.5	SS400
端部主部材	I-150	-	505	1	SS400
横主部材	I-105	-	170	-	SS400
横部材	FB-44	-	4.26	10.0	SS400

(4) 格子曲げ剛度の計算

格子曲げ剛度を計算する.

$$X_{1} = \frac{I_{Q'}}{I} \times n \times \left(\frac{L}{2\alpha}\right)^{3} = \frac{170}{561} \times 2 \times \left(\frac{55}{2 \times 13.5}\right)^{3} = 5.123$$

$$X_{2} = \frac{6}{\pi^{4}} \times \frac{I_{Q} \cdot L}{I \cdot \lambda} \times \left(\frac{L}{\alpha}\right)^{3} = \frac{6}{\pi^{4}} \times \frac{4.26 \times 55}{561 \times 10} \times \left(\frac{55}{13.5}\right)^{3} = 0.174$$

$$X = X_1 + X_2 = 5.123 + 0.174 = 5.297$$
$$j = \frac{I_r}{I} = \frac{505}{561} = 0.900$$

I : 主部材の断面二次モーメント (= 561 cm⁴)

 I_r :端部主部材の断面二次モーメント (= 505 cm⁴)

 I_{cr} : 横主部材の断面二次モーメント (= 170 cm⁴)

n : 横主部材の本数 (= 2 本)

 I_o : 横部材の断面二次モーメント (= 4.26 cm⁴)

α : 主部材間隔 (= 13.5 cm)

L : 支間長 (= 55 cm)

λ : 横部材の配置間隔 (= 10 cm)

X :格子曲げ剛度

X₁:横主部材の格子曲げ剛度X₂:横部材の格子曲げ剛度j:式 (1.2.2) (1.2.3)用係数

(5) 荷重横分配係数

格点(i,j)における分配係数 K(i,j)を求める. ここに、i=着目主部材、j=荷重が載荷されている点である.

分配係数 K(i,j)は,式 1.2.1 の A の値として求められる.また,本例で示す主部材が 8 本の 場合については、N₁、N₂の値は式 1.2.2 及び式 1.2.3 によって求められ、N₃、N₄は、付表-4.3 を用いて計算する.

 $N_1 \sim N_4$ の式は、主部材の本数によって使用する式が異なることに留意が必要である.

$$A = \frac{N_3}{N_1} \pm \frac{N_4}{N_2} \tag{$\vec{\times}$ 1.2.1}$$

$$N_1 = 426j/X + (1866j + 114) + (900j + 264)X + (6j + 18)X^2$$
 (\$\times 1.2.2)

$$N_2 = 82j/X + (686j + 22) + (980j + 136)X + (98j + 70)X^2$$
 (£1.2.3)

X = 5.297j = 0.900

: 荷重群 (n 本の横桁上の n 個の擬似荷重 A の一群)

 $N_1 \sim N_4$: 分配係数を求めるための計算上の要素

付表-4.3 N₃, N₄の計算例

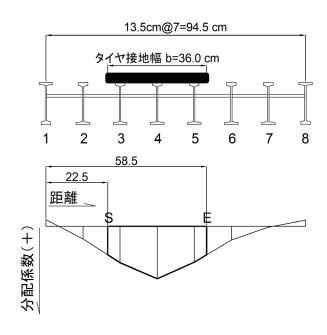
A	分子N ₃			分子N ₄		A
K(1,1)-1 K(1,8)	-57-132X-9X ²	-1,009	+	-11-68X-35X ²	-1,353	-0.252 0.006
K(1,2) K(1,7)	(129+207X+3X ²)j	1,179	+	(25+133X+35X ²)j	1,540	0.290 -0.003
K(1,3) K(1,6)	(-90+15X+3X ²)j	66	-	(-18-49X+21X ²)j	281	0.035 -0.019
K(1,4) K(1,5)	(18-90X+3X ²)j	-337	-	(6-42X+7X ²)j	-18	-0.043 -0.039
K(2,2)-1 K(2,7)	-348j-(399j+15)X-(3j+6)X ²	-2,539	-	-68j-(315j+3)X-(49j+10)X ²	-3,097	-0.605 -0.014
K(2,3) K(2,6)	327j+(87j+33)X+3X ²	968	+	67j+(189j+7)X+15X ²	1,419	0.253 -0.017
K(2,4) K(2,5)	-108j+(105j-18)X+3X ²	392	+	-36j+(77j-6)X+5X ²	443	0.090 0.005
K(3,3)-1 K(3,6)	-456j-(294j+84)X-(3j+6)X ²	-2,501	+	-104j-(238j+20)X-(49j+26)X ²	-3,301	-0.619 0.010
K(3,4) K(3,5)	219j+(192j+51)X+3X ²	1,467	+	103j+(112j+25)X+3X ²	843	0.259 0.098
K(4,4)-1 K(4,5)	-129j-(207j+33)X-(3j+6)X ²	-1,522	+	-171j-(427j+45)X-(49j+34)X ²	-4,619	-0.626 0.255

K(2,1)=K(1,2)/j K(3,1)=K(1,3)/jK(2,8)=K(1,7)/j K(3,2)=K(2,3)

K(3,7)=K(2,6)

K(3,8)=K(1,6)/j

K(4,1)=K(1,4)/j K(4,6)=K(3,5)


K(4,2)=K(2,4) K(4,7)=K(2,5)K(4,3)=K(3,4) K(4,8)=K(1,5)/j

(6) 主部材の延長方向に走行した場合:主たる走行方向

1) 荷重強度の算定

主部材の延長方向に走行した場合の荷重強度は、タイヤ接地幅に渡って荷重が載荷されることとなる。この場合、主部材のうち4本目の主部材上をタイヤ中心が通過した場合に、荷重の影響が最大となる。

よって、横軸に部材間の距離をとり、縦軸に分配係数をプロットした図の面積が影響面積(AA)となる(付図-4.7、付表-4.4). なお、載荷範囲の始め(S)、終わり(E)を示す位置の分配係数は、前後の主部材位置の分配係数から比率計算によって求めることができる.

付図-4.7 影響範囲の例

付表-4.4 影響面積(AA)の算定例

格点名	分配係数	端部主部材からの距離 (cm)	区間距離 (cm)	影響面積 (cm²/cm)
K(4,1)	-0.048	0.0		
K(4,2)	0.090	13.5		
K(4,S)	0.203	22.5		
K(4,3)	0.259	27.0	4.5	1.039
			13.5	4.274
K(4,4)	0.374	40.5	13.5	4.248
K(4,5)	0.255	54.0	4.5	1.031
K(4,E)	0.203	58.5		
K(4,6)	0.098	67.5		
K(4,7)	0.005	81.0		
K(4,8)	-0.044	94.5		
合計			AA=	10.6

:影響範囲として算定しない範囲

以上より荷重強度 Q は、下記のとおりとなる.

$$Q = AA \times \frac{P0}{a \times b} = 10.6 \times \frac{321}{52.1 \times 36.0}$$

=1.814 kN

AA:影響面積(cm²) (= 10.6 cm²)

P₀:輪荷重 (kN) (= 321 kN)

a:タイヤ接地長 (cm) (= 52.1 cm)

b:タイヤ接地幅 (cm) (= 36.0 cm)

2) 曲げモーメント

$$M = \frac{1}{8} \times Q \times a \times (2L - a) \times (1 + i)$$

$$= \frac{1}{8} \times 1.814 \times 52.1 \times (2 \times 55.0 - 52.1) \times (1 + 0.3)$$

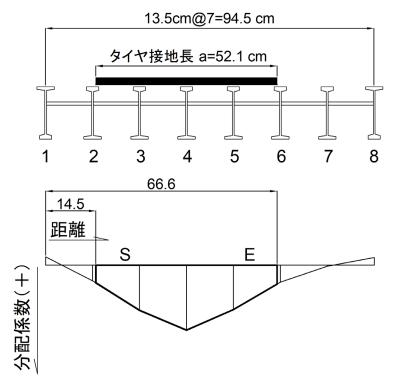
$$= 889.215 \text{ kN} \cdot \text{cm}$$

L : 支間長(cm) (= 55 cm)

a:タイヤ接地長(cm) (= 52.1 cm)

3) 応力

$$σ = \frac{M}{Z}$$
 ↓ η
$$= \frac{889.215}{72.1} = 12.333 \text{N/cm}^2$$


$$≤ σa=14.0 kN/cm2 ∴ OK$$

同様に,主部材の延長方向と直交して走行する場合に載荷した場合について計算を行う.

(7) 主部材の延長方向と直交して走行する場合

1) 荷重強度の算定

(6)と同様に行う.

付図-4.8 影響範囲の例

付表-4.5 影響面積(AA)の算定例

格点名	分配係数	端部主部材からの距離 (cm)	区間距離 (cm)	影響面積 (cm²/cm)
K(4,1)	-0.048	0.0		
K(4,2)	0.090	13.5		
K(4,S)	0.103	14.5		
K(4,3)	0.259	27.0	12.5	2.260
K(4,4)	0.374	40.5	13.5	4.274
K(4,5)	0.255	54.0	13.5	4.248
	1		12.6	2.293
K(4,E)	0.109	66.6		
K(4,6)	0.098	67.5		
K(4,7)	0.005	81.0		
K(4,8)	-0.044	94.5		
合計			AA=	13.1

:影響範囲として算定しない範囲

以上より荷重強度 Q は、下記のとおりとなる.

$$Q = AA \times \frac{P0}{a \times b} = 13.1 \times \frac{321}{52.1 \times 36.0}$$

= 2.242 kN

2) 曲げモーメント

$$M = \frac{1}{8} \times Q \times b \times (2L - b) \times (1 + i)$$

$$= \frac{1}{8} \times 2.242 \times 36.0 \times (2 \times 55.0 - 36.0) \times (1 + 0.3)$$

$$= 970.562 \text{ kN} \cdot \text{cm}$$

3) 応力

$$\sigma = \frac{M}{Z}$$
より
$$= \frac{970.562}{72.1} = 13.461 \text{ kN/cm}^2 < \sigma_a = 14.0 \text{ kN/cm}^2$$
 $::$ OK 以上より仮定したグレーチングは,条件を満たす結果となる.

参考文献及び参考書

- 1) 日本道路協会:「道路橋示方書・同解説Ⅱ鋼橋・鋼部材編」, 日本道路協会, 2017.11
- 2) 土木学会:「構造力学公式集」, pp.170, 1986.6
- 3) 高島春夫: 「道路橋の横分配実用計算法 -前編-」,現代社,pp.176-201, 1966

付録-5 材料及び許容応力度

5.1 コンクリート

(1) 鉄筋コンクリート部材

許容応力度法により鉄筋コンクリート部材の性能照査を行う場合のコンクリートの許容 応力度は、普通コンクリートの圧縮強度の特性値に基づき、以下の値を用いることができる. なお、鉄筋コンクリートの許容応力度は、「コンクリート標準示方書〔構造性能照査編〕」18)に 準じて定めており、許容せん断応力度及び許容付着応力度は、圧縮強度の特性値が表の中間 の値の場合は比例計算によって求めることができる.

1) 許容曲げ圧縮応力度(軸方向力を伴う場合を含む)

付表- 5.1 許容曲げ圧縮応力度 σ'ca 項 目

圧縮強度の特性値 $f'_{ck}(N/mm^2)$ 18 24 30 許容曲げ圧縮応力度 7 9 14 11 $\sigma'_{ca}(N/mm^2)$

2) 許容せん断応力度

付表-5.2 許容せん断応力度

項	II I	圧縮強度の特性値f'ck(N/mm²)				
	18	24	30	40 以上		
斜め引張鉄筋の計算をし ない場合の許容せん断応	はりの場合	0.4	0.45	0.5	0.55	
力度 τ _{al} (N/mm²)	スラブの場合*1	0.8	0.9	1.0	1.1	
斜め引張鉄筋の計算をする場合の許容せん断応力度 $\tau_{a2}(N/mm^2)$	せん断力のみの場合*2	1.8	2.0	2.2	2.4	

^{*1} 押抜きせん断に対する値である.

3) 許容付着応力度

付表-5.3 許容付着応力度

項	目	圧縮強度の特性値 $f'_{ck}(N/mm^2)$			
· · · · · · · · · · · · · · · · · · ·	口	18	24	30	40 以上
許容付着応力度	普通丸鋼	0.7	0.8	0.9	1.0
(N/mm²)	異形鉄筋	1.4	1.6	1.8	2.0

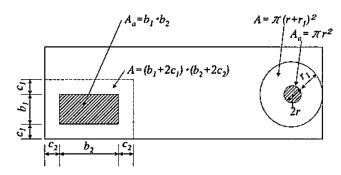
^{*2} ねじりの影響を考慮する場合にはこの値を割増すことができる.

4) 許容支圧応力度

許容支圧応力度は、式(付-5.1)、式(付-5.2)により求めることができる.

(a) 全面載荷の場合

(b) 局部的載荷の場合


$$\sigma'_{ca} \leq (0.25 + 0.05 \frac{A}{A_a}) f'_{ck}$$
(\(\frac{1}{5} - 5.2\))

ただし、 $\sigma'_{ca} \leq 0.5 f'_{ck}$

 σ'_{ca} : 許容支圧応力度

A: コンクリート面の全面積

Aa: 支圧を受ける面積

なお、この場合、A と A_a の図心は一致し、 A_a が多数あるときは、おのおのの A は重複を避け、また、支圧面の付近は適切に配筋する必要がある.

(c) 支圧を受ける部分が十分補強されている場合

試験によって安全率が 3 以上となる範囲内で、許容支圧応力度を定めることができる.

(2) 無筋コンクリート部材

許容応力度法により無筋コンクリート部材の性能照査を行う場合のコンクリートの許容応力度は、普通コンクリートの圧縮強度の特性値に基づき、以下を用いることができる.なお、無筋コンクリートの許容応力度は、「コンクリート標準示方書〔構造性能照査編〕」¹⁸⁾に準じて定めている.

1) 許容圧縮応力度(偏心軸方向荷重を受ける場合を含む)

許容圧縮応力度は、式(付-5.3)により求めることができる.

 $\leq 5.4 \text{N/mm}^2$

f'ck はコンクリートの圧縮強度の特性値

2) 許容曲げ引張応力度

許容曲げ引張応力度は、式(付-5.4)により求めることができる.

$$\sigma_{ca} \leq \frac{f_{tk}}{7}$$
(付-5.4)
$$\leq 0.29 \text{N/mm}^2$$

又は, 目安として式(付-5.5)により求めることができる.

$$o_{ca} \le \frac{f'_{ck}}{80}$$
(\fightarrow

 f_{tk} はコンクリートの引張強度の特性値(JIS A1113 によって定める)

3) 許容支圧応力度

許容支圧応力度は、式(式-5.6)、式(付-5.7)により求めることができる.

(a) 全面載荷の場合

$$\sigma'_{ca} \leq 0.3 f'_{ck} \cdots$$
 (付-5.6)
$$\leq 5.9 \text{N/mm}^2$$

特に支圧面にらせん状の鉄筋その他を配置して支圧強度を高めた場合には、 σ'_{ca} を 6.9N/mm^2 まで高めることができる.

(b) 局部載荷の場合

$$\sigma'_{ca} \leq (0.25 + 0.05 \frac{A}{A_a}) f'_{ck} \cdots (-5.7)$$

 $\leq 11.7 \text{N/mm}^2$

 σ'_{ca} : 許容支圧応力度

A:分布面積

Aa: 支圧力作用面積

4) 地震の影響を考えた場合の許容応力度

地震の影響を考えた場合の許容応力度は,前各項に規定した許容応力度の 1.5 倍までとすることができる.

(3) 許容応力度の割増

一時荷重とみなす範囲におけるコンクリートの許容応力度は,2.0 倍とすることができる. 耐久性から問題ない場合やあまり強度を必要としない部材では,圧縮強度の特性値が 18N/mm² 未満のコンクリートを使用することもでき,その許容応力度は,式(付-5.8)により求めることができる.

$$\sigma' ca = \frac{f'_{ck}}{18} \sigma' ca \,_{(f_{ck}=18)} \qquad (\dagger 7.8)$$

 σ 'ca: 使用するコンクリートの許容応力度

f'ck:使用するコンクリートの圧縮強度の特性値

 σ 'ca (f'ck=18): 圧縮強度の特性値 18N/mm² の許容応力度

なお、鉄筋コンクリートの水中での曲げ及びせん断強度は、気中のものに比較して低下する場合もあるので、この場合には、許容応力度を低めに設定する必要がある.

5.2 鋼材

(1) 機械的性質

付表-5.4 構造用鋼材の機械的性質

	引張試験						
		降伏点又は	t耐力(N/mm²)				
鋼種		鋼材の	厚さ(mm)		引張強さ		
	16 14 1	16 をこえ	40 をこえ	75 を	(N/mm^2)		
	16 以下	40 以下	75 以下	こえるもの			
SS400	245 以上	235 以上	215 以上	215 以上	400~510		
SM400	245 以上	235 以上	215 以上	215 以上	400~510		
SMA400W	245 以上	235 以上	215 以上	215 以上	400~540		
SM490	325 以上	315 以上	295 以上	295 以上	490~610		
SM490Y	365 以上	355 以上	335 以上	325 以上	490~610		
SMA490W	365 以上	355 以上	335 以上	325 以上	490~610		
SM520	365 以上	355 以上	335 以上	325 以上	520~640		
SM570	460 以上	450 以上	430 以上	420 以上	570~720		
SMA570W	460 以上	450 以上	430 以上	420 以上	570~720		

付表-5.5 構造用鋼管の機械的性質

機械的性質		引張試験		
材質	種類の記号	降伏点又は耐力	引張強さ	
初員		(N/mm^2)	(N/mm^2)	
一般構造用炭素鋼管	STK400	235 以上	400 以上	
一放悟垣用灰系劃官	STK490	315 以上	490 以上	

付表-5.6 鋳鋼造品の機械的性質

機械的性質		引張試験(14A 号試駅	倹片又は4号試験片)
材質	種類の記号	降伏点又は耐力	引張強さ
		(N/mm ²)	(N/mm ²)
炭素鋼鍛鋼品	SF490A	245 以上	490~590
次 亲	SF540A	275 以上	540~640
炭素鋼鋳鋼品	SC450	225 以上	450
溶接構造用鋳鋼品	SCW410	235 以上	410
份的人的	SCW480	275 以上	480
構造用高張力炭素鋼 及び低合金鋼鋳鋼品	SCMn1A	275 以上	540
(低マンガン鋼鋳鋼品)	SCMn2A	345 以上	590
機械構造用炭素鋼鋼材	S35CN	305 以上	510
(茂)似(再)迈/用)火杀——则则(h)	S45CN	345 以上	570
ねずみ鋳鉄品	FC250		250
球状黒鉛鋳鉄品	FCD400	250 以上	400
冰 小杰如妫奶四	FCD450	280 以上	450

(2) 許容応力度

許容応力度法により鉄筋コンクリート部材の性能照査を行う場合の鉄筋の許容応力度は,以下を用いることができる.なお,鉄筋の許容応力度は,「コンクリート標準示方書〔構造性能照査編〕」¹⁸⁾に準じて定めている.

- 1) JIS G3112 に適合する鉄筋の引張応力度は、構造物の置かれる状況に応じて**付表-5.7** の許容引張応力度以下とする必要がある.
 - (a) ひび割れの影響を考慮する一般の構造物の場合は、付表-5.7の(a)一般の場合の許容 引張応力度の値以下とする必要がある. なお、構造物の置かれる環境が、鋼材の腐 食に著しく有害な影響を与える場合(干満帯や飛沫帯にある場合及び激しい潮風を 受ける場合等)は、付表-5.7の(b)の許容引張応力度の値を用いる必要がある.
 - (b) 繰り返し荷重の影響が著しい部材の場合には、一般に**付表-5.7**の(b)疲労強度より定まる許容引張応力度の値を超えないことが必要である。ただし、特に疲労度の高いことが証明された異形鉄筋では、十分な検討を行った後、その許容引張応力度をこれより高めることができる。
 - (c) ひび割れによる影響を考慮しない場合には、鉄筋の許容引張応力度は**付表-5.7**の(c) 降伏強度より定まる許容引張応力度の値を用いる必要がある.

付表-5.7 鉄筋の許容引張応力度 $\sigma_s a$ (N/mm²)

鉄 筋 の 種 類	SR235	SR295	SD295 A,B	SD345	SD390
(a)一般の場合	137	157	176	196	206
(b)疲労強度より定まる場合	137	157	157	176	176
(c)降伏強度より定まる場合	137	176	176	196	216

- 注 1) (a)の場合の許容引張応力度は、一般の部材で繰り返し荷重の影響が著しくない場合に許容しうる値を示したものである.
- 注 2) (b)の場合の許容引張応力度は、変動応力が大きく繰返し回数が 2×10⁶ 程度の場合を考えた値であるが、一般に空港の地下構造物の設計においては、航空機荷重による繰り返し回数が少ないため、構内道路のように自動車荷重による繰り返し回数の影響が著しい場合を除き、繰り返し荷重を考慮する必要がない.
- 注 3) (c)の場合の許容引張応力度は、一般には地震の影響を考える場合の許容応力度の 基本とする値、鉄筋の重ね継手の重ね合わせ長さ又は鉄筋の定着長を算出する場 合の値として用いるものである.
 - 2) コンクリートの圧縮強度の特性値が 18N/mm² 未満の場合の鉄筋の許容引張応力度は, **付表-5.7** によらず普通丸鋼の場合 117N/mm² 以下, 異形鉄筋の場合 157N/mm² 以下と することができる.
 - 3) JIS G3112 に適合する鉄筋の許容圧縮応力度は**付表-5**.7 の(c)降伏強度より定まる場合の許容引張応力度の値とすることができる.
 - 4) 付表-5.7に定める以外の鉄筋を用いるときは、必ず試験の結果に基づき許容応力度を設定する必要がある

(3) 許容応力度の割増

一時荷重とみなす範囲における鉄筋の許容応力度は、1.65 倍とすることができる。

5.3 管材

(1) 設計に用いる諸数値

付表-5.8 設計に用いる諸数値(遠心力鉄筋コンクリート管)

	巻の白舌	W (kN/m)	管厚中心半径 r (m)		
呼び			` '		
	B,NB 形管	NC 形管	B,NB 形管	NC 形管	
150	0.35	_	0.0880	_	
200	0.46		0.1135	_	
250	0.59	_	0.1390	_	
300	0.75	_	0.1650	_	
350	0.92		0.1910	_	
400	1.15		0.2175	_	
450	1.40		0.2440	_	
500	1.72	_	0.2710	_	
600	2.45	_	0.3250	_	
700	3.31	_	0.3790	_	
800	4.31	_	0.4330	_	
900	5.51	_	0.4875	_	
1000	6.69	_	0.5410	_	
1100	7.88	_	0.5940	_	
1200	9.28	_	0.6475	_	
1350	11.28	_	0.7265	_	
1500	13.61	17.31	0.8060	0.8200	
1650	16.01	20.36	0.8850	0.9000	
1800	18.45	23.64	0.9635	0.9800	
2000	23.45	28.70	1.0725	1.0875	
2200	28.47	34.24	1.1800	1.1950	
2400	33.98	40.26	1.2875	1.3025	
2600	39.97	46.78	1.3950	1.4100	
2800	46.45	53.78	1.5025	1.5175	
3000	53.41	61.26	1.6100	1.6250	

付表-5.9 設計に用いる諸数値(プレストレストコンクリート管)

呼び	管	管の自重 W(kN/m)			管厚中心半径 $r(m)$		
呼び	S形管	C 形管	NC 形管	S形管	C 形管	NC 形管	
150	_	_	_	_	_	-	
200	_	_	_	_	_	_	
250	_		_	_	_	_	
300		1		_	_		
350	_		_	_	_	_	
400		1		_	_		
450		1		_	_		
500	3.14		_	0.278	_	_	
600	3.82	1		0.330	_		
700	4.51	1		0.381	_		
800	5.49		_	0.433	_	_	
900	6.86	7.55	_	0.485	0.495	_	
1000	7.84	8.92	_	0.538	0.549	_	
1100	9.12	10.30		0.590	0.602		
1200	10.88	11.96	_	0.643	0.655	_	
1350	12.94	14.22	_	0.720	0.734	_	
1500	16.47	16.87	20.69	0.800	0.814	0.828	
1650	18.93	19.61	24.03	0.880	0.893	0.908	
1800	21.97	22.36	27.65	0.958	0.971	0.988	
2000	26.77	27.75	33.15	1.063	1.080	1.095	
2200	_	33.24	39.13	_	1.188	1.203	
2400	_	39.22	45.50	_	1.295	1.310	
2600	_	45.60	52.27	_	1.403	1.418	
2800	_	52.46	60.02	_	1.510	1.525	
3000	_	59.71	67.66	_	1.618	1.633	

付表-5.10 設計に用いる諸数値(遠心力鉄筋コンクリート管のひび割れ荷重)

形		呼び	ひて	バ割れ荷重(kľ	V/m)
		一叶()、	1種	2種	3種
		150	16.7	23.6	_
		200	16.7	23.6	_
		250	16.7	23.6	_
		300	17.7	25.6	_
		350	19.7	27.5	_
	NB 形	400	21.6	32.4	_
	NB //>	450	23.6	36.3	_
B 形		500	25.6	41.3	_
D //		600	29.5	49.1	_
		700	32.4	54.0	_
		800	35.4	58.9	_
		900	38.3	63.8	_
		1000	41.3	68.7	_
		1100	43.2	72.6	_
		1200	45.2	75.6	_
		1350	47.1	79.5	_
		1500	50.1	83.4	110
	NC 形		53.0	88.3	117
			56.0	93.2	123
			58.9	98.1	130
N			61.9	104	137
			64.8	108	143
			67.7	113	150
		2800	70.7	118	155
		3000	73.6	123	162

付表-5.11 設計に用いる諸数値(プレストレストコンクリート管のひび割れ荷重)

呼び	ひび割れ荷重(kN/m)							
呼い	高圧1種	高圧2種	高圧3種	1種	2種	3 種		
500	_	_	_	112	97	80		
600	_	_	_	110	95	78		
700	_	_	_	113	96	79		
800	_	_	_	120	102	84		
900	240	200	170	130	110	88		
1000	240	200	170	138	117	94		
1100	240	200	170	144	121	100		
1200	240	200	170	151	128	105		
1350	240	200	170	157	133	108		
1500	300	240	200	169	143	118		
1650	300	240	200	180	155	127		
1800	300	240	200	190	161	129		
2000	300	250	230	200	165	137		
2200	300	250	230	210	177	143		
2400	_	300	250	220	185	149		
2600	_	300	250	230	193	155		
2800	_	_	300	240	201	161		
3000	_	_	300	250	209	167		

付表-5.12 設計に用いる諸数値(VP 管及び VU 管)

		<u> </u>	rise — A tom Net	bles v/
		管厚中心半径	断面係数	断面二次
種類	呼び径	r	Z	モーメント I
		(mm)	(mm ³ /mm)	(mm ⁴ /mm)
	100	53.45	8.40	29.80
	125	66.25	9.38	35.20
VP	150	77.70	15.40	73.70
VP	200	102.50	20.20	111.00
	250	126.70	30.80	210.00
	300	150.90	43.70	354.00
	100	55.25	2.04	3.57
	125	67.75	3.38	7.59
	150	79.75	5.04	13.90
	200	104.50	8.17	28.60
	250	129.30	11.80	49.40
VU	300	154.10	16.30	80.90
VU	350	179.40	20.90	117.00
	400	203.70	26.50	167.00
	450	228.00	33.10	234.00
	500	252.20	40.60	316.00
	600	305.40	61.40	589.00
	700	354.70	85.10	962.00

付表-5.13 設計に用いる諸数値(FRPM 管(B 形及び C 形))

呼び径	管厚中心半径 r	管の曲げ剛性 <i>EI</i> (N・mm ² /mm)		断面係数 Z
7 0 121	(mm)	1種	2種	(mm^3/mm)
200	103.50	491,630	322,990	8.17
250	128.75	604,690	397,270	9.38
300	154.00	793,600	524,800	10.67
350	179.25	951,890	629,480	12.04
400	204.50	1,190,700	801,900	13.50
450	229.75	1,400,400	943,110	15.04
500	255.00	1,841,700	1,225,000	16.67
600	306.00	3,182,400	2,116,800	24.00
700	357.00	5,053,500	3,361,400	32.67
800	408.00	7,543,500	5,017,600	42.67
900	459.00	10,741,000	7,144,200	54.00
1,000	510.00	14,733,000	9,800,000	66.67
1,100	561.00	19,610,000	13,044,000	80.67
1,200	612.00	25,459,000	16,934,000	96.00
1,350	688.50	36,250,000	24,112,000	121.50
1,500	765.00	49,725,000	33,075,000	150.00
1,650	841.50	66,184,000	44,023,000	181.50
1,800	918.00	85,925,000	57,154,000	216.00
2,000	1,020.00	117,870,000	78,400,000	266.67
2,200	1,122.00	156,880,000	104,350,000	322.67
2,400	1,224.00	203,670,000	135,480,000	384.00
2,600	1,326.00	258,950,000	172,240,000	450.67
2,800	1,428.00	323,430,000	215,130,000	522.67
3,000	1,530.00	397,800,000	264,600,000	600.00

(2) 許容応力度等

付表-5.14 FRPM 管の許容曲げ応力度

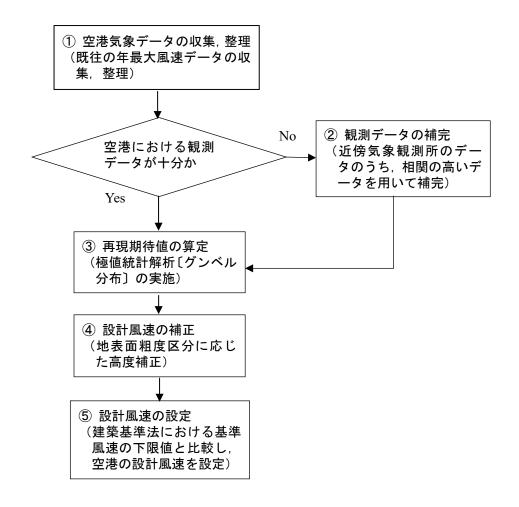
呼び径	B 形及び C 形 (N/mm²)	
	1種	2種
200~250	85.0	55.7
300~350	90.0	60.3
400~450	94.6	65.3
500~900		
1,000~1,500	105.0	72.0
1,650~3,000		

付表-5.15 FRPM 管の許容たわみ率

基礎の種類	砕石基礎	砂基礎
許容たわみ率(%)	5.0	4.0

付表-5.16 VP 管・VU 管の許容曲げ応力度及び許容たわみ率

許容曲げ応力度	17.7N/mm ²
許容たわみ率(%)	5%


(3) 許容応力度等の割増

一時荷重とみなす範囲における FRPM 管や VP 管・VU 管の許容曲げ応力度及び許容たわみ率は、割増しを考慮し 1.5 倍とすることができる.

付録-6 設計風速の設定例

6.1 算定フロー

各空港における既往観測データを用いた設計風速の算定は,**付図-6**.1 に示すフローに基づき行う.

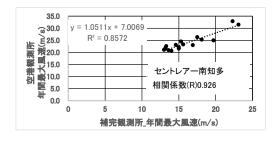
付図-6.1 実測風速による設計風速の算定

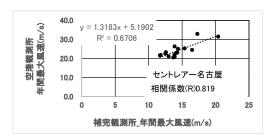
6.2 設計風速の算定例

(1) 空港気象データの収集, 整理

各空港で観測している空港気象データ(航空地方気象台、航空測候所、航空気象観測所等の気象データ)をもとに既往の風速データ(年最大風速:10分間平均風速)を収集,整理し、データが統計解析に必要なデータ数を満足しているか確認を行う.一般的に数十年の値を用いることから、必要なデータ数を約30年分とする.

(2) 観測データの補足


空港での観測データが不足する場合には、近傍の気象観測データ(アメダスデータなど)をもとに補足を行う.


空港周辺の複数点の気象観測データを収集整理し、空港観測データとの相関を求めることにより、相関の高い観測地点のデータを抽出する。空港観測データの不足分のデータについて、相関性の高い観測地点のデータを用いて、当該空港のデータに補正し使用する。

	中部国際空港	空港周辺	2観測所
	セントレア	南知多	名古屋
1991年	15. 4	8	15.4
1992年	15. 4	8	12.5
1993年	14. 4	7	15.2
1994年	18. 6	11	19.4
1995年	14. 4	7	12.1
1996年	15. 4	8	14.1
1997年	17. 5	10	13.5
1998年	15. 4	8	21.5
1999年	15. 4	8	12.5
2000年	19. 6	12	11.6
2001年	20. 7	13	13.1
2002年	21. 7	14	12.4
2003年	21. 7	14	12.7
2004年	21. 7	14	16.4
2005年	21. 1	13	13
2006年	22. 1	15	13.9
2007年	21.6	15	11.7
2008年	20. 6	14	13.7
2009年	32. 9	22. 3	17.3
2010年	22. 6	13. 3	12.5
2011年	25. 0	19. 7	14.4
2012年	25. 3	18. 1	15.4
2013年	26. 3	17. 5	13.9
2014年	23. 0	16. 9	14.2
2015年	23. 1	14. 6	14.3
2016年	23. 3	15. 6	12.6
2017年	24. 5	15. 3	16.5
2018年	31.5	23. 1	20.4
2019年	20. 9	13. 6	13.9
2020年	21.8	13. 2	11.8
《青字は空	港観測データが	ないため南知多	より補完した値

空港名	(航空)観測所	空港周辺 観測所	近似式	相関係数 (R)
中部国際	セントレア	南知多	y = 1.0511x + 7.0069	0. 926
		名古屋	y = 1.3183x + 5.1902	0. 819

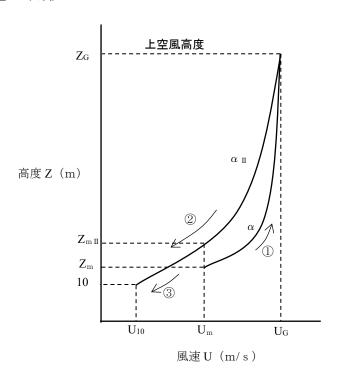
付図-6.2 空港周辺の気象観測データによる補足(中部国際空港の例)

(3) 再現期待値の算定

観測データ (補完データ) を用いて、極値統計解析 (I型分類 Gumbel 分布) により、再現期待値を算出する. 再現期間は対象とする構造物を考慮し、適宜設定する.

なお, ブラストフェンスや場周柵(立入禁止柵)の支柱等における再現期間は, 30 年とすることができる.

付表-6.1 再現年別確率風速(中部国際空港の例)


空港名	再現年別確率風速(m/s) (グンベル分布)								
	10年	30年	50年	100年					
中部国際	28	32	34	36					

(4) 設計風速の高度補正

再現期待値をもとに、観測場所の立地条件(高度、地表粗度)を考慮した補正を行い、建築基準法における基準風速と同様の条件(地表面粗度区分Ⅱ,高度 10mに補正)による設計風速を算出する.

高度補正の前提として、風速は上空(地表の地物や障害の影響を受けない)では一定という考え方のもと、空港の地表面粗度区分が設計風速とする地表面粗度区分(II)と異なる場合、地表面の風速を上空の風速に一旦換算し、その後、設計風速の地表面粗度区分(II)及び高さ(10m)に再度変換するという方法で補正を行う。(付図-6.3 の①、②の手順)

なお、空港の地表面粗度区分がIIの場合には、高度補正のみを行うこととなる。(**付図-6.3** の3の手順)

ここで,

U10:設計風速

Um: 観測地点の風速

U_G:上空の風速

Zm: 観測点高度

Z_G: 上空高度

α:べき指数

なお, Z_{GII}, α_{II}は, 粗度区分Ⅱの

 Z_G , α を用いることを示す.

付図-6.3 高度補正の概念図

なお,空港の地表面粗度区分の設定は,空港の立地条件に応じて以下の区分に分類する.

・地表面粗度区分 I:海上及び海岸に接する空港

・地表面粗度区分Ⅱ: I に属さない空港

a) 地表面粗度区分 I の場合

地表面の風速を上空の風速に換算(①手順の計算)

 U_G (上空の風速) $=U_m \times (Z_G / Z_m)^{-\alpha}$

設計風速の地表面粗度区分(II)及び高さ(10m)に換算(②手順の計算)

U₁₀ (設計風速) =U_G× (10/Z_{GII}) α II

b) 地表面粗度区分Ⅱの場合

高度補正のみで設計風速の高さ (10m) に換算 (③手順の計算)

U₁₀ (設計風速) =U_m× (10/Z_{m II}) α II

なお、地表面粗度の影響を受けない上空高度 (Z_G) 、べき指数 (α) は、**付表-6.2** の値を用いる.

 地表面粗度区分
 Zb
 ZG
 a
 Gf

 区分 I:海上及び海岸に接する空港
 5
 250
 0.10
 2.0

 区分 II:区分 I 以外の空港
 5
 350
 0.15
 2.2

付表-6.2 地表面粗度区分に対するパラメータ

%Cf, Er, Gf は、高さ5m以下の構造物に対しての値を示しており、5m以上の場合には「平成12年建設省告示第1454号」により設定する.

【中部国際空港の例】

海上空港のため地表面粗度区分を I とする. まず, 再現年別確率風速 (30 年確率) の上空風速への換算を行う.

Um: 32m/s (付表-6.1の30年再現確率風速より)

Z_G: 250m (付表-6.2 の地表面粗度区分 I より)

Z_m:10m(空港気象観測地点の高さより)

α: 0.10 (**付表-6.2** の地表面粗度区分 I より)

以上より,

 U_G (上空の風速) = $U_m \times (Z_G / Z_m)^{-\alpha}$ = $32 \times (250 \div 10)^{-0.10} = 44.15 \, \text{m/s}$

次に、設計風速である地表面粗度区分(Ⅱ)、高さ(10m)への換算を行なう.

Z_{GII}: 350m (付表-6.2 の地表面粗度区分Ⅱより)

α^{II}: 0.15 (**付表-6.2** の地表面粗度区分 II より)

以上より,

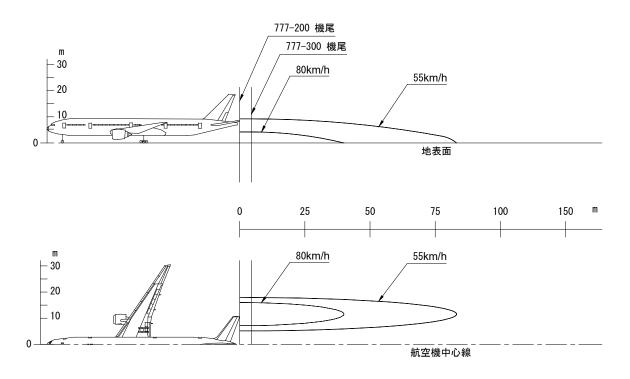
 U_{10} (設計風速) = $U_G \times (10/Z_{GII})^{-\alpha II}$ = $44.15 \times (10 \div 350)^{-0.15} = 25.90 \text{m/s} \div 26 \text{m/s}$

(5) 設計風速の設定

建築基準法の基準風速は、解析では扱うことが困難な気象要因による強風の影響を考慮し 30m/s を下限値としていることから、同様の考え方のもと空港の設計風速についても 30m/s を下限値とする.

6.3 各空港における設計風速の算定例

主要空港における設計風速の算定例を付表-6.3に示す.


付表-6.3 各主要空港における設計風速の算定結果

空港名		現年別 グンベ			風速計の高さ	地表面 粗度	į	(粗度I	速(m/s 区分Ⅱ) Ł10m)	
	10年	30年	50年	100年	(m)	区分	10年	30年	50年	100年
稚内	25	27	28	29	10	П	25	27	28	29
釧路	21	24	25	27	10	II	21	24	25	27
新千歳	22	23	24	25	9.8	II	22	23	24	25
函館	22	24	25	26	10	П	22	24	25	26
仙台	24	25	26	27	9. 7	II	24	25	26	27
新潟	25	27	27	29	8. 4	I	21	22	22	24
成田国際	25	28	29	31	10	II	25	28	29	31
東京国際	30	33	35	37	10	Ι	24	27	28	30
中部国際	28	32	34	36	10	I	23	26	28	29
大阪国際	20	23	24	26	10	II	20	23	24	26
関西国際	29	33	35	37	10	Ι	23	27	28	30
広島	19	21	22	23	10. 2	Π	19	21	22	23
高松	20	22	23	24	10	П	20	22	23	24
松山	22	23	24	25	9. 7	I	18	19	19	20
高知	24	26	28	29	10. 2	П	24	26	28	29
北九州	23	26	27	29	10	I	19	21	22	23
福岡	26	30	32	35	10	П	26	30	32	35
長崎	31	37	39	42	10	Ι	25	30	32	34
大分	29	34	37	40	10	Ι	23	28	30	32
熊本	23	27	28	31	7. 5	П	24	28	29	32
宮崎	31	36	38	41	10	Ι	25	29	31	33
鹿児島	26	30	32	35	8	П	27	31	33	36
那覇	36	42	45	49	10	I	29	34	36	40
札幌	21	24	25	27	59. 5	П	16	18	19	21
三沢	14	15	16	18	8. 1	I	12	12	13	15
百里	12	13	14	14	10	П	12	13	14	14
小松	16		19	20	10	П	16	18	19	20
美保	15	17	18	19	11. 7	I	12	14	14	15
岩国	13		16	17	10	I	11	12	13	14
徳島	23		28	30	17. 8	I	18	20	21	23

付録-7 航空機ブラストコンター

B777 のブラストコンターの例 エンジン出力状態が BREAKAWAY の場合

【発進時】B777ブラスト図

上図は B777 のブラストコンターの参考図であり、実際の使用にあたっては最新版の Airplane Characteristics を入手する必要がある.

なお、最新版の Airplane Characteristics は、以下の URL より入手することができる.

ボーイング社

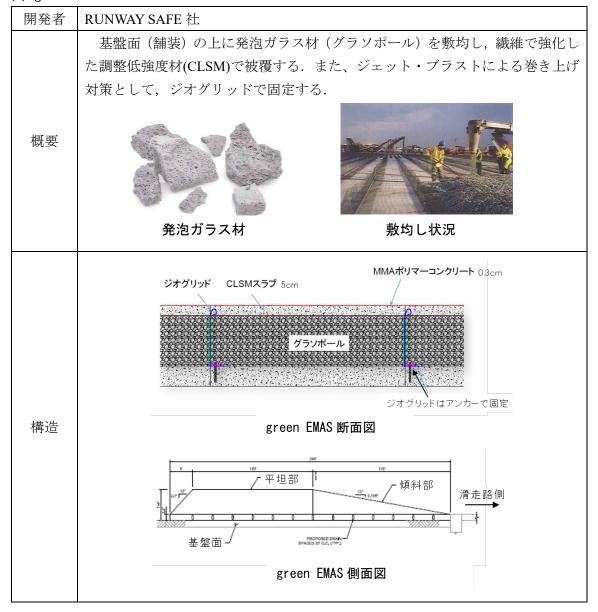
「BOEING: http://www.boeing.com/commercial/airports/plan_manuals.page」

エアバス社

「AIRBUS: https://www.airbus.com/aircraft/support-services/airport-operations-and-technical-data/aircraft-characteristics.html」

付録-8 アレスティングシステム

滑走路端安全区域(RESA)の代替措置として使用できるアレスティングシステムについては、現在,米国連邦航空局 (FAA) によりその性能が実証され、承認された EMAS^{*1} (Engineered Materials Arresting Systems) を使用することができる. FAA によるアレスティングシステムの基準及び設計指針は、AC 第 150/5220-22B「航空機のオーバーランに対応する為の航空機拘束システム (Engineered Materials Arresting Systems – EMAS) *2に示されている.

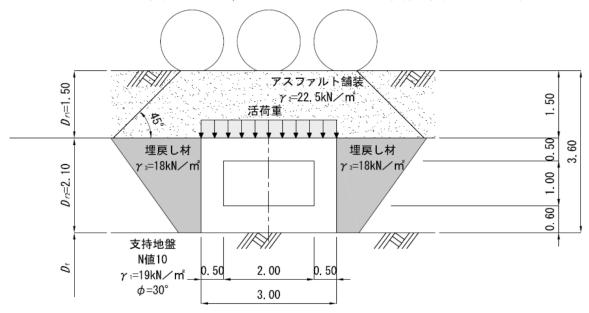

- ※1, オーバーラン時の航空機重量がかかった場合に、想定どおり破砕されるような指定された強度を持つ高エネルギー吸収材料を用いたアレスティングシステム
- %2, www.faa.gov/documentLibrary/media/Advisory Circular/150 5220 22b.pdf

8.1 FAA において承認された EMAS

(1) EMAS MAX

開発者	ZODIAC AEROSPACE 社
	発泡コンクリートからなる立方体のブロックで構成され、ジェット・ブラス
	ト及び天候に対する耐性をもつカバーで覆った後、基盤面(舗装)の上に設置
	<i></i>
概要	全景(ボストン・ローガン空港 22R) 発泡コンクリートブロック
	FMAC MAYIM TITUL OF ICE
	EMAS MAX™ ブロックの形態 /プラスチック・トップ・カバー(天候、化学品、紫外線に対する耐性)
	フォーム・シート(振動低減) 壊れ易い発泡コンクリート
構造	フォークリフトの爪のための海を 備えたプラスチック・ボトム・トレイ プロックのサイズ(は、約12m×12m
	設置形態の代表例(断面図)
	リード・イン・ランプ部及びデブリ・ディフレクター EMAS(イーマス)ベッド
	コンクリート・ビーム(梁) 基盤面 サイド・ステップ

(2) green EMAS


参考文献

- 1) 日本道路協会:「道路橋示方書·同解説 I 共通編」,日本道路協会,2017.11
- 2) 日本道路協会:「道路橋示方書・同解説 Ⅱ鋼橋・鋼部材編」, 日本道路協会, 2017.11
- 3) 日本道路協会:「道路橋示方書・同解説 Ⅲコンクリート橋・コンクリート部材編」, 日本道 路協会, 2017.11
- 4) 日本道路協会:「道路橋示方書・同解説 IV下部構造編」, 日本道路協会, 2017.11
- 5) 日本道路協会:「道路橋示方書·同解説 V耐震設計編」,日本道路協会,2017.11
- 6) 日本道路協会:「道路橋耐風設計便覧」,日本道路協会,2008.1
- 7) 日本道路協会:「鋼道路橋防食便覧」,日本道路協会,2014.3
- 8) 日本道路協会:「道路土工 カルバート工指針」, 日本道路協会, 2010.3
- 9) 日本道路協会:「道路土工 切土工・斜面安定工指針」,日本道路協会,2009.6
- 10) 日本道路協会:「道路土工 盛土工指針」, 日本道路協会, 2010.4
- 11) 日本道路協会:「道路土工 軟弱地盤対策工指針」, 日本道路協会, 2012.8
- 12) 日本道路協会:「舗装の構造に関する技術基準・同解説」、日本道路協会、2001.9
- 13) 日本道路協会:「舗装設計便覧」,日本道路協会,2006.2
- 14) 日本道路協会:「舗装設計施工指針」,日本道路協会,2006.2
- 15) 日本道路協会:「共同溝設計指針」,日本道路協会,1986.3
- 16) 国土交通省鉄道局:「鉄道構造物等設計標準·同解説 土構造物」, 鉄道総合技術研究所, 2013.7
- 17) 土木学会: 「コンクリート標準示方書 [設計編])」, 土木学会, 2018.3
- 18) 土木学会:「コンクリート標準示方書〔構造性能照査編〕」, 土木学会, 2002.3 (絶版)
- 19) 土木学会: 「岩盤斜面の安定解析と計測」, 土木学会, 1994.12 (絶版)
- 20) 土木学会:「多層弾性理論による舗装構造解析入門」, 土木学会, 2005.4 (絶版)
- 21) 日本建築学会:「鉄筋コンクリート構造 計算規準・同解説」, 日本建築学会, 2018.12
- 22) 日本建築学会:「鋼構造設計規準」,日本建築学会,2005.9
- 23) 日本下水道協会:「下水道施設の耐震対策指針と解説」、日本下水道協会、2014.6
- 24) 日本下水道協会規格:「下水道用鉄筋コンクリート管(JSWAS A-1)」, 日本下水道協会, 2011.12
- 25) 日本下水道協会規格:「下水道用強化プラスチック複合管 (JSWAS K-2)」, 日本下水道協会, 2017.7
- 26) 日本水道協会:「水道施設設計指針」,日本水道協会,2012.1
- 27) 日本水道協会:「水道施設耐震工法指針・解説」, 日本水道協会, 2009.7
- 28) 国土交通省港湾局:「港湾の施設の技術上の基準・同解説」, 日本港湾協会, 2018.5
- 29) 東日本・中日本・西日本高速道路株式会社:「設計要領第一集(土工・保全編)」, 高速道路総合 技術研究所 2016.8

設計 例等

例-1 構造物の地盤支持力の設計例

構造物の地盤支持力の設計について、ボックスカルバートの場合を例図-1.1に示す.

例図-1.1 ボックスカルバートの断面

1.1 設計条件

①支持地盤:均質な砂質地盤 N 値=10 単位体積重量 γ_1 =19kN $/m^3$ せん断抵抗角 ϕ =30°)

②対象航空機荷重:A380-800

③上載荷重: アスファルト舗装(単位体積重量 γ_2 =22.5kN/ m^3) 埋戻し材(単位体積重量 γ_3 =18kN/ m^3 , 粘性土相当)

③ボックスカルバート断面:**例図-1.1**

④地下水位:考慮しない ⑤荷重の編心:考慮しない.

1.2 地盤の許容支持力の算定

 $Q_u = As(lpha \kappa c N_c S_c + \kappa q N_q S_q + \frac{1}{2} \gamma_1 \beta B_e N_\gamma S_\gamma)$ (安全率は 3 を採用)

ここに,

· Qu: 地盤の極限支持力(kN)

・ c : 地盤の粘着力(kN/m²)(=0 kN/m²)

• $q: q=y_2D_{f1}+y_3D_{f2}=1.5\times22.5+2.1\times18.0=71.6$ kN/m²

・ A_s : 単位当たり有効載荷面積(m^2)(=3.00×1.0=3.00 m^2)

・ B_e : 荷重の偏心を考慮した基礎の有効載荷幅(m) 偏心を考慮しないため

 $B_{e=}B=3.00$ m(B:基礎幅)

・ D_f : 基礎の有効根入れ深さ(m)(=0m)

αβ:基礎の形状係数

基礎の形状係数は、例表-1.1を用いて求める.

ボックスカルバートは帯状の基礎形状であるため, $\alpha=1$, $\beta=1$ とする.

例表-1.1 形状係数

基礎底面の形状 形状係数	帯状	正方形, 円形	長方形,楕円形,小判形	
α	1.0	1.3	$1+0.3\frac{Be}{De}$	
β	1.0	0.6	$1-0.4\frac{Be}{De}$	

(「道路橋示方書・同解説 IV下部構造編」)

· κ: 根入れ効果に対する割増し係数

$$\kappa=1+0.3\frac{D_f'}{Be}$$

 D'_f : 支持地盤あるいは支持地盤と同程度良質な地盤に根入れした深さ (= D_{f2} =2.1m) $\kappa = 1.210$

• N_c , N_q , N_γ : 支持力係数

Nc, Nq, Ny は,「道路橋示方書・同解説 IV下部構造編」 $^{1)}$, 支持地盤のせん断抵抗角 ϕ =30°か Ь, Nc=30.10, Nq=18.40, Nγ=15.30

・ SS_c , S_v , S_a : 支持力係数の寸法効果に関する補正係数

$$SS_c = (c^*)^{\lambda}$$

$$S q = (q^*)^v$$

$$S_r = (B^*)^\mu$$

 λ , v, μ : 寸法効果の程度を表す係数で、 $\lambda=v=\mu=-1/3$ としてよい.

 $c^*: c^{*}=c / c_0$ ただし、 $1 \le c^{*} \le 10$

c: 地盤の粘着力(kN/m²) (=0 kN/m²)

 $c_0: 10(kN/m^2)$

 $q^*: q^*=q/q_0$ ただし、 $1 \le q^* \le 10$

q:上載荷重(kN/m²)(=71.6 kN/m²)

 $q_0: 10(kN/m^2)$

 $B^* : B^* = B_e / B_0$

 B_e : 基礎の有効載荷幅($B_{e^-}B=3.00$ m)

 $B_0: 1.0(m)$

 $S_c = (c^*)^2 = 1.000 \text{kN/m}^2 \quad (1 \le c^* \le 10 \text{ より最小値を適用})$

 $S_q = (q^*)^v = (71.6/10)^{(-1/3)} = 0.519 \text{kN/m}^2$

 $S_r = (B^*)^{\mu} = (3.00 / 1.0)^{(-1/3)} = 0.693 \text{kN} / \text{m}^2$

・ 許容支持力の計算

¹⁾ 道路橋示方書·同解説 IV 下部構造編

 $Q_u = 3.00 \times (1.0 \times 1.210 \times 0 \times 30.10 \times 1.0 + 1.210 \times 71.6 \times 18.40 \times 0.519 + \frac{1}{2} \times 19 \times 1.0 \times 3.00 \times 15.30 \times 0.693)$

=3.00×(0+827.339+302.183)=3388.566 kN

1.3 地盤反力の検討

①死荷重の算定

鉄筋コンクリート: (3.00×2.10-2.00×1.00) ×24.5

= 105.4kN/m

アスファルト舗装:3.00×1.50×22.5 = 101.3 "

 $7k : 2.00 \times 1.00 \times 0.90 \times 10 = 18.0 \text{ } \text{"}$

 $q_d = 224.7 \text{kN/m}$

②活荷重

設計対象航空機荷重:A380-800

土被り 1.5m における鉛直方向地中応力は、**付録**-2 より $114.9kN/m^2$ である.

ボックスカルバートに載荷する活荷重は以下のとおりである.

$$q l = 114.9 (1+0.3) \times 3.00 = 448.11 \text{ kN/m}^2$$

③有効載荷幅

編心量は考慮しないものとする. (B:カルバート底面幅)

Be = B = 3.00 m

④地盤反力度

地盤反力度は次式で算定する.

 $q = (q_d + q_l)/Be = (224.7 + 448.11) / 3.000 = 224.27 \text{kN/m}^2$

1.4 安全性の検討

・地盤の許容支持力度が地盤反力度より大きければ安全である.

許容支持力度 q_u は 1.2 より、安全率を 3 として

$$q_u = \frac{1}{3} \times \frac{Qv}{As} = \frac{1}{3} \times \frac{3388.566}{3.000} = 376.5 \text{kN/m}^2$$

q = 224.27kN/m²< $q_u = 376.5$ kN/m² 故に、安全である.

例-2 法面保護工の選定方法及び維持管理方法例

2.1 法面保護工の工種選定

法面保護工の工種の選定にあたっては、植生の可否、浸食の影響、経済性、景観などを総合的に 勘案して適切に決定する.

1)法面保護工は、安定勾配で施工した法面に施すものであり、工種は植生工と構造物による法面 保護工に大別できる。一般に工費・景観等から考えて植生工が望ましく、気象・盛土材料の 材質・法面勾配等から植生工によることが難しい場合に構造物による工法を採用する。また、 周辺環境や景観との調和等を考慮し、樹木植生工を採用することがある。工種を例表-2.1 に 例示する.

分類	工種	目 的 ・ 特 徴
	種子吹付工	全面植生(緑化)
植	層 厚 基 材 吹 付 工	
但	張	曼食防止,凍上崩落抑制
生	植生マット工	
工	植生筋工塩	盛土法面の浸食防止
工	筋 芝 工 部	部分植生
	樹木植栽工	景境保全,景観
	石 張 工 (岩 座 張 工)	
	ブロック張工原	風化・浸食防止
`#-	プレキャスト張工	
造	吹 付 枠 工	生面表層部の崩落防止
物	現場打コンクリート枠工	多少の土圧を受ける恐れのある箇所の土留め
に	アンカー工物	岩砕材料法面の緑化補助工
よる	編 柵 工	
法	ネット工	生面表層部の浸食抑制
面	じゃかごエ	
保	落 石 防 止 網 工 🦸	東結融解のおそれがある地域における植生補助工
護	石積工・ブロック積擁壁工	
工	ふ と ん か ご エ	
	井 桁 組 擁 壁 工	ある程度の土圧に対抗(抑止工)
	コンクリート擁壁工	ソング1年/スマン上/上『C-X] 1/L (3中111. 上)
	< v I	
	補 強 土 工	

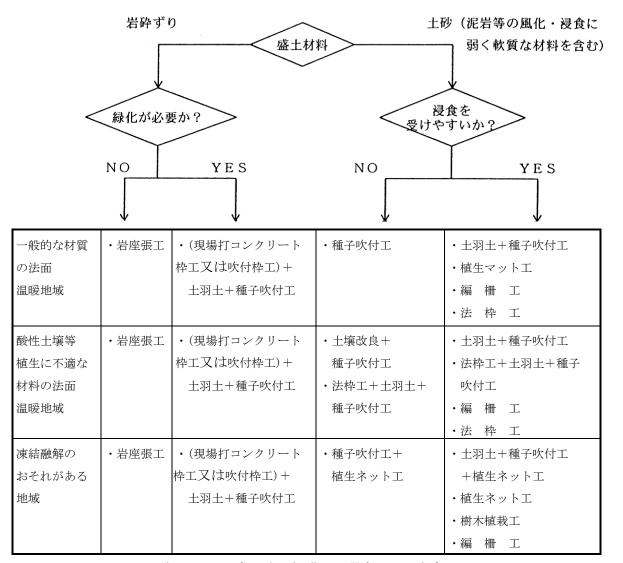
例表-2.1 盛土法面保護工の工種と目的

2) 例表-2.1 を用いる場合には、次の点に注意する必要がある.

①植生工は周辺環境,施工性,経済性等を考慮し,採用する草種や木本類についてはできるかぎり在来種(郷土種)を用いるように心掛ける.また,種子の配合や播種量についても,適

切な設計を行う.

- ②岩砕材料のような植生に適さない土質であっても、近年環境保全の目的から緑化する工法 が種々開発されており、これらについても採用を心がける.
- ③プレキャスト枠工の中詰めが土砂やぐり石の空詰めの場合は浸食防止が目的である.
- ④ネット工は合成繊維網利用及び金網利用,木質繊維網利用があり,植生工の補助工としての 役割と雨水の洗掘などによる礫・岩片の落下防止,凍上による法面表層部の滑落防止に用い られる.ネット工の採用に際しては,採用の条件を明確にして適切な方法を採用する.
- 3)法面保護工の目的は、表層変状等の小規模な法面変状を防止することであり、植生工で十分対処できる場合が多い。また、植生工単独では無理な場合には、ネット等を供用することによって植生工が可能になる場合が多く、植生が不可能な盛土材料の場合でも法面に垂直に厚さ50cm程度の被覆土(土羽土)を設けることによって植生が可能になるため、設計にあたっては注意が必要である。なお、被覆土の厚さは、50cm程度が望ましいが、植生の生育を試験的に確認した場合には薄くすることもできる。
- 4)空港高盛土の法面保護工としては、例表-2.2に示す実績から種子吹付工と法枠工が多い.
- 5)長期的な安定確保を主目的とした法面保護工の選定にあたっては、次の点を考慮する必要がある. なお、法面保護工の選定手順の例を**例図-2**.1 に参考として示す.
 - ①法面の材質・土壌硬度・pH 等の土質条件
 - ②凍結融解のおそれがある地域か温暖地域か等の気象条件
 - ③法面の規模や法面勾配
 - ④工費や施工条件
 - ⑤環境保全
- 6)法面保護工の選定において注意すべき点には、次のようなものがある.
 - ①山砂・マサ・シラス等の砂質土からなる法面は、厚さ 50cm 程度の土羽土で保護することが望ましい。土羽土を設置しない場合には、植生マット工・張芝工など全面植生できる工法を採用し、種子吹付工の場合は乳剤やネット・わらむしろ等で保護する必要がある。また、法先が洗掘される恐れがある場合には、石積擁壁工等の法留工を併用する必要がある。
 - ②土壌硬度が 27mm を越える密実な砂質土や土壌硬度が 23mm を越える硬い粘性土等のようなよく締め固まった硬い法面に対しては、土羽土を設けるなどの植生基礎工が必要である²⁾.
 - ③法面用植物は、法面の土が一般に弱酸性 (pH5~7) で最もよい生長を示す.盛土材が硫黄・塩分・その他植物に有害な成分を含む場合や酸性が非常に強い (pH4以下)場合には、石灰による土壌を改良や良質な土羽土の客土などの対策が必要である.また、アルカリ性が非常に強い (pH8.5以上)場合も同様である.
 - ④凍結融解のおそれがある地域における細粒分の多い土質の法面は、凍上や凍結融解作用によって植生の剥離や崩落を生じる例が多いため、法面勾配を緩くすることが望ましいが、緩くできない場合には長い目ぐしの使用やネットによる被覆・アンカーによる固定等の対策を講じる必要がある。また、最近では、凍上剥落防止のため、積極的にイタチハギやヤシャブシ等木本類の導入を採用する事例もあり、設計にあたっては十分な検討が必要である。


²⁾ 社団法人 日本道路協会:道路土工 切土工・斜面安定工指針, 2009,6

例表-2.2 空港高盛土における法面保護工の施工実績

	例表-	Z. Z	<u> </u>	己回		_1~(131)	(A) 1.1	ЦЩ	保護工の施工実績	
	হা	且	1	1	種				ı	類	
空 港	名 全 美	血爰地・寒令地・隼寒令地の区分種子吹付工	張芝工	張芝金網工	モルタル吹付工	コンクリートブロック法枠工	プラスチック法枠工	鋼製法枠工	岩座張工・リップラップエ	その他	法面勾配
成田国	際	A 0									1:3.0
鹿児	島	A O				0		0		ソイルセメント	1:2.0
秋	H (C		0			0	0		コンクリートブロック張	1:2.0~2.5
八丈	島	A O									1:3.5
隠	岐(C O									1:2.0
岡	Ш	A O					0		0		1:1.8~2.0
対	馬	A O			0		0				1:1.5~2.0
上 五	島	A O					0		0		1:1.8~2.0
種 子	島	A				0					1:2.0
釧路(北	側)]	В	0					0			1:1.8~2.5
釧路(17	側)]	В	0								1:2.0
釧路(35	側)]	В	0								1:2.3
高	松	A O					0	0	0		1:1.8~2.0
福 ————————————————————————————————————	島	A O								ネット張付け	1:2.5
石	見(C				0				コンクリートブロック板張	1:1.8~2.0
広りの	島	A							0		1:2.0

凡 例:温暖地・寒冷地・準寒冷地の区分

A:温暖地 B:寒冷地 C:準寒冷地

例図-2.1 盛土法面保護工の選定手順(参考)

- ⑤凍結融解によって法面崩壊が生じる可能性がある場合には、植生マット工及び構造物による法面保護工が有効であり、特に凍上の著しい場所での植生工は植生マットと固定ネットとの併用が望ましい。また、寒冷地域における軽量法枠工の採用については、凍上の影響によって法枠や根の浮き上がりなどが生じる可能性が高いため、慎重な検討が必要である。
- ⑥寒冷地域では晩秋の播種を避けた方がよいが、このような不適期にやむをえず施工する場合にはむしろ種子が発芽せず、そのまま越冬するような低温期に入ってからの施工や保温 (夏期は乾燥防止)に優れている植生マット工などを採用することが望ましい。また、コンクリート吹付工やモルタル吹付工等は、吹付厚の割増しや施工時期を考慮する必要があり、冬季の施工はなるべく避けた方がよい。
- 7)植生工は、法面に植物を繁茂させることによって法面の表層部を根で固定させ、雨水による浸食の防止・地表面の温度変化の緩和及び凍上による表層崩落の抑制を図るものであり、併せて緑化による景観の向上を目的としている。一般に比較的安価であるため、植生可能な場合によく用いられる工法である。また、環境保全を目的として植生工を積極的に導入する事例も増加している。ただし、植生工の根系は、比較的表層に止まるため深いすべりに対しての効果はなく、また土の乏しい岩質法面あるいは強酸性土壌の法面では植物の生育が困難であ

る.

- 8)構造物による法面保護工は、一般に経済性や景観の面で植生工に劣る場合が多いため、土質が 植生に不適当な場合や安定上の問題がある場合などに限り使用することが望ましい.
- 9)構造物による法面保護工には、植生のための客土の安定を図ることを目的とする小規模なものから、法面の風化や浸食あるいは表層崩落の防止を目的とした比較的規模の大きなもの、さらには崩壊の防止を目的とした大規模なものまで各種の工法があるが、ここでは主として法面表層部の浸食や風化・法尻の洗掘の防止を目的とした工種が対象である。なお、構造物による法面保護工のなかには、その適用を誤った場合に後にそれ自体の変状による支障を生じやすいものがあるため、注意が必要である。

2.2 植生工による法面保護

盛土法面に用いる植生工は、植物の種類、地形、土質、気象などに応じて種子吹付工、植生マット工、張芝工などから適切に選定する.設計にあたっては、盛土材料の土質条件、気象条件、法面の日照性、施工時期、景観などを十分に考慮する.

- 1)植生は、雨水等による浸食防止・凍上崩壊防止・緑化による風致的効果等のために行われる. 工法は多種あり、法面の諸条件をよく勘案して最適な植生工を選定することが必要である. なお、工法の適用を間違った場合には目的・目標が達せられないため、使用植物とその導入 工法について十分な検討をする必要がある.
- 2)植生工の設計においては、次の諸条件等を総合的に検討し、適正な工法・品種・種まき量等を決定する.
 - ② 法面の形状・規模(面積・勾配・高さ等)
 - ②法面の土質・土壌条件(土の物理的及び化学的組成・水分・硬さ等)
 - ③気象条件(気温・降雨量・法面の方向と日照の程度等)
 - ④周辺の状況
 - ⑤緑化の目標
 - ⑥施工時期
 - ⑦維持管理
 - ⑧その他
- 3)一般に基本的には植生工は種子吹付工が望ましいが、土質・気象・施工時期等の条件によっては植生マット工・全面張芝工も検討する。凍上の激しい土質では、凍上による崩落防止用ネットの補助工を併用する必要がある。また、岩塊等で表面浸食がない場合や安定上支障のない場合は、無処理が望ましい。

4)植生工の工種は、施工上の特徴によって次のように分類することができる. なお、高盛土法面の保護工としては、法面保護工としての効果を上げるため、面的工法によることが望ましい.

①面的工法:種子吹付工

植生マットエ

張芝工

②線的工法: 筋芝工

植生袋工

③点的工法:植生穴工

- 5)植生工は播種工と草植工に大別され、播種工は環境条件が不良な場所で抵抗力の乏しい発芽期を過ごすことから植物にとって不利であるが、種子は貯蔵に耐え必要に応じて大量に入手でき、取扱いが簡単であるなどのため、大きな面積の場合には有利である。一方、草植工は苗を準備するための苗畑が必要であり、植え付けまでの乾燥などによる枯死や急に苗を大量に準備できないなどの欠点があるが、葉や根をすでに持っているため活着後の抵抗力が大きく、植生としての確実性がある。
- 6)施工時期は、植物の発芽や生育に大きな影響を与え、施工の成否を支配することが多いため、植物の生育適期に施工する計画とすることが望ましい。例えば凍結融解のおそれがある地域の植生工は、冬季の凍上による浮上り・崩落・積雪による影響・融雪水等を考慮して工法を選択するとともに、冬季までに全面被覆による十分な成長を図り、芝草は 20cm 以上に生育するような適期に施工することが望ましい。
- 7)植生を行うためには次の前提条件があり、周辺環境の観察と周辺植生・気象・盛土材料の土質等について調査を行い、これらの前提条件が満たされない法面では土羽土の設置や構造物との併用等を検討する必要がある.
 - ①基盤状態
 - ・植物の生育基盤が浸食・崩壊に対して安定していること
 - ・有機系の厚層基材吹付工では基材が短期間に腐朽しないこと
 - ②植物の適用範囲
 - ・選定した植物が法面の土質と勾配・気象条件・緑化の目的に適合していること
 - ③施工方法
 - ・植物が十分に繁茂するまで浸食を受けず、永続して生育することができる植生工法である こと
 - ④施工期間
 - ・植物が発芽・生育し、浸食を受けない程度に生長するまでの温度・水分・光等が確保できる期間があること
 - ⑤異常気象・病虫害等
 - ・生物の生育上に不利な外的要因が発生しないこと
- 8)植物は、その種類によって気象条件(特に温度・水分)・土地条件(特に勾配・土質・乾燥) 等の適応が異なり、生存年限・生態等も異なるため、植物の使用目的と性状を十分に理解したうえで危険分散を考慮し、3種類以上を選定する。一般に草本類は発芽・生育はよいが、肥料分の要求度が大きく追肥等が必要な場合が多いこと、単一草類で覆われやすく根の長さが一定になることから、根の先端付近で崩落しやすくなることが多い。また、木本類は発

芽・生育は遅いが、直根が土中に深く入り、法面の安定度を高め、追肥等を必要としない種類が多い. 法面の浸食防止のみを必要とする場合は、短期的には草本類の導入でよいが、長期的に維持管理の少ない植生法面を造成するためには草本類と木本類の混合が望ましく、空港であることの制限をよく考慮のうえ、適切な植物を選定する.

- 9)土羽土は、盛土材料の土質等から必要性を判断する. 一般に土羽土は、マサ・シラス・砂等の 表面浸食を受けやすく肥効性も悪い土砂や強酸性等の植生にとって不適な材質の場合に必要 である.
- 10) 伐開除根土等が植生基盤材料として流用できる可能性がある場合には、植生基盤としての適性評価と併せて、高盛土法面の安定性への影響等についても検討を行い、適用の可否を総合的に判断する.
- 11) 法面が植生の生育に不良な場合には、経済性・施工性・有効性等を考慮して植生用ネット エ・コンクリート枠工・編柵工等の補助工法を検討する。ただし、コンクリート枠工は、経 済性の観点から安易に使用することは避ける。特に景観を考慮する箇所については、観賞木 を植栽するなどの事例がある。
- 12) 植生工の工種・植物の選定・施工時期・施工方法等の詳細な設計は,「設計要領 第一集(土工・保全編)³⁾」,「道路土工 切土工・斜面安定工指針²⁾」,「鉄道構造物等設計標準・同解説 (土構造物)⁴⁾」,「空港土木施設施工要領⁵⁾」等を参考に行うのがよい.

2.3 岩座張工による法面保護

岩座張工は,盛土材料が硬岩ずりで構成され,盛土体内部の排水も良好に行われている盛土において法面の保護が必要な場合などに用いる.

- 1)盛土体が硬岩ずり(岩砕材料)の場合には、法面の保護として岩座張工を用いることが望ましい。岩座張工は熟練工による施工を必要とするが、現地発生材として良質な岩(剥離性の著しい岩石を除く硬岩)が入手できる場合は有利な工法である。
- 2)非常に長大になる法面の場合には、現場打格子枠工と組合せる等の措置が必要になることもあり、岩座張工(リップラップ工)による法面保護は安全性、経済性、施工性等について十分に検討を行う必要がある。なお、この場合には、基礎工を十分に堅固なものとする必要がある。
- 3)岩座張工は、一般に空張であることから雨水が盛土体内部に浸透することになるため、排水に 留意する必要がある.盛土材料の透水性が大きい場合には良好に排出されるため、盛土材料 が硬岩ずりで法面の防護が必要になる場合には適する工法である.
- 4)岩の形は割石に準ずるものがよく、極端に長方形の形は好ましくない。大きさは、多少の大小があってもやむを得ないが、一般に 100~150cm 程度がよい。
- 5)施工に際しては、下端部の根石又は基礎工を十分に堅固なものとし、合端をよくかみあわせ、 裏込めも丁寧に行って組み立てる必要がある.

³⁾ 高速道路総合技術研究所 設計要領第一集 土工·保全編 2016,8

⁴⁾ 財団法人 鉄道総合技術研究所:鉄道構造物等設計標準・同解説 土構造物, 2013,7

⁵⁾ 財団法人 港湾空港建設技術サービスセンター:空港土木施設施工要領, 2009,4

2.4 法枠等の構造物による法面保護工

法枠,ブロック張などの構造物による法面保護工は,植生が不適な法面,植生だけでは浸食に対して長期安定が確保できないと推定される法面,又は崩壊もしくは凍上などのおそれがある法面に行う.

1)構造物による法面保護工には、次のような工種がある.

①張 工:石張工

ブロック張工

②吹付工:モルタル吹付工

コンクリート吹付工

③法枠工:プレキャスト枠工

現場打コンクリート枠工

吹付枠工

④石積工・ブロック積工

⑤ネットエ

⑥編柵工

⑦法面じゃかご工:普通じゃかご工

自由じゃかご工

ふとんかご工

扁平かご工

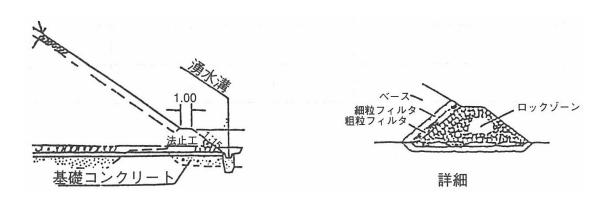
かまぼこ工

⑧その他(擁壁工・アンカー工・井桁工・くい工・補強土工等)

- 2)張工など密閉型の保護工には、排水対策が必要である。また、法枠工についても中込材の流出 を防止するため、十分な締固めと排水対策が必要である。
- 3)法枠工は、法面の小規模な崩壊や表面浸食の防止を主目的とし、法面の安定を図る機能と緑化などによる法面の環境・景観を整備する機能とがある。法枠工を適用する場合には、各種の特徴を十分に理解し、現地の条件にあった適切な工法を選択する。なお、法枠の材質としては、コンクリート製・鋼製・プラスチック製などがあり、使用する材質は長期安定性・経済性・景観等を総合的に勘案して決定する。例表-2.3に一般的な材質の特徴を示す。

例表-2.3 法枠工の特徴

材質	施工性	経済性	強度	凍上の 適応性	自重による 沈 下
コンクリート ブロック	中 位	中 位	大きい	中 位	あり
プラスチック	良い	良い	小さい	なし	なし
鋼製	良い	良い	中 位	なし	なし


4)構造物による法面保護工の詳細な設計は,「設計要領 第一集(土工・保全編)³⁾」,「道路土工 切土工・斜面安定工指針²⁾」,「鉄道構造物等設計標準・同解説 (土構造物)⁴⁾」,「空

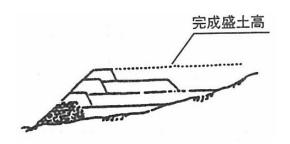
港土木施設施工要領 5」,「のり枠工の設計・施工指針(改訂版) 6¹」等を参考に行うのがよい。

2.5 法留工による法面保護

高盛土の法尻において法尻の洗掘防止又は根固めが必要な場合は、法留工を適切に設置する.

- 1)法留工は、法尻の洗掘防止あるいは根固めを目的として設けるものであり、高盛土のすべり破壊等に対する安定対策工としての機能は持たせないことが望ましい.
- 2)法留工は、盛土材料や排水等の条件によって機能に多様性があり、基礎地盤あるいは斜面地山に湧水が認められるような場合には法留工が排水機能を有するように設計された例もある.
- 3)法留工は、寒冷地域において法尻凍上に対する弱点防止にも効果を発揮することがある.
- **4)**法留工の材料としては、一般にロック材が用いられることが多いが、用地の制約等からコンクリート基礎材になることもあり、多様である.
- 5)法留工に用いるロック材は堅硬であり、かつ水及び気象作用に対して十分な耐久性を有する材料とする.
- 6)法留工の概念を**例図-2.2**, 法留工の実施例を**例表-2.4** に示す.

例図-2.2 法留工の概念図


 例表-2.4 法留工の事例

 空港名
 法留工の構造様式

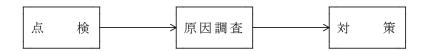
空港名	法留工の構造様式	法留工の設置目的等
釧路空港	割石構造	法尻の洗掘防止・背後の砕石ドレーンからの排水処理
秋田空港	重力式擁壁,補強土擁壁 逆T型擁壁(高さ5.5~7.0m)	谷部が多いため法長・用地及び盛土量の低減
八丈島空港	補強土擁壁	地下道及び付替道路の設置
鹿児島空港	コンクリート塊 (天端幅2.0m, 高さ3.0m)	法尻の洗掘防止
鹿児島空港 (延長部)	砕石・被覆石	法尻の洗掘防止
対馬空港	重力式擁壁	法尻の安定,境界の明確化,用地の低減
上五島空港	重力式擁壁+異形ブロック	法尻の洗掘防止,用地・漁業権消滅面積の低減

⁶⁾ 社団法人 全国特定法面保護協会:のり枠工の設計・施工指針(改訂版) 2013,10

- 7) 盛土の施工方法には、施工中に異常洪水が発生する恐れがある場合等の排水処理として法尻にかん止堤を設けて盛り立てる方法がある。このような方法は、空港用地内の末端で泥流等の流出を止め、下流域への影響を最小限にする対策の1つであり、法留工の機能・目的とは若干異なるため、設計においては十分に注意して検討を進める必要がある。なお、かん止堤とは、堆積した土砂等の崩壊又は流出を防止するために設ける堤状の構造物であり、次のような種類がある。かん止堤の概念図を例図-2.3に示す。
 - ① 石塊かん止堤 堤体の大部分が石塊又はずりからなるかん止堤
 - ② 土かん止堤 堤体の大部分が粘性土材料又は粘性土材料とずり等との混合物からなるかん止堤
 - ③重力式かん止堤 堤体がコンクリートで構築され、自重で安定を保つかん止堤
 - ④石積かん止堤 堤体が石積によって構築され、自重で安定を保つかん止堤

例図-2.3 かん止堤の概念図

2.6 法面保護工の維持管理


維持管理は、特に法面に対して行うものであり、法面保護工及び法面排水溝の維持管理に大別される.維持管理は、高盛土を長期に安全に保つために行う.

2.6.1 植生工の維持管理

- 1)植生工には、浸食防止や小崩落防止などの機能を発揮させる目的と、周辺地域との調和などを図るための環境を創造する目的とがあり、それらを十分理解した上で維持管理作業を行う.
- 2)植生工の維持管理には、初期の段階における植物保護・育成と、植物の全面被覆完成後の維持管理がある.
- 3)点検上特に注意しなければならいことは、草本植物と木本植物の生長の速度が異なることである。一般に木本植物は播種後 1~2 年間の生長が遅いので、草本植物との混播の場合の施工後 1年以内の成績判定時にたとえ地表が見えていたとしても、それがわずかであり、かつ生育基盤が安定していれば特に問題はない。一方、外来草本植物だけの法面では、施工後 1年以内の成績判定時に良好に生育していたとしても、その後施肥を怠ると 2~3 年目に衰退し始めることがあるので注意が必要である。また、植物の生育状態とは別に生育基盤そのものの安定度も併せて点検することが必要である。詳細については、「道路土工 切土工・斜面安定工指針 8」を参考にするとよい。

2.6.2 構造物による法面保護工の維持管理

1)構造物による法面保護工の維持管理は、次のような手順で行う. 点検は、通常視察によって行われ、法面工の種類・高盛土の重要性・地形・地質・気象などを考慮して点検項目を定める. 特に、台風・集中豪雨・地震等が発生した後には入念に点検を行い、異常があれば対策を立てるために、伸縮計を設置して慎重に観測することが必要である.

- 2)日常の維持管理点検事項については、「道路土工 切土工・斜面安定工指針 ⁸」を参考にするとよい、また、間接的に維持管理に必要な点検事項として以下のものがある。
 - ・法肩部の集水状況の変化
 - ・ 法肩部の地山の状況変化
 - ・法面での湧水状況の変化
 - ・構造物の表面のじんあい、土砂などの堆積

これらについての状況の変化があれば、この原因を判断し、これらが今後どのように変化するかを検討する.

以上の結果,不良箇所を発見した場合はその原因を調査し危険と思われる場合は,適切な対策を講じる必要がある.

2.7 法面排水溝の維持管理

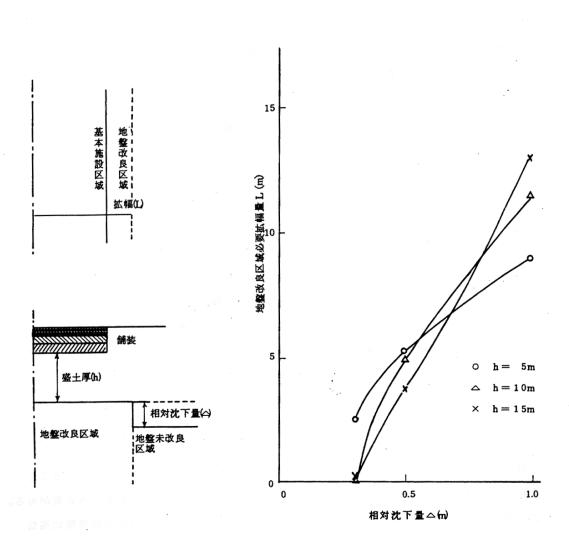
法面の破壊は表面水及び地下水の処理不良に起因することが多いので、常に排水施設を良好な 状態に維持する必要がある.空港施設の拡張などによって空港周辺の地表の被覆状態、地形などが 変化し、既設の排水施設の容量が十分でなくなったり、新規の排水施設が必要となることもあるの で定期的に点検し、機能の保持に注意する必要がある.また、特に降雨期あるいは降雨直後に排水 状況を見回ると排水機能の良否が見分けられ、欠陥をはっきりつかむことができる.

2.7.1 排水機能の維持管理

法面排水溝の機能維持は、特に高盛土や大きな切土箇所について重要であり、小段に設けた排水 溝及び法肩に設けた法肩排水溝は崩土・落石・雑草等で埋まっていることが多い。また、これら排 水溝の水が縦排水溝(急流工)以外から流下しないよう注意する必要がある。

縦排水溝(急流工)が U 型溝で作られている場合,施工が不十分で流水が跳ね出したり,裏水による洗掘によって土砂が流れたりするので,破損が見つかったときはその部分の U 型溝を取り外し,基礎及び周囲を十分補修する必要がある.

法面に有害な湧水を発見したときは、新しく水抜き穴を設けたり、斜面の土砂が洗い流されないように適切な排水施設を作るなど早急に対策を講じる必要がある.


擁壁・コンクリート張工・ブロック張工等の水抜き穴は、切口等の状況によって土砂の堆積、雑草などが生えてつまりやすいため常に清掃することが大切である.

2.7.2 日常の維持管理

排水施設の日常の維持管理については,「道路土工 切土工・斜面安定工指針²」を参考にすると よい.

例-3 埋立地盤の改良範囲の検討例

埋立地盤における改良範囲の検討例を**例図-3.1** に示す. 過去の研究事例として, 滑走路等の舗装区域において, **例図-3.1** に示す程度に地盤改良区域を拡げる対策をすれば地盤改良部分と未改良部分との間で不同沈下が生じても, 基本施設の舗装の本体に影響を及ぼさないことが示されている.

例図-3.1 地盤改良区域拡幅必要長の検討例

例-4 限界状態設計法によるボックスカルバートの設計例

限界状態設計法によるボックスカルバートの構造設計例を示す.

4.1 設計概要

4.1.1 設計対象施設

設計対象施設は、誘導路直下の地下構造物とし、部材寸法と土被りは以下のとおりとした.

• 部材寸法: W3.0m×H3.0m

・設計土被り:2.0m

・部材厚:頂版・側壁…0.40m, 底版…0.45m

4.1.2 要求性能及び照査項目

要求性能は安全性、使用性、耐久性とし、検討する限界状態及び照査項目は以下のとおりとした.

内投 キュー 女小は能及び 無直奏日							
要求性能	検討する限界状態	照査項目					
A 14	終局限界状態	断面破壊の照査					
安全性	疲労限界状態	疲労破壊の照査					
使用性・耐久性	使用限界状態	ひび割れの照査					

例表-4.1 要求性能及び照査項目

4.2 設計条件

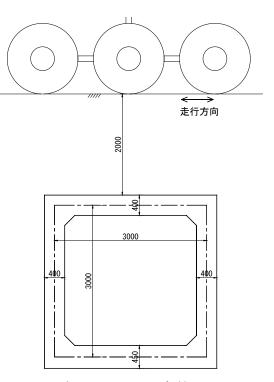
4.2.1 設計供用期間

設計供用期間は50年とした.

4.2.2 走行条件

走行条件は以下のとおりとした(例図-

4.1) .


対象機材:コードF

・荷重区分:W荷重(直角方向に横断)

・設計交通量:160,000 回 (疲労破壊の照査に適用)

4.2.3 環境条件

ボックスカルバートの環境条件は、腐食性について一般の環境とした.また、対象施設は地下水位以上に設置するため、地下水位は考慮しないこととした.

例図-4.1 断面条件

4.2.4 設計用値

材料の設計用値は例表-4.2のとおりとした.

例表-4.2 材料の設計用値

	万 日		設定	値	/ 洪	
	項目		数値	単位	備考	
	圧縮強度	f_{ck}	24.0	N/mm ²		
コンクリート	弾性係数	E_c	25,000	N/mm ²		
	粗骨材の最大寸法	d_{max}	25	mm		
	引張降伏強度	f_{yk}	345	N/mm ²		
鉄筋(SD345)	引張強度	f_{uk}	490	N/mm ²		
	弾性係数	E_s	200,000	N/mm ²		
光片 体	鉄筋コンクリート		24.5	kN/m ³		
単位体積重量	土砂		20.0	kN/m³	砂・砂れき相当	
静止土圧係数			0.5	-		

4.2.5 安全係数

各限界状態の照査における安全係数は、例表-4.3のとおり設定した.

例表-4.3 設定した安全係数

### ##################################							
	T	F D		安全	è性	耐久性	
	項目			断面破壊	疲労破壊	ひび割れ	
材料係数	コンク	リリート	γ_c	1.3	1.3	1.0	
γ_m	鋼材		γ _s	1.0	1.05	1.0	
	` .	躯体自重	Ī	1.0	1.0	1.0	
# 手反坐	永久 荷重	土圧	鉛直方向	1.1 (0.9)	1.0	1.0	
荷重係数	<i>x</i>	単 工圧	水平方向	1.2 (0.9)	1.0	1.0	
γ_f		変動	航空機	鉛直方向	1.2	1.0	1.0
	荷重	荷重	水平方向	1.2	1.0	1.0	
構造解析係	系数		γ a	1.0	1.0	1.0	
曲げ				1.1	1.1	1.0	
	せんは	斤 (コン:	クリート)	1.3	1.3	1.0	
γ _b せん断 (補強鉄筋)		跌筋)	1.1	1.1	1.0		
構造物係数	文		γ_i	1.2	1.1		

・ 荷重係数における()は、荷重が小さい方が安全側の設計となる場合の値

4.2.6 配筋条件

引張鋼材及びせん断補強鋼材は異形鉄筋とし、配筋条件は**例表-4.4、例表-4.5** のとおりとした.

例表-4.4 引張鉄筋の配筋条件

項目	数値	備考		
最小鉄筋量	0.20%	部材の有効断面積に対する鉄筋断面積の比率		
引張鉄筋中心位置	頂版・側壁:10cm 底版:11cm	鉄筋中心からコンクリート表面までの距離		
配筋間隔	125mm, 250mm	単位幅 1m の約数を設定		

例表-4.5 せん断補強鉄筋の配筋条件

項目	数値	備考				
最小鉄筋量	0.15%	配置幅×単位奥行きの部材断面積に対する鉄筋断面積 の比率				
軸方向配筋間隔	125mm	部材有効高さの 3/4 倍以下				

4.2.7 作用荷重の設定

ボックスカルバートに作用する荷重は,以下を考慮した.

- ・土圧 (永久荷重)
- 躯体自重(永久荷重)
- · 航空機荷重 (変動荷重)

(1) 土圧

ボックスカルバートの周囲の地盤により頂版及び側壁が受ける土圧は次式で算定した.土圧の公称値を**例表-4.6** に示す.

 $P_{vd} = \alpha \cdot \gamma \cdot h$

ここで、 P_{vd} : 構造物上面に作用する鉛直土圧(kN/m^2)

y:構造物上面の土及び舗装体の単位体積重量(kN/m³)

h:構造物の土被り (m)

α:係数 (剛性基礎で支持されていない場合 1.00)

 $P_{hd} = K_0 \cdot \gamma \cdot h$

ここで, P_{hd}: 水平土圧 (kN/m²)

K0:静止土圧係数

例表-4.6 地盤による鉛直・水平土圧

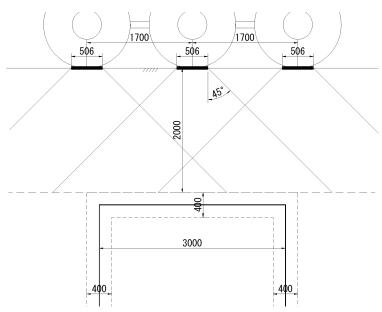
作用位置	深度	単位体積重量	静止土	土圧の公称値	備考	
作用址直	(m)	(kN/m^3)	圧係数	(kN/m^2)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
頂版	2.00	20.0	-	40.0	鉛直方向	
側壁上端	2.20	20.0	0.5	22.0	水平方向	
側壁下端	5.20	20.0	0.5	52.0	水平方向	

(2) 躯体自重

ボックスカルバートの頂版、側壁の自重は分布荷重に換算して設定した。自重による鉛直方向荷重の公称値を**例表-4.7**に示す。

例表-4.7 躯体の自重による鉛直方向荷重

					-	
	作用位置	単位体積重量	部材厚	自重の公称値	備考	
		(kN/m^3)	(m)	(kN/m^2)		
	頂版	24.5	0.40	9.80	鉛直方向	
	側壁	24.5	0.40	9.80	鉛直方向	


(3) 航空機荷重

航空機荷重は、以下の 3 ケースを設定した。なお、頂版における航空機荷重の作用範囲は、深度 $2.0 \mathrm{m}$ において最大の地中応力を発生させる A380-800 荷重の地中での $45 \mathrm{°}$ 分散範囲を考慮して頂版全幅とした。

・Case1:頂版・側壁(左右)に航空機荷重が作用

・Case2: 頂版のみに航空機荷重が作用

・Case3:右側側壁のみに航空機荷重が作用

例図-4.2 45°荷重分散による航空機荷重の載荷範囲の設定

設定した航空機荷重の公称値を例表-4.8に示す.

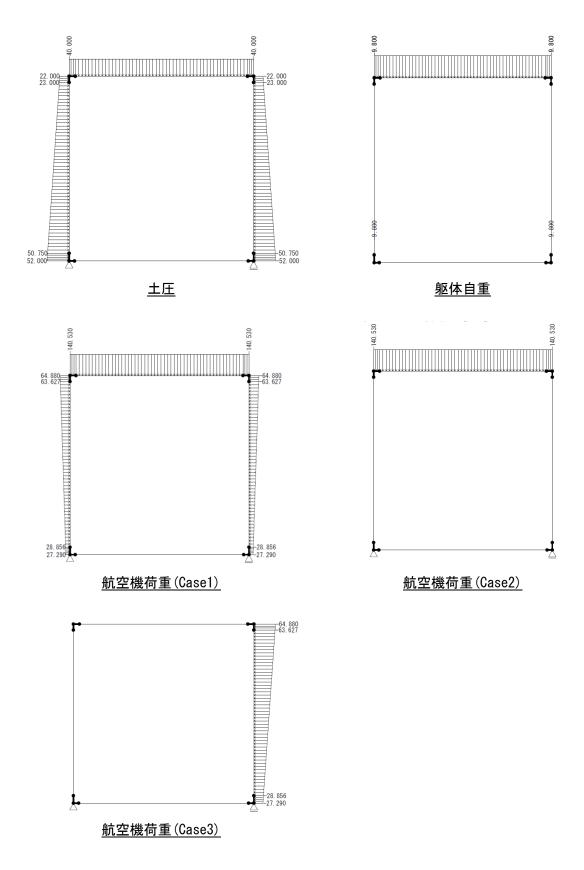
例表-4.8 航空機荷重

作用位置	深度 (m)	鉛直方向地中応力 (kN/m²)	衝擊係数	静止土 圧係数	航空機荷重の公称値	備考
頂版	2.00	108.10	0.30	-	(kN/m ²) 140.53	鉛直方向
側壁上端	2.20	99.82	0.30	0.50	64.88	水平方向
側壁下端	5.20	41.98	0.30	0.50	27.29	水平方向

(※設計例作成当時の値)

(4) 設計荷重の算定

以上より、各作用荷重の公称値に対して荷重係数を乗じた設計荷重**を例表-4.9** に、作用モデル図を**例図-4.3** に示す.

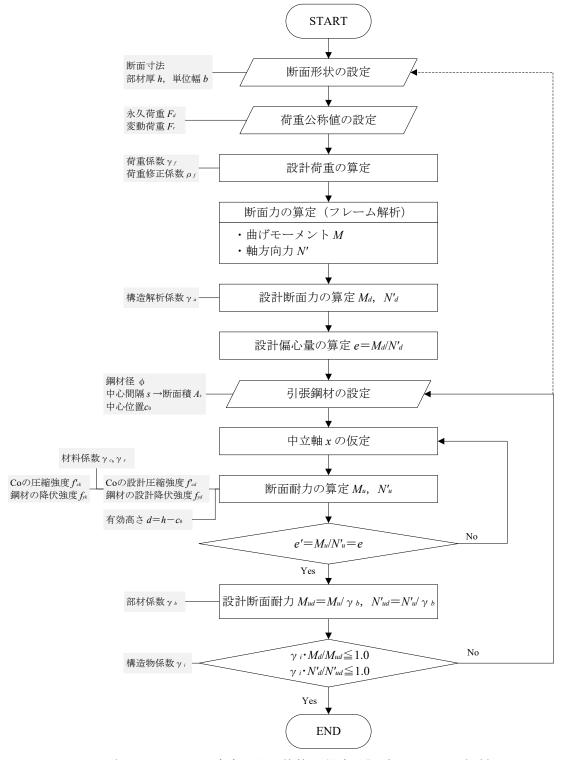

例表-4.9 設計荷重

終局限界状態

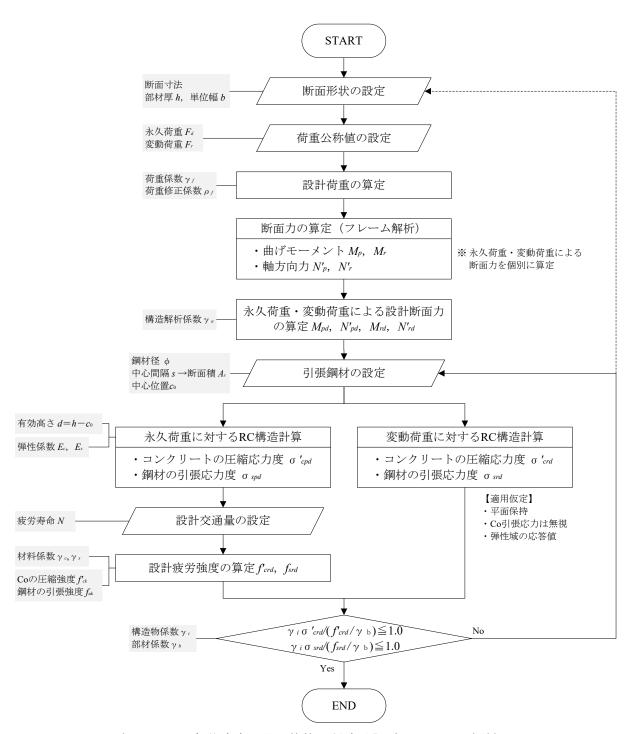
				荷重Case1		荷重Case2		荷重Case3	
	項目			荷重係数	設計荷重	荷重係数	設計荷重	荷重係数	設計荷重
				γ_f	F_d	γ_f	F_d	γ_f	F_d
			(kN/m^2)		(kN/m^2)		(kN/m^2)		(kN/m^2)
	躯体自重	頂版	9.80	1.0	9.80	1.0	9.80	1.0	9.80
	2012年日里	側壁	9.80	1.0	9.80	1.0	9.80	1.0	9.80
永久荷重	土圧	鉛直方向	40.00	1.1	44.00	1.1	44.00	0.9	36.00
		水平方向	22.00	1.2	31.68	0.9	15.84	1.2	31.68
		小平万 间	52.00	1.2	74.88	0.9	37.44	1.2	74.88
	航空機荷重	鉛直方向	140.53	1.2	168.64	1.2	168.64	-	-
変動荷重		水平方向	64.88	1.2	77.86	-	-	1.2	77.86
		小十万円	27.29	1.2	32.75	-	-	1.2	32.75

疲労・使用限界状態

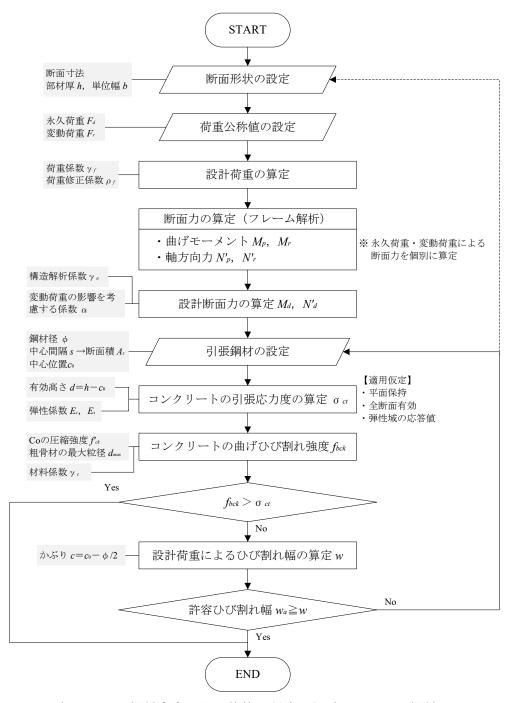
	がいっていた。								
			荷重Case1		荷重Case2		荷重Case3		
	項目			荷重係数	設計荷重	荷重係数	設計荷重	荷重係数	設計荷重
				γ_f	F_d	γ_f	F_d	γ_f	F_d
			(kN/m^2)		(kN/m^2)		(kN/m^2)		(kN/m^2)
	躯体自重	頂版	9.80	1.0	9.80	1.0	9.80	1.0	9.80
	**************************************	側壁	9.80	1.0	9.80	1.0	9.80	1.0	9.80
永久荷重	土圧	鉛直方向	40.00	1.0	40.00	1.0	40.00	1.0	40.00
		王 水平方向	22.00	1.0	22.00	1.0	22.00	1.0	22.00
			52.00	1.0	52.00	1.0	52.00	1.0	52.00
	航空機荷重	鉛直方向	140.53	1.0	140.53	1.0	140.53	-	-
変動荷重		水平方向	64.88	1.0	64.88	-	-	1.0	64.88
			27.29	1.0	27.29	-	-	1.0	27.29

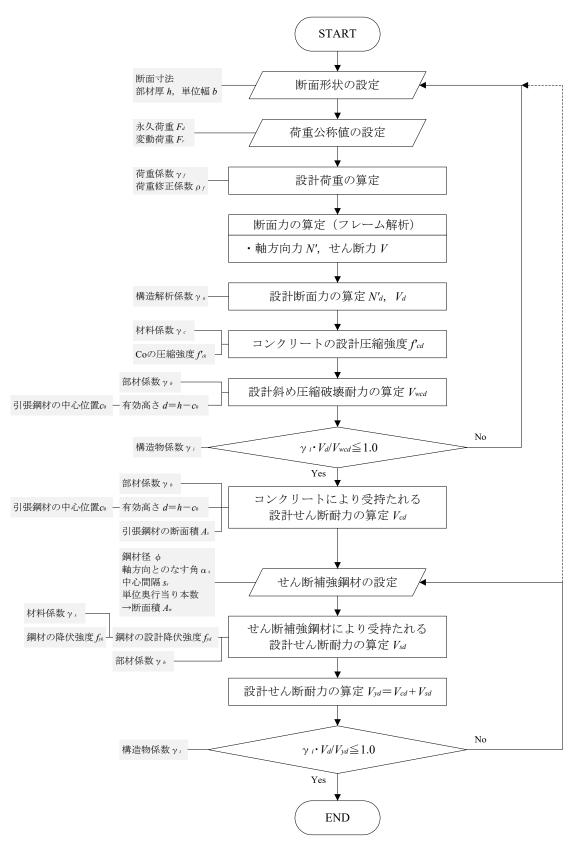


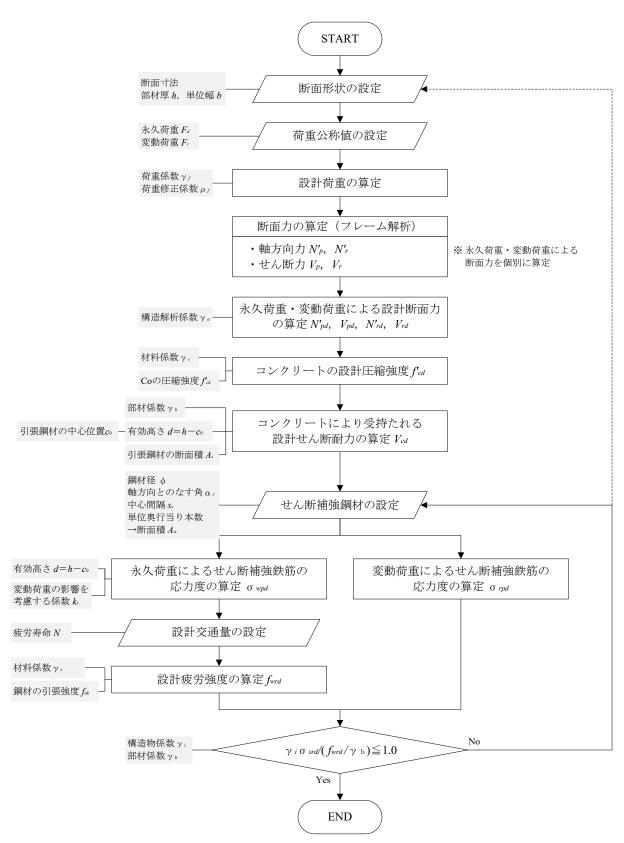
例図-4.3 作用モデル図

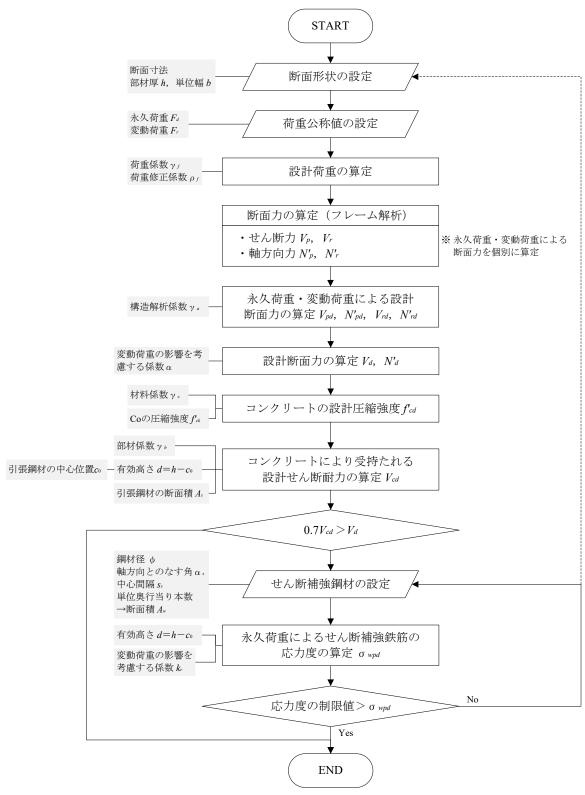

4.3 限界状態設計法による構造設計

4.3.1 設計手順


断面破壊、疲労破壊、鋼材腐食(ひび割れ)の限界状態に対する照査の手順は**例図-4.4~例** 図-4.9 に示すとおりである.

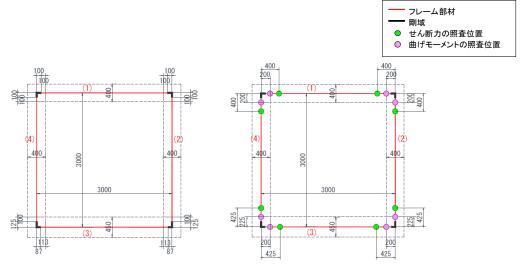

例図-4.4 断面破壊の限界状態に対する設計手順(引張鋼材)


例図-4.5 疲労破壊の限界状態に対する設計手順(引張鋼材)


例図-4.6 鋼材腐食の限界状態に対する設計手順(引張鋼材)

例図-4.7 断面破壊の限界状態に対する設計手順(せん断補強鉄筋)

例図-4.8 疲労破壊の限界状態に対する設計手順(せん断補強鉄筋)



例図-4.9 鋼材腐食の限界状態に対する設計手順(せん断補強鉄筋)

4.3.2 構造解析

(1) 構造解析モデル (フレーム)

部材に生じる断面力は、フレーム解析により算定した.フレーム解析は隅角部の剛域を考慮することとし、**例図-4.10** に示すとおりモデル化した.

例図-4.10 構造解析モデル (フレーム)

(2) 断面力の算定

例図-4.10 の構造解析モデルに対して、設計荷重を作用させた構造解析により断面力を算定した. 各限界状態に対する代表箇所の断面力を**例表-4.10~例表-4.12** に示す.

例表-4.10 終局限界状態に対する断面力の算定結果

		終局(永久	荷重+変動荷	f重Casel)	終局(永久	荷重+変動荷	f重Case2)	終局(永久	荷重+変動荷	方重Case3)
部材	位置	М	V	N	М	V	N	М	V	N
		(kN/m·m)	(kN/m)	(kN/m)	(kN/m·m)	(kN/m)	(kN/m)	(kN/m·m)	(kN/m)	(kN/m)
	左端部①	-66.860	289.167	-152.670	-45.060	289.167	-59.957	-78.266	105.065	-100.172
	左端部②	-13.475	244.680	-152.670	8.324	244.680	-59.957	-58.329	94.305	-100.172
頂版	支間中央	121.099	0.000	-152.670	142.898	0.000	-59.957	12.857	35.125	-100.172
貝瓜	右端部②	-13.475	-244.680	-152.670	8.324	-244.680	-59.957	18.945	-24.055	-100.172
	右端部①	-66.860	-289.167	-152.670	-45.060	-289.167	-59.957	13.058	-34.815	-100.172
	極大点	-	-	-	-	-	-	24.248	2.845	-100.172
	上端部①	-100.689	131.879	-335.614	-95.895	54.437	-335.614	22.973	79.382	-47.535
	上端部②	-76.382	111.210	-337.574	-85.600	48.437	-337.574	36.780	58.713	-49.495
	支間中央	-15.718	-0.299	-348.354	-53.857	6.857	-348.354	39.697	-52.796	-60.275
側壁	下端部②	-73.019	-105.724	-358.889	-74.626	-47.807	-358.889	-74.039	-158.222	-70.810
	下端部①	-96.089	-124.951	-360.849	-85.349	-59.507	-360.849	-107.608	-177.449	-72.770
	極大点(右)	-	-	-	-	-	-	53.319	7.571	-54.395
	極大点(左)	-	-	-	-	-	-	36.378	-2.252	-139.345
	右端部①	-58.853	314.647	-146.436	-32.502	314.647	-73.243	-132.827	95.471	-187.873
	右端部②	5.816	260.189	-146.436	32.167	260.189	-73.243	-109.308	112.527	-175.431
中世	支間中央	145.668	0.000	-146.436	172.018	0.000	-73.243	21.278	106.223	-115.981
底版	左端部②	5.816	-260.189	-146.436	32.167	-260.189	-73.243	67.042	-45.283	-56.531
	左端部①	-58.853	-314.647	-146.436	-32.502	-314.647	-73.243	51.337	-95.369	-44.088
	極大点	-	-	-	-	-	-	71.886	-10.724	-66.209

[※] 端部①は曲げモーメントに対する照査位置、端部②はせん断力に対する照査位置を示す.

例表-4.11 疲労限界状態に対する断面力の算定結果

		疲労	(永久荷重	Í)	疲労(変動荷重C	ase1)	疲労(変動荷重C	ase2)	疲労(変動荷重C	Case3)
部材	位置	М	V	N	М	V	N	M	V	N	M	V	N
		(kN/m·m)	(kN/m)	(kN/m)	(kN/m·m)	(kN/m)	(kN/m)	(kN/m·m)	(kN/m)	(kN/m)	(kN/m·m)	(kN/m)	(kN/m)
	左端部①	-18.466	64.740	-44.441	-37.630	182.689	-82.378	-19.463	182.689	-5.118	-47.135	29.271	-38.630
	左端部②	-6.514	54.780	-44.441	-3.902	154.583	-82.378	14.264	154.583	-5.118	-41.281	29.271	-38.630
頂版	支間中央	23.615	0.000	-44.441	81.118	0.000	-82.378	99.285	0.000	-5.118	-9.083	29.271	-38.630
貝瓜	右端部②	-6.514	-54.780	-44.441	-3.902	-154.583	-82.378	14.264	-154.583	-5.118	23.115	29.271	-38.630
	右端部①	-18.466	-64.740	-44.441	-37.630	-182.689	-82.378	-19.463	-182.689	-5.118	28.969	29.271	-38.630
	極大点	-18.466	-64.740	-44.441	-	-	-	-	-	-	28.969	29.271	-38.630
	上端部①	-23.975	39.841	-76.660	-61.783	69.653	-210.795	-57.788	5.118	-210.795	41.268	25.905	29.271
	上端部②	-16.500	34.841	-78.620	-49.083	57.429	-210.795	-56.765	5.118	-210.795	45.218	13.681	29.271
	支間中央	3.877	0.191	-89.400	-19.352	-0.845	-210.795	-51.135	5.118	-210.795	26.827	-44.593	29.271
側壁	下端部②	-19.367	-45.362	-99.935	-44.295	-43.147	-210.795	-45.634	5.118	-210.795	-45.145	-86.895	29.271
	下端部①	-29.408	-55.112	-101.895	-53.560	-49.419	-210.795	-44.611	5.118	-210.795	-63.160	-93.167	29.271
	極大点(右)	-10.065	29.441	-80.580	-	-	-	-	-	-	46.774	1.958	29.271
	極大点(左)	-29.408	55.112	-101.895	-	-	-	-	-	-	54.210	-38.630	-29.271
	右端部①	-23.655	90.220	-66.559	-26.070	182.689	-55.877	-4.111	182.689	5.118	-87.715	0.042	-90.408
	右端部②	-5.112	74.605	-66.559	11.478	151.070	-55.877	33.437	151.070	5.118	-84.458	28.018	-80.039
ob NC	支間中央	34.988	0.000	-66.559	92.678	0.000	-55.877	114.637	0.000	5.118	-10.980	88.519	-30.497
底版	左端部②	-5.112	-74.605	-66.559	11.478	-151.070	-55.877	33.437	-151.070	5.118	62.499	28.018	19.044
	左端部①	-23.655	-90.220	-66.559	-26.070	-182.689	-55.877	-4.111	-182.689	5.118	65.756	0.042	29.413
	極大点	-23.655	90.220	-66.559		-	-	-	-	-	-87.715	0.042	-90.408

[※] 端部①は曲げモーメントに対する照査位置、端部②はせん断力に対する照査位置を示す.

例表-4.12 使用限界状態に対する断面力の算定結果

		使用(永久荷	f重+0.5×変動で	苛重Casel)	使用(永久荷	方重+0.5×変動	带重Case2)	使用(永久花	肯重+0.5×変動	荷重Case3)
部材	位置	М	V	N	M	V	N	M	V	N
		(kN/m·m)	(kN/m)	(kN/m)	(kN/m·m)	(kN/m)	(kN/m)	(kN/m·m)	(kN/m)	(kN/m)
	左端部①	-37.281	156.085	-85.630	-28.198	156.085	-47.000	-42.034	79.376	-63.756
	左端部②	-8.465	132.072	-85.630	0.618	132.072	-47.000	-27.155	69.416	-63.756
頂版	支間中央	64.174	0.000	-85.630	73.258	0.000	-47.000	19.074	14.636	-63.756
貝瓜	右端部②	-8.465	-132.072	-85.630	0.618	-132.072	-47.000	5.044	-40.145	-63.756
	右端部①	-37.281	-156.085	-85.630	-28.198	-156.085	-47.000	-3.982	-50.105	-63.756
	極大点	-	-	-	-	-	-	5.044	-40.145	-63.756
	上端部①	-54.867	74.668	-182.058	-52.869	42.400	-182.058	-3.341	52.794	-62.025
	上端部②	-41.042	63.556	-184.018	-44.883	37.400	-184.018	6.109	41.682	-63.985
	支間中央	-5.799	-0.232	-194.798	-21.691	2.750	-194.798	17.291	-22.106	-74.765
側壁	下端部②	-41.515	-66.936	-205.333	-42.184	-42.803	-205.333	-41.940	-88.810	-85.300
	下端部①	-56.188	-79.822	-207.293	-51.714	-52.553	-207.293	-60.988	-101.696	-87.260
	極大点(右)	-	-	-	-	-	-	19.880	13.248	-68.885
	極大点(左)	-	-	-	-	-	-	-2.303	35.797	-116.531
	右端部①	-36.690	181.565	-94.498	-25.711	181.565	-64.000	-67.513	90.241	-111.763
	右端部②	0.627	150.140	-94.498	11.607	150.140	-64.000	-47.341	88.614	-106.579
皮岴	支間中央	81.327	0.000	-94.498	92.307	0.000	-64.000	29.498	44.260	-81.808
底版	左端部②	0.627	-150.140	-94.498	11.607	-150.140	-64.000	26.138	-60.596	-57.037
	左端部①	-36.690	-181.565	-94.498	-25.711	-181.565	-64.000	9.223	-90.199	-51.853
	極大点	-	-	-	-	-	-	26.138	-60.596	-57.037

[※] 端部①は曲げモーメントに対する照査位置、端部②はせん断力に対する照査位置を示す.

4.3.3 曲げモーメント及び軸方向力に対する構造照査

(1) 断面破壊の照査(終局限界状態)

1) 設計断面力の算定

設計断面力(曲げモーメント、軸方向力)は、構造解析により得られた断面力に構造解析 係数を乗じて算定した.

$$S_d = \gamma_a \cdot S(F_d)$$

ここで、 S_d : 設計断面力

γ_a:構造解析係数

 $S(F_d)$: 設計荷重 F_d による断面力

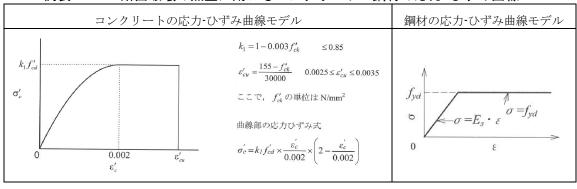
2) 設計曲げ耐力・設計軸圧縮耐力の算定

設計曲げ耐力及び設計軸圧縮耐力は次式で算定した.

$$M_{ud} = M_u / \gamma_b$$
, $N'_{ud} = N'_u / \gamma_b$

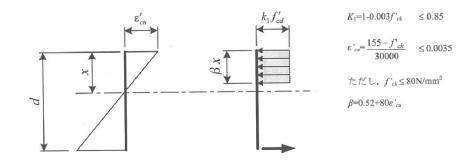
ここで、 Mud: 設計曲げ耐力 (kN/m·m)

N'ud:設計軸圧縮耐力(kN/m)


γ_b:部材係数

Mu: 曲げ耐力 (kN/m·m) N', : 軸圧縮耐力 (kN/m)

鉄筋コンクリート断面の曲げ耐力 Mu 及び軸圧縮耐力 N'u は、以下の仮定に基づいて算定 した.


- ・維ひずみは、断面の中立軸からの距離に比例する.
- ・コンクリートの引張応力は考慮しない.
- ・コンクリートと鋼材の応力-ひずみ曲線は例表-4.13によることを原則とする.

例表-4.13 断面破壊の照査に用いるコンクリート・鋼材の応力-ひずみ曲線 70

⁷⁾ 七木学会: コンクリート標準示方書(設計編), 2018.3

また、断面のひずみがすべて圧縮側となる場合以外は、コンクリートの圧縮応力の分布を 等価応力ブロック(**例図-4.11**)と仮定した.

例図-4.11 等価応力ブロックの仮定²⁰⁾

以上により、曲げ耐力及び軸圧縮耐力は次式によって算定した.

$$M_u = C \cdot Y_c + T \cdot Y_s$$
, $N'_u = C - T$
 $C = k_1 \cdot f'_{cd} \cdot b \cdot \beta \cdot x$, $T = A_s \cdot f_{yd}$

ここで, C: 圧縮力 (kN/m)

T: 引張力 (kN/m)

 Y_c : 圧縮力の合力の中心から断面図心までの距離 $(m) = h/2 - \beta x/2$

 Y_s : 引張力の合力の中心から断面図心までの距離 (m) = d - h/2

x: 圧縮縁から中立軸までの距離 (m)

b:部材幅(m)

 $k_1 = 1 - 0.003 f_{ck} \le 0.85$

 f'_{cd} : コンクリートの設計圧縮強度 (N/mm²) = f'_{cd}/γ_c

 f'_{ck} : コンクリートの圧縮強度 (N/mm²)

 β =0.52+80 ε'_{cu}

 ε'_{cu} : コンクリートの圧縮縁のひずみ = $(155-f'_{ck})/30000$ ≤ 0.0035

 A_s : 鉄筋の断面積 (mm²)

f_{vd}:鉄筋の降伏応力(N/mm²)

3) 曲げモーメント及び軸方向力に対する断面破壊の照査結果

以上により, 断面破壊の照査を満足する最小の引張鋼材量に対する照査結果を**例表-4.14**~**例表-4.16** に示す.

例表-4.14 曲げモーメントと軸方向力による断面破壊の照査結果(頂版)

	州衣-4.14 曲17モースク					頂版		
	4 1))/ /Ja		内側引張		外側	引張
	項目		単位	支間	中央	極大点	端部(対称)	左側端部
				Case1	Case2	Case3	Case1	Case3
	曲げモーメント	М	kN/m∙m	121.10	142.90	24.25	66.86	78.27
	軸圧縮力	N'	kN/m	152.67	59.96	100.17	152.67	100.17
設計断面力 の算定	構造解析係数	γa	-	1.0	1.0	1.0	1.0	1.0
V)开几	設計曲げモーメント	M_d	kN/m•m	121.10	142.90	24.25	66.86	78.27
	設計軸圧縮力	N'_d	kN/m	152.67	59.96	100.17	152.67	100.17
	設計偏心量	e	m	0.793	2.383	0.242	0.438	0.781
	部材幅	b	mm	1,000	1,000	1,000	1,000	1,000
断面諸元	部材高	h	mm	400	400	400	400	400
	主鉄筋中心から表面までの距離	c_0	mm	100	100	100	100	100
	有効高	d	mm	300	300	300	300	300
	引張鉄筋量	A_s	-	D25@250	D25@250	D25@250	D16@250	D16@250
設計配筋	7	21 S	mm ²	2,026.8	2,026.8	2,026.8	794.4	794.4
	引張鉄筋比	p	%	0.68	0.68	0.68	0.26	0.26
	中立軸位置※	х	mm	79.4	62.5	171.7	45.7	32.3
	図心から偏心位置までの距離	а	mm	593.2	2183.3	42.1	237.9	581.4
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0	24.0
	材料係数	γ c	-	1.3	1.3	1.3	1.3	1.3
コンクリートの	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	18.5	18.5	18.5	18.5	18.5
圧縮力の算定	コンクリートの終局圧縮ひずみ	ε'_{cu}	N/mm ²	0.0035	0.0035	0.0035	0.0035	0.0035
	圧縮力の低減係数	k 1	-	0.85	0.85	0.85	0.85	0.85
	係数	β	-	0.80	0.80	0.80	0.80	0.80
	等価応力ブロック高さ	Y'	mm	63.5	50.0	137.3	36.6	25.8
	圧縮力	C	kN/m	999.2	786.3	2159.6	575.4	406.5
	鉄筋の引張降伏強度の特性値	f_{yk}	N/mm ²	345	345	345	345	345
鉄筋の	材料係数	γ c	-	1.00	1.00	1.00	1.00	1.00
引張力の算定	鉄筋の設計引張降伏強度	f_{yd}	N/mm ²	345.0	345.0	345.0	345.0	345.0
	引張鉄筋ひずみ	εs	-	0.0097	0.0133	0.0026	0.0195	0.0290
	引張力	T	kN/m	699.2	699.2	699.2	274.1	274.1
	圧縮力アーム長	Y_c	mm	168.2	175.0	131.3	181.7	187.1
	引張力アーム長	Y_s	mm	100.0	100.0	100.0	100.0	100.0
	曲げ耐力	M_u	kN/m⋅m	238.01	207.52	353.54	131.96	103.46
設計断面耐力	軸圧縮耐力	N'_u	kN/m	300.00	87.10	1460.40	301.30	132.40
の算定	断面耐力の偏心量	e'	m	0.793	2.383	0.242	0.438	0.781
	部材係数(曲げ)	γ,	-	1.1	1.1	1.1	1.1	1.1
	設計曲げ耐力	M_{ud}	kN/m·m	216.37	188.65	321.40	119.96	94.05
	設計軸圧縮耐力	N'_{ud}	kN/m	272.73	79.18	1327.64	273.91	120.36
	構造物係数 γ _i				1.2	1.2	1.2	1.2
曲は	ずモーメント照査結果($\gamma_i M_d/M_{ud}$)	0.67	0.91	0.09	0.67	1.00		
() [1- a ua				OK	OK	OK	OK	OK
軸圧縮力照査結果 $(\gamma_i N'_d/N'_{ud} \leq 1.0)$				0.67 OK	0.91	0.09	0.67	1.00
	軸圧縮力照査結果 $(\gamma_i N'_d / N'_{ud} \le 1.0)$				OK	OK	OK	OK

[※]中立軸位置xは繰返し計算により、断面耐力の偏心量e'≒設計偏心量eとなる値を設定した。 ※中立軸位置は圧縮側縁からの距離を示す.

例表-4.15 曲げモーメントと軸方向力による断面破壊の照査結果(側壁)

	州衣-4.13 曲17モースク	. — ,,,,,								
				内側	引張	外側引張				
	項目		単位		左側極大点	上端部	<i>ç</i>	(右側)		
				Case3	Case3	Case2	Case1	Case3		
	曲げモーメント	М	kN/m∙m	53.32	36.38	95.90	96.09	107.6		
	軸圧縮力	N'	kN/m	54.40	139.35	335.61	360.85	72.7		
設計断面力	構造解析係数	γa	-	1.0	1.0	1.0	1.0	1.0		
の算定	設計曲げモーメント	M_d	kN/m•m	53.32	36.38	95.90	96.09	107.61		
	設計軸圧縮力	N'_d	kN/m	54.40	139.35	335.61	360.85	72.77		
	設計偏心量	е	m	0.980	0.261	0.286	0.266	1.479		
	部材幅	b	mm	1,000	1,000	1,000	1,000	1,000		
断面諸元	部材高	h	mm	400	400	400	400	400		
	主鉄筋中心から表面までの距離	c 0	mm	100	100	100	100	100		
	有効高	d	mm	300	300	300	300	300		
	引張鉄筋量	1	-	D16@250	D16@250	D22@250	D22@250	D22@250		
設計配筋	77 波 奶 重	A_s	mm ²	794.4	794.4	1,548.4	1,548.4	1,548.4		
	引張鉄筋比	p	%	0.26	0.26	0.52	0.52	0.52		
	中立軸位置※	х	mm	29.7	83.3	121.8	131.0	51.6		
	図心から偏心位置までの距離	а	mm	780.1	61.1	85.7	66.3	1278.8		
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0	24.0		
	材料係数	γ c	-	1.3	1.3	1.3	1.3	1.3		
コンクリートの	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	18.5	18.5	18.5	18.5	18.5		
圧縮力の算定	コンクリートの終局圧縮ひずみ	ε' _{cu}	N/mm ²	0.0035	0.0035	0.0035	0.0035	0.0035		
	圧縮力の低減係数	k_1	-	0.85	0.85	0.85	0.85	0.85		
	係数	β	-	0.80	0.80	0.80	0.80	0.80		
	等価応力ブロック高さ	Y'	mm	23.8	66.7	97.4	104.8	41.3		
	圧縮力	C	kN/m	373.8	1048.4	1532.4	1648.4	649.0		
	鉄筋の引張降伏強度の特性値	f_{yk}	N/mm ²	345	345	345	345	345		
鉄筋の	材料係数	γ ,	-	1.00	1.00	1.00	1.00	1.00		
引張力の算定	鉄筋の設計引張降伏強度	f_{yd}	N/mm ²	345.0	345.0	345.0	345.0	345.0		
	引張鉄筋ひずみ	εs	-	0.0318	0.0091	0.0051	0.0045	0.0169		
	引張力	T	kN/m	274.1	274.1	534.2	534.2	534.2		
	圧縮力アーム長	Y_c	mm	188.1	166.7	151.3	147.6	179.4		
	引張力アーム長	Y_s	mm	100.0	100.0	100.0	100.0	100.0		
	曲げ耐力	M_u	kN/m⋅m	97.73	202.14	285.24	296.70	169.83		
設計断面耐力	軸圧縮耐力	N'_u	kN/m	99.70	774.30	998.20	1114.20	114.80		
の算定	断面耐力の偏心量	e'	m	0.980	0.261	0.286	0.266	1.479		
	部材係数(曲げ)	γ,	-	1.1	1.1	1.1	1.1	1.1		
	設計曲げ耐力	M_{ud}	kN/m⋅m	88.85	183.76	259.31	269.73	154.39		
		N' _{ud}	kN/m	90.64	703.91	907.45	1012.91	104.36		
	構造物係数 γ _i -				1.2	1.2	1.2	1.2		
曲(ブモーメント照査結果($\gamma_i M_d/M_{ud}$)	0.72 OK	0.24 OK	0.44	0.43	0.84				
	,, , ,,					OK	OK	OK		
	軸圧縮力照査結果($\gamma_i N'_d/N'_{ud} \leq 1.0$)				0.24	0.44	0.43	0.84		
	 				OK	OK	OK	OK		

[※]中立軸位置xは繰返し計算により、断面耐力の偏心量e'≒設計偏心量eとなる値を設定した。 ※中立軸位置は圧縮側縁からの距離を示す.

例表-4.16 曲げモーメントと軸方向力による断面破壊の照査結果(底版)

·	<u> </u>					底版		
	在 日		774 1-1-		内側引張		外側	引張
	項目		単位	支間	中央	極大点	端部(対称)	右側端部
				Case1	Case2	Case3	Case1	Case3
	曲げモーメント	М	kN/m∙m	145.67	172.02	71.89	58.85	132.83
=n =1 No 1	軸圧縮力	N'	kN/m	146.44	73.24	66.21	146.44	187.87
設計断面力 の算定	構造解析係数	γa	-	1.0	1.0	1.0	1.0	1.0
V) 弄足	設計曲げモーメント	M_d	kN/m∙m	145.67	172.02	71.89	58.85	132.83
	設計軸圧縮力	N'_d	kN/m	146.44	73.24	66.21	146.44	187.87
	設計偏心量	e	m	0.995	2.349	1.086	0.402	0.707
	部材幅	b	mm	1000	1000	1,000	1000	1000
断面諸元	部材高	h	mm	450	450	450	450	450
	主鉄筋中心から表面までの距離	c 0	mm	110	110	110	110	110
	有効高	d	mm	340	340	340	340	340
	引張鉄筋量	1	-	D25@250	D25@250	D25@250	D22@250	D22@250
設計配筋	分 饭 软 肋 里	A_s	mm ²	2,026.8	2,026.8	2,026.8	1,548.4	1,548.4
	引張鉄筋比	р	%	0.60	0.60	0.60	0.46	0.46
	中立軸位置※	х	mm	77.0	63.7	74.9	101.0	68.5
	図心から偏心位置までの距離	а	mm	769.7	2123.7	860.8	176.9	482.0
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0	24.0
	材料係数	γ _c	-	1.3	1.3	1.3	1.3	1.3
コンクリートの	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	18.5	18.5	18.5	18.5	18.5
コンクリートの 圧縮力の算定	コンクリートの終局圧縮ひずみ	ε' _{cu}	N/mm ²	0.0035	0.0035	0.0035	0.0035	0.0035
	圧縮力の低減係数	k_1	-	0.85	0.85	0.85	0.85	0.85
	係数	β	-	0.80	0.80	0.80	0.80	0.80
	等価応力ブロック高さ	Y'	mm	61.6	51.0	59.9	80.8	54.8
	圧縮力	C	kN/m	969.2	801.5	942.6	1270.8	862.0
	鉄筋の引張降伏強度の特性値	f_{yk}	N/mm ²	345	345	345	345	345
hul fata -	材料係数	γ c	-	1.00	1.00	1.00	1.00	1.00
鉄筋の 引張力の算定	鉄筋の設計引張降伏強度	f_{yd}	N/mm ²	345.0	345.0	345.0	345.0	345.0
J111071079#AL	引張鉄筋ひずみ	E s	-	0.0119	0.0152	0.0124	0.0083	0.0139
	引張力	T	kN/m	699.2	699.2	699.2	534.2	534.2
	圧縮力アーム長	Y_c	mm	194.2	199.5	195.0	184.6	197.6
	引張力アーム長	Y_s	mm	115.0	115.0	115.0	115.0	115.0
	曲げ耐力	M_u	kN/m∙m	268.61	240.32	264.24	296.01	231.76
30.31 No	軸圧縮耐力	N'_u	kN/m	270.00	102.30	243.40	736.60	327.80
設計断面耐力 の算定	断面耐力の偏心量	e'	m	0.995	2.349	1.086	0.402	0.707
V)∰/\L	部材係数(曲げ)	γь	-	1.1	1.1	1.1	1.1	1.1
	設計曲げ耐力	M_{ud}	kN/m∙m	244.19	218.47	240.22	269.10	210.69
	設計軸圧縮耐力	N'_{ud}	kN/m	245.45	93.00	221.27	669.64	298.00
構造物係数 γ _i		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	1.2	1.2	1.2	1.2	1.2
.11.	曲げモーメント照査結果($\gamma_i M_d/M_{ud} \leq 1.0$)				0.94	0.36	0.26	0.76
Щ (囲りセーメント庶 1 名				OK	OK	OK	OK
動工統力昭本				0.72	0.95	0.36	0.26	0.76
	軸圧縮力照査結果 $(\gamma_i N'_d/N'_{ud} \leq 1.0)$			OK	OK	OK	OK	OK

[※]中立軸位置xは繰返し計算により、断面耐力の偏心量e'≒設計偏心量eとなる値を設定した。 ※中立軸位置は圧縮側縁からの距離を示す.

(2) 疲労破壊の照査 (疲労限界状態)

1) 設計断面力の算定

永久荷重・変動荷重による設計断面力は, 算定した断面力に構造解析係数を乗じて算定した.

$$S_{pd} = \gamma_a \cdot S(F_{pd}), \quad S_{rd} = \gamma_a \cdot S(F_{rd})$$

ここで、Spd:永久荷重による設計断面力

 $S(F_{pd}):$ 永久荷重 F_{pd} による断面力

Srd:変動荷重による設計断面力

 $S(F_{rd})$:変動荷重 F_{rd} による断面力

γa: 構造解析係数

2) 永久荷重・変動荷重による応力度

疲労破壊の照査における断面応力度は、曲げモーメントと軸方向力の作用下で以下の仮定に基づき算定した.

- ・維ひずみは、断面の中立軸からの距離に比例する.
- ・コンクリート及び鋼材は弾性体とする.
- ・コンクリートの引張応力は、一般に無視する.

変動荷重によるコンクリートの応力は、上述の仮定に基づいて算定した三角分布の応力の合力位置と同位置に応力位置が来るようにした矩形応力分布の応力度とし、三角分布の圧縮縁応力 σ 。に対して次式で算定した。

$$\sigma'_{crd} = (3/4)\sigma'_{c}$$

3) 設計曲げ疲労強度

コンクリートの圧縮に対する設計疲労強度は次式で算定した.

$$f'_{crd} = k_{1f} f'_{cd} (1 - \sigma'_{cpd} / f'_{cd}) \left(1 - \frac{\log N}{K} \right)$$

ここで、 f_{crd} : コンクリートの設計疲労強度 (N/mm²)

 f'_{cd} : コンクリートの設計圧縮強度(N/mm²) = f'_{cd}/γ_c

γ_c: コンクリートの材料係数

K: 材料と状態を考慮する係数. 一般の場合, K=17 とする.

 k_{1f} : 圧縮及び曲げ圧縮の場合, k_{1f} =0.85 とする.

N:疲労寿命

 σ'_{cpd} : 永久荷重によるコンクリートの圧縮応力度 (N/mm²)

なお,交番応力が作用する場合(永久荷重と変動荷重による応力の正負が一致しない場合), 永久荷重による応力度 σ_{cpd} は 0 とした. 鉄筋の引張に対する設計疲労強度は次式で算定した.

$$f_{srd} = 190 \frac{10^a}{N^k} (1 - \sigma_{spd} / f_{ud}) / \gamma_s$$
$$a = k_0 (0.81 - 0.003\phi), \quad k = 0.12$$

ここで, f_{srd}: 鉄筋の設計疲労強度 (N/mm²)

 f_{ud} : 鉄筋の設計引張強度 (N/mm²) = f_{uk}/γ_s

 γ_s : 鉄筋の材料係数 φ : 鉄筋直径 (mm)

 k_0 : 鉄筋のふしの形状に関する係数. 一般に 1.0 として良い.

σ_{spd}:永久荷重による鉄筋の引張応力度 (N/mm²)

N:疲労寿命

4) 曲げモーメント及び軸方向力に対する疲労破壊の照査結果

以上により,疲労破壊の照査を満足する最小の引張鋼材量に対する照査結果を**例表-4.17**~**例表-4.19** に示す.

例表-4.17 曲げモーメントと軸方向力による疲労破壊の照査結果(頂版)

	例衣-4.17 曲りモースフトと					頂版		
	項目		単位	支間	中央	極大点	端部(対称)	左側端部
				Case 1	Case2	Case3	Case1	Case3
	11.18-1.12-1.12-1.1	1.6	137/	23.62	23.62	18.47	18.47	18.47
	曲げモーメント(永久)	M_p	kN/m·m	内側引張	内側引張	外側引張	外側引張	外側引張
永久荷重による	軸圧縮力 (永久)	N' _p	kN/m	44.45	44.45	44.45	44.45	44.45
設計断面力	構造解析係数	γ _a	-	1.00	1.00	1.00	1.00	1.00
	設計曲げモーメント(永久)	M_{pd}	kN/m•m	23.62	23.62	18.47	18.47	18.47
	設計軸圧縮力 (永久)	N' _{pd}	kN/m	44.45	44.45	44.45	44.45	44.45
				81.12	99.29	28.97	37.63	47.14
	曲げモーメント (変動)	M_r	kN/m∙m	内側引張	内側引張	内側引張	外側引張	外側引張
変動荷重による	 軸圧縮力(変動)	N',	kN/m	82.38	5.12	38.63	82.38	38.63
設計断面力	構造解析係数	γ _a	-	1.00	1.00	1.00	1.00	1.00
	設計曲げモーメント(変動)	M _{rd}	kN/m∙m	81.12	99.29	28.97	37.63	47.14
	設計軸圧縮力 (変動)	N' rd	kN/m	82.38	5.12	38.63	82.38	38.63
	部材幅	b b	mm	1,000	1,000	1,000	1,000	1,000
	部材高	h		400	400	400	400	400
断面諸元			mm	100	100	100	100	ļ
	主鉄筋中心から表面までの距離	C 0	mm					100
	有効高	d	mm	300 D20@250	300	300	300 D1(@250	300
⇒n.⇒1 ==1 /d>	引張鉄筋量	A_s	- 2	D29@250	D29@250	D29@250	D16@250	D16@250
設計配筋	71.75 NJ. 66-11		mm ²	2,569.6	2,569.6	2,569.6	794.4	794.4
	引張鉄筋比	p	%	0.86	0.86	0.86	0.26	0.26
	コンクリートの弾性係数 鉄筋の弾性係数	E_c	N/mm ²	25,000 200,000	25,000 200,000	25,000 200,000	25,000 200,000	25,000 200,000
変動荷重による	中立軸位置 (変動)	E_s	N/mm ² mm	103.4	200,000 92.9	107.2	75.1	62.0
応力度の算定	コンクリートの圧縮縁の応力(変動)	σ_{crd}	N/mm ²	6.5	8.0	2.3	4.4	5.9
	鉄筋の引張応力 (変動)	σ_{srd}	N/mm ²	98.9	142.4	33.3	106.3	181.2
永久荷重による	中立軸位置 (永久)	x p	mm	114.2	114.2	121.5	77.7	77.7
応力度の算定	コンクリートの圧縮応力(永久)	σ'_{cpd}	N/mm ²	1.9	1.9	0.0	2.2	2.2
(交番の場合0)	鉄筋の引張応力(永久)	σ_{spd}	N/mm ²	24.4	24.4	0.0	49.3	49.3
	疲労寿命	N	-	160,000	160,000	160,000	160,000	160,000
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0	24.0
コンクリートの	材料係数(コンクリート)	γ c	-	1.3	1.3	1.3	1.3	1.3
設計疲労強度	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	18.5	18.5	18.5	18.5	18.5
の算定	強度低下を考慮する係数(圧縮)	k_{1f}	-	0.85	0.85	0.85	0.85	0.85
	コンクリートの状態を考慮する係数	K	-	17	17	17	17	17
	コンクリートの設計疲労強度	f'crd	N/mm ²	9.8	9.8	10.9	9.6	9.6
	鉄筋の引張強度の特性値	f_{uk}	N/mm ²	490	490	490	490	490
	材料係数(鉄筋)	γ _s	-	1.05	1.05	1.05	1.05	1.05
	鉄筋の設計引張強度	f_{ud}	N/mm ²	467	467	467	467	467
鉄筋の設計疲労	係数	k	-	0.12	0.12	0.12	0.12	0.12
強度の算定	係数	а	-	0.72	0.72	0.72	0.76	0.76
	鉄筋の設計疲労強度	f_{srd}	N/mm ²	213.7	213.7	225.5	221.1	221.1
	構造物係数	γi	-	1.1	1.1	1.1	1.1	1.1
	部材係数 γ _b			1.1	1.1	1.1	1.1	1.1
				0.80	0.99	0.26	0.56	0.74
コンク!	コンクリートの疲労に対する照査結果 $(\gamma_i \sigma_{crd}/(f_{crd}/\gamma_b) \le 1.0)$				OK	OK	OK	OK.74
					0.81	0.18	0.58	0.99
鉄角	鉄筋の疲労に対する照査結果 $(\gamma_i \sigma_{srd}/(f_{srd}/\gamma_b)) \leq 1.0$			0.56 OK	0.81 OK	0.18 OK		0.99 OK
	立軸位層及では力度は 引起側鉄錠のみを考慮したPC機能針管に下的管定した				UK	UK	OK	UK

[※]中立軸位置及び応力度は、引張側鉄筋のみを考慮したRC構造計算により算定した。 ※中立軸位置は圧縮側縁からの距離を示す。

例表-4.18 曲げモーメントと軸方向力による疲労破壊の照査結果(側壁)

	例衣-4.10 曲けモーメントと			~ ~ ~ ~ / M I	側壁	//		
	項目		単位	右側極大点	左側下端部	上端部	下端部	(右側)
	7.5		, ,	Case3	Case3	Case2	Case1	Case3
				10.07	29.41	23.98	29.41	29.41
	曲げモーメント (永久)	M_p	kN/m∙m	外側引張	外側引張	外側引張	外側引張	外側引張
えり 芸香により	軸圧縮力(永久)	N'p	kN/m	80.58	101.90	76.66	101.90	101.90
永久荷重による 設計断面力	構造解析係数		KI V/III	1.00	1.00	1.00	1.00	1.00
By Chilly I had y		γ _a	kN/m·m	10.07	29.41	23.98	29.41	29.41
	設計曲げモーメント(永久)	M _{pd}			<u> </u>		101.90	ļ
	設計軸圧縮力(永久)	N' _{pd}	kN/m	80.58	101.90	76.66		101.90
	曲げモーメント (変動)	M_r	kN/m∙m	46.78	54.21	57.79	53.56	63.16
		374		内側引張	内側引張	外側引張	外側引張	外側引張
変動荷重による	軸圧縮力(変動)	N' _r	kN/m	29.28	29.28	210.80	210.80	29.28
設計断面力	構造解析係数	γ _a	-	1.00	1.00	1.00	1.00	1.00
	設計曲げモーメント(変動)	M_{rd}	kN/m∙m	46.78	54.21	57.79	53.56	63.16
	設計軸圧縮力 (変動)	N' _{rd}	kN/m	29.28	29.28	210.80	210.80	29.28
	部材幅	b	mm	1,000	1,000	1,000	1,000	1,000
断面諸元	部材高	h	mm	400	400	400	400	400
时田阳儿	主鉄筋中心から表面までの距離	c 0	mm	100	100	100	100	100
	有効高	d	mm	300	300	300	300	300
	引張鉄筋量	4	-	D13@125	D13@125	D22@250	D22@250	D22@250
設計配筋	が飲助里	A_s	mm ²	1,013.6	1,013.6	1,548.4	1,548.4	1,548.4
	引張鉄筋比	р	%	0.34	0.34	0.52	0.52	0.52
	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000	25,000
亦動芸香により	鉄筋の弾性係数	E_s	N/mm ²	200,000	200,000	200,000	200,000	200,000
変動荷重による応力度の算定	中立軸位置 (変動)	<i>x</i> _r	mm	67.2	66.5	120.6	126.0	78.9
70.737	コンクリートの圧縮縁の応力(変動)	σ_{crd}	N/mm ²	5.3	6.2	5.0	4.6	6.1
	鉄筋の引張応力(変動)	σ_{srd}	N/mm ²	147.8	174.0	59.9	50.7	137.1
永久荷重による	中立軸位置(永久)	<i>x</i> _p	mm	235.2	101.2	112.8	117.3	117.3
応力度の算定 (交番の場合0)	コンクリートの圧縮応力(永久) 鉄筋の引張応力(永久)	σ'_{cpd}	N/mm ²	0.0	0.0	2.1	2.6 32.2	2.6 32.2
(280 %) 107	疲労寿命	σ_{spd} N	N/mm ²	160,000	160,000	160,000	160,000	160,000
	ップンクリートの圧縮強度の特性値		NT/ 2	24.0	24.0	24.0	24.0	24.0
		f' _{ck}	N/mm ²	1.3	1.3	1.3	1.3	1.3
コンクリートの	材料係数(コンクリート)	γ _c	- 2		ļ			ļ
設計疲労強度 の算定	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	18.5	18.5	18.5	18.5	18.5
·> 5F/C	強度低下を考慮する係数(圧縮)	k 1f	-	0.85	0.85	0.85	0.85	0.85
	コンクリートの状態を考慮する係数	K	-	17	17	17	17	17
	コンクリートの設計疲労強度	f'crd	N/mm ²	10.9	10.9	9.7	9.4	9.4
	鉄筋の引張強度の特性値	f_{uk}	N/mm ²	490	490	490	490	490
	材料係数(鉄筋)	γ _s	-	1.05	1.05	1.05	1.05	1.05
	鉄筋の設計引張強度	f_{ud}	N/mm ²	467	467	467	467	467
	係数	k	-	0.12	0.12	0.12	0.12	0.12
強度の算定	係数	а	-	0.77	0.77	0.74	0.74	0.74
	鉄筋の設計疲労強度	f_{srd}	N/mm ²	253.0	253.0	221.7	219.8	219.8
	構造物係数	γi	-	1.1	1.1	1.1	1.1	1.1
	部材係数 76			1.1	1.1	1.1	1.1	1.1
□ \/ 2 1	コンクリートの疲労に対する照査結果($\gamma_i \sigma_{crd}/(f_{crd}/\gamma_b) \le 1.0$)				0.69	0.63	0.59	0.79
コンク!	コンクリートの疲労に対する庶食結果($\gamma_i\sigma_{crd}/(J_{crd}/\gamma_b)$ ≥ 1.0)				OK	OK	OK	OK
And &					0.83	0.33	0.28	0.75
鉄角	鉄筋の疲労に対する照査結果 $(\gamma_i \sigma_{srd}/(f_{srd}/\gamma_b)) \leq 1.0$			0.71 OK	OK	OK	OK	OK
	広力度は、引張側鉄路のみを考慮したPC構造計算に上							

[※]中立軸位置及び応力度は、引張側鉄筋のみを考慮したRC構造計算により算定した。 ※中立軸位置は圧縮側縁からの距離を示す。

例表-4.19 曲げモーメントと軸方向力による疲労破壊の照査結果(底版)

<u> </u>	例衣-4.19 曲けモーアフトと			底版						
	項目		単位	支間	中央	極大点	端部(対称)	右側端部		
				Case 1	Case2	Case3	Case1	Case3		
	11.38			34.99	34.99	23.66	23.66	23.66		
	曲げモーメント(永久)	M_p	kN/m·m	内側引張	内側引張	外側引張	外側引張	外側引張		
永久荷重による	軸圧縮力(永久)	N' p	kN/m	66.56	66.56	66.56	66.56	66.56		
設計断面力	構造解析係数	γ _a	_	1.00	1.00	1.00	1.00	1.00		
	設計曲げモーメント(永久)	M_{pd}	kN/m∙m	34.99	34.99	23.66	23.66	23.66		
	設計軸圧縮力(永久)	N' _{pd}	kN/m	66.56	66.56	66.56	66.56	66.56		
	BX 日 中国/エ州ログチ (/パンペ)	- 1 pa	11. 17.11	92.68	114.64	87.72	26.07	87.72		
	曲げモーメント (変動)	M_r	kN/m∙m	内側引張	内側引張	外側引張	外側引張	外側引張		
変動荷重による	軸圧縮力 (変動)	N',	kN/m	55.88	5.12	90.41	55.88	90.41		
変動何里による設計断面力	構造解析係数		- KI V/III	1.00	1.00	1.00	1.00	1.00		
Becker	設計曲げモーメント(変動)	γ _a	kN/m·m	92.68	114.64	87.72	26.07	87.72		
		M _{rd}			ļ			ļ		
	設計軸圧縮力(変動)	N' _{rd}	kN/m	55.88	5.12	90.41	55.88	90.41		
	部材幅	<u>b</u>	mm	1000	1000	1,000	1000	1000		
断面諸元	部材高	h	mm	450	450	450	450	450		
	主鉄筋中心から表面までの距離	<i>c</i> ₀	mm	110	110	110	110	110		
	有効高	d	mm	340	340	340	340	340		
	引張鉄筋量	A_s	-	D19@125	D19@125	D19@125	D22@250	D22@250		
設計配筋			mm ²	2,292.0	2,292.0	2,292.0	1,548.4	1,548.4		
	引張鉄筋比	p	%	0.67	0.67	0.67	0.46	0.46		
	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000	25,000		
変動荷重による	鉄筋の弾性係数	E_{δ}	N/mm ²	200,000	200,000	200,000	200,000	200,000		
応力度の算定	中立軸位置(変動) コンクリートの圧縮縁の応力(変動)	<i>x</i> _r	mm	102.6	95.4 7.8	108.6 5.9	109.3	92.6 6.9		
	鉄筋の引張応力(変動)	σ_{crd} σ_{srd}	N/mm ² N/mm ²	117.0	160.9	101.5	33.0	146.6		
永久荷重による	中立軸位置(永久)	X _p	mm	122.4	122.4	139.7	121.9	121.9		
応力度の算定	コンクリートの圧縮応力(永久)	σ'_{cpd}	N/mm ²	2.3	2.3	1.5	1.7	1.7		
(交番の場合0)	鉄筋の引張応力 (永久)	σ_{spd}	N/mm ²	33.1	33.1	17.5	24.6	24.6		
	疲労寿命	N	-	160,000	160,000	160,000	160,000	160,000		
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0	24.0		
コンクリートの	材料係数(コンクリート)	γ.,	-	1.3	1.3	1.3	1.3	1.3		
設計疲労強度	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	18.5	18.5	18.5	18.5	18.5		
の算定	強度低下を考慮する係数(圧縮)	k 1f	-	0.85	0.85	0.85	0.85	0.85		
	コンクリートの状態を考慮する係数	K	-	17	17	17	17	17		
	コンクリートの設計疲労強度	f' crd	N/mm ²	9.5	9.5	10.0	9.9	9.9		
	鉄筋の引張強度の特性値	f _{uk}	N/mm ²	490	490	490	490	490		
	材料係数(鉄筋)	γ s	-	1.05	1.05	1.05	1.05	1.05		
	鉄筋の設計引張強度	f_{ud}	N/mm ²	467	467	467	467	467		
外がの記乱な労	係数	J ud k		0.12	0.12	0.12	0.12	0.12		
鉄筋の設計疲労 強度の算定	係数	a		0.12	0.12	0.12	0.12	0.12		
5212C			N T/ 2							
	鉄筋の設計疲労強度	f srd	N/mm ²	224.4	224.4	232.5	223.7	223.7		
	構造物係数 γ_i 部材係数 γ_b			1.1	1.1	1.1	1.1	1.1		
				0.80	1.1	1.1	1.1	1.1		
コンクリ	コンクリートの疲労に対する照査結果 $(\gamma_i \sigma_{crd}/(f_{crd}/\gamma_b) \le 1.0)$				0.99	0.72	0.24	0.84		
					OK	OK	OK	OK		
鉄角	鉄筋の疲労に対する照査結果($\gamma_i\sigma_{srd}/(f_{srd}/\gamma_b)$ \leq 1.0)			0.63 OK	0.87	0.53	0.18	0.79		
					OK	OK	OK	OK		

[※]中立軸位置及び応力度は、引張側鉄筋のみを考慮したRC構造計算により算定した。 ※中立軸位置は圧縮側縁からの距離を示す。

(3) ひび割れの照査 (使用限界状態)

1) 設計断面力の算定

設計断面力は、ひび割れ幅が鋼材の腐食に及ぼす影響を考慮した係数 k_r を用いて次式で算定した.

$$S_d = \gamma_a \left\{ S(F_{pd}) + k_r S(F_{rd}) \right\}$$

ここで、 S_d :設計断面力

γ_a: 構造解析係数

 $S(F_{pd})$, $S(F_{rd})$: 永久荷重 F_{pd} , 変動荷重 F_{rd} による断面力

 k_r : 永久荷重によるひび割れ幅が鋼材の腐食に及ぼす影響度と変動荷重による ひび割れ幅が鋼材の腐食に及ぼす影響度の差を考慮するための係数(標準0.5)

2) コンクリートの引張応力度

設計断面力により作用するコンクリートの引張応力度は次式で算定した.

$$\sigma_{ct} = \frac{N_d'}{A_e} + \frac{M_d}{I_e} y$$

$$A_e = bh + \frac{E_s}{E_c} \sum A_s , \qquad I_e = \frac{bh^3}{12} + \frac{E_s}{E_c} \sum y^2 A_s$$

ここで、 σ_{ct} : 引張縁のコンクリート引張応力度 (N/mm²)

Ae: 鋼材を考慮した等価換算断面積 (mm²)

 I_e : 鋼材を考慮した等価換算断面二次モーメント (mm^4)

 A_s : 引張鉄筋の断面積(mm^2)

 E_c , E_s : コンクリート、引張鋼材の弾性係数 (N/mm²)

b: 部材幅 (mm)

h: 断面の高さ (mm)

v: 断面図心から着目点までの距離 (mm)

3) コンクリートの曲げひび割れ強度

コンクリートの曲げひび割れ強度は、引張軟化特性を考慮して次式で算定した.

$$f_{bck} = k_{0b} \cdot k_{1b} \cdot f_{tk}$$

$$k_{0b} = 1 + \frac{1}{0.85 + 4.5 \times (h/l_{ch})}, \qquad k_{1b} = \frac{0.55}{\sqrt[4]{h}}, \qquad f_{tk} = 0.23 f_{ck}'^{2/3}$$

$$l_{ch} = G_F \cdot E_c / f_{u^2}$$
, $G_F = 10(d_{\text{max}})^{1/3} \cdot f_{ck}^{\prime 1/3}$

ここで、 f_{bck} : コンクリートの曲げひび割れ強度 (N/mm^2)

 f_{tk} : コンクリートの引張強度の特性値 (N/mm²)

 f_{ck} : コンクリートの圧縮強度の特性値 (N/mm²)

lch: 特性長さ (m)

 $G_F: コンクリートの破壊エネルギー (N/m)$

 $E_c: コンクリートの弾性係数 (N/mm²)$

dmax:粗骨材の最大粒径 (mm)

4) 曲げひび割れ幅

設計断面力による曲げひび割れ幅は、次式により算定した.

$$w = 1.1k_1 \cdot k_2 \cdot k_3 \{4c + 0.7(c_s - \phi)\} \left(\frac{\sigma_{se}}{E_s} + \varepsilon'_{csd}\right)$$

ここで, w: ひび割れ幅 (mm)

 k_1 :鋼材の表面形状がひび割れに及ぼす影響を表す係数 (=1.0:異形鉄筋)

k2: コンクリートの品質がひび割れに及ぼす影響を表す係数

 $=15/(f_{cd}^2+20)+0.7$

 f_{cd} : コンクリートの設計圧縮強度(N/mm²) = f'_{ck}/γ_c

k3: 引張鉄筋の段数の影響がひび割れに及ぼす影響を表す係数

=5(N+2)/(7N+8) N: 引張鉄筋の段数

c:かぶり (mm)

cs:鉄筋の中心線間隔 (mm)

φ: 鉄筋径 (mm)

 ε'_{csd} : コンクリートの収縮及びクリープ等によるひび割れ幅の増加を考慮する ための値= 150×10^{-6}

5) 許容ひび割れ幅

鉄筋腐食に対するひび割れ幅の限界値 w_a は0.005c(0.5mm を上限)とした.

6) 曲げモーメント及び軸方向力に対するひび割れの照査結果

以上により, ひび割れの照査を満足する最小の引張鋼材量に対する照査結果を**例表-4.20**~**例表-4.22** に示す.

例表-4.20 曲げモーメントと軸方向力によるひび割れ幅の照査結果(頂版)

	<u> </u>	1275			, 1 - 1 <u>1</u> 7.1.	頂版	(->(/////	
					内側引張	22762	外俱	引張
	項目		単位	支間		極大点	端部(対称)	左側端部
				Case1	Case2	Case3	Case1	Case3
	曲げモーメント (永久+0.5×変動)	M	kN/m⋅m	64.18	73.26	5.05	37.29	42.04
	軸圧縮力(永久+0.5×変動)	N'	kN/m	85.63	47.00	63.76	85.63	63.76
設計断面力	構造解析係数	γa	-	1.00	1.00	1.00	1.00	1.00
	設計曲げモーメント	M_d	kN/m⋅m	64.18	73.26	5.05	37.29	42.04
	設計軸圧縮力	N'_d	kN/m	85.63	47.00	63.76	85.63	63.76
	部材幅	b	mm	1,000	1,000	1,000	1,000	1,000
断面諸元	部材高	h	mm	400	400	400	400	400
例 囬 袙 兀	主鉄筋中心から表面までの距離	c_0	mm	100	100	100	100	100
	有効高	d	mm	300	300	300	300	300
	引張鉄筋量	1	-	D16@125	D16@125	D16@125	D13@125	D13@125
設計配筋	分版數肋里	A_s	mm ²	1,588.8	1,588.8	1,588.8	1,013.6	1,013.6
	引張鉄筋比	p_s	%	0.53	0.53	0.53	0.34	0.34
	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000	25,000
-1.21	鉄筋の弾性係数	E_s	N/mm ²	200,000	200,000	200,000	200,000	200,000
コンクリート の引張応力度	弾性係数比	n	-	8.0	8.0	8.0	8.0	8.0
の算定	等価換算断面積	A_e	mm ²	4.13E+05	4.13E+05	4.13.E+05	4.08.E+05	4.08.E+0
·> 9F/AC	等価換算断面二次モーメント	I_e	mm ⁴	5.46E+09	5.46E+09	5.46.E+09	5.41.E+09	5.41.E+09
	コンクリートの最大引張応力	σ_{ct}	N/mm ²	2.56	2.80	0.34	1.59	1.71
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0	24.0
	材料係数	γ _c	-	1.0	1.0	1.0	1.0	1.0
	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	24.0	24.0	24.0	24.0	24.0
	コンクリートの引張強度の特性値	f_{tk}	N/mm ²	1.91	1.91	1.91	1.91	1.91
	粗骨材の最大寸法	d_{max}	mm	25	25	25	25	25
	破壊エネルギー	G_F	N/m	84.3	84.3	84.3	84.3	84.3
れ強度の算定	7 7 1 12 11 20 20	E_c	N/mm ²	25,000	25,000	25,000	25,000	25,000
	特性長さ	l _{ch}	m	0.58	0.58	0.58	0.58	0.58
	引張軟化特性による係数	k 0b	-	1.25	1.25	1.25	1.25	1.25
	その他の原因による係数	k_{lb}	-	0.69	0.69	0.69	0.69	0.69
	コンクリートの曲げひび割れ強度	f'_{bck}	N/mm ²	1.65	1.65	1.65	1.65	1.65
	曲げひび割れ発生判定($\sigma_{ct} f_{bck} < 1.0$)			1.55	1.70	0.21	0.96	1.04
		1	1	NG	NG	OK	OK	NG
設計荷重に対す	中立軸位置※	x	mm	88.8	88.8 6.1			75.5 4.7
る鉄筋増加応力 の算定	コンクリートの圧縮応力*	σ'_c	N/mm ²	6.1	115.4			4. / 110.9
21.75	鉄筋の引張応力 [※] 係数	σ_{se}	N/mm ²	1.00	1.00			110.9
	係数	k 1	-	1.00	1.00			1.00
	係数 係数	k 2	-	1.04	1.04	***************************************	***************************************	1.04
曲げひび割れ	(ボタン 鉄筋の中心間隔	k 3		1.00	1.00			1.00
幅の算定	<u> </u>	c_s φ	mm mm	15.9	15.9	***************************************	***************************************	123
	到1/1 位 コンクリートの収縮等によるひび割れ幅	- 	- 111111	1.50.E-04	1.50.E-04			1.50.E-0
	曲げひび割れ幅	ε'_{csd}	mm	0.40	0.40			0.39
許容	鉄筋かぶり $=c_0-\varphi/2$	c	mm	92.05	92.05			93.65
計谷 ひび割れ幅	<u> </u>	w _a	mm	0.46	0.46			93.63
O O D14 0 4H		W_a	111111	0.46	0.40			0.47
	ひび割れ幅の照査結果(w/w_a \leq 1.0)			OK	O.80	***************************************	***************************************	O.82
	で力度は、引張側鉄路のみを考慮したPC構造計算に			OK	OK.		l .	υĸ

[※]中立軸位置及び応力度は、引張側鉄筋のみを考慮したRC構造計算により算定した。 ※中立軸位置は圧縮側縁からの距離を示す。

例表-4.21 曲げモーメントと軸方向力によるひび割れ幅の照査結果(側壁)

						側壁		
	·		224 44-	内側	引張		外側引張	
	項目		単位	右側極大点	***************************************	上端部	下端部	(右側)
				Case3	Case3	Case2	Case1	Case3
	曲げモーメント (永久+0.5×変動)	M	kN/m⋅m	19.88	-2.31	52.87	56.19	60.99
	軸圧縮力(永久+0.5×変動)	N'	kN/m	68.89	116.54	182.06	207.30	87.26
設計断面力	構造解析係数	γa	-	1.00	1.00	1.00	1.00	1.00
	設計曲げモーメント	M_d	kN/m∙m	19.88	-2.31	52.87	56.19	60.99
	設計軸圧縮力	N'_d	kN/m	68.89	116.54	182.06	207.30	87.26
	部材幅	b	mm	1,000	1,000	1,000	1,000	1,000
MC ユ 計 一	部材高	h	mm	400	400	400	400	400
断面諸元	主鉄筋中心から表面までの距離	c 0	mm	100	100	100	100	100
	有効高	d	mm	300	300	300	300	300
	引張鉄筋量	1	-	D16@250	D16@250	D16@125	D16@125	D16@125
設計配筋	51 饭	A_s	mm ²	794.4	794.4	1,588.8	1,588.8	1,588.8
	引張鉄筋比	p_s	%	0.26	0.26	0.53	0.53	0.53
	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000	25,000
	鉄筋の弾性係数	E_s	N/mm ²	200,000	200,000	200,000	200,000	200,000
コンクリートの引張応力度	弾性係数比	n	-	8.0	8.0	8.0	8.0	8.0
の算定	等価換算断面積	A _e	mm ²	4.06.E+05	4.06.E+05	4.13.E+05	4.13.E+05	4.13.E+0
· - 9F/C	等価換算断面二次モーメント	I_e	mm ⁴	5.40.E+09	5.40.E+09	5.46.E+09	5.46.E+09	5.46.E+0
	コンクリートの最大引張応力	σ_{ct}	N/mm ²	0.91	0.20	2.38	2.56	2.45
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0	24.0
	材料係数	ν	-	1.0	1.0	1.0	1.0	1.0
	コンクリートの設計圧縮強度	f_{cd}	N/mm ²	24.0	24.0	24.0	24.0	24.0
	コンクリートの引張強度の特性値	f_{tk}	N/mm ²	1.91	1.91	1.91	1.91	1.91
	粗骨材の最大寸法	d_{max}	mm	25	25	25	25	25
	破壊エネルギー	G_F	N/m	84.3	84.3	84.3	84.3	84.3
れ強度の算定	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000	25,000
	特性長さ	l _{ch}	m	0.58	0.58	0.58	0.58	0.58
	引張軟化特性による係数	k 0b	-	1.25	1.25	1.25	1.25	1.25
	その他の原因による係数	k 1b	-	0.69	0.69	0.69	0.69	0.69
	コンクリートの曲げひび割れ強度	f'_{bck}	N/mm ²	1.65	1.65	1.65	1.65	1.65
	曲げひび割れ発生判定(σ_{ct}/f_{bck} $<$ 1.0)			0.55	0.12	1.44	1.55	1.48
				OK	OK	NG	NG	NG
設計荷重に対す	中立軸位置※	х	mm			118.0	122.4	89.8
る鉄筋増加応力 の算定	コンクリートの圧縮応力**	σ'_c	N/mm ²			4.6	4.8	5.7
0 异 足	鉄筋の引張応力**	σ_{se}	N/mm ²			57.0	56.3	107.6
	係数	k 1	-			1.00	1.00	1.00
	係数	k 2	-	••••	***************************************	1.04	1.04	1.04
曲げひび割れ	係数	k 3	-			1.00	1.00	1.00
幅の算定	鉄筋の中心間隔	c_s	mm			125	125	125
	鋼材径	φ	mm			15.9	15.9	15.9
	コンクリートの収縮等によるひび割れ幅	$\varepsilon'_{\rm csd}$	-			1.50.E-04	1.50.E-04	1.50.E-0
36 ct	曲げひび割れ幅	w	mm			0.24	0.24	0.38
許容の変数を	鉄筋かぶり $=c_0-\varphi/2$	c	mm			92.05	92.05	92.05
ひび割れ幅	許容ひび割れ幅	w_a	mm			0.46	0.46	0.46
	ひび割れ幅の照査結果 (w/w _a ≤1.0)					0.52	0.51	0.82
	で大力中は、月頂側外数のひと老皮した100番生型			l .		OK	OK	OK

[※]中立軸位置及び応力度は、引張側鉄筋のみを考慮したRC構造計算により算定した.

[※] 中立軸位置は圧縮側縁からの距離を示す.

例表-4.22 曲げモーメントと軸方向力によるひび割れ幅の照査結果(底版)

東京		12 1.22 出げこ プライご			× 0 0 0 b		底版		
東京						内側引張	/EX/6X	外側	引張
世が手に対する。		項目		単位	支 間	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	極大占	***************************************	
### ### ### ### ### ### ### ### ### ##									Case3
接近解析係数		曲げモーメント (永久+0.5×変動)	M	kN/m⋅m	81.33				67.52
接計構正確力		軸圧縮力(永久+0.5×変動)	N'	kN/m	94.50	64.00	57.04	94.50	111.77
接計・日子・シトト	設計断面力	構造解析係数	γa	-	1.00	1.00	1.00	1.00	1.00
野前語			3	kN/m⋅m	81.33	92.31	26.14	36.69	67.52
断面諸元		設計軸圧縮力	adramana ang ana	kN/m	94.50	64.00	57.04	94.50	111.77
断面諸元		部材幅	b	mm	1000	1000	1000	1000	1000
接続形中心が表演までの距離	Not and the	部材高	h	mm	450	450	450	450	450
おおおいまでは、いまれでは、い	阿 田 箱 兀	主鉄筋中心から表面までの距離	c 0	mm	110	110	110	110	110
設計配筋		有効高		mm	340	340	340	340	340
計画的		司·正外·尔·里·	1	-	D19@125	D19@125	D19@125	D22@250	D22@250
コンクリートの弾性係数 E _c N/mm² 25,000 25,000 25,000 25,000 25,000 25,000 25,000 25,000 25,000 25,000 25,000 25,000 25,000 20,	設計配筋	5] 饭 妖 肋 重	A_s	mm ²	2,292.0	2,292.0	2,292.0	1,548.4	1,548.4
おおかけ		引張鉄筋比	p_s	%	0.67	0.67	0.67	0.46	0.46
コンクリートの引張応力度の算定 鉄筋の弾性係数比 Es N/mm² 200,000 <td></td> <td>コンクリートの弾性係数</td> <td>1</td> <td>N/mm²</td> <td>25,000</td> <td>25,000</td> <td>25,000</td> <td>25,000</td> <td>25,000</td>		コンクリートの弾性係数	1	N/mm ²	25,000	25,000	25,000	25,000	25,000
##任係数比		鉄筋の弾性係数	E_s		200,000	200,000	200,000	200,000	200,000
の第定 特価換算時面積		弹性係数比	n	-	8.0	8.0	8.0	8.0	8.0
等価換算断面二次モーメント		等価換算断面積	A_{e}	mm ²	4.68.E+05	4.68.E+05	4.68.E+05	4.62.E+05	4.62.E+05
コンクリートの最大引張応力	♥2 弁 Æ	等価換算断面二次モーメント			7.84.E+09	7.84.E+09	7.84.E+09	7.76.E+09	7.76.E+09
材料係数			σ_{ct}	N/mm ²	2.54	2.79	0.87	1.27	2.20
材料係数		コンクリートの圧縮強度の特性値			24.0	24.0	24.0	24.0	24.0
コンクリートの設計圧縮強度 f_{cd} N/mm² 24.0 <td< td=""><td></td><td>材料係数</td><td>1</td><td>-</td><td>1.0</td><td>1.0</td><td>1.0</td><td>1.0</td><td>1.0</td></td<>		材料係数	1	-	1.0	1.0	1.0	1.0	1.0
コンクリートの引張強度の特性値		コンクリートの設計圧縮強度		N/mm ²	24.0	24.0	24.0	24.0	24.0
コンクリート の曲げひび割 和強度の算定 特性長さ 日かけの原因による係数 コンクリートの弾性係数 特性氏さる係数 ロンクリートの曲げひび割れ強度 dmm G _F N/m 25 25 25 25 日本の他の原因による係数 ロンクリートの曲げひび割れ発生判定 日本の他の原因による係数 ロンクリートの曲げひび割れ発生判定 日本の他の原因による係数 ロンクリートの曲げひび割れ発生判定 日本の他の原因による係数 ロンクリートの曲がひび割れ強度 k _{lb} b b b b c c c c c c c c c c c c c c c		コンクリートの引張強度の特性値	8	N/mm ²	1.91	1.91	1.91	1.91	1.91
 れ強度の算定 特性長さ	コンクリート	粗骨材の最大寸法			25	25	25	25	25
特性長さ		破壊エネルギー	G_F	N/m	84.3	84.3	84.3	84.3	84.3
引張軟化特性による係数	れ強度の算定	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000	25,000
その他の原因による係数		特性長さ	l_{ch}	m	0.58	0.58	0.58	0.58	0.58
コンクリートの曲げひび割れ強度		引張軟化特性による係数	k_{0b}	-	1.23	1.23	1.23	1.23	1.23
曲げひび割れ発生判定($\sigma_{cl} f_{bck} < 1.0$) Bult 前重に対する鉄筋増加応力の算定 中立軸位置 [※] x mm 110.5 103.8 103.8 103.8 103.8 104.5 105.5 105.8 105.		その他の原因による係数	k_{1b}	-	0.67	0.67	0.67	0.67	0.67
中立軸位置**		コンクリートの曲げひび割れ強度	f'_{bck}	N/mm ²	1.57	1.57	1.57	1.57	1.57
世立軸位置 [※] x mm 110.5 103.8 10		曲げひが割れ発生判定 $(\sigma/f_{\odot} < 1.0)$			1.61	1.77	0.55	0.81	1.40
る鉄筋増加応力の算定 コンクリートの圧縮応力** σ'c N/mm² 5.5 6.3 曲げひび割れ幅 係数 kknの引張応力** σ'c N/mm² 91.5 114.5 (係数 (係数 kk1 - 1.00 1.00 (係数 kk2 - 1.00 1.00 (係数 (条数 kk3 - 1.00 1.00 (係数 (条数 kk3 - 1.00 1.00 (※数の中心間隔 のより の					NG	NG	OK	OK	NG
の算定 鉄筋の引張応力** σ se N/mm² 91.5 114.5 係数 k1 - 1.00 1.00 係数 k2 - 1.04 1.04 係数 k3 - 1.00 1.00 鉄筋の中心間隔 c s mm 125 鋼材径 φ mm 19.1 19.1 コンクリートの収縮等によるひび割れ幅 ε'ssd - 1.50.E-04 1.50.E-04 1.50.E-04 曲げひび割れ幅 w mm 0.36 0.43 10.45 許容 鉄筋かぶり = co-φ/2 c mm 100.45 100.45 98 びび割れ幅 w mm 0.50 0.50 0.50	設計荷重に対す	中立軸位置※	х	mm					101.5
曲げひび割れ幅の算定 鉄筋かぶり $= c_0 - \varphi/2$ 次ので割れ幅 σ があるがあるが σ があるがあれる σ を σ σ を σ		コンクリートの圧縮応力**	σ'_c	N/mm ²					5.2
曲げひび割れ幅の算定 機数 k_2 - 1.04 1.04	の算定	277770 - 313277 - 270	σ_{se}	N/mm ²					97.3
曲げひび割れ幅の算定 解析の中心間隔 c_s mm 125 125 第材径 ρ mm 19.1 19.1 2.5 c_s 3 c_s mm 125 125 c_s 第材径 c_s mm 19.1 19.1 c_s 3 c_s 3 c_s 3 c_s 3 c_s 4 c_s 4 c_s 4 c_s 5 c_s 4 c_s 6 c_s 5 c_s 6 c_s 7 c_s 7 c_s 8 c_s 6 c_s 6 c_s 7 c_s 7 c_s 8 c_s 7 c_s 8 c_s 7 c_s 8 c_s 9			k 1	-					1.00
曲げひび割れ 幅の算定 鉄筋の中心間隔 c_s mm 125 125			k 2	-					1.04
幅の算定 解材径 ρ mm 19.1 19.1 2 3 125 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	出げていてが生けか	***************************************	k 3	-					1.00
鋼材径 φ mm 19.1 19.1 2.1 2.2 2.2 2.2 2.2 mm 19.1 19.1 3.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2			c_s	mm					250
曲げひび割れ幅 w mm 0.36 0.43 0.45	IB 1/ 37 AL		- 4						22.2
許容 数筋かぶり $=c_0-\varphi/2$ c mm 100.45 100.45 90 00 00 00 00 00 00 00 00 00 00 00 00			$\varepsilon'_{\rm csd}$	-					1.50.E-04
ひび割れ幅 許容ひび割れ幅 w_a mm 0.50 0.50			1	mm					0.44
The state of the s			c	mm				***************************************	98.90
0.71 0.05	ひび割れ幅	許容ひび割れ幅	w_a	mm		;			0.49
(八八割れ,幅()) 附 食 結 果 (w/w ≥ 1 ())		ひび割れ幅の照査結果($w/w_a \leq 1.0$)			0.71	0.85			0.88
OK OK OK		ひび割れ幅の照査結果 $(w/w_a \le 1.0)$			OK	OK			OK

[※]中立軸位置及び応力度は、引張側鉄筋のみを考慮したRC構造計算により算定した、 ※中立軸位置は圧縮側縁からの距離を示す。

(4) 引張鋼材の設計配筋

以上より,断面破壊,疲労破壊,鋼材腐食の照査に基づく引張鋼材の設計配筋を**例表-4.23** に示す.

照査結果より、各限界状態に対して以下の設計配筋で曲げモーメント及び軸方向応力に対する安全性及び使用性が確保されることとなる.

	例及一4.23 引张欧州公司自己的								
部	材	鉄筋中心から 表面までの位置	終局限界状態	疲労限界状態	使用限界状態	決定配筋			
	引張鉄筋	10	D25@250	D29@250	D16@125	D29@250			
石石山口	(内側)	10cm	0.68	0.86	0.53	0.86			
頂版	引張鉄筋	10cm	D16@250	D16@250	D13@125	D13@125			
	(外側)	TOCIII	0.26	0.26	0.34	0.34			
	引張鉄筋	10cm	D16@250	D13@125	D16@250	D13@125			
/pil Box	(内側)	Toem	0.26	0.34	0.26	0.34			
側壁	引張鉄筋	10cm	D22@250	D22@250	D16@125	D16@125			
	(外側)	Toem	0.52	0.52	0.53	0.53			
	引張鉄筋	11cm	D25@250	D19@125	D19@125	D19@125			
古塔	(内側)	TICIII	0.60	0.67	0.67	0.67			
底版	引張鉄筋	11cm	D22@250	D22@250	D22@250	D22@250			
	(外側)	110111	0.46	0.46	0.46	0.46			

例表-4.23 引張鉄筋の設計配筋

4.3.4 せん断力に対する構造照査

(1) 断面破壊の照査(終局限界状態)

1) 設計断面力の算定

設計断面力(曲げモーメント,軸方向力)は、構造解析により得られた断面力に構造解析 係数を乗じて算定した.

$$S_d = \gamma_a \cdot S(F_d)$$

ここで、 S_d : 設計断面力

γ_a:構造解析係数

 $S(F_d)$: 設計荷重 F_d による断面力

2) 設計斜め圧縮耐力

設計斜め圧縮破壊耐力は次式で算定した.

$$V_{wcd} = 1.25 \sqrt{f'_{cd}} \cdot b \cdot d/\gamma_b$$

ここで、 V_{wcd} : 設計斜め圧縮破壊耐力(kM/m)

 f'_{cd} : コンクリートの設計圧縮強度 (N/mm²) = f'_{ck}/γ_c

 f'_{ck} : コンクリートの圧縮強度 (N/mm²)

b: 部材幅 (mm)

[※]下段の数値は鉄筋比(%)を示す.

d: 断面の有効高さ (mm)

γ_b: 部材係数 (一般に 1.3)

3) 設計せん断耐力

設計せん断耐力は次式で算定した.

$$V_{vd} = V_{cd} + V_{sd}$$

ここで、 V_{vd}: 設計せん断耐力 (kM/m)

 V_{cd} : コンクリートにより受持たれる設計せん断耐力 (kM/m)

 V_{sd} : せん断補強鉄筋により受持たれる設計せん断耐力 (kM/m)

コンクリート及びにより受持たれる設計せん断耐力 V_{cd} とせん断補強鉄筋により受持たれるせん断耐力 V_{sd} は、それぞれ次式により算定した。

$$V_{cd} = \beta_d \cdot \beta_p \cdot \beta_n \cdot f_{vcd} \cdot b \cdot d/\gamma_b$$

$$f_{vcd} = 0.20 \sqrt[3]{f_{cd}'} , \qquad \beta_d = \sqrt[4]{1/d} \quad (\le 1.5) ,$$

$$\beta_p = \sqrt[3]{100 A_s / (b \cdot d)}$$
 (\leq 1.5), $\beta_n = 1 + M_0 / M_{ud}$ (\leq 2.0)

ここで、fvcd: コンクリートの設計せん断耐力(kM/m)

As: 引張鉄筋の断面積 (mm²)

Mo: 引張縁において、軸方向力により発生する応力を打消すのに必要な曲げ

モーメント

 $=N'd\cdot H/6$

 M_{ud} : 軸方向力を考慮しない純曲げ耐力 (x=H/2) に対する曲げ耐力)

y_b: 部材係数(一般に 1.3)

$$V_{sd} = \left\{ A_w \cdot f_{wvd} \cdot z(\sin \alpha_s + \cos \alpha_s) / s_s \right\} / \gamma_b$$

ここで、 A_w : せん断補強鉄筋の断面積 (mm^2)

fwd: せん断補強鉄筋の降伏強度 (N/mm²)

z: 圧縮応力の合力の作用位置から引張鉄筋図心までの距離,

一般に *z=d/*1.15

αs: せん断補強鉄筋が部材軸となす角度(°)

 s_s : せん断補強鉄筋の配置間隔 (mm)

y_b: 部材係数(一般に 1.1)

4) せん断力に対する断面破壊の照査結果

以上により、断面破壊の照査を満足する最小のせん断補強鋼材量に対する照査結果を**例表** -4.24~**例表**-4.26 に示す.

例表-4.24 せん断力による断面破壊の照査結果(頂版)

					頂	版	
	項目		単位	端部(対称)	右端部	左端部
				Case1	Case2	Case3	Case3
	せん断力	V	kN/m	244.68	244.68	24.06	94.31
	軸圧縮力	N'	kN/m	152.67	59.96	100.18	100.18
設計断面力 の算定	構造解析係数	γ _a	-	1.00	1.00	1.00	1.00
の昇足	設計せん断力	V_d	kN/m	244.68	244.68	24.06	94.31
	設計軸応力	N'_d	kN/m	152.67	59.96	100.18	100.18
	部材幅	b	mm	1,000	1,000	1,000	1,000
u = + -	部材高	h	mm	400	400	400	400
断面諸元	主鉄筋中心から表面までの距離	c_0	mm	100	100	100	100
	有効高	d	mm	300	300	300	300
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0
	材料係数	γ	-	1.3	1.3	1.3	1.3
コンクリートの設計	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	18.5	18.5	18.5	18.5
	コンクリートの設計斜め圧縮強度	f_{wcd}	N/mm ²	5.38	5.38	5.38	5.38
の算定	部材係数(せん断・コンクリート)	γь	-	1.3	1.3	1.3	1.3
	設計斜め圧縮破壊耐力	V_{wca}	kN/m	1240.7	1240.7	1240.7	1240.7
	構造物係数	γ _i	-	1.2	1.2	1.2	1.2
全	料め圧縮破壊の照査結果($\gamma_i V_d/V_{ud} \le 1.0$)	, ,,		0.24	0.24	0.02	0.09
亦	$+$ の江州 収象の 思 且 h 未 ($\gamma_i V_d / V_{ud} = 1.0$)	,		OK	OK	OK	OK
			_	D13@125	D29@250	D29@250	D13@125
	引張鉄筋量	A_s	***************************************	(外側)	(内側)	(内側)	(外側)
			mm ²	1,013.6	2,569.6	2,569.6	1,013.6
	コンクリートの設計せん断強度	f_{vcd}	N/mm ²	0.529	0.529	0.529	0.529
コンクリートが受持 つ設計せん断耐力	係数	β_d	-	1.351	1.351	1.351	1.351
の算定	係数	β_p	-	0.696	0.950	0.950	0.696
	引張縁で軸力による応力を打ち消すのに必要なモーメント	M_0	kN/m•m	10.178	3.997	6.679	6.679
	設計曲げ耐力(純曲げ耐力)	M_{ud}	kN/m∙m	306.26	355.06	355.06	306.26
	係数	β_n	-	1.033	1.011	1.019	1.022
	補強鉄筋を用いない設計せん断耐力	V_{cd}	kN/m	118.7	158.4	159.6	117.4
	せん断補強鉄筋の断面積	A_{w}	-	2-D16	2-D16	2-D16	2-D16
	と70日間間気が700~2日間1頃	21 W	mm ²	397.2	397.2	397.2	397.2
設計配筋	せん断補強鉄筋の配置間隔	S _S	mm	125	125	125	125
	せん断補強鉄筋が部材軸となす角	α_s	mm	90	90	90	90
	せん断補強鉄筋比	p_w	%	0.32	0.32	0.32	0.32
せん断補強鉄筋	せん断補強鉄筋の設計降伏強度	f_{wyd}	N/mm ²	345	345	345	345
が受持つ設計せ	圧縮応力の作用位置から鋼材までの距離	Z	mm	260.9	260.9	260.9	260.9
ん断耐力の算定	部材係数(せん断補強鉄筋)	$\frac{\gamma_b}{V}$	kN/m	1.1 260.0	260.0	260.0	260.0
	せん断補強鉄筋が受持つ設計せん断耐力 設計せん断耐力	V_{sd} V_{yd}	kN/m kN/m	378.7	418.4	419.6	377.4
設計せん断耐力	構造物係数	γ _{yd} γ _i	- Ki 1/111	1.2	1.2	1.2	1.2
		11		0.78	0.70	0.07	0.30
	せん断破壊の照査結果($\gamma_i V_d/V_{ud} \le 1.0$)			OK	OK	OK	OK

例表-4.25 せん断力による断面破壊の照査結果(側壁)

翻圧縮力)/IX 1. 20 2.701			лш ж		側			
設計断面力の算定 P	項目					上端部			下端部	
## ME 部 方					Case1	Case2	Case3	Case1	Case2	Case3
開造解析係数 7。 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.		せん断力	V	kN/m	111.21	48.44	58.72	105.73	47.81	158.23
# 簡単性を振り		軸圧縮力	N'	kN/m	337.58	337.58	49.50	358.89	358.89	70.81
新田高緒元		構造解析係数	γ _a	-	1.00	1.00	1.00	1.00	1.00	1.00
断面諸元	の昇足	設計せん断力	·	kN/m	111.21	48.44	58.72	105.73	47.81	158.23
勝面諸元		設計軸応力	N'_d	kN/m	337.58	337.58	49.50	358.89	358.89	70.81
接換的中心から表面までの距離		部材幅		mm	1,000	1,000	1,000	1,000	1,000	1,000
主鉄筋中心から表面までの距離		部材高	h	mm	400	400	400	400	400	400
有効高 2 → 2 リートの圧縮速度の特性値	断面諸元	主鉄筋中心から表面までの距離	c 0	mm	100	100	100	100	100	100
コンクリートの設計 特対任徳			·	mm	300	300	300	300	300	300
村林係数 7c			f'at	N/mm ²	24.0	24.0	24.0	24.0	24.0	24.0
コンクリートの設計			 	-	1.3	1.3	1.3	1.3	1.3	1.3
おめ圧縮破壊断力 の第定 お材係数(せん断・コンクリート)	コンカリートの設計		·	N/mm ²	18.5	18.5	18.5	18.5	18.5	18.5
部材係数(せん断・コンクリート) ア _b - 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.1 1.3 1.3			+		5.38	5.38	5.38	5.38	5.38	5.38
設計解め圧縮破壊耐力	の算定	部材係数(せん断・コンクリート)	T	-	1.3	1.3	1.3	1.3	1.3	1.3
構造物係数			·	kN/m	1240.7	1240.7	1240.7	1240.7	1240.7	1240.7
おか圧縮破壊の照査結果 (y, V _d /V _{ud} ≤ 1.0)			-	-	1.2	1.2	1.2	1.2	1.2	1.2
日本の	4		, , , ,		0.11	0.05	0.06	0.10	0.05	0.15
引張鉄筋量		# 80 圧相吸吸の無重和未 (Y _i V _d / V _{ud} ≥ 1.0)	,		OK	OK	OK	OK	OK	OK
mm²				_	D16@125	D16@125	D13@125	D16@125	D16@125	D16@125
コンクリートが受持 つ設計せん断領力 の算定 「機数 月 _d - 1.351 1.35		引張鉄筋量	A_s		(外側)	(外側)	(内側)	(外側)	(外側)	(外側)
ロンクリートが受持 の設計せん断耐力 の算定				mm ²	1,588.8	1,588.8	1,013.6	1,588.8	1,588.8	1,588.8
の設計せん断耐力 の算定 係数 別職様で軸かによる応力を打ち消すのに必要なモールト M ₀ kN/m・m 324.30 324.30 306.26 324.30 324.30 324.30 係数 β _p - 0.809 0.809 0.606 0.809		コンクリートの設計せん断強度	f_{vcd}	N/mm ²	0.529	0.529	0.529	0.529	0.529	0.529
		係数	β_d	-	1.351	1.351	1.351	1.351	1.351	1.351
設計曲げ耐力(純曲げ耐力)	.,	係数	β_p	-	0.809	0.809	0.696	0.809	0.809	0.809
係数		引張縁で軸力による応力を打ち消すのに必要なモーメント	M_0	kN/m∙m	22.505	22.505	3.300	23.926	23.926	4.721
横進鉄筋を用いない設計せん断耐力		設計曲げ耐力(純曲げ耐力)	M_{ud}	kN/m·m	324.30	324.30	306.26	324.30	324.30	324.30
世ん断補強鉄筋の断面積		係数	β_n	-	1.069	1.069	1.011	1.074	1.074	1.015
世ん断補強鉄筋の断面積		補強鉄筋を用いない設計せん断耐力	V_{cd}	kN/m	142.7	142.7	116.1	143.3	143.3	135.4
設計配筋 せん断補強鉄筋の配置間隔 s _s mm 125 125 125 125 125 125 125 125 125 125		北 4 版補強鉄筋の版面積	4	-	2-D13	2-D13	2-D13	2-D13	2-D13	2-D13
せん断補強鉄筋が部材軸となす角 a _s mm 90		と70時間3550000時間1度	A _W	mm ²	253.4	253.4	253.4	253.4	253.4	253.4
せん断補強鉄筋比 pw % 0.20 260.9 26	設計配筋	せん断補強鉄筋の配置間隔	Ss	mm						125
世ん断補強鉄筋が受持つ設計せん断耐力			α_s							90
せん断補強鉄筋 が受持つ設計せん断耐力の算定										0.20
が受持つ設計せん断耐力の作用化値から調格までの距離 z mm 260.9 260	せん断補強鉄筋									345
世人断補強鉄筋が受持つ設計せん断耐力 V _{sd} kN/m 165.9	が受持つ設計せ		+	mm						
設計せん断耐力	ん断耐力の算定			kN/m						1.1
設計せん断耐力 構造物係数										301.3
せん断破壊の昭秀結果 (** 17 / 17 / 10) 0.43 0.19 0.25 0.41 0.19 0.6	設計せん断耐力			- K1 1/111						1.2
1 せん駅破煙の路香結里 (** V /V .<10)			11							0.63
OR OR OR OR OR		せん断破壊の照査結果 $(\gamma_i V_d / V_{ud} \le 1.0)$			OK	OK	OK	OK	OK	OK

例表-4.26 せん断力による断面破壊の照査結果(底版)

					底	版	
	項目		単位	端部(対称)	左端部	右端部
				Case1	Case2	Case3	Case3
	せん断力	V	kN/m	260.19	260.19	45.29	112.53
50 51 Me 1	軸圧縮力	N'	kN/m	146.44	73.25	56.54	175.44
設計断面力 の算定	構造解析係数	γa	-	1.00	1.00	1.00	1.00
07年足	設計せん断力	V_d	kN/m	260.19	260.19	45.29	112.53
	設計軸応力	N'_d	kN/m	146.44	73.25	56.54	175.44
	部材幅	b	mm	1,000	1,000	1,000	1,000
Nr =+ -	部材高	h	mm	450	450	450	450
断面諸元	主鉄筋中心から表面までの距離	c_0	mm	110	110	110	110
	有効高	d	mm	340	340	340	340
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0
	材料係数	γ _c	-	1.3	1.3	1.3	1.3
コンクリートの設計	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	18.5	18.5	18.5	18.5
斜め圧縮破壊耐力	コンクリートの設計斜め圧縮強度	f_{wcd}	N/mm ²	5.38	5.38	5.38	5.38
の算定	部材係数(せん断・コンクリート)	γь	-	1.3	1.3	1.3	1.3
	設計斜め圧縮破壊耐力	V _{wca}	kN/m	1406.1	1406.1	1406.1	1406.1
	構造物係数	γ_i	-	1.2	1.2	1.2	1.2
£	料め圧縮破壊の照査結果($\gamma_i V_d/V_{ud} \leq 1.0$)	, ,,	ļ	0.22	0.22	0.04	0.10
	子の圧相吸象の照重和未 $(\gamma_i V_d / V_{ud} \le 1.0)$			OK	OK	OK	OK
			_	D19@125	D19@125	D19@125	D22@250
	引張鉄筋量	A_s		(内側)	(内側)	(内側)	(外側)
			mm ²	2,292.0	2,292.0	2,292.0	1,548.4
	コンクリートの設計せん断強度	f_{vcd}	N/mm ²	0.529	0.529	0.529	0.529
コンクリートが受持 つ設計せん断耐力	係数	β_d	-	1.310	1.310	1.310	1.310
の算定	係数	β_p	-	0.877	0.877	0.877	0.769
3172	引張縁で軸力による応力を打ち消すのに必要なモーメント	M_0	kN/m∙m	10.983	5.494	4.241	13.158
	設計曲げ耐力(純曲げ耐力)	M_{ud}	kN/m∙m	347.75	347.75	347.75	326.75
	係数	β_n	-	1.032	1.016	1.012	1.040
	補強鉄筋を用いない設計せん断耐力	V_{cd}	kN/m	163.9	161.4	160.8	145.0
	せん断補強鉄筋の断面積		_	2-D13	2-D13	2-D13	2-D13
	でん断伸強鉄筋の断囲槓	A_{w}	mm ²	253.4	253.4	253.4	253.4
設計配筋	せん断補強鉄筋の配置間隔	S _S	mm	125	125	125	12:
	せん断補強鉄筋が部材軸となす角	α_s	mm	90	90	90	9(
	せん断補強鉄筋比	p_{w}	%	0.20	0.20	0.20	0.20
せん断補強鉄筋	せん断補強鉄筋の設計降伏強度	$f_{\it wyd}$	N/mm ²	345	345	345	34:
でん断無無 が受持つ設計せ	圧縮応力の作用位置から鋼材までの距離	z	mm	295.7	295.7	295.7	295.7
ん断耐力の算定	部材係数(せん断補強鉄筋)	γ _b		1.1	1.1	1.1	1.1
	せん断補強鉄筋が受持つ設計せん断耐力	V_{sd}	kN/m	188.0	188.0	188.0	188.0
設計せん断耐力	設計せん断耐力	V_{yd}	kN/m	351.9	349.4	348.8	333.0
	構造物係数	γ_i	-	1.2	1.2	1.2	1.2
	せん断破壊の照査結果($\gamma_i V_d/V_{ud} \leq 1.0$)			0.89	0.89	0.16	0.4
				OK	OK	OK	OK

(2) 疲労破壊の照査 (疲労限界状態)

1) 永久荷重・変動荷重に対する応力度

永久荷重・変動荷重に対するせん断補強鉄筋の応力度は,通常の使用時の応力状態として 次式で与えられる.

$$\sigma_{wpd} = \frac{\left(V_{pd} + V_{rd} - k_2 V_{cd}\right) s_s}{A_w \cdot z \left(\sin \alpha_s + \cos \alpha_s\right)} \cdot \frac{V_{pd} + V_{cd}}{V_{pd} + V_{rd} + V_{cd}},$$

$$\sigma_{wrd} = \frac{\left(V_{pd} + V_{rd} - k_2 V_{cd}\right) s_s}{A_w \cdot z \left(\sin \alpha_s + \cos \alpha_s\right)} \cdot \frac{V_{rd}}{V_{pd} + V_{rd} + V_{cd}},$$

ここで、 σ_{wpd} :永久荷重によるせん断補強鉄筋の設計応力度 (N/mm^2)

σwrd:変動荷重によるせん断補強鉄筋の設計応力度 (N/mm²)

 V_{pd} : 永久荷重による設計せん断力 (kM/m)

 V_{rd} :変動荷重による設計せん断力 (kM/m)

 V_{cd} : コンクリートが負担する設計せん断力 (kM/m)

k_r:変動荷重の頻度の影響を考慮するための係数、一般に 0.5

Aw: せん断補強鉄筋の断面積 (mm²)

z: 圧縮応力の合力の作用位置から引張鉄筋図心までの距離,

一般に z=d/1.15

αs: せん断補強鉄筋が部材軸となす角度(°)

ss: せん断補強鉄筋の配置間隔 (mm)

コンクリートが負担する設計せん断力 V_{cd} は次式により算定する.

$$\begin{split} V_{cd} &= \beta_d \cdot \beta_p \cdot \beta_n \cdot f_{vcd} \cdot b \cdot d / \gamma_b \\ f_{vcd} &= 0.20 \sqrt[3]{f'_{cd}}, \qquad \beta_d = \sqrt[4]{1/d} \qquad (\leq 1.5), \\ \beta_p &= \sqrt[3]{100 A_s / (b \cdot d)} \qquad (\leq 1.5), \qquad \beta_n = 1 + 2 M_0 / M_d \qquad (\leq 2.0) \end{split}$$

ここで、 V_{cd} : コンクリートと主鉄筋により受持たれる設計せん断耐力(kM/m)

fvcd: コンクリートの設計せん断耐力(kM/m)

b: 部材幅 (mm)

d: 断面の有効高さ (mm)

γ_b: 部材係数 (疲労破壊に関する照査では 1.3)

 f'_{cd} : コンクリートの設計圧縮強度 (N/mm²) = f'_{ck}/y_c

 f'_{ck} : コンクリートの圧縮強度 (N/mm²)

 A_s : 引張鉄筋の断面積 (mm^2)

Mo: 引張縁において, 軸方向力により発生する応力を打消すのに必要な曲げ

モーメント = $N'_d \cdot H/6$

 M_{ud} : 軸方向力を考慮しない純曲げ耐力 (x=H/2) に対する曲げ耐力)

2) 設計せん断疲労強度

せん断補強鉄筋の引張に対する設計疲労強度は次式で算定する.

$$f_{wrd} = 190 \frac{10^{a}}{N^{k}} (1 - \sigma_{wpd} / f_{ud}) / \gamma_{s}$$

$$a = k_{0} (0.81 - 0.003\phi), \quad k = 0.12$$

ここで、 f_{wrd} : 鉄筋の設計疲労強度 (N/mm²)

 f_{ud} : 鉄筋の設計引張強度(N/mm²)= f_{uk}/γ_s

γs:鉄筋の材料係数 (=1.05)

 φ : 鉄筋直径 (mm)

 k_0 : 鉄筋のふしの形状に関する係数. 一般に 1.0 として良い.

3) せん断力に対する疲労破壊の照査結果

以上により、疲労破壊の照査を満足する最小のせん断補強鋼材量に対する照査結果を**例表** -4. 27~**例表**-4. 29 に示す.

例表-4.27 せん断力による疲労破壊の照査結果(頂版)

					頂	版	
	項目				対称)	右端部	左端部
				Case1	Case2	Case3	Case3
	せん断力	V_{p}	kN/m	54.78	54.78	-54.78	54.78
	軸圧縮力	N' _p	kN/m	44.45	44.45	44.45	44.45
永久荷重による	構造解析係数	γ _a	_	1.0	1.0	1.0	1.0
設計断面力	設計せん断力	V_{pd}	kN/m	54.78	54.78	-54.78	54.78
	設計軸応力	N'_{pd}	kN/m	44.45	44.45	44.45	44.45
	せん断力	V_r	kN/m	154.59	154.59	29.28	29.28
	軸圧縮力	N' _r	kN/m	82.38	5.12	38.63	38.63
変動荷重による	構造解析係数		K1 N/111	1.0	1.0	1.0	1.0
設計断面力	設計せん断力	V_{rd}	kN/m	154.59	154.59	29.28	29.28
	設計軸応力	N'_{rd}	kN/m	82.38	5.12	38.63	38.63
	部材幅	b b	mm	1,000	1,000	1,000	1,000
	部材高	h	mm	400	400	400	400
断面諸元	主鉄筋中心から表面までの距離	 	mm	100	100	100	100
	有効高	$\frac{c_0}{d}$	mm	300	300	300	300
	コンクリートの圧縮強度の特性値	+		24.0	24.0	24.0	24.0
	材料係数	f'ck	N/mm ²	1.3	1.3	1.3	1.3
	コンクリートの設計圧縮強度	γ _c	3.1/ 2	18.5	18.5	18.5	18.5
	コング ケードの放引 圧相 強反	f'_{cd}	N/mm ²	D13@125	D29@250	D29@250	D13@125
	引張引張鉄筋	1	-	(外側)	(内側)	(内側)	(外側)
	(曲げ・軸力に対する設定配筋)	A_s	mm ²	1,013.6	2,569.6	2,569.6	1,013.6
	コンクリートの設計せん断強度	ſ		0.529	0.529	0.529	0.529
コンクリートが	係数	f_{vcd}	N/mm ²	1.351	1.351	1.351	1.351
受持つ設計せん	係数	β_d	-	0.696	0.950	0.950	0.696
断力の算定		β_p	1-3.1/				
	設計軸圧縮応力 (永久+変動) 引張縁で軸力による応力を打ち消すのに必要なモーメント	N' _d	kN/m kN/m∙m	126.83	49.57	83.08	83.08
	設計曲げ耐力(純曲げ耐力)	M ₀	kN/m·m	8.455 304.75	3.305 351.24	5.539 351.24	5.539 304.75
		M_{ud}	- KIN/III*III	1.028	1.009	1.016	1.018
	部材係数(せん断・コンクリート)	β_n	-	1.028	1.3	1.010	1.018
	補強鉄筋を用いない設計せん断耐力	γ _b	kN/m	118.1	158.1	159.1	117.0
	変動荷重の頻度の影響を考慮する係数	V _{cd}	- KIN/III	0.5	0.5	0.5	0.5
	変動何里の頻及の影響を考慮する情報	k _r	-	2-D13	2-D13	2-D13	2-D13
	せん断補強鉄筋	A_w	- 2	253.4	253.4	253.4	253.4
設計配筋	世ん断補強鉄筋の配置間隔	_	mm ²	125	125	125	125
		S _S	mm	90	90	90	90
	せん断補強鉄筋が部材軸となす角 せん断補強鉄筋比	α_s	mm %		0.20	0.20	0.20
	圧縮応力の作用位置から鋼材までの距離	p_w		0.20 260.9	260.9	260.9	260.9
せん断補強鉄筋	圧縮応力のTF用位直がり調材までの起離	Z	mm	150.06	142.75	0.00	41.31
の応力度の算定	永久荷重によるせん断補強鉄筋の応力度*	σ_{wpd}	N/mm ²		103.65		
	変動荷重によるせん断補強鉄筋の応力度**	σ_{wrd}	N/mm ²	134.21		0.00	7.04
	疲労寿命	N	-	160,000	160,000	160,000	160,000
	鉄筋の引張強度の特性値	f_{uk}	N/mm ²	490	490	490	490
	材料係数(鉄筋)	γ _s	- 2	1.05	1.05	1.05	1.05
鉄筋の設計疲労	鉄筋の設計引張強度	f_{ud}	N/mm ²	467	467	467	467
強度の算定	係数	k	-	0.12	0.12	0.12	0.12
	係数 Number of the North Park	а	-	0.77	0.77	0.77	0.77
	鉄筋の設計疲労強度	f_{wrd}	N/mm ²	171.7	175.6	253.0	230.6
	構造物係数	<u> 7 i</u>	-	1.1	1.1	1.1	1.1
	部材係数(せん断・鉄筋)	γ _b	-	1.1	1.1	1.1	1.1
9	鉄筋の疲労に対する照査結果($\gamma_i \sigma_{wrd}/(f_{wrd}/\gamma_b)$ ≦	1.0)		0.95	0.71	0.00	0.04
	断力に対して コンカリートが受持へ勢計せん断力が大きく 質		us that	OK	OK	OK	OK

[%] 作用する設計せん断力に対して、コンクリートが受持つ設計せん断力が大きく、算定されるせん断補強鉄筋の応力度が0以下となる場合は、 σ_{wpd} , $\sigma_{wrd} = 0$ N/ mm^2 とした。

例表-4.28 せん断力による疲労破壊の照査結果(側壁)

永久荷計断面 お	項目 ん断力 正縮力 造解析係数 計せん断力	V _p N' _p γ _a	単位 kN/m kN/m	Case1 34.85 78.62	上端部 Case2 34.85 78.62	Case3 34.85	Case 1 -45.37	下端部 Case2 -45.37	Case3
永久荷計断面	王縮力 造解析係数	N'p		34.85	34.85	34.85			Case3 -45.37
永久荷丁 (本)	王縮力 造解析係数	N'p					-45.37	-45.37	45.27
永 次 荷 重 に よ か る	造解析係数	1	kN/m	78,62	70.73				-43.37
要計断面力 標準 設計 断面力 を		ν			/8.02	78.62	99.94	99.94	99.94
設計 設計 を 変動荷重による 設計断面力 部材 度計 設計 部材 主 設計 有効 コンクリートが の コンクリートが	計せん断力		-	1.0	1.0	1.0	1.0	1.0	1.0
変動 青重による 一般 変動 青重 一部 一部 一部 一部 一部 一部 一部 一部		V_{pd}	kN/m	34.85	34.85	34.85	-45.37	-45.37	-45.37
変動荷重能 おお 構造 設計 断面 諸元 部材 主	計軸応力	N' _{pd}	kN/m	78.62	78.62	78.62	99.94	99.94	99.94
変動荷重による 機造計断面力 部材 一部 一部 一部 一部 一部 一部 一部 一部 一部 一部	ん断力	V_r	kN/m	57.43	5.12	13.69	-43.15	5.12	-86.90
 設計断面力 機定計 部材 主鉄 有効 コンイリートが 		N',	kN/m	210.80	210.80	29.28	210.80	210.80	29.28
設計 設計 断面諸元 第一 主鉄 有効 フン材料 コン 引曲 コンクリートが 1 (ロコン び ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ	造解析係数	γa	-	1.0	1.0	1.0	1.0	1.0	1.0
断面諸元 部材 部材 主 数 有効 コン料 コン 引 明 コン 引 の の の の り の の の の の の の の の の の の の の	計せん断力	V_{rd}	kN/m	57.43	5.12	13.69	-43.15	5.12	-86.90
斯面諸元 部材 主鉄 有効 コン 材料ン 引 明 コン リートが (公 数 の コン の の の の の の の の の の の の の の の の の	計軸応力	N'_{rd}	kN/m	210.80	210.80	29.28	210.80	210.80	29.28
野田商元 主鉄 有効 コン 材料 コン 引張曲 コンクリートが (反数) コンクソート (反数) コンクリート (反数) コンクリート (反数) コンクリート (反数) に (の数) に		b	mm	1,000	1,000	1,000	1,000	1,000	1,000
主鉄 有効 コン 材料 コン 引張曲 コンクリートが 係数	 	h	mm	400	400	400	400	400	400
コン 材料 コン 引張曲 コンクリートが 係数	跌筋中心から表面までの距離	c 0	mm	100	100	100	100	100	100
材料コン 引張 は曲 コンクリートが 深数	·	d	mm	300	300	300	300	300	300
コン 引張 (曲 コンクリートが (な数	ンクリートの圧縮強度の特性値	f_{ck}	N/mm ²	24.0	24.0	24.0	24.0	24.0	24.0
引張 (曲 コンクリートが 伝数	料係数	γc	-	1.3	1.3	1.3	1.3	1.3	1.3
(曲 コン コンクリートが 	ンクリートの設計圧縮強度	f'_{cd}	N/mm ²	18.5	18.5	18.5	18.5	18.5	18.5
(曲 コン コンクリートが 	75 71 75 M. Mr			D16@125	D16@125	D13@125	D16@125	D16@125	D16@125
コンクリートが 係数	張引張鉄筋 曲げ・軸力に対する設定配筋)	A_s	-	(外側)	(外側)	(内側)	(外側)	(外側)	(外側)
コンクリートが 係数	田り・軸刀に刈りる故足配肋)		mm ²	1,588.8	1,588.8	1,013.6	1,588.8	1,588.8	1,588.8
144 337	ンクリートの設計せん断強度	f_{vcd}	N/mm ²	0.529	0.529	0.529	0.529	0.529	0.529
	数	β_d	-	1.351	1.351	1.351	1.351	1.351	1.351
断力の算定 係数	<u></u> 数	β_p	-	0.809	0.809	0.696	0.809	0.809	0.809
設計	計軸圧縮応力(永久+変動)	N'_d	kN/m	289.42	289.42	107.90	310.74	310.74	129.22
引張縁	る縁で軸力による応力を打ち消すのに必要なモーメント	M_0	kN/m∙m	19.295	19.295	7.193	20.716	20.716	8.615
設計	計曲げ耐力(純曲げ耐力)	M_{ud}	kN/m∙m	321.94	321.94	304.75	321.94	321.94	321.94
係数	数	β_n	-	1.060	1.060	1.024	1.064	1.064	1.027
部材	材係数(せん断・コンクリート)	γ _b	-	1.3	1.3	1.3	1.3	1.3	1.3
補強	強鉄筋を用いない設計せん断耐力	V_{cd}	kN/m	141.5	141.5	117.6	142.0	142.0	137.0
変動	動荷重の頻度の影響を考慮する係数	k ,	-	0.5	0.5	0.5	0.5	0.5	0.5
a+)	ん断補強鉄筋	A_w	-	2-D13	2-D13	2-D13	2-D13	2-D13	2-D13
E 10	▽ 191 1用 1虫 4大 月ガ	A _W	mm ²	253.4	253.4	253.4	253.4	253.4	253.4
設計配筋 せん	ん断補強鉄筋の配置間隔	Ss	mm	125	125	125	125	125	125
せん	ん断補強鉄筋が部材軸となす角	α_s	mm	90	90	90	90	90	90
せん	ん断補強鉄筋比	p_{w}	%	0.20	0.20	0.20	0.20	0.20	0.20
上, 版	縮応力の作用位置から鋼材までの距離	z	mm	260.9	260.9	260.9	260.9	260.9	260.9
せん断補強鉄筋水久の応力度の算定水久	久荷重によるせん断補強鉄筋の応力度**	σ_{wnd}	N/mm ²	30.74	0.00	0.00	26.90	0.00	81.66
変動	動荷重によるせん断補強鉄筋の応力度**	σ_{wrd}	N/mm ²	10.01	0.00	0.00	6.19	0.00	38.90
疲労	労寿命	N	-	160,000	160,000	160,000	160,000	160,000	160,000
鉄筋	筋の引張強度の特性値	f_{uk}	N/mm ²	490	490	490	490	490	490
材料	科係数(鉄筋)	γ_s	-	1.05	1.05	1.05	1.05	1.05	1.05
鉄筋の割りを必	筋の設計引張強度	f_{ud}	N/mm ²	467	467	467	467	467	467
鉄筋の設計疲労 係数	数	k	-	0.12	0.12	0.12	0.12	0.12	0.12
畑及の昇足 係数		а	-	0.77	0.77	0.77	0.77	0.77	0.77
鉄筋		u					220.4	252.0	200.7
構造		f_{wrd}	N/mm ²	236.3	253.0	253.0	238.4	253.0	208.7
部材料	数	·	N/mm ²	236.3 1.1	253.0 1.1	253.0 1.1	238.4	253.0 1.1	
金生なする	版 筋の設計疲労強度	f_{wrd}							1.1
或大 用力 U	数 筋の設計疲労強度 造物係数	f _{wrd} y _i y _b		1.1	1.1	1.1	1.1	1.1	1.1 1.1 0.23

[※] 作用する設計せん断力に対して、コンクリートが受持つ設計せん断力が大きく、算定されるせん断補強鉄筋の応力度が0以下となる場合は、 σ_{wnd} σ_{wrd} = 0N/mm² とした.

例表-4.29 せん断力による疲労破壊の照査結果(底版)

					底	版	
	項目				対称)	左端部	右端部
				Case1	Case2	Case3	Case3
	せん断力	V_{n}	kN/m	-74.61	-74.61	-74.61	74.61
3 to 110 3 3	軸圧縮力	N'_p	kN/m	66.56	66.56	66.56	66.56
永久荷重による	構造解析係数	γ _a	-	1.0	1.0	1.0	1.0
設計断面力	設計せん断力	V_{pd}	kN/m	-74.61	-74.61	-74.61	74.61
	設計軸応力	N'_{pd}	kN/m	66.56	66.56	66.56	66.56
	せん断力	V_r	kN/m	-151.07	-151.07	28.02	28.02
	軸圧縮力	N'_r	kN/m	55.88	5.12	19.05	80.04
変動荷重による	構造解析係数	γ _a	-	1.0	1.0	1.0	1.0
設計断面力	設計せん断力	V_{rd}	kN/m	-151.07	-151.07	28.02	28.02
	設計軸応力	N' _{rd}	kN/m	55.88	5.12	19.05	80.04
	部材幅	b	mm	1,000	1,000	1,000	1,000
Nr =+	部材高	h	mm	450	450	450	450
断面諸元	主鉄筋中心から表面までの距離	c_0	mm	110	110	110	110
	有効高	d	mm	340	340	340	340
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0
	材料係数	7 c	-	1.3	1.3	1.3	1.3
	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	18.5	18.5	18.5	18.5
			11/11/11	D19@125	D19@125	D19@125	D22@250
	引張引張鉄筋	A_s	-	(内側)	(内側)	(内側)	(外側)
	(曲げ・軸力に対する設定配筋)		mm ²	2,292.0	2,292.0	2,292.0	1,548.4
	コンクリートの設計せん断強度	f_{vcd}	N/mm ²	0.529	0.529	0.529	0.529
コンクリートが	係数	β_d	-	1.310	1.310	1.310	1.310
受持つ設計せん 断力の算定	係数	β_p	-	0.877	0.877	0.877	0.769
例刀の昇足	設計軸圧縮応力(永久+変動)	N'_d	kN/m	122.44	71.68	85.61	146.60
	引張縁で軸力による応力を打ち消すのに必要なモーメント	M_0	kN/m∙m	9.183	5.376	6.421	10.995
	設計曲げ耐力(純曲げ耐力)	M_{ud}	kN/m∙m	426.13	426.13	426.13	400.57
	係数	β_n	-	1.022	1.013	1.015	1.027
	部材係数(せん断・コンクリート)	γ _b	-	1.3	1.3	1.3	1.3
	補強鉄筋を用いない設計せん断耐力	V_{cd}	kN/m	162.3	160.9	161.3	143.2
	変動荷重の頻度の影響を考慮する係数	k_r	-	0.5	0.5	0.5	0.5
			-	2-D13	2-D13	2-D13	2-D13
	せん断補強鉄筋	A_w	mm²	253.4	253.4	253.4	253.4
設計配筋	せん断補強鉄筋の配置間隔	SS	mm	125	125	125	125
	せん断補強鉄筋が部材軸となす角	α_s	mm	90	90	90	90
	せん断補強鉄筋比	p_{w}	%	0.20	0.20	0.20	0.20
	圧縮応力の作用位置から鋼材までの距離	Z	mm	295.7	295.7	295.7	295.7
せん断補強鉄筋	永久荷重によるせん断補強鉄筋の応力度*	σ_{wpd}	N/mm ²	147.25	147.63	0.00	45.85
の応刀度の昇足	変動荷重によるせん断補強鉄筋の応力度**	σ_{wrd}	N/mm ²	93.90	94.71	0.00	5.90
	疲労寿命	N	-	160,000	160,000	160,000	160,000
	鉄筋の引張強度の特性値	f_{uk}	N/mm ²	490	490	490	490
	材料係数(鉄筋)	γ,	-	1.05	1.05	1.05	1.05
	鉄筋の設計引張強度	f_{ud}	N/mm ²	467	467	467	467
鉄筋の設計疲労	係数	k		0.12	0.12	0.12	0.12
強度の算定	係数	а	-	0.77	0.77	0.77	0.77
	鉄筋の設計疲労強度	f_{wrd}	N/mm ²	173.2	173.0	253.0	228.1
	構造物係数	γi	- 13/111111	1.1	1.1	1.1	1.1
	部材係数(せん断・鉄筋)	γ,	-	1.1	1.1	1.1	1.1
			ļ	0.66	0.66	0.00	0.03
9	跌筋の疲労に対する照査結果(γ _ι σ _{wrd} /(f _{wrd} /γ _b)≦	1.0)		OK	OK	OK	OK
	断力に対して コンカリートが受持つ設計せん断力が大きく 質	(今としては)	No. 14-34 Nr. 44-				/mm ² 1 +=

[%] 作用する設計せん断力に対して、コンクリートが受持つ設計せん断力が大きく、算定されるせん断補強鉄筋の応力度が0以下となる場合は、 σ_{wpd} , $\sigma_{wrd} = 0$ N/ mm^2 とした。

(3) ひび割れの照査 (使用限界状態)

1) 設計断面力の算定

設計断面力は, ひび割れ幅が鋼材の腐食に及ぼす影響を考慮した係数を用いて次式で算定する.

$$S_d = \gamma_a \left\{ S(F_{pd}) + k_r S(F_{rd}) \right\}$$

ここで、 S_d : 設計断面力

γ_a: 構造解析係数

 $S(F_{pd}): 永久荷重 F_{pd} による断面力$

 $S(F_{rd})$:変動荷重 F_{rd} による断面力

 k_r : 永久荷重によるひび割れ幅が鋼材の腐食に及ぼす影響度と変動荷重による ひび割れ幅が鋼材の腐食に及ぼす影響度の差を考慮するための係数(標準0.5)

2) コンクリートのせん断耐力

コンクリートにより受持たれる設計せん断耐力は次式により算定される.

$$\begin{split} V_{cd} &= \beta_d \cdot \beta_p \cdot \beta_n \cdot f_{vcd} \cdot b \cdot d / \gamma_b \\ f_{vcd} &= 0.20 \sqrt[3]{f'_{cd}}, \qquad \beta_d = \sqrt[4]{1/d} \quad (\le 1.5), \\ \beta_p &= \sqrt[3]{100 A_s / (b \cdot d)} \quad (\le 1.5), \qquad \beta_n = 1 + 2 M_0 / M_{ud} \quad (\le 2.0) \end{split}$$

ここで、 V_{cd} : コンクリートと主鉄筋により受持たれる設計せん断耐力 (kM/m)

 f_{vcd} : コンクリートの設計せん断耐力 (kM/m)

b:部材幅 (mm)

d: 断面の有効高さ (mm)

v_b: 部材係数(使用性に関する照査では 1.0)

 f'_{cd} : コンクリートの設計圧縮強度 (N/mm²) = f'_{ck}/γ_c

 f'_{ck} : コンクリートの圧縮強度 (N/mm²)

 A_s : 引張鉄筋の断面積(mm^2)

 M_0 : 引張縁において、軸方向力により発生する応力を打消すのに必要な曲げ

モーメント $=N'd\cdot H/6$

 M_{ud} : 軸方向力を考慮しない純曲げ耐力 (x=H/2) に対する曲げ耐力)

3) 永久荷重作用時のせん断補強鉄筋の応力度の算定方法

永久荷重作用時のせん断補強鉄筋の応力度は次式により算定される.

$$\sigma_{wpd} = \frac{\left(V_{pd} + V_{rd} - k_2 V_{cd}\right) s_s}{A_w \cdot z \left(\sin \alpha_s + \cos \alpha_s\right)} \cdot \frac{V_{pd} + V_{cd}}{V_{pd} + V_{rd} + V_{cd}}$$

ここで、 σ_{wnd} :永久荷重によるせん断補強鉄筋の設計応力度 (N/mm^2)

 V_{pd} : 永久荷重による設計せん断力 (kM/m)

 V_{nd} : 変動荷重による設計せん断力 (kM/m)

 k_r :変動荷重の頻度の影響を考慮するための係数、一般に 0.5

Aw: せん断補強鉄筋の断面積 (mm²)

z: 圧縮応力の合力の作用位置から引張鉄筋図心までの距離,

一般に z=d/1.15

αs: せん断補強鉄筋が部材軸となす角度(°)

 s_s : せん断補強鉄筋の配置間隔(mm)

4) せん断力に対するひび割れの照査結果

以上により、ひび割れの照査を満足する最小のせん断補強鋼材量に対する照査結果を**例表** -4.30~**例表**-4.32 に示す.

例表-4.30 せん断力によるひび割れの照査結果(頂版)

					頂	版	
	項目		単位	端部(対称)	右端部	左端部
				Case1	Case2	Case3	Case3
	せん断力 (永久+0.5×変動)	V	kN/m	132.08	132.08	40.15	69.42
	軸圧縮力(永久+0.5×変動)	N'	kN/m	85.63	47.00	63.76	63.76
設計断面力	構造解析係数	γa	-	1.00	1.00	1.00	1.00
	設計せん断力	V_d	kN/m	132.08	132.08	40.15	69.42
	設計軸応力	N'_d	kN/m	85.63	47.00	63.76	63.76
	部材幅	b	mm	1,000	1,000	1,000	1,000
	部材高	h	mm	400	400	400	400
断面諸元	主鉄筋中心から表面までの距離	c 0	mm	100	100	100	100
	有効高	d	mm	300	300	300	300
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0
	材料係数	γ _m	-	1.0	1.0	1.0	1.0
	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	24.0	24.0	24.0	24.0
	71.75 M. & F			D13@125	D29@250	D29@250	D13@125
	引張鉄筋量 (曲げ・軸力に対する設定配筋)	A_s	-	(外側)	(内側)	(内側)	(外側)
			mm ²	1,013.6	2,569.6	2,569.6	1,013.6
コンクリートが	コンクリートの設計せん断強度	f_{vcd}	N/mm ²	0.577	0.577	0.577	0.577
受持つ設計せん 断耐力の算定	係数	β_d	-	1.351	1.351	1.351	1.351
別間グルチル	係数	β_p	-	0.696	0.950	0.950	0.696
	引張縁で軸力による応力を打ち消すのに必要なモーメント	M_0	kN/m∙m	5.709	3.133	4.251	4.251
	設計曲げ耐力(純曲げ耐力)	M_{ud}	kN/m∙m	426.65	480.33	480.33	426.65
	係数	β_n	-	1.013	1.007	1.009	1.010
	部材係数(せん断・コンクリート)	γь	-	1.0	1.0	1.0	1.0
	補強鉄筋を用いない設計せん断耐力	V_{cd}	kN/m	165.1	223.6	224.1	164.5
コンカ	リートが受持つせん断耐力の判定(V _a /0	7V < 10)		1.14	0.84	0.26	0.60
4	グードが支付っての例前のの刊足(r _d /O	$V_{cd} \stackrel{\triangle}{=} 1.0$		NG	OK	OK	OK
	永久荷重によるせん断力	V_p	kN/m	54.78			
永久荷重・変動	変動荷重によるせん断力	V_r	kN/m	154.58			
荷重による設計		γ a	-	1.0			
せん断力	永久荷重による設計せん断力	V_{pd}	kN/m	54.78			
	変動荷重による設計せん断力	V_{rd}	kN/m	154.58			
	せん断補強鉄筋	A_{w}	-	2-D16	2-D16	2-D16	2-D16
	でん例情鬼妖筋	Aw	mm ²	397.2	397.2	397.2	397.2
設計配筋	せん断補強鉄筋の配置間隔	S _S	mm	125	125	125	125
311171-701	せん断補強鉄筋が部材軸となす角	α_s	mm	90	90	90	90
	せん断補強鉄筋比	p_{w}	%	0.32	0.32	0.32	0.32
永久荷重作用時	変動荷重の頻度の影響を考慮する係数	k_r	-	0.5			
のせん断補強鉄	圧縮応力の作用位置から鋼材までの距離	z	mm	260.9			
筋の応力度の算	せん断補強鉄筋の応力度	σ_{wrd}	N/mm ²	89.83			
定	永久荷重による増加応力の制限値		N/mm ²	120			
과) 6세2		目信 < 1 (2)		0.75			
せん断	補強鉄筋の応力度の照査結果(σ _{wrd} /制β	図[退 ≥ 1.0)		OK			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

例表-4.31 せん断力によるひび割れの照査結果(側壁)

						側	壁		
	項目		単位		上端部			下端部	
	よと) NG ナ (ネカ + 0.5 v/水系h) リン				Case2	Case3	Case1	Case2	Case3
	せん断力(永久+0.5×変動)	V	kN/m	63.56	37.40	41.69	66.94	42.81	88.81
	軸圧縮力(永久+0.5×変動)	N'	kN/m	184.02	184.02	63.99	205.34	205.34	85.30
設計断面力	構造解析係数	γa	-	1.00	1.00	1.00	1.00	1.00	1.00
	設計せん断力	V_d	kN/m	63.56	37.40	41.69	66.94	42.81	88.81
	設計軸応力	N'_d	kN/m	184.02	184.02	63.99	205.34	205.34	85.30
	部材幅	b	mm	1,000	1,000	1,000	1,000	1,000	1,000
Nr =+	部材高	h	mm	400	400	400	400	400	400
断面諸元	主鉄筋中心から表面までの距離	c 0	mm	100	100	100	100	100	100
	有効高	ď	mm	300	300	300	300	300	300
	コンクリートの圧縮強度の特性値	f_{ck}	N/mm ²	24.0	24.0	24.0	24.0	24.0	24.0
	材料係数	γ _m	-	1.0	1.0	1.0	1.0	1.0	1.0
	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	24.0	24.0	24.0	24.0	24.0	24.0
	717P N. 44 H			D16@125	D16@125	D13@125	D16@125	D16@125	D16@125
	引張鉄筋量 (曲げ・軸力に対する設定配筋)	A_s	-	(外側)	(外側)	(内側)	(外側)	(外側)	(外側)
			mm ²	1,588.8	1,588.8	1,013.6	1,588.8	1,588.8	1,588.8
コンクリートが	コンクリートの設計せん断強度	f_{vcd}	N/mm ²	0.577	0.577	0.577	0.577	0.577	0.577
受持つ設計せん 断耐力の算定	係数	β_d	-	1.351	1.351	1.351	1.351	1.351	1.351
附間が外足	係数	β_p	-	0.809	0.809	0.696	0.809	0.809	0.809
	引張縁で軸力による応力を打ち消すのに必要なモーメント	M_0	kN/m·m	12.268	12.268	4.266	13.689	13.689	5.687
	設計曲げ耐力(純曲げ耐力)	M_{ud}	kN/m·m	446.49	446.49	426.65	446.49	446.49	446.49
	係数	β_n	-	1.027	1.027	1.010	1.031	1.031	1.013
	部材係数(せん断・コンクリート)	γ,,	-	1.0	1.0	1.0	1.0	1.0	1.0
	補強鉄筋を用いない設計せん断耐力	V_{cd}	kN/m	194.4	194.4	164.5	195.0	195.0	191.6
コンカー	リートが受持つせん断耐力の判定($V_d/0$.	7V < 10		0.47	0.27	0.36	0.49	0.31	0.66
2003	ア 下が支持ってん劇画力の刊定 (r _d /0.	$V_{cd} \stackrel{\triangle}{=} 1.0$	'	OK	OK	OK	OK	OK	OK
	永久荷重によるせん断力	V_p	kN/m						
永久荷重・変動	変動荷重によるせん断力	V_r	kN/m						
荷重による設計		γ a	-						·····
せん断力	永久荷重による設計せん断力	V_{od}	kN/m						
	変動荷重による設計せん断力	V_{rd}	kN/m						
	せん断補強鉄筋	A_w	-	2-D13	2-D13	2-D13	2-D13	2-D13	2-D13
	と70時間10000000	A _W	mm ²	253.4	253.4	253.4	253.4	253.4	253.4
設計配筋	せん断補強鉄筋の配置間隔	Ss	mm	125	125	125	125	125	125
	せん断補強鉄筋が部材軸となす角	α_s	mm	90	90	90	90	90	90
	せん断補強鉄筋比	p_{w}	%	0.20	0.20	0.20	0.20	0.20	0.20
永久荷重作用時	変動荷重の頻度の影響を考慮する係数	k ,	-						
のせん断補強鉄	圧縮応力の作用位置から鋼材までの距離	Z	mm						
筋の応力度の算	せん断補強鉄筋の応力度	σ_{wrd}	N/mm ²						
定	永久荷重による増加応力の制限値		N/mm ²						
七人,除	補強鉄筋の応力度の照査結果(σ _{wed} /制防	見値 ≤ 1 ∩)							
E 70的	mijasynn/ックPD/JIX vz iii	~ IEL = 1.0)							

例表-4.32 せん断力によるひび割れの照査結果(底版)

##E縮力(永久 + 0.5×変動)		为数 1. 02				底	 版	
せん断方(永久+0.5×変勢) V kN/m 150.14 150.14 60.60 88.66 88.		項目		単位	端部(対称)	左端部	右端部
製計断面力 特別では、					Case1	Case2	Case3	Case3
設計所面力 構造解析係数 ア _g - 1.00 1.00 1.00 1.00 設計輸出方力 V _g kN/m 150.14 150.14 60.60 88.6 設計輸出方力 N' _g kN/m 94.50 64.00 57.04 106.58 部材稿 b mm 1,000 1,000 1,000 1,000 1,000 超材格高 b mm 40 450		せん断力(永久+0.5×変動)	V	kN/m	150.14	150.14	60.60	88.62
設計せん 所力		軸圧縮力(永久+0.5×変動)	N'	kN/m	94.50	64.00	57.04	106.58
設計能応力 V _d kN/m 150.14 150.14 60.60 88.66 設計能応力 N [*] _d kN/m 94.50 64.00 57.04 106.51 部材幅 b mm 1,000 1,000 1,000 1,000 部材高 c mm 1,000 1,000 1,000 1,000 1,000 本販売中心から表面までの距離 c mm 110 110 110 110 110 有効高 d mm 340 340 340 340 340 340 お経経数 フンクリートの民能能度の特性値 f' _{ck} N/mm² 240 24.0 <	設計断面力	構造解析係数	γ _a	-	1.00	1.00	1.00	1.00
断面語元 設計報信 N° _d kN/m 94.50 64.00 57.04 106.55 部材稿 b mm 1,000 450 430 340 340 340 340 340 340 340 340 340 340 340 240 <td></td> <td>設計せん断力</td> <td></td> <td>kN/m</td> <td>150.14</td> <td>150.14</td> <td>60.60</td> <td>88.62</td>		設計せん断力		kN/m	150.14	150.14	60.60	88.62
断面緒元 部村高 主鉄筋中心から表面までの距離 有効高 h の mm 450		設計軸応力		kN/m	94.50	64.00	57.04	106.58
野歯諸元 主鉄筋中心から表面までの距離		部材幅	b	mm	1,000	1,000	1,000	1,000
主鉄筋中心から表面までの距離	wc 云 ⇒ 一.	部材高	h	mm	450	450	450	450
コンクリートの圧縮強度の特性値	例則商元	主鉄筋中心から表面までの距離	c_0	mm	110	110	110	110
材料係数		有効高	d	mm	340	340	340	340
対科係数		コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0
コンクリートの設計圧縮強度 f_{cd} N/mm² 24.0 <th< td=""><td></td><td>材料係数</td><td></td><td>-</td><td>1.0</td><td>1.0</td><td>1.0</td><td>1.0</td></th<>		材料係数		-	1.0	1.0	1.0	1.0
引張鉄筋量 (曲げ・軸力に対する設定配筋)		コンクリートの設計圧縮強度		N/mm ²	24.0	24.0	24.0	24.0
(曲げ・軸力に対する設定配筋)		717F 04 66 B			D19@125	D19@125	D19@125	D22@250
コンクリートが 受持つ設計せん 断耐力の 京		* . *	A_s	_	(内側)	(内側)	(内側)	(外側)
受持つ設計せん				mm ²	2,292.0	2,292.0	2,292.0	1,548.4
断耐力の算定 係数 β_d - 1.310 1.310 1.310 1.310 β_d		コンクリートの設計せん断強度	f_{vcd}	N/mm ²	0.577	0.577	0.577	0.577
係数 月 _の - 0.877 0.877 0.768 0.768 1.788 1.788 1.788 1.788 1.789 1.788 1.789 1.788 1.789 1.788 1.899		係数		-	1.310	1.310	1.310	1.310
設計曲げ耐力(純曲げ耐力) M_{ud} kN/m·m $S86.65$ $S86.65$ $S86.65$ $S86.65$ $S86.65$ $S85.71$ $S86.65$ $S86.6$	別間グルクチル	係数		-	0.877	0.877	0.877	0.769
係数 β _n - 1.012 1.008 1.007 1.012 部材係数(せん断・コンクリート) γ _b - 1.0 1.0 1.0 1.0 補強鉄筋を用いない設計せん断耐力 V _{cd} kN/m 228.0 227.1 226.9 200.2 コンクリートが受持つせん断耐力の判定(V _d /0.7V _{cd} ≤ 1.0) 0.94 0.94 0.38 0.6 水久荷重によるせん断力 V _p kN/m N/m N/m N/m 変動荷重によるせん断力 V _p kN/m N/m N/m N/m 水久荷重による設計せん断力 V _{pd} kN/m N/m N/m N/m 変動荷重による設計せん断力 V _{pd} kN/m N/m N/m N/m さり間 せん断補強鉄筋 A _w - 2-D13 2-D		引張縁で軸力による応力を打ち消すのに必要なモーメント	M_{0}	kN/m∙m	7.088	4.800	4.278	7.994
部が保数(せん断・コンクリート)		設計曲げ耐力(純曲げ耐力)	M_{ud}	kN/m∙m	586.65	586.65	586.65	557.15
部材係数(せん断・コンクリート) γb - 1.0 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.2 0.2 0.2 0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <td></td> <td>係数</td> <td>β_n</td> <td>-</td> <td>1.012</td> <td>1.008</td> <td>1.007</td> <td>1.014</td>		係数	β_n	-	1.012	1.008	1.007	1.014
コンクリートが受持つせん断耐力の判定($V_d/0.7V_{cd} \le 1.0$)		部材係数(せん断・コンクリート)		-	1.0	1.0	1.0	1.0
NA		補強鉄筋を用いない設計せん断耐力	V_{cd}	kN/m	228.0	227.1	226.9	200.5
永久荷重によるせん断力	コンカ	リートが受接つせた断耐力の判定(V/A	7V < 10		0.94	0.94	0.38	0.63
∞ 次人荷重・変動 荷重による設計 せん断力 ∞ 数荷重による設計せん断力 ∞	200	グートが支付っせん例画力の刊定($r_d/0$)	$V_{cd} \cong 1.0$		OK	OK	OK	OK
荷重による設計 構造解析係数 γ_a - kN/m λ			V_p	kN/m				
荷重による設計 構造解析係数 γ_a - kN/m λ	永久荷重・変動	変動荷重によるせん断力	V_r	kN/m				
要動荷重による設計せん断力 V_{rd} kN/m V_{rd} kN/m V_{rd} kN/m V_{rd} kN/m V_{rd} V_{rd} kN/m V_{rd} V_{rd} kN/m V_{rd}			γa	-				
世ん断補強鉄筋 A_w $-$ 2-D13 2-D	せん断力	永久荷重による設計せん断力	V_{pd}	kN/m				
設計配筋 せん断補強鉄筋の配置間隔 ssmm 125 125 125 125 せん断補強鉄筋の配置間隔 ssmm 125 125 125 125 せん断補強鉄筋が部材軸となす角 asmm 90 90 90 90 水久荷重作用時変動荷重の頻度の影響を考慮する係数 kr - のせん断補強鉄 E縮応力の作用位置から鋼材までの距離 zmm mm 筋の応力度の算定 tん断補強鉄筋の応力度 N/mm² 水久荷重による増加応力の制限値 N/mm²		変動荷重による設計せん断力	V_{rd}	kN/m				
設計配筋 世ん断補強鉄筋の配置間隔 s _s mm 125 125 125 125 世ん断補強鉄筋が部材軸となす角 a _s mm 90 90 90 90 水久荷重作用時のせん断補強鉄 変動荷重の頻度の影響を考慮する係数 k _r - - かのせん断補強鉄 正縮応力の作用位置から鋼材までの距離 z mm mm がの応力度の算定 なwrd N/mm² N/mm² 水久荷重による増加応力の制限値 N/mm² N/mm²		北人斯浦 強從	4	-	2-D13	2-D13	2-D13	2-D13
せん断補強鉄筋が部材軸となす角 as mm 90 90 90 せん断補強鉄筋が記する場となす角 pw % 0.20 0.20 0.20 永久荷重作用時のせん断補強鉄 筋の応力度の算定 変動荷重の頻度の影響を考慮する係数 kr - - 財の応力度の算定 で mm - 世ん断補強鉄筋の応力度 σwrd N/mm² 水久荷重による増加応力の制限値 N/mm²		已 70 四 m 元 或 加	A _W	mm ²	253.4	253.4	253.4	253.4
せん断補強鉄筋比 pw % 0.20 0.20 0.20 永久荷重作用時変動荷重の頻度の影響を考慮する係数 kr - のせん断補強鉄 圧縮応力の作用位置から鋼材までの距離 z mm 筋の応力度の算定 せん断補強鉄筋の応力度 o N/mm² 水久荷重による増加応力の制限値 N/mm²	設計配筋	せん断補強鉄筋の配置間隔	S_{S}	mm	125	125	125	125
永久荷重作用時 変動荷重の頻度の影響を考慮する係数 k, - - のせん断補強鉄 圧縮応力の作用位置から鋼材までの距離 z mm 筋の応力度の算定 せん断補強鉄筋の応力度 σwrd N/mm² 水久荷重による増加応力の制限値 N/mm²		せん断補強鉄筋が部材軸となす角	α_s	mm	90	90	90	90
永久荷重作用時の世ん断補強鉄 変動荷重の頻度の影響を考慮する係数 k, - - - のせん断補強鉄 圧縮応力の作用位置から鋼材までの距離 z mm mm - 筋の応力度の算定 せん断補強鉄筋の応力度 水久荷重による増加応力の制限値 N/mm² N/mm² -			p_{w}	%	0.20	0.20	0.20	0.20
のせん断補強鉄 圧縮応力の作用位置から鋼材までの距離 z mm 筋の応力度の算定 せん断補強鉄筋の応力度 σ_{wrd} N/mm² 定 永久荷重による増加応力の制限値 N/mm²	永久荷重作用時	変動荷重の頻度の影響を考慮する係数		-				
定 永久荷重による増加応力の制限値 N/mm ²	のせん断補強鉄	圧縮応力の作用位置から鋼材までの距離	Z	mm				
定 永久荷重による増加応力の制限値 N/mm ²	筋の応力度の算	せん断補強鉄筋の応力度	σ_{wrd}	N/mm ²				
	定							
でル門Ⅲ以外別グルガ及ジボ 14 h 不 (0 wg/門以 ∈ 1.0)	1十 / 年		見値 < 1 0)					
	"ピル例	THDSSが加り心力及り思重福木(O _{wrd} /削削	ス 旦 童 1.0)					

(4) せん断補強鋼材の設計配筋

以上より、断面破壊、疲労破壊、ひび割れの照査に基づくせん断補強鋼材の設計配筋を**例表-4.33** に示す.

照査結果より、各限界状態に対して以下の設計配筋でせん断力に対する安全性及び使用性 が確保されることとなる.

	例表-4.33 せん断補強鋼材の設計配筋								
部	材	終局限界状態	疲労限界状態	使用限界状態	決定配筋				
TELLE	引張鉄筋	2-D16	2-D13	2-D16	2-D16				
頂版	(内側)	0.32	0.20	0.32	0.32				
加良本	引張鉄筋	2-D13	2-D13	2-D13	2-D13				
側壁	(内側)	0.20	0.20	0.20	0.20				
冷炬	引張鉄筋	2-D13	2-D13	2-D13	2-D13				
底版	(内側)	0.20	0.20	0.20	0.20				

例表-4.33 せん断補強鋼材の設計配筋

4.3.5 断面構造の設定

以上の構造照査により、引張鉄筋とせん断補強鉄筋の設計配筋は例表-4.34 のとおりである.

		771公		
部	部材 引張鉄館		せん断補強鉄筋	備考
7Z	内側	D29@250mm		
頂版	外側	D13@125mm	2-D16	
/md ⊟ √ c	内側	D13@125mm		せん断補強鉄筋は最小鉄筋
側壁	外側	D16@125mm	2-D13	量により設定
安 斯	内側	D19@125mm	0.712	せん断補強鉄筋は最小鉄筋
底版	外側	D22@250mm	2-D13	量により設定

例表-4.34 設計配筋

[※]下段の数値は鉄筋比(%)を示す.

例-5 限界状態設計法によるエプロン内 U 型側溝の設計例

限界状態設計法によるエプロン内 U 型側溝の構造設計例を示す.

5.1 設計概要

5.1.1 設計対象施設

設計対象施設は、エプロン内に設置された U 型側溝とし、部材寸法は以下のとおりとした.

・部材寸法: W0.85m×H1.46m

·部材厚: 側壁…0.35m, 底版…0.40m

5.1.2 要求性能及び照査項目

要求性能は安全性、使用性、耐久性とし、検討する限界状態及び照査項目は以下のとおりとした.

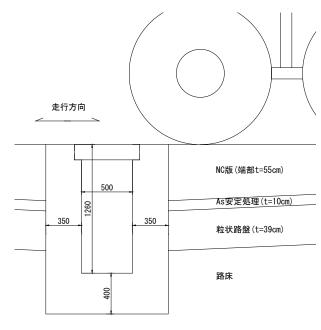
例表-5.1 要求性能及び照査項目

要求性能	検討する限界状態	照査項目				
	終局限界状態	断面破壊の照査				
安全性	疲労限界状態	疲労破壊の照査				
使用性・耐久性	使用限界状態	ひび割れの照査				

5.2 設計条件

5.2.1 設計供用期間

設計供用期間は50年とした.


5.2.2 走行条件

走行条件は以下のとおりとした(**例図-5.1**).

・対象機材:コード F

・荷重区分:W荷重(直角方向に横断)

・設計交通量:160,000 回 (疲労破壊の照査に適用)

例図-5.1 走行条件

5.2.3 環境条件

ボックスカルバートの環境条件は、腐食性について一般の環境とした。また、対象施設は地下水位以上に設置するため、地下水位は考慮しないこととした。

5.2.4 設計用値

材料の設計用値は例表-5.2のとおりとした.

例表-5.2 材料の設計用値

		設定値		/#- +7	
		数値	単位	備考	
	圧縮強度 .		24.0	N/mm ²	
コンクリート	弾性係数	E_c	25,000	N/mm ²	
	粗骨材の最大寸法	d_{max}	25	mm	
	引張降伏強度	f_{yk}	345	N/mm ²	
鉄筋(SD345)	引張強度	f_{uk}	490	N/mm ²	
	弾性係数	E_s	200,000	N/mm ²	
単位体積重量	鉄筋コンクリート		24.5	kN/m ³	
中位 件 傾 里 里	土砂		20.0	kN/m ³	砂・砂れき相当
静止土圧係数		K_0	0.500	ı	
主働土圧係数			0.333	-	
内部摩擦角			30.0	0	

5.2.5 安全係数

各限界状態の照査における安全係数は、例表-5.3のとおり設定した.

例表-5.3 設定した安全係数

	Ť	頁目	·	安全	耐久性		
	+,	見日		断面破壊	疲労破壊	ひび割れ	
材料係数	コンク	リリート	γ c	1.3	1.3	1.0	
γ_m	鋼材		γ_s	1.0	1.05	1.0	
	永久荷重	躯体自重		1.0	1.0	1.0	
# 手反坐		十.压	鉛直方向	1.1 (0.9)	1.0	1.0	
荷重係数 γ _f			水平方向	1.2 (0.9)	1.0	1.0	
7 5	変動	/1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/	鉛直方向	1.2	1.0	1.0	
	荷重		水平方向	1.2	1.0	1.0	
構造解析係数 γα			1.0	1.0	1.0		
カワナナ 1万 米L	曲げ			1.1	1.1	1.0	
部材係数 γ _b	せん断(コンクリート)			1.3	1.3	1.0	
	せん断 (補強鉄筋)			1.1	1.1	1.0	
構造物係数 γ _i				1.2	1.1	-	

・ 荷重係数における()は、荷重が小さい方が安全側の設計となる場合の値

5.2.6 配筋条件

引張鋼材及びせん断補強鋼材は異形鉄筋とし、配筋条件は**例表-5.4**、**例表-5.5** のとおりとした.

例表-5.4 引張鉄筋の配筋条件

項目 数値		備考			
最小鉄筋量	0.20%	部材の有効断面積に対する鉄筋断面積の比率			
引張鉄筋中心位置	側壁:10cm 底版:11cm	鉄筋中心からコンクリート表面までの距離			
配筋間隔	125mm, 250mm	単位幅 1m の約数を設定			

例表-5.5 せん断補強鉄筋の配筋条件

項目	数値	備考				
最小鉄筋量	0.15%	配置幅×単位奥行きの部材断面積に対する鉄筋断面積				
軸方向配筋間隔	125mm	部材有効高さの 3/4 倍以下				

5.2.7 作用荷重の設定

エプロン内 U型側溝に作用する荷重は、以下を考慮した.

- ・ 土圧 (永久荷重)
- 躯体自重(永久荷重)
- 航空機荷重(変動荷重)

(1) 土圧

エプロン内 U 型側溝の側面の地盤(舗装構造)により側壁が受ける水平土圧は次式で算定した. 土圧の公称値を**例表-5.6** に示す.

 $P_{hd} = K_a \cdot \gamma \cdot h$

ここで、 $P_{hd}:$ 水平土圧(kN/m^2)

 K_a : 主動土圧係数= $\tan \varphi$ φ : 土の内部摩擦角(°)

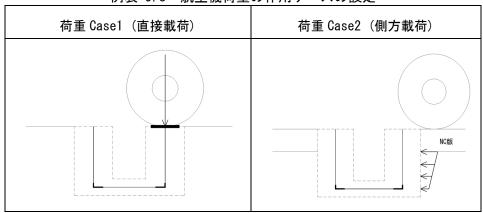
例表-5.6 地盤による鉛直・水平土圧

		NC舗装		As安定処	理	路盤・路	床			
作用位置	深度 (m)	単位体積 重量(kN/m³)	層厚 (m)	単位体積 重量(kN/m³)	型 層厚 (m)	単位体積 重量(kN/m³)	層厚 (m)	土圧 係数	作用土圧 (kN/m²)	備考
NC版下面	0.550	23.0	0.550	22.5	0.000	20.0	0.000	0.333	4.21	水平方向
側壁下端	1.460	23.0	0.550	22.5	0.100	20.0	0.810	0.333	10.36	水平方向

(2) 躯体自重

エプロン内 U 型側溝の側壁の自重は分布荷重に換算して設定した. 自重による鉛直方向荷重

の公称値を**例表-5.7**に示す.

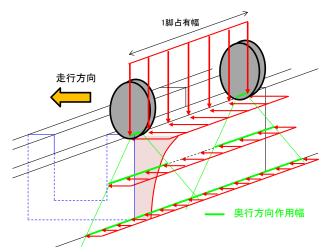

例表-5.7 躯体の自重による鉛直方向荷重

	· • • • • • • • • • • • • • • • • • • •		977	· · · —
作用位置	単位体積重量 (kN/m³)	部材厚 (m)	換算荷重 (kN/m²)	備考
側壁	24.5	0.35	8.58	鉛直方向

(3) 航空機荷重

航空機荷重は,直接載荷と側方載荷の2ケースとし,側方載荷ケース(Case2)は,NC版側面で水平荷重が伝達されないことを考慮し,NC版下面以深でのみ水平荷重が作用する条件を設定した(**例表-5**.8).

例表-5.8 航空機荷重の作用ケースの設定



地表や極めて浅い土被りにおける航空機荷重の作用は、1 脚車輪の占有範囲又はその地中影響範囲で面的に作用すると考え、直接載荷条件及び側方載荷条件における航空機荷重は、次式による奥行き方向の面的作用を考慮した係数を集中荷重及び地中応力に乗じて算定した(例図 -5.2).

面的作用を考慮した係数 = 1輪当り作用幅×車輪数/1脚車輪の影響幅 (≦1.0)

1輪当り作用幅 = 接地幅+土被り×2 (荷重の45°分散を考慮)

1 脚車輪の影響幅 = 1 脚車輪の占有幅+土被り×2 (荷重の 45°分散を考慮)

例図-5.2 奥行方向の面的作用を考慮した設計荷重のイメージ

面的作用を考慮した係数の算定に用いる車輪配置は、コードFまでの機材のうち、面的作用を考慮した場合に直接載荷 (Case1) による作用荷重が最大となる B787-8 の荷重諸元を適用した。

設定した航空機荷重を例表-5.9, 例表-5.10 に示す.

例表-5.9 直接載荷 (Case1) における鉛直方向集中荷重

作用位置	輪荷重 (kN)	奥行方向 作用幅(m)	影響 車輪数	1脚車輪影響幅(m)	構造物の面的支持 を考慮した係数 [※]	衝擊係数	作用荷重 (kN/m)
側壁上端	256.00	0.335	2.00	1.64	0.41	0.30	814.61

[※] 構造物の面的支持を考慮した係数=奥行方向作用幅×影響車輪数/1脚車輪影響幅(≤ 1.0)

例表-5.10 側方載荷 (Case2) における水平方向分布荷重

作用位置	深度 (m)	鉛直方向地中 応力(kN/m²)	奥行方向 作用幅(m)	影響 車輪数	1脚車輪影響幅(m)	構造物の面的支持 を考慮した係数 [※]	主働土 圧係数	衝撃係数	作用荷重 (kN/m²)
NC版下面	0.55	551.95	1.435	2.00	2.74	1.00	0.333	0.30	238.94
側壁下端	1.46	136.67	3.255	2.00	4.56	1.00	0.333	0.30	59.16

[※] 鉛直地中応力は、構造物の反力による応力増加を考慮した値.

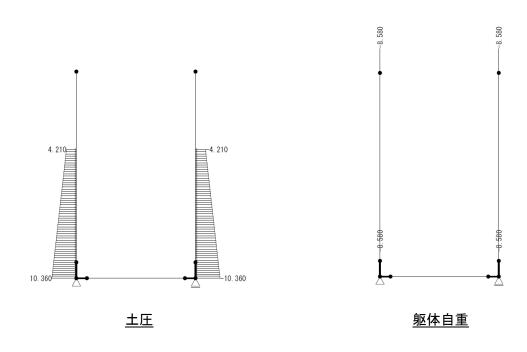
(4) 設計荷重の算定

以上より,各作用荷重の公称値に対して荷重係数を乗じた設計荷重を**例表-5.11** に,作用モデル図を**例図-5.3**,**例図-5.4** に示す.

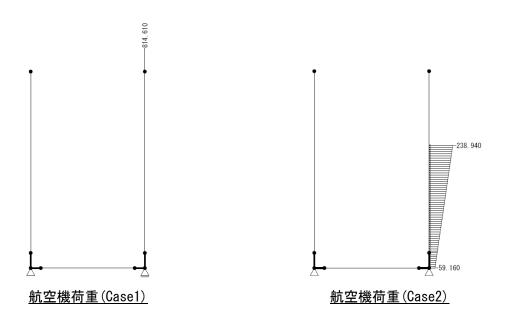
[※] 作用荷重=輪荷重×影響輪数/車輪幅×構造物の面的作用を考慮した係数×(1+衝撃係数)

[※] 構造物の面的支持を考慮した係数=奥行方向作用幅×影響車輪数/1脚車輪影響幅(≦1.0)

[%]作用荷重=鉛直方向地中応力×構造物の面的作用を考慮した係数×主働土圧係数×(1+衝撃係数)


例表-5.11 設計荷重

断面破壊の照査(終局限界状態)


的面板级。	7点目(心)回り	(2) 1/1/(1/20)						
				Ca	se1	Ca	ise2	
	項目		公称值	荷重係数	設計荷重	荷重係数	設計荷重	備考
	垻目		F_n	γ_f	F_d	γ_f	F_d	1佣石
			$(kN/m^2, kN/m)$		(kN/m^2)		(kN/m^2)	
	躯体自重	側壁	8.58	1.0	8.58	1.0	8.58	
永久荷重		水平方向	0.00	1.1	0.00	1.1	0.00	
水久何里	土圧		4.21	1.2	5.05	1.2	5.05	
			10.36	1.2	12.43	1.2	12.43	
		鉛直方向	814.61	1.2	977.54	-	-	集中荷重
変動荷重	航空機荷重	水平方向	238.94	-	-	1.2	286.73	NC版下面
		小十万円	59.16	-	-	1.2	71.00	側壁下端

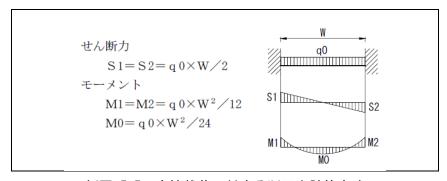
疲労破壊・ひび割れの照査(疲労・使用限界状態)

				Ca	se1	Ca	se2	
	項目		公称值	荷重係数	設計荷重	荷重係数	設計荷重	備考
	クロ クロ		F_n	γ_f	F_d	γ_f	F_d	加力
			(kN/m^2)		(kN/m^2)		(kN/m^2)	
	躯体自重	側壁	8.58	1.0	8.58	1.0	8.58	
永久荷重	土圧	水平方向	0.00	1.0	0.00	1.0	0.00	
小人刊里			4.21	1.0	4.21	1.0	4.21	
			10.36	1.0	10.36	1.0	10.36	
	航空機荷重	鉛直方向	814.61	1.0	814.61	-	-	集中荷重
変動荷重		水平方向	238.94	-	-	1.0	238.94	NC版下面
		小平万円	59.16	-	-	1.0	59.16	側壁下端

例図-5.3 作用モデル図(1)

例図-5.4 作用モデル図(2)

5.3 限界状態設計法による構造設計


5.3.1 設計手順

各限界状態に対する照査の手順は, 例-4(例図-4.4~例図-4.9) と同様である.

5.3.2 構造解析

(1) 直接載荷条件(荷重 Case1)に対する断面力

エプロン内 U 型側溝の直接載荷に対する断面力の算定は、側壁と底版を個別の部材と考え、 底版を両端固定梁として算定した.

例図-5.5 直接載荷に対する断面力計算方法

直接載荷に対する断面力の算定結果を以下に示す.

【終局限界状態の照査における断面力】

· 底面幅: B=0.35+0.50+0.35=1.20m

• 航空機荷重: P_L=977.54kN/m

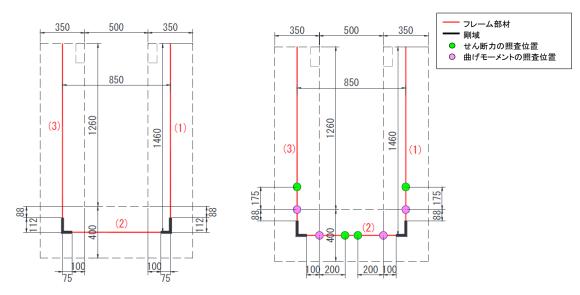
・側壁自重: P_D=0.35×1.46×24.5kN/m³×2=25.05kN/m

· 底版反力: q0= (977.54+25.05) /1.20=835.49kN/m²

- ・内空幅:W=0.50m
- ・せん断力:S1=835.49×0.50/2=208.873kN/m
- ・曲げモーメント(端部): M1=835.49×0.50²/12=<u>17.406kN/m・m</u>
- ・曲げモーメント (中央): M0=835.49×0.50²/24=8.703kN/m・m

【疲労・使用限界状態の照査における永久荷重に対する断面力】

- · 底面幅:B=0.35+0.50+0.35=1.20m
- ・側壁自重: P_D=25.05kN/m
- · 底版反力: q0=(25.05) /1.20=20.88kN/m²
- 内空幅: W=0.50m
- ・せん断力: S1=20.88×0.50/2=<u>5.220kN/m</u>
- ・曲げモーメント (端部): M1=20.88×0.50²/12=0.435kN/m・m
- ・曲げモーメント (中央): M0=20.88×0.50²/24=0.218kN/m・m


【疲労・使用限界状態の照査における変動荷重に対する断面力】

- · 底面幅:B=0.35+0.50+0.35=1.20m
- ・航空機荷重: P_L=814.61kN/m
- ・底版反力: q0= (814.61) /1.20=678.85kN/m²
- ・内空幅:W=0.50m
- ・せん断力: S1=678.85×0.50/2=169.713kN/m
- ・曲げモーメント (端部): M1=678.85×0.50²/12=<u>14.143kN/m・m</u>
- ・曲げモーメント (中央): M0=678.85×0.50²/24=7.071kN/m・m

(2) 側方載荷条件(荷重 Case2)に対する断面力

1) 構造解析モデル (フレーム)

部材に生じる断面力は、フレーム解析により算定した.フレーム解析は隅角部の剛域を考慮することとし、**例図-5.6**に示すとおりモデル化した.

例図-5.6 構造解析モデル (フレーム)

2) 断面力の算定

例図-5.6 の構造解析モデルに対して、設計荷重を作用させた構造解析により断面力を算定した.

		1例衣=0. I	<u> 2 何里 6</u>	asez I - J	の町川ノ			
		終局(永久	荷重+変動荷	方重Case2)	使用(永久荷重+0.5×変動荷重Case2)			
部材	位置	M	V	N	М	V	N	
		(kN/m·m)	(kN/m)	(kN/m)	(kN/m·m)	(kN/m)	(kN/m)	
側壁	下端部②	-35.914	-123.334	-9.309	-15.352	-53.000	-9.309	
則生	下端部①	-59.885	-149.454	-10.811	-25.684	-64.619	-10.811	
	右端部①	-80.549	110.021	-137.208	-33.843	50.141	-60.485	
	右端部②	-52.767	156.222	-98.911	-21.750	65.952	-44.527	
底版	支間中央	-44.920	156.918	-89.336	-18.459	65.383	-40.538	
	左端部②	-37.148	153.274	-79.762	-15.242	63.004	-36.549	
	左端部①	-11.134	95.281	-41.465	-4.920	35.401	-20.592	

例表-5.12 荷重 Case2 による断面力

		疲労(永久荷重C	ase2)	疲労(変動荷重Case2)			
部材	位置	M	V	N	М	V	N	
		(kN/m·m)	(kN/m)	(kN/m)	(kN/m·m)	(kN/m)	(kN/m)	
側壁	下端部②	-0.775	-3.220	-9.309	-29.153	-99.560	0.000	
则堡	下端部①	-1.464	-4.693	-10.811	-48.440	-119.852	0.000	
	右端部①	-0.851	7.370	-6.629	-65.983	85.542	-107.711	
	右端部②	0.034	1.474	-6.629	-43.568	128.956	-75.796	
底版	支間中央	0.071	0.000	-6.629	-37.060	130.765	-67.818	
	左端部②	0.034	-1.474	-6.629	-30.552	128.956	-59.839	
	左端部①	-0.851	-7.370	-6.629	-8.137	85.542	-27.925	

5.3.3 曲げモーメント及び軸方向力に対する構造照査

例-4 と同様の手順により、限界状態設計法による曲げモーメント及び軸方向力に対する構造 照査を実施した.

各限界状態に対する照査を満足する最小の引張鋼材量に対する照査結果を**例表-5.14~例表-**5.16 に示す.

照査結果より、引張鉄筋の設計配筋は以下のとおりとなる.

例表-5.13 引張鉄筋の設計配筋

	775人。10 7750000000000000000000000000000000000										
		引張鉄筋 (主鉄筋)									
限界状態	項目	側	壁	底	板						
		内側	外側	内側	外側						
終局	必要配筋	D13@250	D13@125	D16@250	D16@250						
於同	鉄筋比	0.20	0.41	0.27	0.27						
定兴	必要配筋	D13@250	D16@250	D16@250	D16@250						
疲労	鉄筋比	0.20	0.32	0.27	0.27						
使用	必要配筋	D13@250	D13@250	D16@250	D16@250						
使用	鉄筋比	0.20	0.20	0.27	0.27						
決定配筋	必要配筋	D13@250	D13@125	D16@250	D16@250						
大 足能肋	鉄筋比	0.20	0.41	0.27	0.27						

例表-5.14 曲げモーメント及び軸方向力に対する断面破壊の照査

				1-719 OE		هم اه ميلس	
				側壁		底版	
	項目		単位	外側引張	内側引張		引張
	****			下端部	支間中央	端部(対称)	右側端部
				Case2	Case1	Case1	Case2
2	曲げモーメント	М	kN/m•m	59.89	17.41	8.70	80.55
机乳胺云子	軸圧縮力		kN/m	10.81	19.89	19.89	137.2
設計断面力 の算定	構造解析係数	γ a	-	1.0	1.0	1.0	1.0
	設計曲げモーメント	M_d	kN/m∙m	59.89	17.41	8.70	80.55
	設計軸圧縮力	N'_d	kN/m	10.81	19.89	19.89	137.2
	設計偏心量	e	m	5.540	0.875	0.437	0.58
	部材幅	b	mm	1,000	1000	1000	1000
断面諸元		h	mm	350	400	400	400
a	主鉄筋中心から表面までの距離	c 0	mm	100	110	110	110
•	 有効高	d	mm	250	290	290	290
	7176 /4 / / / =		-	D13@125	D16@250	D16@250	D16@250
設計配筋	引張鉄筋量	A_s	mm ²	1,013.6	794.4	794.4	794.4
•	引張鉄筋比	p	%	0.41	0.27	0.27	0.27
	中立軸位置※	х	mm	29.0	30.6	45.0	36.7
ĺ	図心から偏心位置までの距離	а	mm	5365.2	675.3	237.4	387.1
Í	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0
Í	材料係数	γ _c	-	1.3	1.3	1.3	1.3
コンクリートの	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	18.5	18.5	18.5	18.5
圧縮力の算定	コンクリートの終局圧縮ひずみ	ε' _{cu}	N/mm ²	0.0035	0.0035	0.0035	0.0035
•	圧縮力の低減係数	k_1	-	0.85	0.85	0.85	0.85
	·····································	β	-	0.80	0.80	0.80	0.80
•	等価応力ブロック高さ	Υ'	mm	23.2	24.5	36.0	29.4
,	圧縮力	С	kN/m	365.2	384.8	566.0	461.9
	鉄筋の引張降伏強度の特性値	f_{yk}	N/mm ²	345	345	345	345
	材料係数	γ _c	-	1.00	1.00	1.00	1.00
鉄筋の 引張力の算定	鉄筋の設計引張降伏強度	f_{yd}	N/mm ²	345.0	345.0	345.0	345.0
	引張鉄筋ひずみ	ε _s	-	0.0266	0.0297	0.0191	0.024
•	引張力	T	kN/m	349.7	274.1	274.1	274.
	圧縮力アーム長	Y_c	mm	163.4	187.8	182.0	185.3
•	引張力アーム長	Y_s	mm	75.0	90.0	90.0	90.0
•	曲げ耐力	M_u	kN/m∙m	85.90	96.92	127.68	110.20
•	軸圧縮耐力	N'_u	kN/m	15.50	110.70	291.90	187.80
設計断面耐力	断面耐力の偏心量	e'	m	5.542	0.876	0.437	0.58
の算定	部材係数(曲げ)	γь	-	1.1	1.1	1.1	1.
r	設計曲げ耐力	M_{ud}	kN/m∙m	78.09	88.11	116.07	100.24
h	設計軸圧縮耐力	N'_{ud}	kN/m	14.09	100.64	265.36	170.73
h	構造物係数	γ ,	-	1.2	1.2	1.2	1.2
		•	•	0.92	0.24	0.09	0.9
曲け	『モーメント照査結果($\gamma_i M_d/M_{ud}$	≥ 1.0)		OK	OK	OK	OK
	軸圧縮力照査結果(γ _i N' _d /N' _{ud} ≦1.	0)		0.92	0.24	0.09	0.9
	**************************************	())					

[※] 中立軸位置x は繰返し計算により、断面耐力の偏心量e'≒設計偏心量e となる値を設定した.

[※] 中立軸位置は圧縮側縁からの距離を示す.

例表-5.15 曲げモーメント及び軸方向力に対する疲労破壊の照査

				側壁		底版	
	項目		単位	上端部	支間中央	端部(対称)	右側端部
	供日			Case2	Case1	Case1	Case2
	H-18	1.6	137/	1.47	0.22	0.44	0.86
	曲げモーメント(永久)	M_p	kN/m∙m	外側引張	内側引張	外側引張	外側引張
永久荷重による	軸圧縮力(永久)	N'_p	kN/m	10.82	16.58	16.58	6.63
設計断面力	構造解析係数	γa	_	1.00	1.00	1.00	1.00
	設計曲げモーメント(永久)	M_{pd}	kN/m•m	1.47	0.22	0.44	0.86
	設計軸圧縮力(永久)	N'_{pd}	kN/m	10.82	16.58	16.58	6.63
	8×11 74/12/11/2 (3////)	pa	111 1/111	48.44	7.08	14.15	65.99
	曲げモーメント(変動)	M_r	kN/m∙m	外側引張	内側引張	外側引張	外側引張
変動荷重による	軸圧縮力(変動)	N',	kN/m	0.00	0.00	0.00	107.72
変動何里による 設計断面力	構造解析係数		- KIV/III	1.00	1.00	1.00	1.00
вання		γ _a		48.44	7.08	14.15	65.99
	設計曲げモーメント(変動)	M_{rd}	kN/m·m		***************************************		
	設計軸圧縮力 (変動)	N' _{rd}	kN/m	0.00	0.00	0.00	107.72
	部材幅	b	mm	1,000	1000	1000	1000
断面諸元	部材高	h	mm	350	400	400	400
	主鉄筋中心から表面までの距離	c ₀	mm	100	110	110	110
	有効高	d	mm	250	290	290	290
	引張鉄筋量	A_s	-	D16@125	D16@250	D13@125	D13@125
設計配筋	J1300133 =	3	mm ²	1,588.8	794.4	1,013.6	1,013.6
	引張鉄筋比	p	%	0.64	0.27	0.35	0.35
	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000
変動荷重による	鉄筋の弾性係数	E_s	N/mm ²	200,000	200,000	200,000	200,000
応力度の算定	中立軸位置(変動)	<i>x</i> _r	mm	68.0	54.7	61.0	74.9
	コンクリートの圧縮縁の応力(変動)	σ_{crd}	N/mm ²	6.3	1.0	1.7	7.6
永久荷重による	鉄筋の引張応力 (変動) 中立軸位置 (永久)	σ_{srd}	N/mm ² mm	134.1 166.2	32.8 301.1	51.8 301.1	175.4 224.7
水久何里による 応力度の算定	コンクリートの圧縮応力(永久)	σ'_{cpd}	N/mm ²	0.1	0.0	0.0	0.1
(交番の場合0)	鉄筋の引張応力(永久)	σ_{spd}	N/mm ²	0.6	0.0	0.0	0.1
	疲労寿命	N	-	160,000	160,000	160,000	160,000
	コンクリートの圧縮強度の特性値	f'ck	N/mm ²	24.0	24.0	24.0	24.0
	材料係数(コンクリート)	γ _c	- 14/11111	1.3	1.3	1.3	1.3
コンクリートの設計疲労強度	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	18.5	18.5	18.5	18.5
の算定	強度低下を考慮する係数(圧縮)	k_{1f}	-	0.85	0.85	0.85	0.85
	コンクリートの状態を考慮する係数	K 1f	_	17	17	17	17
						10.9	10.9
	コンクリートの設計疲労強度	f' crd	N/mm ²	10.8	10.9		
	鉄筋の引張強度の特性値	f_{uk}	N/mm ²	490	490	490	490
	材料係数(鉄筋)	γ _s	-	1.05	1.05	1.05	1.05
	鉄筋の設計引張強度	f_{ud}	N/mm ²	467	467	467	467
鉄筋の設計疲労		k	-	0.12	0.12	0.12	0.12
強度の算定	係数	а	-	0.76	0.76	0.77	0.77
	鉄筋の設計疲労強度	f_{srd}	N/mm ²	246.9	247.2	253.0	252.9
	構造物係数	γ i	-	1.1	1.1	1.1	1.1
	部材係数	γь	_	1.1	1.1	1.1	1.1
コンカコ	リートの疲労に対する照査結果($\gamma_i\sigma_{crd}$ / f_i	/w >< 1.0)	0.70	0.11	0.19	0.85
コングリ	アンルカに刈りる思生福禾($\gamma_i \sigma_{crd} / U_i$	$(rd/\gamma_b) \ge 1.0$	יי	OK	OK	OK	OK
د درو	to the Wall Land Burger ()	\\		0.66	0.16	0.25	0.84
鉄角	筋の疲労に対する照査結果(γ _i σ _{srd} /(f _{srd} /γ _b	$) \le 1.0)$		OK	OK	OK	OK
	ヤカ南は 引張側鉄紋の7.た老虎1たPC排送乳筒に						

[※]中立軸位置及び応力度は、引張側鉄筋のみを考慮したRC構造計算により算定した、 ※中立軸位置は圧縮側縁からの距離を示す。

例表-5.16 曲げモーメント及び軸方向力に対するひび割れの照査

				側壁		底版	
	項目	単位	外側引張	内側引張	外側	引張	
	坝 日	- 早1/4	下端部	支間中央	端部(対称)	右側端部	
				Case2	Case 1	Case1	Case2
	曲げモーメント (永久+0.5×変動)	М	kN/m∙m	25.69	3.76	7.51	33.85
	軸圧縮力(永久+0.5×変動)	N'	kN/m	10.82	16.58	16.58	60.49
設計断面力	構造解析係数	γ _a	-	1.00	1.00	1.00	1.00
	設計曲げモーメント	M_d	kN/m∙m	25.69	3.76	7.51	33.85
	設計軸圧縮力	N'_d	kN/m	10.82	16.58	16.58	60.49
	部材幅	b	mm	1,000	1000	1000	1000
断面諸元	部材高	h	mm	350	400	400	400
四 田 珀 儿	主鉄筋中心から表面までの距離	c 0	mm	100	110	110	110
	有効高	d	mm	250	290	290	290
	引張鉄筋量	A_s	-	D13@250	D16@250	D16@250	D16@250
設計配筋	分聚數	A_{S}	mm ²	506.8	794.4	794.4	794.4
	引張鉄筋比	p_s	%	0.20	0.27	0.27	0.27
	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000
	鉄筋の弾性係数	E_s	N/mm ²	200,000	200,000	200,000	200,000
コンクリートの引張応力度	弹性係数比	n	-	8.0	8.0	8.0	8.0
の気気が	等価換算断面積	A_e	mm ²	3.54.E+05	4.06.E+05	4.06.E+05	4.06.E+05
V) 34 /L	等価換算断面二次モーメント	I_e	mm ⁴	3.60.E+09	5.38.E+09	5.38.E+09	5.38.E+09
	コンクリートの最大引張応力	σ_{ct}	N/mm ²	1.28	0.18	0.32	1.41
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0
	材料係数	γ _c	-	1.0	1.0	1.0	1.0
	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	24.0	24.0	24.0	24.0
	コンクリートの引張強度の特性値	f_{tk}	N/mm ²	1.91	1.91	1.91	1.91
コンクリート	粗骨材の最大寸法	d_{max}	mm	25	25	25	25
	破壊エネルギー	G_F	N/m	84.3	84.3	84.3	84.3
れ強度の算定	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000
	特性長さ	l_{ch}	m	0.58	0.58	0.58	0.58
	引張軟化特性による係数	k 0b	-	1.28	1.25	1.25	1.25
	その他の原因による係数	k_{1b}	-	0.72	0.69	0.69	0.69
	コンクリートの曲げひび割れ強度	f'_{bck}	N/mm ²	1.76	1.65	1.65	1.65
出げてい	び割れ発生判定($\sigma_{ct}/f_{bck} < 1.0$) $\%$ OK $ ightarrow$ 以降の	0.73	0.11	0.19	0.85		
m() ()	O 音 4 0 元 王刊足(O ct f bck ~1.0) $公 \mathbf{CC}$ 一以降の	1天 引 1	門	OK	OK	OK	OK

5.3.4 せん断力に対する構造照査

例-4 と同様の手順により、限界状態設計法による曲げモーメント及び軸方向力に対する構造 照査を実施した.

各限界状態に対する照査を満足する最小のせん断補強鉄筋量に対する照査結果を**例表-5.18** ~**例表-5.20** に示す. 照査結果より. 引張鉄筋の設計配筋は以下のとおりとなる.

例表-5.17 せん断補強鉄筋の設計配筋

7114X U.	かれる 5.17 ピアクロド田 宝式 別 クラスローロール									
		せん断袖	捕強鉄筋							
限界状態	項目	側壁	底版							
終局	必要配筋	2-D13	2-D13							
於何	鉄筋比	0.20	0.20							
疲労	必要配筋	2-D13	2-D13							
71文 刀	鉄筋比	0.20	0.20							
使用	必要配筋	2-D13	2-D13							
使用	鉄筋比	0.20	0.20							
決定配筋	必要配筋	2-D13	2-D13							
次是配肋	鉄筋比	0.20	0.20							

例表-5.18 せん断力に対する断面破壊の照査

				側壁	底	版
	項目		単位	下端部	端部	右端部
				Case2	Case1	Case2
	せん断力	V	kN/m	123.34	208.88	156.23
	軸圧縮力	N'	kN/m	9.31	19.89	98.92
設計断面力	構造解析係数	γa	-	1.00	1.00	1.00
の算定	設計せん断力	V_d	kN/m	123.34	208.88	156.23
	設計軸応力	N'_d	kN/m	9.31	19.89	98.92
	部材幅	b	mm	1,000	1,000	1,000
	部材高	h	mm	350	400	400
断面諸元	主鉄筋中心から表面までの距離	c 0	mm	100	110	110
	有効高	d	mm	250	290	290
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0
	材料係数	γ _c	-	1.3	1.3	1.3
コンクリートの設計	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	18.5	18.5	18.5
斜め圧縮破壊耐力	コンクリートの設計斜め圧縮強度	f_{wcd}	N/mm ²	5.38	5.38	5.38
の算定	部材係数(せん断・コンクリート)	γ _b	-	1.3	1.3	1.3
	設計斜め圧縮破壊耐力	V_{wca}	kN/m	1033.9	1199.4	1199.4
	構造物係数	γ _i	_	1.2	1.2	1.2
Æ	早め圧縮破壊の照査結果($\gamma_i V_d/V_{ud} \leq 1.0$)	, ,.		0.14	0.21	0.16
亦	γ_{i} が成象の無重和未(γ_{i} V_{d} / $V_{ud} \ge 1.0$)			OK	OK	OK
			_	D13@125	D13@125	D13@125
	引張鉄筋量	A_s		(外側)	(外側)	(外側)
コンクリートが受持			mm ²	1,013.6	1,013.6	1,013.6
	コンクリートの設計せん断強度	f_{vcd}	N/mm ²	0.529	0.529	0.529
コングリートが受持つ設計せん断耐力	係数	β_d	-	1.414	1.363	1.363
の算定	係数	β_p	-	0.740	0.704	0.704
	引張縁で軸力による応力を打ち消すのに必要なモーメント	M_0	kN/m•m	0.543	1.326	6.595
	設計曲げ耐力(純曲げ耐力)	M_{ud}	kN/m∙m	-171.89	-217.95	-217.95
	係数	β_n	-	0.997	0.994	0.970
	補強鉄筋を用いない設計せん断耐力	V_{cd}	kN/m	106.1	112.6	109.8
	せん断補強鉄筋の断面積	A_{w}	-	2-D13	2-D13	2-D13
	(C70 时 Im J公野 M * 2 时 Im J会	21 W	mm ²	253.4	253.4	253.4
設計配筋	せん断補強鉄筋の配置間隔	S_{S}	mm	125	125	125
	せん断補強鉄筋が部材軸となす角	α_s	mm	90	90	90
	せん断補強鉄筋比	p_w	%	0.20	0.20	0.20
せん断補強鉄筋	せん断補強鉄筋の設計降伏強度	f_{wyd}	N/mm ²	345	345	345
が受持つ設計せ	圧縮応力の作用位置から鋼材までの距離	<i>Z</i>	mm	217.4	252.2	252.2
ん断耐力の算定	部材係数(せん断補強鉄筋)	γ _b	1/N/	1.1	1.1	1.1
	せん断補強鉄筋が受持つ設計せん断耐力 設計せん断耐力	V_{sd} V_{yd}	kN/m kN/m	138.2 244.3	160.3 272.9	160.3 270.1
設計せん断耐力	構造物係数	T	K1 Y/ III	1.2	1.2	1.2
		γ i		0.61	0.92	0.69
	せん断破壊の照査結果($\gamma_i V_d / V_{ud} \le 1.0$)			OK	OK OK	OK

例表-5.19 せん断力に対する疲労破壊の照査

		•		側壁	底	 饭
	項目		単位	下端部	左端部	右端部
				Case2	Case1	Case2
	せん断力	V_p	kN/m	3.22	5.22	1.48
N 11 - 111 -	軸圧縮力	N'_p	kN/m	9.31	16.58	6.63
永久荷重による	構造解析係数	γ _a	-	1.0	1.0	1.0
設計断面力	設計せん断力	V_{pd}	kN/m	3.22	5.22	1.48
	設計軸応力	N' _{pd}	kN/m	9.31	16.58	6.63
	せん断力	V_r	kN/m	-99.56	169.72	128.96
	軸圧縮力	N'r	kN/m	0.00	0.00	75.80
変動荷重による	構造解析係数	γ _a	-	1.0	1.0	1.0
設計断面力	設計せん断力	V_{rd}	kN/m	-99.56	169.72	128.96
	設計軸応力	N' _{rd}	kN/m	0.00	0.00	75.80
	部材幅	b	mm	1,000	1,000	1,000
Wr 	部材高	h	mm	350	400	400
断面諸元	主鉄筋中心から表面までの距離	c 0	mm	100	110	110
	有効高	d	mm	250	290	290
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0
	材料係数	γ _c	-	1.3	1.3	1.3
	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	18.5	18.5	18.5
				D13@125	D16@250	D16@250
	引張引張鉄筋	A_s	-	(外側)	(外側)	(外側)
	(曲げ・軸力に対する設定配筋)		mm^2	1,013.6	794.4	794.4
	コンクリートの設計せん断強度	f_{vcd}	N/mm ²	0.529	0.529	0.529
コンクリートが 受持つ設計せん 断力の算定	係数	β_d	-	1.414	1.363	1.363
	係数	β_p	-	0.740	0.649	0.649
	設計軸圧縮応力(永久+変動)	N' _d	kN/m	9.31	16.58	82.43
	引張縁で軸力による応力を打ち消すのに必要なモーメント	M_0	kN/m∙m	0.543	1.105	5.495
受持つ設計せん	設計曲げ耐力(純曲げ耐力)	M_{ud}	kN/m∙m	232.85	295.83	295.83
	係数	β_n	-	1.002	1.004	1.019
	部材係数(せん断・コンクリート)	γ,,	-	1.3	1.3	1.3
	補強鉄筋を用いない設計せん断耐力	V_{cd}	kN/m	106.7	104.8	106.4
	変動荷重の頻度の影響を考慮する係数	k ,	-	0.5	0.5	0.5
	11.) Not 4+ 34 All 65		-	2-D13	2-D13	2-D13
	せん断補強鉄筋	A_{w}	mm ²	253.4	253.4	253.4
設計配筋	せん断補強鉄筋の配置間隔	SS	mm	125	125	125
	せん断補強鉄筋が部材軸となす角	α_s	mm	90	90	90
	せん断補強鉄筋比	p_w	%	0.20	0.20	0.20
and the latest his fine	圧縮応力の作用位置から鋼材までの距離	z	mm	217.4	252.2	252.2
せん断補強鉄筋	永久荷重によるせん断補強鉄筋の応力度**	σ_{wpd}	N/mm ²	52.80	94.28	68.82
の応力度の算定	変動荷重によるせん断補強鉄筋の応力度**	σ_{wrd}	N/mm ²	47.81	145.40	82.29
	疲労寿命	N	-	97,900	97,900	97,900
	鉄筋の引張強度の特性値	f_{uk}	N/mm ²	490	490	490
	材料係数(鉄筋)	γ _s	-	1.05	1.05	1.05
As felo . = P = 1 -l- W	鉄筋の設計引張強度	f_{ud}	N/mm ²	467	467	467
鉄筋の設計疲労 強度の算定		k	-	0.12	0.12	0.12
蚀度の昇正	係数	а	-	0.77	0.77	0.77
強及い昇 た	鉄筋の設計疲労強度	f_{wrd}	N/mm ²	238.0	214.2	228.8
	構造物係数	y i	- *************************************	1.1	1.1	1.1
	部材係数(せん断・鉄筋)	γ _b	-	1.1	1.1	1.1
	鉄筋の疲労に対する照査結果($\gamma_i \sigma_{wrd}/(f_{wrd}/\gamma_b)$ ≦		1	0.24	0.82	0.44
		1 (1)				

例表-5.20 せん断力に対するひび割れの照査

				側壁	底	版
	項目		単位	下端部	端部	右端部
				Case2	Case1	Case2
	せん断力(永久+0.5×変動)	V	kN/m	53.00	90.08	65.96
	軸圧縮力(永久+0.5×変動)	N'	kN/m	9.31	16.58	44.53
設計断面力	構造解析係数	γ a	-	1.00	1.00	1.00
	設計せん断力	V_d	kN/m	53.00	90.08	65.96
	設計軸応力	N'_d	kN/m	9.31	16.58	44.53
	部材幅	b	mm	1,000	1,000	1,000
断面諸元	部材高	h	mm	350	400	400
四面的儿	主鉄筋中心から表面までの距離	c_0	mm	100	110	110
	有効高	d	mm	250	290	290
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0
	材料係数	γ _m	-	1.0	1.0	1.0
	コンクリートの設計圧縮強度	$f'_{\it cd}$	N/mm ²	24.0	24.0	24.0
				D13@125	D16@250	D16@250
	引張鉄筋量 (曲げ・軸力に対する設定配筋)	A_s	-	(外側)	(外側)	(外側)
- 1 21 1 25	I		mm ²	1,013.6	794.4	794.4
受持つ設計せん	コンクリートの設計せん断強度	f_{vcd}	N/mm ²	0.577	0.577	0.577
断耐力の算定	係数	β_d	-	1.414	1.363	1.363
141 1101 7 3 - 2 - VC	係数	β_p	-	0.740	0.649	0.649
	引張縁で軸力による応力を打ち消すのに必要なモーメント	M_{0}	kN/m∙m	0.543	1.105	2.969
	設計曲げ耐力(純曲げ耐力)	M_{ud}	kN/m∙m	326.11	416.35	416.35
	係数	β_n	-	1.002	1.003	1.007
	部材係数(せん断・コンクリート)	γ,	-	1.0	1.0	1.0
	補強鉄筋を用いない設計せん断耐力	V_{cd}	kN/m	151.2	148.5	149.1
コンクリートが	受持つせん断耐力の判定($V_d/0.7V_{cd}$ ≤ 1	.0) ¾0K→	以降の検	0.50	0.87	0.63
	討省略			OK	OK	OK

5.3.5 断面構造の設定

以上の構造照査により、引張鉄筋とせん断補強鉄筋の設計配筋は**例表-5.21** のとおりである.

例表-5.21 設計配筋

		1, 1, 2, 4	HACHIMONN				
部	部材 引張鉄筋		せん断補強鉄筋	備考			
/md ⊟ √ c	内側	D13@250mm	. 5.4	せん断補強鉄筋、内側引張鉄			
側壁	側壁 外側 D13@125mm		2-D13	筋は最小鉄筋量により設定			
-> \	内側	D16@250mm		せん断補強鉄筋、引張鉄筋は			
底版	外側	D16@250mm	2-D13	最小鉄筋量により設定			

例-6 既設ボックスカルバートの構造照査例

設計荷重を LAK-1 (B777-300, B747-400) として許容応力度設計法で設計された既設ボックスカルバートに対して, 新機材として A350-900 荷重の載荷を考慮した構造照査例を示す.

6.1 照査概要

6.1.1 照査対象施設

設計対象施設は、NC 舗装直下と As 舗装直下に設置されているボックスカルバートとし、部材寸法と土被り、設計配筋は以下のとおりとした.

· 部材寸法: W1.5m×H1.5m

・設計土被り:1.0m

・部材厚: (頂版・側壁) …0.30m, (底版) …0.35m

・引張鉄筋: (頂版内側) …D13@125mm, (頂版外側) …D13@250mm

(側壁内側) …D13@250mm, (側壁外側) …D16@250mm

(底版内側) …D13@125mm, (底版外側) …D16@250mm

せん断補強鉄筋: (頂版, 側壁, 底版) …2-D13

・引張鉄筋中心かぶり: (底版外側) …10cm, (その他) …7cm

6.1.2 要求性能及び照査項目

要求性能は安全性、使用性、耐久性とし、限界状態設計法において検討する限界状態及び照査項目は以下のとおりとした。また、許容応力度設計法による照査においては、断面応力が許容応力度以下を満足することを照査することにより、これらの要求性能が満足されるものとした。

 要求性能
 検討する限界状態
 照査項目

 終局限界状態
 断面破壊の照査

 疲労限界状態
 疲労破壊の照査

 使用性・耐久性
 使用限界状態
 ひび割れの照査

例表-6.1 要求性能及び照査項目

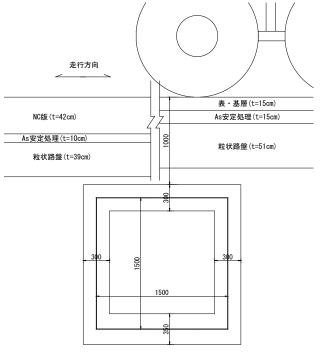
6.2 照査条件

6.2.1 設計供用期間

設計供用期間は50年とした.

6.2.2 断面条件

断面条件は**例図-6.1** に示すとおりとし、NC 舗装直下と As 舗装直下に設置されていると想定して、それぞれの断面条件で照査することとした.


設計土被りは 1.0m とした.

6.2.3 走行条件

走行条件は以下のとおりとした.

対象機材: A350-900荷重区分: W 荷重 (直角方向に横断)

・設計交通量:160,000 回 (疲労破壊の照査に適用)

例図-6.1 断面条件

6.2.4 環境条件

ボックスカルバートの環境条件は、腐食性について一般の環境とした。また、対象施設は地下水位以上に設置するため、地下水位は考慮しないこととした。

6.2.5 設計用値

材料の設計用値は以下のとおりとした.

例表-6.2 材料の設計用値

	-Z-11		設定	值	/+tr -+z
	項目		数値	単位	備考
	圧縮強度	f'_{ck}	24.0	N/mm ²	
コンクリート	弾性係数	E_c	25,000	N/mm ²	
	粗骨材の最大寸法	d_{max}	25	mm	
	引張降伏強度	f_{yk}	345	N/mm ²	
鉄筋(SD345)	引張強度	f_{uk}	490	N/mm^2	
	弾性係数	E_s	200,000	N/mm^2	
	鉄筋コンクリート		24.5	kN/m^3	
当点体辖重量	無筋コンクリート		23.0	kN/m^3	NC 舗装版
単位体積重量	アスファルト舗装		22.5	kN/m^3	
	土砂		20.0	kN/m³	砂・砂れき相当
静止土圧係数		K_0	0.5	-	

6.2.6 安全係数

各限界状態の照査における安全係数は、例表-6.3のとおり設定した.

使用·耐久性 安全性 項目 断面破壊 疲労破壊 ひび割れ 材料係数 コンクリート 1.3 1.3 1.0 γ_c 1.0 1.05 1.0 γ_m 鋼材 γ_s 1.0 1.0 躯体自重 1.0 永久 1.1 (0.9) 1.0 1.0 鉛直方向 荷重 土圧 荷重係数 水平方向 1.2 (0.9) 1.0 1.0 γ_f 航空機 鉛直方向 1.0 1.0 1.0 変動 荷重 荷重 水平方向 1.0 1.0 1.0 構造解析係数 1.0 1.0 1.0 γ_a 1.1 1.1 1.0 曲げ 部材係数 せん断(コンクリート) 1.3 1.3 1.0 γ_b せん断 (補強鉄筋) 1.1 1.1 1.0 構造物係数 1.2 1.1 γ_i

例表-6.3 設定した安全係数

6.2.7 許容応力度

許容応力度設計法による構造照査におけるコンクリート,鉄筋(SD345)の許容応力度は**例表-6.4**に示すとおりとした.

	項目		数値 W荷重	単位	備考
	許容曲げ圧縮応力度	σ_{ca}	9.00	N/mm ²	
コンクリート	***	τ_{a1}	0.45	N/mm ²	せん断補強鉄筋の計算をしない場合
	許容せん断応力	τ α2	2.00	N/mm ²	せん断補強鉄筋の計算をする場合
	許容引張応力度	σ_{sa}	196.0	N/mm ²	

例表-6.4 許容応力度

6.2.8 作用荷重の設定

ボックスカルバートに作用する荷重は,以下を考慮した.

- ・ 土圧 (永久荷重)
- · 躯体自重(永久荷重)
- 航空機荷重(変動荷重)

(1) 土圧

ボックスカルバートの周囲の地盤により頂版及び側壁が受ける土圧は次式で算定した.土圧の公称値を**例表-6.5** に示す.

[・] 荷重係数における()は、荷重が小さい方が安全側の設計となる場合の値

 $P_{vd} = \alpha \cdot \gamma \cdot h$

ここで、 P_{vd} : 構造物上面に作用する鉛直土圧 (kN/m^2)

γ:構造物上面の土及び舗装体の単位体積重量(kN/m³)

h: 構造物の土被り (m)

α:係数 (剛性基礎で支持されていない場合 1.00)

 $P_{hd} = K_0 \cdot \gamma \cdot h$

ここで、 $P_{hd}:$ 水平土圧(kN/m^2)

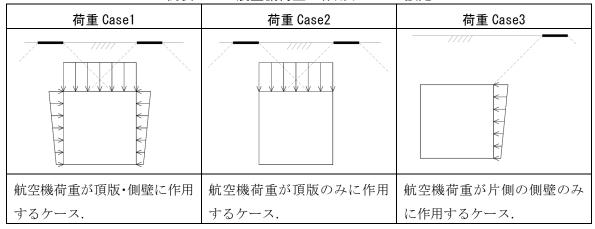
K₀:静止土圧係数

例表-6.5 地盤による鉛直・水平土圧

			1732		-D.m.1-01						
		Note the	NC舗装		As舗装/As安算	定処理	路盤・路床		46 1 1	作用土圧	
舗装構造 作用	作用位置	置 (m)	単位体積 重量(kN/m³)	層厚 (m)	単位体積 重量(kN/m³)	層厚 (m)	単位体積 重量(kN/m³)	層厚 (m)	静止土 圧係数	(kN/m ²)	備考
	頂版上	1.000	23.0	0.420	22.5	0.100	20.0	0.480	-	21.51	鉛直方向
NC舗装	側壁上端	1.150	23.0	0.420	22.5	0.100	20.0	0.630	0.5	12.26	水平方向
	側壁下端	2.650	23.0	0.420	22.5	0.100	20.0	2.130	0.5	27.26	水平方向
	頂版上	1.000	-		22.5	0.300	20.0	0.700	-	20.75	鉛直方向
As舗装	側壁上端	1.150	-		22.5	0.100	20.0	1.050	0.5	11.63	水平方向
	側壁下端	2.650	-		22.5	0.100	20.0	2.550	0.5	26.63	水平方向

(2) 躯体自重

ボックスカルバートの頂版、側壁の自重は分布荷重に換算して設定した。自重による鉛直方向荷重の公称値を**例表-6.6**に示す。


例表-6.6 躯体の自重による鉛直方向荷重

作用位置	単位体積重量 (kN/m³)	部材厚 (m)	換算荷重 (kN/m²)	備考
頂版	24.5	0.30	7.35	鉛直方向
側壁	24.5	0.30	7.35	鉛直方向

(3) 航空機荷重

航空機荷重の影響範囲は、 45° 荷重分散により設定した。深度 $1.0 \mathrm{m}$ における A350-900 の荷重分散範囲は、深度 $1.0 \mathrm{m}$ においては縦断方向・横断方向ともに $4 \mathrm{m}$ 以上の影響範囲があるため、頂版全面が A350-900 荷重の影響範囲に包括される。このため、各断面形状に対する航空機荷重の作用ケースを例表-6.7 に示すとおり設定した。

例表-6.7 航空機荷重の作用ケースの設定

A350-900 による地中応力は,主脚全脚を考慮した弾性解析結果に基づき設定した. 設定した 航空機荷重の公称値を**例表-6.8** に示す.

例表-6.8 航空機荷重

				7370			
作用位置	深度 (m)	鉛直方向地中 応力(kN/m²)	静止土 圧係数	衝撃係数	構造物の影響 による係数	作用荷重 (kN/m²)	備考
頂版上	1.000	145.37	-	0.30	1.30	245.68	鉛直方向
側壁上端	1.150	125.60	0.5	0.30	1.30	106.13	水平方向
側壁下端	2.650	47.64	0.5	0.30	1.30	40.26	水平方向

(※設計例作成当時の値)

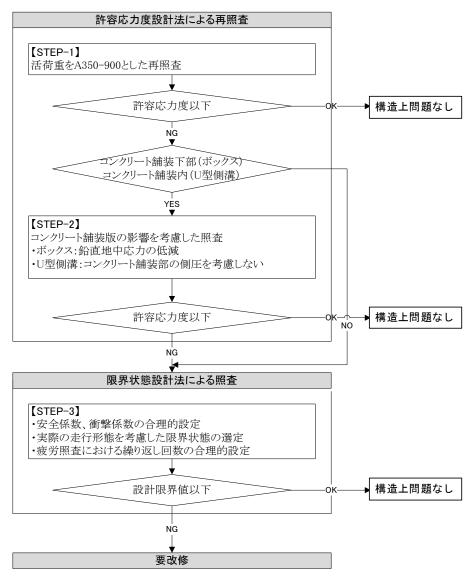
(4) 設計荷重の算定

以上より,各作用荷重の公称値に対して荷重係数を乗じた設計荷重**を例表-6.9**に示す.なお, 許容応力度設計法における設計荷重は荷重係数 1.0 の場合に相当する.

例表-6.9 設計荷重

断面破壊の照査(終局限界状態)

				Ca	se1	Ca	se2	Case3	
項目		公称值	荷重係数	設計荷重	荷重係数	設計荷重	荷重係数	設計荷重	
	- 現日		F_n	γ_f	F_d	γ_f	F_d	γ_f	F_d
			(kN/m^2)		(kN/m^2)		(kN/m^2)		(kN/m^2)
	躯体自重 頂版		7.35	1.0	7.35	1.0	7.35	1.0	7.35
	側壁	7.35	1.0	7.35	1.0	7.35	1.0	7.35	
永久荷重		鉛直方向	20.75	1.1	22.83	1.1	22.83	0.9	18.68
	土圧	水平方向	11.88	1.2	14.26	0.9	10.69	1.2	14.26
		小半万円	26.88	1.2	32.26	0.9	24.19	1.2	32.26
***************************************		鉛直方向	245.68	1.0	245.68	1.0	245.68	-	-
変動荷重	変動荷重 航空機荷重		106.13	1.0	106.13	-	-	1.0	106.13
		水平方向	40.26	1.0	40.26	-	-	1.0	40.26

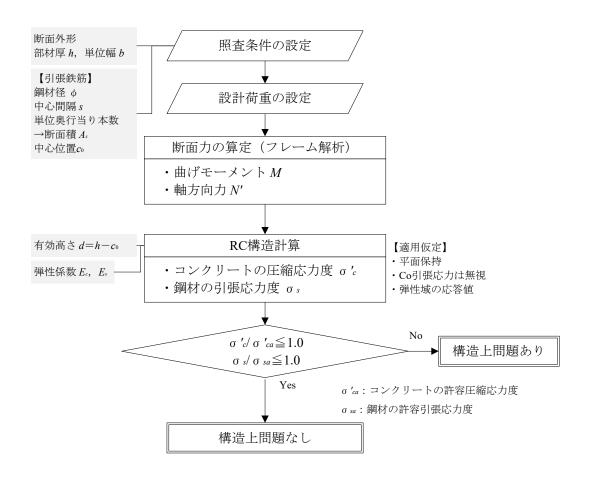

許容応力度設計法,疲労破壊・ひび割れの照査(疲労・使用限界状態)

				Ca	se1	Ca	se2	Case3	
	項目		公称值	荷重係数	設計荷重	荷重係数	設計荷重	荷重係数	設計荷重
			F_n	γ_f	F_d	γ_f	F_d	γ_f	F_d
			(kN/m^2)		(kN/m^2)		(kN/m^2)		(kN/m^2)
	躯体自重	頂版	7.35	1.0	7.35	1.0	7.35	1.0	7.35
	加州日里	側壁	7.35	1.0	7.35	1.0	7.35	1.0	7.35
永久荷重		鉛直方向	20.75	1.0	20.75	1.0	20.75	1.0	20.75
	土圧	水平方向	11.88	1.0	11.88	1.0	11.88	1.0	11.88
		水平刀间	26.88	1.0	26.88	1.0	26.88	1.0	26.88
		鉛直方向	245.68	1.0	245.68	1.0	245.68	-	-
変動荷重 航空機荷重	水平方向	106.13	1.0	106.13	-	-	1.0	106.13	
		水平刀间	40.26	1.0	40.26	-	-	1.0	40.26

6.3 既設構造物の検討手順

既設コンクリート構造物の新機材荷重(A350-900)に対する構造照査は、**例図-6.2**に示す検討手順に基づいて STEP-1~3 の各段階の構造照査を実施し、STEP-3 までの全ての段階の照査で構造上問題があると判断される場合に改修が必要とした。

- ・STEP-1 は、新機材荷重 (A350-900) に対して、許容応力度設計法による再照査を行う.
- ・STEP-2 は、コンクリート舗装下部のボックスカルバート又はコンクリート舗装内の U型 側溝を対象として、コンクリート舗装版の影響を考慮した荷重条件により照査を行う. 具体的には、ボックスカルバートについては舗装版の剛性を考慮した多層弾性解析による鉛直地中応力を適用する. U型側溝については、コンクリート舗装側面から水平荷重が伝達されないことを考慮した荷重条件による照査を実施する.
- ・STEP-3 は、限界状態設計法による照査を実施する. U 型側溝については、コンクリート舗装側面から水平荷重が伝達されないことを考慮した荷重条件による照査を実施する.


例図-6.2 既設構造物の検討手順

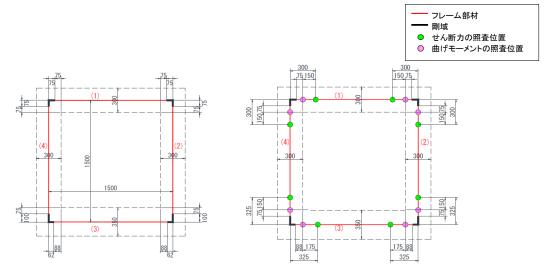
6.4 STEP-1 の検討:許容応力度設計法による照査

STEP-1 として, 新機材 A350-900 荷重に対して, 許容応力度設計法による再照査を実施した.

6.4.1 照査手順

許容応力度設計法における曲げモーメントと軸力に対する引張鉄筋(主鉄筋)の照査手順を**例図-6.3** に、せん断力に対する補強鉄筋の照査手順を**例図-6.4** に示す.

例図-6.3 曲げモーメントと軸力に対する引張鉄筋の設計フロー



例図-6.4 せん断力に対する補強鉄筋の設計フロー

6.4.2 構造解析

(1) 構造解析モデル (フレーム)

部材に生じる断面力は、フレーム解析により算定した。フレーム解析は隅角部の剛域を考慮することとし、**例図-6.5** に示すとおりモデル化した。

例図-6.5 構造解析モデル (フレーム)

(2) 断面力の算定

例図-6.5 の構造解析モデルに対して、設計荷重を作用させたフレーム解析により断面力を算定した. NC 舗装直下のボックスカルバートにおける代表箇所の断面力算定結果を**例表-6.10** に示す.

		永久荷重	+変動荷	重Case1	永久荷重	+変動荷	重Case2	永久荷重-	+変動荷	重Case3
部材	位置	М	V	N	M	V	N	М	V	N
		(kN/m·m)	(kN/m)	(kN/m)	(kN/m·m)	(kN/m)	(kN/m)	(kN/m·m)	(kN/m)	(kN/m)
	左端部①	-10.93	164.72	-79.27	-3.67	164.72	-17.68	-18.90	39.94	-42.49
	左端部②	10.69	123.54	-79.27	17.95	123.54	-17.68	-13.23	35.61	-42.49
頂版	支間中央	38.49	0.00	-79.27	45.75	0.00	-17.68	-0.13	22.62	-42.49
貝贝瓜	右端部②	10.69	-123.54	-79.27	17.95	-123.54	-17.68	7.13	9.63	-42.49
	右端部①	-10.93	-164.72	-79.27	-3.67	-164.72	-17.68	8.25	5.31	-42.49
	極大点	-	-	-	-	-	-	-	-	-
	上端部①	-28.15	61.89	-207.01	-28.96	15.73	-207.01	13.78	25.11	-0.13
	上端部②	-20.12	45.27	-208.11	-26.76	13.55	-208.11	16.29	8.50	-1.23
側壁	支間中央	-10.19	0.01	-211.42	-22.36	5.67	-211.42	9.67	-36.77	-4.54
則坚	下端部②	-18.15	-36.43	-214.54	-21.86	-3.63	-214.54	-13.91	-73.21	-7.66
	下端部①	-24.48	-47.83	-215.64	-22.68	-7.34	-215.64	-25.76	-84.61	-8.76
	極大点	-	-	-	-	-	-	16.37	-7.35	-2.33
	左端部①	-4.66	173.54	-60.17	4.92	173.54	-11.96	-38.00	37.59	-85.96
	左端部②	21.28	122.93	-60.17	30.86	122.93	-11.96	-29.29	60.18	-73.16
古塔	支間中央	47.40	0.00	-60.17	56.99	0.00	-11.96	0.97	72.09	-42.05
底版	右端部②	21.28	-122.93	-60.17	30.86	-122.93	-11.96	23.37	23.15	-10.94
	右端部①	-4.66	-173.54	-60.17	4.92	-173.54	-11.96	24.26	-14.68	1.87
	極大点	-	-	-	-	-	-	-	-	-

例表-6.10 断面力の算定結果 (STEP-1)

[※] 端部①は曲げモーメントに対する照査位置、端部②はせん断力に対する照査位置を示す.

6.4.3 許容応力度設計法による構造照査

(1) 曲げモーメント及び軸方向力に対する断面応力度の照査

1) 断面応力度の算定

RC 構造計算による断面応力度の算定は、以下の仮定に基づく RC 計算により算定し、許容応力度以下となるかを確認した。

- ・維ひずみは、断面の中立軸からの距離に比例する
- ・コンクリートの引張応力は考慮しない
- ・コンクリート及び鋼材は弾性体とする

2) 曲げモーメント及び軸方向力に対する断面応力度の照査結果

曲げモーメント及び軸方向力に対する照査結果を**例表-6.11~例表-6.13**に示す. 照査結果から, 頂版及び底版の内側で鉄筋の引張応力が許容応力度を超過する結果となった.

例表-6.11 曲げモーメントと軸方向力に対する照査結果(STEP-1.頂版)

	例表→0.11 曲けモース		· C +μ/J	[/JJ] [/J] /	/ W.H.	頂版	1, 19,110/	
	塔 日) \ \		内側引張	<u> </u>	外側引張	
	項目		単位	支間	中央	極大点	端部(対称)	左端部
				Case1	Case2	Case3	Case1	Case3
断面力	曲げモーメント	М	kN/m•m	38.49	45.75	7.13	10.93	18.90
的面刀	軸方向圧縮力	N'	kN/m	79.27	17.68	42.49	79.27	42.49
	部材幅	b	mm	1,000	1,000	1,000	1,000	1,000
断面諸元	部材高	h	mm	300	300	300	300	300
	主鉄筋中心から表面までの距離	c_0	mm	70	70	70	70	70
	有効高	d	mm	230	230	230	230	230
	引張鉄筋量	A_s	-	D13@125	D13@125	D13@125	D13@250	D13@250
設計配筋			mm ²	1,013.6	1,013.6	1,013.6	506.8	506.8
	鉄筋比	p_s	%	0.44	0.44	0.44	0.22	0.22
	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000	25,000
	鉄筋の弾性係数	E_s	N/mm ²	200,000	200,000	200,000	200,000	200,000
応力度の	弾性係数比	n	-	8.0	8.0	8.0	8.0	8.0
算定	中立軸位置※	х	mm	65.1	55.5	100.6	101.9	49.7
	コンクリートの圧縮応力**	σ'_c	N/mm ²	6.6	8.0	1.1	1.7	4.2
	鉄筋の引張応力**	σ_s	N/mm ²	134.1	202.5	11.0	17.4	122.3
許容	コンクリートの許容圧縮応力	σ'_{ca}	N/mm ²	9.0	9.0	9.0	9.0	9.0
応力度	鉄筋の許容引張応力	σ_{sa}	N/mm ²	196.0	196.0	196.0	196.0	196.0
コンカⅡ	ートの圧縮応力の照査結果(a	ابرا ا	< 1.0)	0.73	0.89	0.12	0.19	0.47
	1 少压相心刀 少思且相术(6	c'0 c	a = 1.0)	OK	OK	OK	OK	OK
44. 62	「の引張応力の照査結果(σ _s /σ _s ,	< 1	0)	0.68	1.03	0.06	0.09	0.62
业人 月刀		₁ = 1.	0)	OK	NG	OK	OK	OK

[※]中立軸位置及び応力度は引張側の鉄筋のみを考慮した単鉄筋RC構造として算定した.

[※] 中立軸位置は圧縮側縁からの距離を示す.

例表-6.12 曲げモーメントと軸方向力に対する照査結果(STEP-1, 側壁)

	列致 0.12 曲17 に 7	_		1.3231-27	プロ派日中	// (0111	1,例王/			
				側壁						
	項目		単位	内側	引張	外側引張				
	境日		中位	極大点(右)	極大点(左)	上端部	下端部	下端部(右)		
				Case3	Case3	Case2	Case1	Case3		
断面力	曲げモーメント	M	kN/m•m	16.37	16.45	28.96	24.48	25.76		
肉田刀	軸方向圧縮力	N'	kN/m	2.33	54.01	207.01	215.64	8.76		
	部材幅	b	mm	1,000	1,000	1,000	1,000	1,000		
断面諸元	部材高	h	mm	300	300	300	300	300		
四田祖儿	主鉄筋中心から表面までの距離	c_0	mm	70	70	70	70	70		
	有効高	d	mm	230	230	230	230	230		
	引張鉄筋量	A_s	-	D13@250	D13@250	D16@250	D16@250	D16@250		
設計配筋			mm ²	506.8	506.8	794.4	794.4	794.4		
	鉄筋比	p_s	%	0.22	0.22	0.35	0.35	0.35		
	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000	25,000		
	鉄筋の弾性係数	E_s	N/mm ²	200,000	200,000	200,000	200,000	200,000		
応力度の	弾性係数比	n	-	8.0	8.0	8.0	8.0	8.0		
算定	中立軸位置※	х	mm	39.9	56.0	111.1	141.8	49.7		
	コンクリートの圧縮応力**	σ'_c	N/mm ²	3.8	3.5	4.2	3.2	5.0		
	鉄筋の引張応力**	σ_s	N/mm ²	146.1	87.4	36.4	16.0	145.0		
許容	コンクリートの許容圧縮応力	σ'_{ca}	N/mm ²	9.0	9.0	9.0	9.0	9.0		
応力度	鉄筋の許容引張応力	σ_{sa}	N/mm ²	196.0	196.0	196.0	196.0	196.0		
コンカⅡ	ートの圧縮応力の照査結果(の	· /c'	< 1.0)	0.43	0.39	0.47	0.36	0.55		
	1 9/11相心刀 2/11 11相术(0	c/0 c	a = 1.0)	OK	OK	OK	OK	OK		
4生 62	鉄筋の引張応力の照査結果(σ _s /σ _{sa} ≦1.0)			0.75	0.45	0.19	0.08	0.74		
业人 月刀		1 = 1.	0)	OK	OK	OK	OK	OK		

[※]中立軸位置及び応力度は引張側の鉄筋のみを考慮した単鉄筋RC構造として算定した.

[※]中立軸位置は圧縮側縁からの距離を示す.

例表-6.13 曲げモーメントと軸方向力に対する照査結果(STEP-1,底版)

	別衣-0.13 曲けモー ク			底版						
	項目		単位		内側引張		外側引張			
	は 日		半世	支間!	支間中央		端部(対称)	右端部		
				Case1	Case2	Case3	Case1	Case3		
断面力	曲げモーメント	М	kN/m•m	47.40	56.99	24.26	4.66	38.00		
的面刀	軸方向圧縮力	N'	kN/m	60.17	11.96	1.87	60.17	85.96		
	部材幅	b	mm	1000	1000	1000	1000	1000		
断面諸元	部材高	h	mm	350	350	350	350	350		
四面阳儿	主鉄筋中心から表面までの距離	c_0	mm	70	70	70	100	100		
	有効高	d	mm	280	280	280	250	250		
	引張鉄筋量	A_s	-	D13@125	D13@125	D13@125	D16@250	D16@250		
設計配筋			mm ²	1,013.6	1,013.6	1,013.6	794.4	794.4		
	鉄筋比	p_s	%	0.36	0.36	0.36	0.32	0.32		
	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000	25,000		
	鉄筋の弾性係数	E_s	N/mm ²	200,000	200,000	200,000	200,000	200,000		
応力度の	弾性係数比	n	-	8.0	8.0	8.0	8.0	8.0		
算定	中立軸位置※	х	mm	69.3	61.2	60.3	261.1	64.9		
	コンクリートの圧縮応力**	σ'_c	N/mm ²	6.0	7.3	3.1	0.4	6.0		
	鉄筋の引張応力**	σ_s	N/mm ²	146.9	209.6	91.0	-0.1	136.8		
許容	コンクリートの許容圧縮応力	σ'_{ca}	N/mm ²	9.0	9.0	9.0	9.0	9.0		
応力度	鉄筋の許容引張応力	σ_{sa}	N/mm ²	196.0	196.0	196.0	196.0	196.0		
コンカⅡ	ートの圧縮応力の照査結果(a	اجرا ا	< 1.0)	0.67	0.81	0.35	0.05	0.67		
	1.07江州心刀07思国相术(6	c'0 c	a = 1.0)	OK	OK	OK	OK	OK		
4生 62	- 「の引張応力の照査結果(σ _s /σ _s ,	< 1	0)	0.75	1.07	0.46	0.00	0.70		
业人用刀		₁ = 1.	0)	OK	NG	OK	OK	OK		

[※]中立軸位置及び応力度は引張側の鉄筋のみを考慮した単鉄筋RC構造として算定した.

[※]中立軸位置は圧縮側縁からの距離を示す.

(2) せん断力に対する断面応力度の照査

1) 平均せん断応力度の算定方法

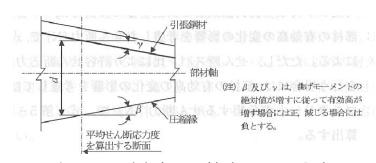
平均せん断応力度 τ_m は次式によって算定した.

$$\tau_m = \frac{V_h}{bd}, \quad V_h = V - \frac{M}{d} (\tan \beta + \tan \gamma)$$

ここに、 τ_m : 部材断面に生じるコンクリートの平均せん断応力度 (N/mm²)

V_h: 部材の有効高の変化の影響を考慮したせん断力(N)

V: 部材断面に作用するせん断力(N)


M: 部材断面に作用する曲げモーメント ($N \cdot mm$)

b: 部材幅 (mm)

d: 断面の有効高 (mm) (**例図-6.6** 参照)

β: 部材圧縮縁が部材軸方向となす角度 (°) (**例図-6.6** 参照)

γ: 引張鋼材が部材軸方向となす角度 (°) (**例図-6.6** 参照)

例図-6.6 有効高 d及び角度 β , γ の設定

2) せん断補強鉄筋の必要断面積の算定方法

せん断補強鉄筋の必要断面積 Awd は次式によって算定した.

$$A_{wd} = \frac{1.15V_h' \cdot s_s}{\sigma_{sa} \cdot d(\sin \alpha_s + \cos \alpha_s)}$$

ここに、 A_{wd} : 間隔 s_s 及び角度 a_s で配筋されるせん断補強鉄筋の断面積 (mm^2)

 V_h ': 間隔 s_s 及び角度 a_s で配筋されるせん断補強鉄筋が負担するせん断力 (N) $=V_h-V_{cs}$

 V_{ca} : コンクリートが負担するせん断力(N) = $\tau_{a1} \cdot b \cdot d$

 τ_{a1} : コンクリートのみでせん断力を負担する場合の許容応力度 (N/mm²)

ss: せん断補強鉄筋の部材軸方向の間隔 (mm)

 a_s : せん断補強鉄筋が部材軸方向となす角度=90°

 σ_{sa} : せん断補強鉄筋の許容引張応力度 (N/mm²)

3) せん断力に対する断面応力度の照査結果

せん断力に対する照査結果を**例表-6.14**に示す. 照査結果から, せん断力に対しては, 既設構造で問題ない結果となった.

例表-6.14 せん断力に対する照査結果 (STEP-1)

	例収 0.14 ピル町			頂版	側	壁	底版
	項目		単位	端部	上端部	下端部	端部
				Case1	Case1	Case3	Case1
断面力	せん断力	V	kN/m	123.54	45.27	73.21	122.93
	部材幅	b	mm	1,000	1,000	1,000	1,000
断面諸元	部材高	h	mm	300	300	300	350
例則的儿	主鉄筋中心から表面までの距離	c 0	mm	100	100	100	110
	有効高	d	mm	200	200	200	240
コンカリートの	平均せん断応力度	τ_m	N/mm ²	0.62	0.23	0.37	0.51
コンクリートの せん断応力度	許容せん断応力度(補強鉄筋なし)	τ_{a1}	N/mm ²	0.45	0.45	0.45	0.45
270时//0.737文	許容せん断応力度(補強鉄筋あり)	τ_{a2}	N/mm ²	2.00	2.00	2.00	2.00
과 /	せん断補強鉄筋検討の要否判定($ au_m/ au_{a1} \leq 1.0$)			1.38	0.51	0.82	1.13
- E A	/例佣强妖肋便的少安百刊足(l_m/l_{a1})	≧ 1.0)		NG	OK	OK	NG
北江鄉	「補強鉄筋と協働で対応可能か(τ _m /τ	< 1.0)	0.31			0.26
E 70 B		a 1 = 1.0	,	OK	-	-	OK
	せん断補強鉄筋	-		2-D13	検討不要	検討不要	2-D13
⇒n, ⇒ l	使用鉄筋の断面積	A_w	mm ²	253.4			253.4
設計 配筋	鉄筋の部材軸方向間隔	S	mm	125			125
10/1/3	鉄筋が部材軸となす角	θ	0	90			90
	鉄筋比	p_w	%	0.20			0.20
	コンクリートが負担するせん断力	$V_{\rm ca}$	kN/m	90.00			108.00
せん断補強鉄	鉄筋が負担するせん断力の合計	V_h'	kN/m	33.54			14.93
筋の照査	鉄筋の許容引張応力	σ_{sa}	N/mm ²	196.0			196.0
	鉄筋の必要断面積	A_{wa}	mm ²	123.0			45.6
4	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			0.49			0.18
. (\mathbb{E}_{A} ($A_{Wa}/A_{W} \leq 1$.0)		OK			OK

6.4.4 STEP-1 による検討結果

以上の照査結果から、曲げモーメントと軸方向力に対して、頂版及び底版の内側で鉄筋の引張応力が許容応力度を超過する結果となったため、STEP-1による照査結果はNGとなる.

これにより、前述の検討手順に基づき、NC 舗装直下のボックスカルバートは STEP-2 の検討へ, As 舗装直下のボックスカルバートは STEP-3 の検討へ移行する.

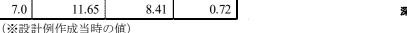
6.5 STEP-2 の検討:舗装版を考慮した荷重条件による照査

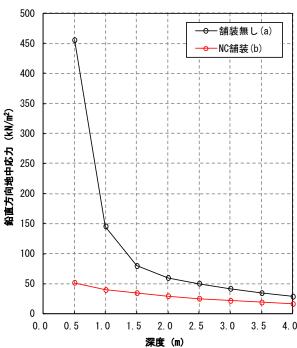
STEP-2 として、NC 舗装直下に位置するボックスカルバートに対し、NC 舗装版による航空機荷重の低減効果を考慮して、設計荷重の合理化を図った場合の構造照査を実施した. 照査手順は STEP-1 と同様である.

6.5.1 舗装版を考慮した航空機荷重の設定

(1) 舗装版を考慮した弾性解析

NC 舗装版の剛性を考慮した鉛直方向地中応力は, **例表-6.15** に示す各層の弾性係数及びポアソン比を適用した多層弾性解析により算定した.


弾性係数 ポアソン比 項目 層厚 (N/mm^2) NC 版 42cm 34,000 0.15 As 安定処理 10cm 3,100 0.35 粒状路盤 39cm 200 0.35 路床 (無限大) 100 0.35


例表-6.15 多層弾性解析で設定した弾性係数とポアソン比

多層弾性解析による鉛直方向地中応力の算定結果を例表-6.16に示す.

鉛直方向地中応力 深度 比率 (kN/m^2) (m)(b/a) 舗装無し(a) NC舗装(b) 0.5 455.41 51.59 0.11 1.0 145.37 39.55 0.27 1.5 79.47 34.27 0.43 0.49 2.0 59.64 29.31 2.5 50.22 25.05 0.50 0.52 3.0 41.62 21.53 0.54 3.5 34.29 18.63 4.0 16.25 0.57 28.42 4.5 23.80 14.29 0.60 0.63 5.0 20.16 12.66 5.5 17.29 11.30 0.65 6.0 15.00 10.15 0.686.5 13.15 9.20 0.70 7.0 11.65 8.41 0.72

例表-6.16 舗装版を考慮した A350-900 による鉛直方向地中応力

(2) 舗装版を考慮した航空機荷重の設定

各作用位置において設定した航空機による地中応力を**例表-6.17** に示す. なお, NC 舗装構造による弾性解析値に乗じる構造物の影響を考慮した補正係数は, FEM 解析結果に基づき 1.8 とした.

例表-6.17 NC版による荷重低減を考慮した航空機荷重の設定

作用位置	深度 (m)	舗装版を考慮し た鉛直方向地中 応力(kN/m²)	静止土 圧係数	衝撃係数	構造物の影響 による係数	作用荷重 (kN/m²)	備考
頂版上	1.000	39.55	-	0.30	1.80	92.55	鉛直方向
				0			
側壁上端	1.175	37.70	0.5	0.30	1.80	44.11	水平方向

(※設計例作成当時の値)

6.5.2 構造解析

STEP-1 と同様の解析モデル (フレーム) に対して, 舗装版を考慮した設計荷重を作用させたフレーム解析により断面力を算定した.

断面力の算定結果を**例表-6.18**に示す.

例表-6.18 断面力の算定結果 (STEP-2)

		永久荷重	+変動荷	重Case1	永久荷重	+変動荷	重Case2	永久荷重-	+変動荷	重Case3
部材	位置	М	V	N	M	V	N	M	V	N
11.13	1	(kN/m⋅m)	(kN/m)	(kN/m)	(kN/m·m)	(kN/m)	(kN/m)	(kN/m·m)	(kN/m)	(kN/m)
	左端部①	-5.96	72.85	-42.31	-2.44	72.85	-13.95	-9.58	27.53	-25.88
	左端部②	3.60	54.64	-42.31	7.12	54.64	-13.95	-5.78	23.20	-25.88
頂垢	支間中央	15.89	0.00	-42.31	19.42	0.00	-13.95	1.74	10.21	-25.88
頂版	右端部②	3.60	-54.63	-42.31	7.12	-54.63	-13.95	3.41	-2.78	-25.88
	右端部①	-5.96	-72.85	-42.31	-2.44	-72.85	-13.95	2.67	-7.11	-25.88
	極大点	-	-	-	-	-	-	-	-	-
	上端部①	-12.55	33.82	-92.16	-12.78	12.00	-92.16	4.52	17.38	-12.54
	上端部②	-8.11	25.35	-93.26	-11.14	9.82	-93.26	6.50	8.91	-13.64
側壁	支間中央	-2.40	0.05	-96.57	-8.42	1.94	-96.57	4.81	-16.38	-16.95
則生	下端部②	-7.43	-23.67	-99.69	-9.51	-7.36	-99.69	-7.20	-40.10	-20.07
	下端部①	-11.60	-32.00	-100.80	-10.89	-11.07	-100.80	-13.84	-48.44	-21.17
	極大点	-	-	-	-	-	-	7.20	0.46	-14.74
	左端部①	-4.27	81.67	-41.70	0.56	81.67	-15.69	-19.06	31.71	-52.70
	左端部②	7.94	57.85	-41.70	12.77	57.85	-15.69	-12.88	38.07	-46.35
安坦	支間中央	20.23	0.00	-41.70	25.06	0.00	-15.69	3.35	33.63	-30.95
底版	右端部②	7.94	-57.85	-41.70	12.77	-57.85	-15.69	11.71	1.04	-15.54
	右端部①	-4.27	-81.67	-41.70	0.56	-81.67	-15.69	10.07	-20.57	-9.20
	極大点	-	-	-	-	-	-	-	-	-

※ 端部①は曲げモーメントに対する照査位置、端部②はせん断力に対する照査位置を示す.

6.5.3 舗装版による荷重低減を考慮した構造照査

STEP-1 と同様の照査手順により、曲げモーメント及び軸方向力に対する断面応力度の照査、せん断力に対する断面応力度の照査を実施した.

照査結果を**例表-6**. 19~**例表-6**. 22 に示す.

例表-6.19 曲げモーメントと軸方向力に対する照査結果 (STEP-2, 頂版)

	例		C +M/J	[-1/2] (-N)	が別に出る	ж (оты	-, 1天///			
				頂版						
	項目		単位		内側引張		外側引張			
	供日		平15	支間	中央	極大点	端部(対称)	左端部		
				Case1	Case2	Case3	Case1	Case3		
断面力	曲げモーメント	M	kN/m·m	15.89	19.42	3.50	5.96	9.58		
関囲刀	軸方向圧縮力	N'	kN/m	42.31	13.95	25.88	42.31	25.88		
	部材幅	b	mm	1,000	1,000	1,000	1,000	1,000		
断面諸元	部材高	h	mm	300	300	300	300	300		
	主鉄筋中心から表面までの距離	c_0	mm	70	70	70	70	70		
	有効高	d	mm	230	230	230	230	230		
	引張鉄筋量	A_s	-	D13@125	D13@125	D13@125	D13@250	D13@250		
設計配筋			mm ²	1,013.6	1,013.6	1,013.6	506.8	506.8		
	鉄筋比	p_s	%	0.44	0.44	0.44	0.22	0.22		
	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000	25,000		
	鉄筋の弾性係数	E_s	N/mm ²	200,000	200,000	200,000	200,000	200,000		
応力度の	弾性係数比	n	-	8.0	8.0	8.0	8.0	8.0		
算定	中立軸位置※	х	mm	69.1	57.2	121.4	99.1	52.3		
	コンクリートの圧縮応力**	σ'_c	N/mm ²	2.7	3.4	0.5	1.0	2.1		
	鉄筋の引張応力**	σ_s	N/mm ²	50.1	82.3	3.5	10.1	57.1		
許容	コンクリートの許容圧縮応力	σ'_{ca}	N/mm ²	9.0	9.0	9.0	9.0	9.0		
応力度	鉄筋の許容引張応力	σ_{sa}	N/mm ²	196.0	196.0	196.0	196.0	196.0		
コンカⅡ	ートの圧縮応力の照査結果(a	· / / c-!	< 1.0)	0.30	0.38	0.05	0.11	0.23		
	FV/工棚心//V/思国稻米(6	c/0 c	a ≥ 1.0)	OK	OK	OK	OK	OK		
소바 선수	の引進されの昭本幼里 (- /-	< 1	0)	0.26	0.42	0.02	0.05	0.29		
亚大 肋	G の引張応力の照査結果(σ_s/σ_{st}	ı ≥ 1.	0)	OK	OK	OK	OK	OK		

[※]中立軸位置及び応力度は引張側の鉄筋のみを考慮した単鉄筋RC構造として算定した.

[※]中立軸位置は圧縮側縁からの距離を示す.

例表-6.20 曲げモーメントと軸方向力に対する照査結果(STEP-2, 側壁)

	列致 0.20 面() L 7			1.3231-273	アの派耳叩	<u> </u>	2,例主/			
				側壁						
	項目		単位	内側	引張	外側引張				
	境日		半世	極大点(右)	極大点(左)	上端部	下端部	下端部(右)		
				Case3	Case3	Case2	Case1	Case3		
断面力	曲げモーメント	М	kN/m∙m	7.20	5.61	12.78	11.60	13.84		
肉田刀	軸方向圧縮力	N'	kN/m	14.74	41.60	92.16	100.80	21.17		
	部材幅	b	mm	1,000	1,000	1,000	1,000	1,000		
断面諸元	部材高	h	mm	300	300	300	300	300		
四田祖儿	主鉄筋中心から表面までの距離	c_0	mm	70	70	70	70	70		
	有効高	d	mm	230	230	230	230	230		
	引張鉄筋量	A_s	-	D13@250	D13@250	D16@250	D16@250	D16@250		
設計配筋			mm ²	506.8	506.8	794.4	794.4	794.4		
	鉄筋比	p_s	%	0.22	0.22	0.35	0.35	0.35		
	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000	25,000		
	鉄筋の弾性係数	E_s	N/mm ²	200,000	200,000	200,000	200,000	200,000		
応力度の	弾性係数比	n	-	8.0	8.0	8.0	8.0	8.0		
算定	中立軸位置※	х	mm	48.6	104.9	112.1	139.4	55.8		
	コンクリートの圧縮応力**	σ'_c	N/mm ²	1.6	0.9	1.9	1.5	2.6		
	鉄筋の引張応力**	σ_s	N/mm ²	48.2	8.3	15.7	8.0	65.9		
許容	コンクリートの許容圧縮応力	σ'_{ca}	N/mm ²	9.0	9.0	9.0	9.0	9.0		
応力度	鉄筋の許容引張応力	σ_{sa}	N/mm ²	196.0	196.0	196.0	196.0	196.0		
コンカⅡ	ートの圧縮応力の照査結果(の	·' /σ'	< 1.0)	0.18	0.10	0.21	0.17	0.29		
	1 9/11相心刀 2/11 11相术(0	c/0 c	a = 1.0)	OK	OK	OK	OK	OK		
4生 62	鉄筋の引張応力の照査結果(σ _s /σ _{sa} ≦1.0)			0.25	0.04	0.08	0.04	0.34		
业人 月刀		= 1.1	<i>(</i>)	OK	OK	OK	OK	OK		

[※]中立軸位置及び応力度は引張側の鉄筋のみを考慮した単鉄筋RC構造として算定した.

[※]中立軸位置は圧縮側縁からの距離を示す.

例表-6.21 曲げモーメントと軸方向力に対する照査結果(STEP-2,底版)

					/ 少 洲 丑 和	底版		
	項目		単位		内側引張		外側	引張
	供日		半世	支間中央		極大点	端部(対称)	右端部
				Case1	Case2	Case3	Case1	Case3
断面力	曲げモーメント	М	kN/m∙m	20.23	25.06	11.71	4.27	19.06
附曲刀	軸方向圧縮力	N'	kN/m	41.70	15.69	15.54	41.70	52.70
	部材幅	b	mm	1000	1000	1000	1000	1000
断面諸元	部材高	h	mm	350	350	350	350	350
	主鉄筋中心から表面までの距離	c_0	mm	70	70	70	100	100
	有効高	d	mm	280	280	280	250	250
	引張鉄筋量	A_s	-	D13@125	D13@125	D13@125	D16@250	D16@250
設計配筋			mm ²	1,013.6	1,013.6	1,013.6	794.4	794.4
	鉄筋比	p_s	%	0.36	0.36	0.36	0.32	0.32
	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000	25,000
	鉄筋の弾性係数	E_s	N/mm ²	200,000	200,000	200,000	200,000	200,000
応力度の	弾性係数比	n	-	8.0	8.0	8.0	8.0	8.0
算定	中立軸位置※	х	mm	76.2	64.2	69.8	215.7	69.2
	コンクリートの圧縮応力**	σ'_c	N/mm ²	2.5	3.2	1.5	0.4	2.9
	鉄筋の引張応力**	σ_s	N/mm ²	54.2	86.4	35.9	0.5	61.3
許容	コンクリートの許容圧縮応力	σ'_{ca}	N/mm ²	9.0	9.0	9.0	9.0	9.0
応力度	鉄筋の許容引張応力	σ_{sa}	N/mm ²	196.0	196.0	196.0	196.0	196.0
コンカⅡ	ートの圧縮応力の照査結果(a	ايدا ا	< 1.0)	0.28	0.36	0.17	0.04	0.33
	1 77 工相心刀 77 思 且 相 术 (6	c'0 c	a = 1.0)	OK	OK	OK	OK	OK
針 岔	の引張応力の照査結果(σ _s /σ _s ,	< 1	0)	0.28	0.44	0.18	0.00	0.31
少八 月刀		₁ = 1.	0)	OK	OK	OK	OK	OK

[※]中立軸位置及び応力度は引張側の鉄筋のみを考慮した単鉄筋RC構造として算定した.

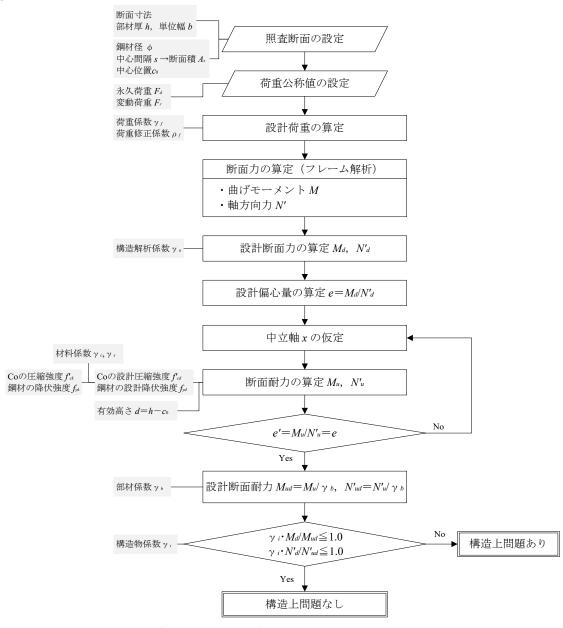
例表-6.22 せん断力に対する照査結果 (STEP-2)

	列载 0.22 E70 图	1731-	, j / W //		OILI Z/		
				頂版	側	底版	
	項目		単位	端部	上端部	下端部	端部
				Case1	Case1	Case3	Case1
断面力	せん断力	V	kN/m	54.64	25.35	40.10	57.85
	部材幅	b	mm	1,000	1,000	1,000	1,000
断面諸元	部材高	h	mm	300	300	300	350
即則的儿	主鉄筋中心から表面までの距離	c_0	mm	100	100	100	110
	有効高	d	mm	200	200	200	240
	平均せん断応力度	τ_m	N/mm ²	0.27	0.13	0.20	0.24
コングリートの	許容せん断応力度(補強鉄筋なし)	τ_{a1}	N/mm ²	0.45	0.45	0.45	0.45
	許容せん断応力度(補強鉄筋あり)	τ_{a2}	N/mm ²	2.00	2.00	2.00	2.00
# 4	- ル断補強鉄筋検討の要否判定(τ _m /τ _{al} :	< 1 (1)		0.60	0.29	0.44	0.53
G //	/阿州近郊加快的ック安白刊足(t _m /t _a 1:	= 1.0)		OK	OK	OK	OK

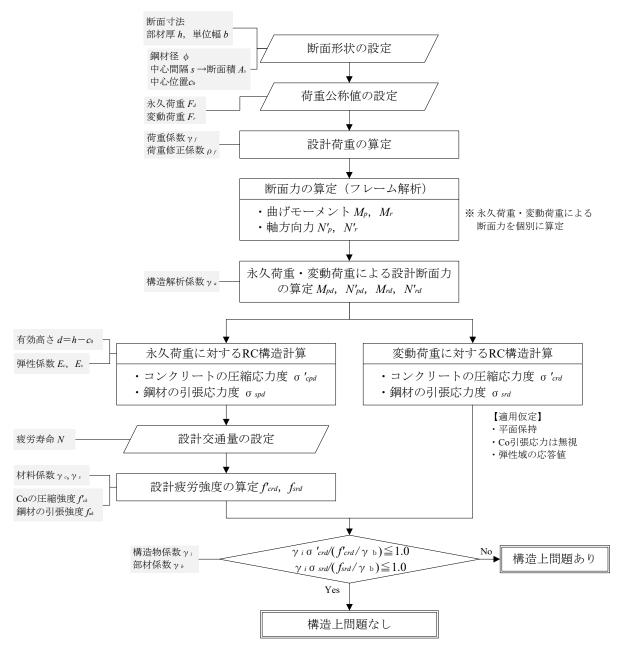
6.5.4 STEP-2 による検討結果

以上の照査結果から、曲げモーメントと軸方向力、せん断力に対して、全ての部材で断面応力が許容応力度以下となった.これにより、NC 舗装直下の既設ボックスカルバートは構造上問題ない結果となる.

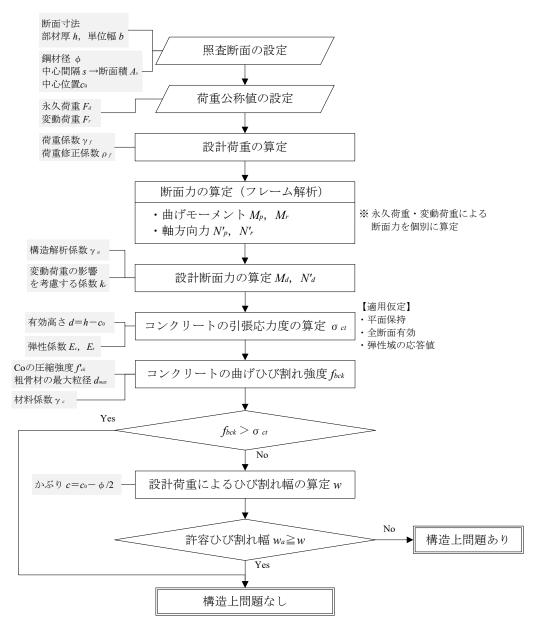
[※] 中立軸位置は圧縮側縁からの距離を示す.

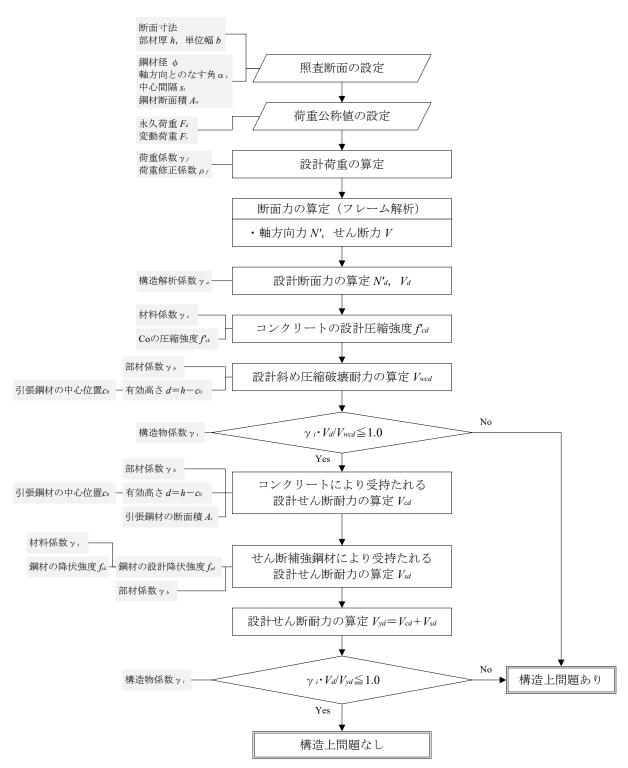

6.6 STEP-3 の検討: 限界状態設計法による照査

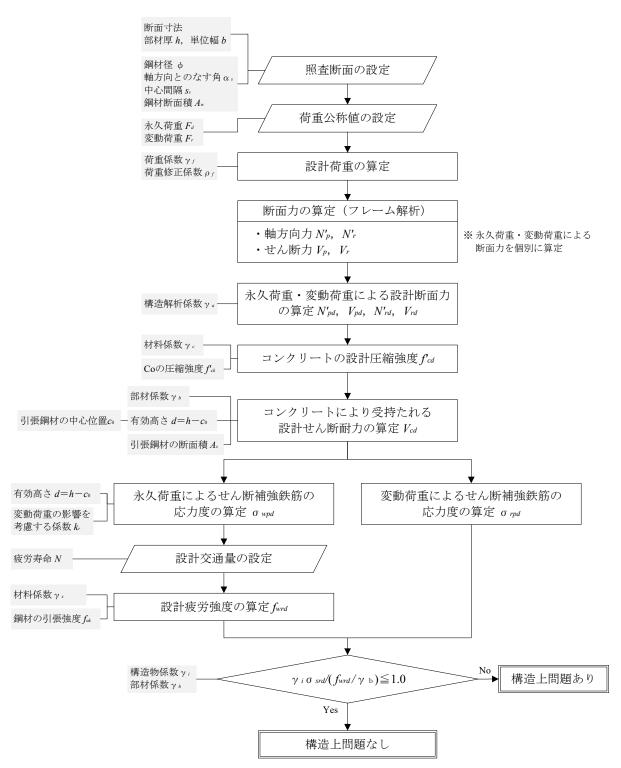
STEP-3 として, 限界状態設計法による照査を実施した. 安全係数については, 既設構造物は 将来の荷重変動を考慮しない考えから, 終局限界における変動荷重の荷重係数 1.2 は 1.0 へ低減した.

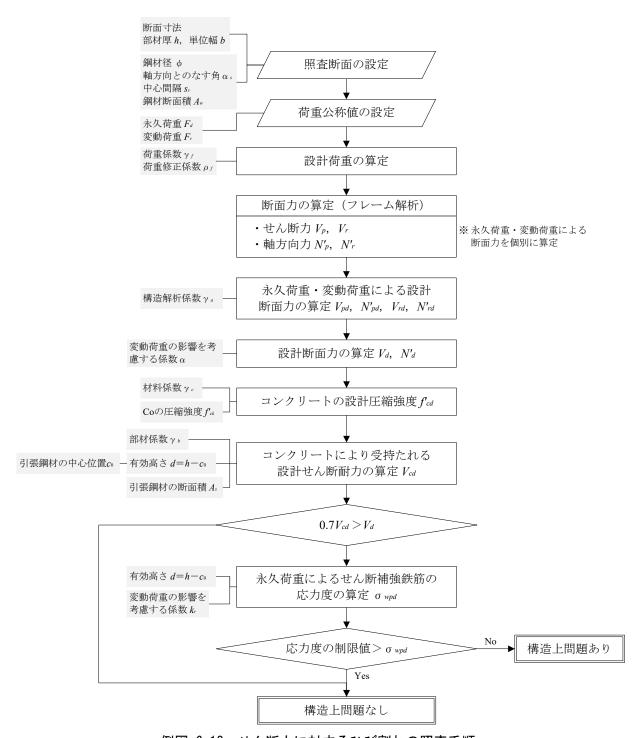

STEP-2 の照査結果より、NC 舗装直下のボックスカルバートは構造上問題ない結果となったため、STEP-3 の照査では As 舗装直下のボックスカルバートを対象とした.

6.6.1 照査手順


断面破壊,疲労破壊,ひび割れに対する照査の手順は**例図-6.7~例図-6.12** に示すとおりである.


例図-6.7 曲げモーメント及び軸方向力に対する断面破壊の照査手順


例図-6.8 曲げモーメント及び軸方向力に対する疲労破壊の照査手順


例図-6.9 曲げモーメント及び軸方向力に対するひび割れの照査手順

例図-6.10 せん断力に対する断面破壊の照査手順

例図-6.11 せん断力に対する疲労破壊の照査手順

例図-6.12 せん断力に対するひび割れの照査手順

6.6.2 構造解析

STEP-1,2 と同様の構造解析モデルに対して、限界状態設計法による設計荷重を作用させた 構造解析により断面力を算定した.

6.6.3 曲げモーメント及び軸方向力に対する構造照査

- (1) 断面破壊の照査(終局限界状態)
 - 1) 設計断面力の算定

設計断面力(曲げモーメント,軸方向力)は,構造解析により得られた断面力に構造解析係数を乗じて算定した.

$$S_d = \gamma_a \cdot S(F_d)$$

ここで、 S_d :設計断面力

γ_a:構造解析係数

 $S(F_d)$: 設計荷重 F_d による断面力

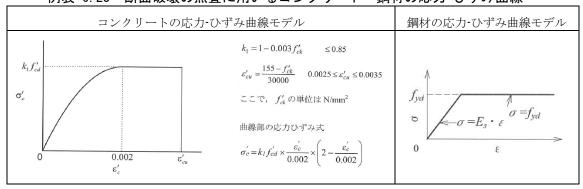
2) 設計曲げ耐力・設計軸圧縮耐力の算定

設計曲げ耐力及び設計軸圧縮耐力は次式で算定した.

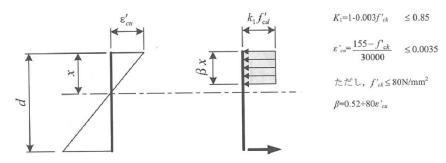
$$M_{ud} = M_u / \gamma_b, \quad N'_{ud} = N'_u / \gamma_b$$

ここで、 M_{ud} :設計曲げ耐力 $(kN/m \cdot m)$

 N'_{ud} : 設計軸圧縮耐力(kN/m)


γ_b: 部材係数

M_u: 曲げ耐力(kN/m·m) N'_u: 軸圧縮耐力(kN/m)


鉄筋コンクリート断面の曲げ耐力 M_u 及び軸圧縮耐力 N'_u は、以下の仮定に基づいて算定した。

- ・維ひずみは、断面の中立軸からの距離に比例する.
- ・コンクリートの引張応力は考慮しない.
- ・コンクリートと鋼材の応力-ひずみ曲線は例表-6.23によるのを原則とする.

例表-6.23 断面破壊の照査に用いるコンクリート・鋼材の応力-ひずみ曲線 20)

また、断面のひずみがすべて圧縮側となる場合以外は、コンクリートの圧縮応力の分布を 等価応力ブロック(**例図-6.13**) と仮定した.

例図-6.13 等価応力ブロックの仮定²⁰⁾

以上により、曲げ耐力及び軸圧縮耐力は次式によって算定した.

$$\begin{split} M_u &= C \cdot Y_c + T \cdot Y_s, & N'_u &= C - T \\ C &= k_1 \cdot f'_{cd} \cdot b \cdot \beta \cdot x, & T &= A_s \cdot f_{yd} \end{split}$$

ここで, C: 圧縮力 (kN/m)

T: 引張力 (kN/m)

 Y_c : 圧縮力の合力の中心から断面図心までの距離 $(m) = h/2 - \beta x/2$

 Y_s : 引張力の合力の中心から断面図心までの距離 (m) = d - h/2

x: 圧縮縁から中立軸までの距離 (m)

b:部材幅(m)

 $k_1 = 1 - 0.003 f_{ck} \le 0.85$

 f'_{cd} : コンクリートの設計圧縮強度 (N/mm²) = f'_{ck}/γ_c

 f'_{ck} : コンクリートの圧縮強度 (N/mm²)

 $\beta = 0.52 + 80 \varepsilon'_{cu}$

 ε'_{cu} : コンクリートの圧縮縁のひずみ = $(155-f'_{ck})/30000$ ≤ 0.0035

 A_s : 鉄筋の断面積 (mm²)

fvd:鉄筋の降伏応力(N/mm²)

3) 曲げモーメント及び軸方向力に対する断面破壊の照査結果

既設ボックスカルバートに対する曲げモーメント及び軸方向力による断面破壊の照査結果を**例表-6.24~例表-6.26**に示す.

例表-6.24 曲げモーメントと軸方向力による断面破壊の照査結果(STEP-3,頂版)

						頂版		
	項目		単位		内側引張		外側	月張
			平17.	支間	中央	極大点	端部(対称)	左側端部
		$\begin{array}{c c} & d \\ & A_s \\ & P \\ & x \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$		Case1	Case2	Case3	Case1	Case3
	曲げモーメント	М	kN/m∙m	38.39	46.19	7.95	11.26	19.20
30.31 No 1	軸圧縮力	N'	kN/m	81.43	16.23	44.55	81.43	44.5
	構造解析係数	γa	-	1.0	1.0	1.0	1.0	1.0
₹/ 31 /L	設計曲げモーメント	M_d	kN/m∙m	38.39	46.19	7.95	11.26	19.20
	設計軸圧縮力	N'_d	kN/m	81.43	16.23	44.55	81.43	44.55
	設計偏心量	e	m	0.471	2.846	0.178	0.138	0.43
	部材幅	b	mm	1,000	1,000	1,000	1,000	1,000
断面諸元	部材高	h	mm	300	300	300	300	300
	主鉄筋中心から表面までの距離	c 0	mm	70	70	70	70	7(
	有効高	d	mm	230	230	230	230	230
	引張鉄筋量	A	-	D13@125	D13@125	D13@125	D13@250	D13@250
設計配筋	77 成 9 7 加 里	215	mm ²	1,013.6	1,013.6	1,013.6	506.8	506.8
	引張鉄筋比	p	%	0.44	0.44	0.44	0.22	0.22
	中立軸位置※	x	mm	45.2	30.0	103.1	103.0	24.4
	図心から偏心位置までの距離		mm	321.4	2696.0	28.5	-11.7	281.0
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0	24.0
	材料係数	γ c	-	1.3	1.3	1.3	1.3	1.3
コンクリートの	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	18.5	18.5	18.5	18.5	18.5
	コンクリートの終局圧縮ひずみ	ε' _{cu}	N/mm ²	0.0035	0.0035	0.0035	0.0035	0.0035
	圧縮力の低減係数	k 1	-	0.85	0.85	0.85	0.85	0.85
	係数	β	_	0.80	0.80	0.80	0.80	0.80
	等価応力ブロック高さ	Y'	mm	36.1	24.0	82.5	82.4	19.5
	圧縮力	C	kN/m	568.0	377.9	1296.9	1295.1	307.2
	鉄筋の引張降伏強度の特性値	f_{yk}	N/mm ²	345	345	345	345	345
かか か	材料係数	γ c	-	1.00	1.00	1.00	1.00	1.00
	鉄筋の設計引張降伏強度	f_{yd}	N/mm ²	345.0	345.0	345.0	345.0	345.0
設計配筋 コンクリートの 圧縮力の算定 鉄鉄筋の算定 引張力の算定 曲 曲 1	引張鉄筋ひずみ	E s	-	0.0143	0.0233	0.0043	0.0043	0.029
	引張力	T	kN/m	349.7	349.7	349.7	174.8	174.8
	圧縮力アーム長	Y_c	mm	131.9	138.0	108.8	108.8	140.
	引張力アーム長	Y_s	mm	80.0	80.0	80.0	80.0	80.0
	曲げ耐力	M_u	kN/m∙m	102.92	80.12	169.03	154.92	57.0
3031.1652514	軸圧縮耐力	N'_u	kN/m	218.30	28.20	947.20	1120.30	132.4
	断面耐力の偏心量	e'	m	0.471	2.841	0.178	0.138	0.43
13172	部材係数(曲げ)	γь	-	1.1	1.1	1.1	1.1	1.
	設計曲げ耐力	M_{ud}	kN/m∙m	93.56	72.84	153.66	140.84	51.8′
	設計軸圧縮耐力	N'_{ud}	kN/m	198.45	25.64	861.09	1018.45	120.30
	構造物係数 γ _i				1.2	1.2	1.2	1.
ш.	ブモーメント照査結果(γ _i M _d /M _{ud}	0.49	0.76	0.06	0.10	0.4		
щν	アーノマー m 旦和 不 (Y i M d l M ud	OK	OK	OK	OK	OK		
	軸圧縮力照査結果 $(\gamma_i N'_d/N'_{ud} \leq 1.$	0.49	0.76	0.06	0.10	0.4		
	中山上州 J M 且 M		OK	OK	OK	OK	OK	

[※]中立軸位置xは繰返し計算により、断面耐力の偏心量e'=設計偏心量eとなる値を設定した。 ※中立軸位置は圧縮側縁からの距離を示す.

例表-6.25 曲げモーメントと軸方向力による断面破壊の照査結果(STEP-3, 側壁)

						側壁		
	福 日		14 t+	内側	引張		外側引張	
			- 単位	右側極大点	左側極大点	上端部	下端部	(右側)
				Case3	Case3	Case2	Case1	Case3
	曲げモーメント M kN/m・m 3.93 7.64 軸圧縮力 N' kN/m 3.51 48.76 構造解析係数 7a - 1.0 1.0 2.0 2.0 2.5 2.0 2.2 中立軸位置※ x mm 1.7.1 82.7 2.0 2.0 2.2 2.0 2.0 2.0 2.0 2.0 2.0 2.0		29.09	24.60	25.5			
-n1 No 1	軸圧縮力	N'	kN/m	3.51	48.76	207.99	216.63	6.6
設計断面力 の算定	構造解析係数	γa	-	1.0	1.0	1.0	1.0	1.0
V)#/C	設計曲げモーメント	M_d	kN/m∙m	3.93	7.64	29.09	24.60	25.5
	設計軸圧縮力	N'_d	kN/m	3.51	48.76	207.99	216.63	6.6
	設計偏心量	е	m	1.120	0.157	0.140	0.114	3.849
	部材幅	b	mm	1,000	1,000	1,000	1,000	1,000
断面諸元	部材高	h	mm	300	300	300	300	300
	主鉄筋中心から表面までの距離	c 0	mm	70	70	70	70	7(
	有効高	d	mm	230	230	230	230	230
	引張鉄節量	4	-	D13@250	D13@250	D16@250	D16@250	D16@250
設計配筋	J1 JA	As	mm ²	506.8	506.8	794.4	794.4	794.4
	引張鉄筋比	p	%	0.22	0.22	0.35	0.35	0.35
	中立軸位置※	х	mm	17.1	82.7	122.8	157.9	23.1
	図心から偏心位置までの距離	а	mm	969.7	6.7	-10.1	-36.4	3699.4
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0	24.0
	材料係数	γ c	-	1.3	1.3	1.3	1.3	1.3
コンクリートの	コンクリートの設計圧縮強度	f_{cd}	N/mm ²	18.5	18.5	18.5	18.5	18.5
圧縮力の算定	コンクリートの終局圧縮ひずみ	ε' _{cu}	N/mm ²	0.0035	0.0035	0.0035	0.0035	0.003:
	圧縮力の低減係数	k 1	-	0.85	0.85	0.85	0.85	0.83
	係数	β	-	0.80	0.80	0.80	0.80	0.80
	等価応力ブロック高さ	Y'	mm	13.7	66.2	98.3	126.3	18.5
	圧縮力	C	kN/m	214.7	1040.4	1545.3	1986.3	290.5
	鉄筋の引張降伏強度の特性値	f_{yk}	N/mm ²	345	345	345	345	345
鉄筋の	材料係数	γ c	-	1.00	1.00	1.00	1.00	1.00
財助の 引張力の算定	鉄筋の設計引張降伏強度	f_{yd}	N/mm ²	345.0	345.0	345.0	345.0	345.0
31.7	引張鉄筋ひずみ	E _S	-	0.0437	0.0062	0.0031	0.0016	0.031
	引張力	T	kN/m	174.8	174.8	274.1	274.1	274.
	圧縮力アーム長	Y_c	mm	143.2	116.9	100.9	86.8	140.
	引張力アーム長	Y_s	mm	80.0	80.0	80.0	80.0	80.
	曲げ耐力	M_u	kN/m∙m	44.72	135.63	177.79	194.43	62.8
設計断面耐力	軸圧縮耐力	N'_u	kN/m	39.90	865.60	1271.20	1712.20	16.4
の算定	断面耐力の偏心量	e'	m	1.121	0.157	0.140	0.114	3.83
13172	部材係数(曲げ)	γ,	-	1.1	1.1	1.1	1.1	1.
	設計曲げ耐力	M_{ud}	kN/m∙m	40.65	123.30	161.63	176.75	57.1
	設計軸圧縮耐力	N'_{ud}	kN/m	36.27	786.91	1155.64	1556.55	14.9
	構造物係数	γ i	-	1.2	1.2	1.2	1.2	1.3
#н 1	げモーメント照査結果(γ _i M _d /M _{ud} ;		0.12	0.07	0.22	0.17	0.5	
щ	The different of the different and the different	OK	OK	OK	OK	OK		
	軸圧縮力照査結果 $(\gamma_i N'_d/N'_{ud} \leq 1.$		0.12	0.07	0.22	0.17	0.5	
	報送に報送に報送に対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象対象<			OK	OK	OK	OK	OK

[※]中立軸位置xは繰返し計算により、断面耐力の偏心量e'=設計偏心量eとなる値を設定した。 ※中立軸位置は圧縮側縁からの距離を示す。

例表-6.26 曲げモーメントと軸方向力による断面破壊の照査結果(STEP-3,底版)

						底版		
	百日		単位		内側引張		外側	引張
	項目		- 単位	支間	中央	極大点	端部(対称)	右側端部
				Case1	Case2	Case3	大点 端部(対称) 7 ase3 Case1 23.70 5.11 1.31 63.25 1.0 1.0 1.0 23.70 5.11 1.31 63.25 18.092 0.081 1,000 1000 350 350 350 70 100 280 250 10,103.6 794.4 0.36 0.32 28.2 261.1 17916.6 -94.2 24.0 24.0 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	Case3
	曲げモーメント	М	kN/m∙m	47.19	57.58	23.70	5.11	38.5
-n1 No 1	軸圧縮力	N'	kN/m	63.25	9.93	1.31	63.25	89.14
設計断面力 の算定	構造解析係数	γa	-	1.0	1.0	1.0	1.0	1.0
V)#/C	設計曲げモーメント	M_d	kN/m∙m	47.19	57.58	23.70	5.11	38.5
	設計軸圧縮力	N'_d	kN/m	63.25	9.93	1.31	63.25	89.14
	設計偏心量	е	m	0.746	5.799	18.092	0.081	0.43
	部材幅	b	mm	1000	1000	1,000	1000	1000
断面諸元	部材高	h	mm	350	350	350	350	350
	主鉄筋中心から表面までの距離	c_0	mm	70	70	70	100	100
	有効高	d	mm	280	280	280	250	250
	引張鉄筋量	A_s	-	D13@125	D13@125	D13@125	D16@250	D16@250
設計配筋	7 瓜奶加里	21.5	mm ²	1,013.6	1,013.6	1,013.6	794.4	794.4
	引張鉄筋比	p	%	0.36	0.36	0.36	0.32	0.32
	中立軸位置※	x	mm	40.3	29.1	28.2	261.1	40.4
	図心から偏心位置までの距離	а	mm	571.1	5623.6	17916.6	-94.2	257.
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0	24.0
	材料係数	γ c	-	1.3	1.3	1.3	1.3	1.3
コンクリートの	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	18.5	18.5	18.5	18.5	18.:
	コンクリートの終局圧縮ひずみ	ε' _{cu}	N/mm ²	0.0035	0.0035	0.0035	0.0035	0.003
	圧縮力の低減係数	k 1	-	0.85	0.85	0.85	0.85	0.8
	係数	β	-	0.80	0.80	0.80	0.80	0.8
	等価応力ブロック高さ	Y'	mm	32.2	23.3	22.6	208.9	32.
	圧縮力	C	kN/m	506.8	366.3	354.9	3284.6	508.2
	鉄筋の引張降伏強度の特性値	f_{yk}	N/mm ²	345	345	345	345	34:
鉄筋の	材料係数	γ c	-	1.00	1.00	1.00	1.00	1.0
引張力の算定	鉄筋の設計引張降伏強度	f_{yd}	N/mm ²	345.0	345.0	345.0	345.0	345.
	引張鉄筋ひずみ	E _S	-	0.0208	0.0302	0.0312	-0.0001	0.018
	引張力	T	kN/m	349.7	349.7	349.7	274.1	274.
	圧縮力アーム長	Y_c	mm	158.9	163.4	163.7	70.6	158.
	引張力アーム長	Y_s	mm	105.0	105.0	105.0	***************************************	75.0
	曲げ耐力	M_u	kN/m∙m	117.24	96.55	94.82	252.32	101.2
設計断面耐力	軸圧縮耐力	N' _u	kN/m	157.10	16.60		3010.50	234.10
の算定	断面耐力の偏心量	e'	m	0.746	5.816	18.235	0.084	0.43
	部材係数(曲げ)	γь	-	1.1	1.1	1.1	***************************************	1.
	設計曲げ耐力	M_{ud}	kN/m∙m	106.58	87.77			92.0
	設計軸圧縮耐力	N'_{ud}	kN/m	142.82	15.09			212.8
	構造物係数 7:			1.2	1.2			1.1
曲(げモーメント照査結果(γ _i M _d /M _{ud} :	0.53	0.79	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	0.5		
	· · · · · · · · · · · · · · · · · · ·	OK	OK	OK	OK	OK		
	軸圧縮力照査結果($\gamma_i N'_d / N'_{ud} \le 1$.		0.53	0.79	0.33	0.03	0.50	
	乗返し計算により、断面耐力の偏心量e'≒設ま			OK	OK	OK	OK	OK

[※]中立軸位置xは繰返し計算により、断面耐力の偏心量e'=設計偏心量eとなる値を設定した。 ※中立軸位置は圧縮側縁からの距離を示す.

(2) 疲労破壊の照査 (疲労限界状態)

1) 設計断面力の算定

永久荷重・変動荷重による設計断面力は,算定した断面力に構造解析係数を乗じて算定した.

$$S_{pd} = \gamma_a \cdot S(F_{pd}), \quad S_{rd} = \gamma_a \cdot S(F_{rd})$$

ここで、Spd:永久荷重による設計断面力

 $S(F_{pd}):$ 永久荷重 F_{pd} による断面力

Srd:変動荷重による設計断面力

 $S(F_{rd})$:変動荷重 F_{rd} による断面力

γa: 構造解析係数

2) 永久荷重・変動荷重による応力度

疲労破壊の照査における断面応力度は、曲げモーメントと軸方向力の作用下で以下の仮定に基づき算定した.

- ・維ひずみは、断面の中立軸からの距離に比例する.
- ・コンクリート及び鋼材は弾性体とする.
- ・コンクリートの引張応力は、一般に無視する.

変動荷重によるコンクリートの応力は、上述の仮定に基づいて算定した三角分布の応力の合力位置と同位置に応力位置が来るようにした矩形応力分布の応力度とし、三角分布の圧縮縁応力 σ 。に対して次式で算定した.

$$\sigma'_{crd} = (3/4)\sigma'_{c}$$

3) 設計曲げ疲労強度

コンクリートの圧縮に対する設計疲労強度は次式で算定した.

$$f'_{crd} = k_{1f} f'_{cd} (1 - \sigma'_{cpd} / f'_{cd}) \left(1 - \frac{\log N}{K} \right)$$

ここで、 f_{crd} : コンクリートの設計疲労強度 (N/mm²)

 f'_{cd} : コンクリートの設計圧縮強度 $(N/mm^2) = f'_{cd}/\gamma_c$

γ_c: コンクリートの材料係数

K: 材料と状態を考慮する係数. 一般の場合, K=17 とする.

 k_{1f} : 圧縮及び曲げ圧縮の場合, k_{1f} =0.85 とする.

N:疲労寿命

 σ'_{cpd} : 永久荷重によるコンクリートの圧縮応力度 (N/mm²)

なお、交番応力が作用する場合(永久荷重と変動荷重による応力の正負が一致しない場合)、永久荷重による応力度 σ_{cpd} は 0 とした.

鉄筋の引張に対する設計疲労強度は次式で算定した.

$$f_{srd} = 190 \frac{10^{a}}{N^{k}} (1 - \sigma_{spd} / f_{ud}) / \gamma_{s}$$

$$a = k_{0} (0.81 - 0.003\phi), \quad k = 0.12$$

ここで、 f_{srd} : 鉄筋の設計疲労強度 (N/mm²)

 f_{ud} : 鉄筋の設計引張強度(N/mm²) = f_{uk}/γ_s

 γ_s : 鉄筋の材料係数 φ : 鉄筋直径 (mm)

 k_0 : 鉄筋のふしの形状に関する係数. 一般に 1.0 として良い.

 σ_{spd} : 永久荷重による鉄筋の引張応力度 (N/mm²)

4) 曲げモーメント及び軸方向力に対する疲労破壊の照査結果

既設ボックスカルバートに対する曲げモーメント及び軸方向力による疲労破壊の照査結果を**例表-6.27~例表-6.29**に示す.

例表-6.27 曲げモーメントと軸方向力による疲労破壊の照査結果 (STEP-3, 頂版)

	· ·	_				頂版	頂版		
	項目		単位	支間	中央	極大点	端部(対称)	左側端部	
	曲げモーメント (永久) 軸圧縮力 (永久) 構造解析係数 設計曲げモーメント (変動) 軸圧縮力 (変動) 軸圧縮力 (変動) 神造解析係数 設計曲げモーメント (変動) 神造解析係数 設計曲に縮力 (変動) 設計軸圧縮力 (変動) 設計軸圧縮力 (変動) 部材幅 部材高 主鉄筋中心から表面までの距離 有効高 引張鉄筋比 コンクリートの弾性係数 中立軸位置 (変動) コンクリートの圧縮緑の応力 (変動) 鉄筋の引張応力 (変動) 中立軸位置 (次久) コンクリートの圧縮尿の応力 (変動) 株筋の引張応力 (変動) サウットの圧縮尿の応力 (変動) 大る 算定 コンクリートの圧縮尿の応力 (変動) 大名 第定 カンクリートの正縮尿の応力 (変動) 大路の引張応力 (永久) を発育の コンクリートの配子を表して、一般の 大路の引張応力 (永久) を発育の引張なりである。 対料係数 (コンクリート) カンクリートの設計圧縮強度 強度低下を考慮する係数 (圧縮) コンクリートの設計疲労強度 鉄筋の引張強度の特性値 材料係数 (鉄筋) 鉄筋の設計引張強度 係数			Case1	Case2	Case3	Case1	Case3	
	#u#	14	kN/m∙m	3.36	3.36	1.71	1.71	1.71	
	曲りモーメント (水久)	M_p	KIN/m•m	内側引張	内側引張	外側引張	外側引張	外側引張	
永久荷重による	軸圧縮力 (永久)	N' p	kN/m	11.60	11.60	11.60	11.60	11.60	
設計断面力	構造解析係数	γ _a	-	1.00	1.00	1.00	1.00	1.00	
	設計曲げモーメント(永久)	M_{pd}	kN/m∙m	3.36	3.36	1.71	1.71	1.71	
曲 軸 構 設 設 曲 軸 構 設 設 部部 主 有 引 引 コ 鉄 中 コ 鉄 西 の 度	設計軸圧縮力(永久)	N'_{pd}	kN/m	11.60	11.60	11.60	11.60	11.60	
			137/	34.99	42.25	9.95	9.24	17.21	
	曲けモーメント (変動)	M_r	kN/m·m	内側引張	内側引張	内側引張	外側引張	外側引張	
変動荷重による	軸圧縮力 (変動)	N',	kN/m	67.57	5.99	30.80	67.57	30.80	
		γ _a	-	1.00	1.00	1.00	1.00	1.00	
東		M _{rd}	kN/m•m	34.99	42.25	9.95	9.24	17.21	
		N' _{rd}	kN/m	67.57	5.99	30.80	67.57	30.80	
		b	mm	1,000	1,000	1,000	1,000	1,000	
		h	mm	300	300	300	300	300	
断面諸元		c ₀	mm	70	70	70	70	70	
		d	mm	230	230	230	230	230	
			-	D13@125	D13@125	D13@125	D13@250	D13@250	
設計配銘	引張鉄筋量	A_s	mm ²	1,013.6	1,013.6	1.013.6	506.8	506.8	
IX IT DE 1/1/	리.e. 幹 幹 比	n	%	0.44	0.44	0.44	0.22	0.22	
	2.3.3.	<i>P E c</i>	N/mm ²	25,000	25,000	25,000	25,000	25,000	
		E _s	N/mm N/mm ²	200,000	200,000	200,000	200,000	200,000	
変動荷重による。		x_r	mm	64.3	54.2	72.3	103.0	47.2	
	コンクリートの圧縮縁の応力(変動)	σ_{crd}	N/mm ²	6.0	7.4	1.7	1.5	3.9	
	鉄筋の引張応力 (変動)	σ_{srd}	N/mm ²	124.4	193.0	29.1	14.4	120.4	
		<i>x</i> _p	mm	102.3	102.3	110.8	76.9	76.9	
		σ'_{cvd}	N/mm ²	0.5	0.5	0.0	0.3	0.3	
(交番の場合の)		σ_{spd}	N/mm ²	5.0	5.0	0.0	5.0	5.0	
		N	?	160,000	160,000	160,000	160,000	160,000	
		f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0	24.0	
		γ _c	-	1.3	1.3	1.3	1.3	1.3	
		f'cd	N/mm ²	18.5	18.5	18.5	18.5	18.5	
V) 94 /L		k 1f	-	0.85	0.85	0.85	0.85	0.85	
変動 () () () () () () () () () (K	-	17	17	17	17	17	
		f' crd	N/mm ²	10.6	10.6	10.9	10.7	10.7	
		f_{uk}	N/mm ²	490	490	490	490	490	
	材料係数(鉄筋)	γ _s	-	1.05	1.05	1.05	1.05	1.05	
		f_{ud}	N/mm ²	467	467	467	467	467	
	係数	k	-	0.12	0.12	0.12	0.12	0.12	
強度の算定		а	-	0.77	0.77	0.77	0.77	0.77	
	鉄筋の設計疲労強度	f_{srd}	N/mm ²	250.3	250.3	253.0	250.3	250.3	
	構造物係数	γ,	-	1.1	1.1	1.1	1.1	1.1	
	部材係数	γ _b	-	1.1	1.1	1.1	1.1	1.1	
コンカー	コンクリートの疲労に対する照査結果($\gamma_i \sigma_{crd} / (f_{crd} / \gamma_b) \le 1.0$)	0.69	0.85	0.18	0.16	0.44	
コンソップ「FVV放力に対する無重和未($\gamma_i \sigma_{crd} / \sqrt{c_{rd}} / \gamma_b) \cong 1.0$)			<u> </u>	OK	OK	OK	OK	OK	
<i>오</i> 바: 십	鉄筋の疲労に対する照査結果($\gamma_i \sigma_{srd}/(f_{srd}/\gamma_b) \leq 1.0$)			0.60	0.93	0.14	0.07	0.58	
实力	鉄肋の疲労に対する照食結果($\gamma_i \sigma_{srd}/(f_{srd}/\gamma_b) \ge 1.0$)			OK	OK	OK	OK	OK	

[※]中立軸位置及び応力度は、引張側鉄筋のみを考慮したRC構造計算により算定した、 ※中立軸位置は圧縮側縁からの距離を示す。

例表-6.28 曲げモーメントと軸方向力による疲労破壊の照査結果 (STEP-3, 側壁)

17.120	-0.20 曲17モーメントと軸				7100 ATT 41 M	側壁	-, ₁ /\(\)	
	項目		単位	右側極大点	左側下端部	上端部	下端部	(右側)
				Case3	Case3	Case2	Case1	Case3
				0.15	0.15	2.95	3.50	3.50
	曲げモーメント (永久)	M_p	kN/m∙m	外側引張	外側引張	外側引張	外側引張	外側引張
永月芸香による	 軸圧縮力(永久)	N'p	kN/m	27.69	27.69	22.18	30.82	30.82
設計断面力	構造解析係数	γ _a	_	1.00	1.00	1.00	1.00	1.00
	設計曲げモーメント(永久)	M_{pd}	kN/m∙m	0.15	0.15	2.95	3.50	3.50
	設計軸圧縮力(永久)	N'_{pd}	kN/m	27.69	27.69	22.18	30.82	30.82
	以 日 和	21 pa	KI VIII	3.41	7.12	25.96	20.73	22.01
	曲げモーメント (変動)	M_r	kN/m∙m	内側引張	内側引張	外側引張	外側引張	外側引張
亦科共手による	軸圧縮力 (変動)	N'r	kN/m	22.63	22.63	184.26	184.26	22.63
	構造解析係数		- KI V/III	1.00	1.00	1.00	1.00	1.00
вантышуу	設計曲げモーメント(変動)	γ_a M_{rd}	kN/m·m	3.41	7.12	25.96	20.73	22.01
	設計軸圧縮力(変動)			22.63	22.63	184.26	184.26	22.63
		N' _{rd}	kN/m		1,000	1,000	1,000	
	部材幅	b	mm	1,000	 		ļ	1,000
断面諸元	部材高	h	mm	300	300	300	300	300
	主鉄筋中心から表面までの距離	C 0	mm	70	70	70	70	70
	有効高	d	mm	230	230	230	230	230
-n1 =1 64c	引張鉄筋量	A_s	-	D13@250	D13@250	D16@250	D16@250	D16@250
設計配肋			mm ²	506.8	506.8	794.4	794.4	794.4
	引張鉄筋比	p	%	0.22	0.22	0.35	0.35	0.35
東	コンクリートの弾性係数	E_c	N/mm ²	25,000 200,000	25,000 200,000	25,000 200,000	25,000 200,000	25,000 200,000
	鉄筋の弾性係数 中立軸位置 (変動)	E_s	N/mm ² mm	91.3	55.3	110.3	143.4	53.1
	コンクリートの圧縮縁の応力(変動)	σ_{crd}	N/mm ²	0.6	1.5	3.8	2.7	4.2
	鉄筋の引張応力 (変動)	σ_{srd}	N/mm ²	7.0	38.6	33.2	13.1	112.7
永久荷重による	中立軸位置 (永久)	<i>x</i> _p	mm	216.9	93.3	97.3	101.9	101.9
	コンクリートの圧縮応力(永久)	σ'_{cod}	N/mm ²	0.0	0.0	0.5	0.5	0.5
(交番の場合0)	鉄筋の引張応力 (永久)	σ_{spd}	N/mm ²	0.0	0.0	5.0	5.4	5.4
	疲労寿命	N	-	160,000	160,000	160,000	160,000	160,000
	コンクリートの圧縮強度の特性値	f'ck	N/mm ²	24.0	24.0	24.0	24.0	24.0
コンクリートの	材料係数(コンクリート)	γ _c	-	1.3	1.3	1.3	1.3	1.3
	コンクリートの設計圧縮強度	f'cd	N/mm ²	18.5	18.5	18.5	18.5	18.5
変	強度低下を考慮する係数(圧縮)	k_{1f}	-	0.85	0.85	0.85	0.85	0.85
	コンクリートの状態を考慮する係数	K	-	17	17	17	17	17
	コンクリートの設計疲労強度	f'_{crd}	N/mm ²	10.9	10.9	10.6	10.6	10.6
	鉄筋の引張強度の特性値	f_{uk}	N/mm ²	490	490	490	490	490
	材料係数(鉄筋)	γs	-	1.05	1.05	1.05	1.05	1.05
	鉄筋の設計引張強度	f_{ud}	N/mm ²	467	467	467	467	467
鉄筋の設計疲労	係数	k	-	0.12	0.12	0.12	0.12	0.12
	係数	а	-	0.77	0.77	0.76	0.76	0.76
	鉄筋の設計疲労強度	f_{srd}	N/mm ²	253.0	253.0	244.6	244.4	244.4
	構造物係数	γ,	-	1.1	1.1	1.1	1.1	1.1
	部材係数	γ ь	-	1.1	1.1	1.1	1.1	1.1
				0.06	0.17	0.43	0.31	0.48
コンクリ	コンクリートの疲労に対する照査結果 $(\gamma_i \sigma_{crd}/(f_{crd}/\gamma_b) \le 1.0)$)	OK	OK	OK	OK	OK
				0.03	0.18	0.16	0.06	0.56
鉄筋の疲労に対する照査結果 $(\gamma_i \sigma_{srd}/(f_{srd}/\gamma_b) \leq 1.0)$				OK	OK	OK	OK	OK
※ 由立軸位置及7KI	応力度は、引張側鉄筋のみを考慮したRC構造計算に	· Fn質定1 た		I JK) OK	OK.	l OK	UK.

[※]中立軸位置及び応力度は、引張側鉄筋のみを考慮したRC構造計算により算定した、 ※中立軸位置は圧縮側縁からの距離を示す。

例表-6.29 曲げモーメントと軸方向力による疲労破壊の照査結果 (STEP-3,底版)

	0.20 曲(7 と プライと中			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	· /	底版	0, <u>P2</u> 0/IX	
	項目		単位	支間	中央	極大点	端部(対称)	右側端部
	^-		1 124	Case 1	Case2	Case3	Case1	Case3
				5.31	5.31	2.03	2.03	2.03
	曲げモーメント (永久)	M_p	kN/m∙m	内側引張	内側引張	外側引張	外側引張	外側引張
ユ. b. サチル・レフ	動圧絞力 (シカ)	N'	kN/m	17.48	17.48	17.48	17.48	17.48
永久荷重による 設計断面力	軸圧縮力(永久)	N' _p	KIN/III					
[X [1] [4] [1] [7]	構造解析係数	γ _a	137/	1.00	1.00	1.00	1.00	1.00
	設計曲げモーメント(永久)	M_{pd}	kN/m·m	5.31	5.31	2.03	2.03	2.03
	設計軸圧縮力(永久)	N' _{pd}	kN/m	17.48	17.48	17.48	17.48	17.48
	曲げモーメント (変動)	M_r	kN/m•m	41.65	51.23	26.35	2.59	35.93
				内側引張	内側引張	内側引張	外側引張	外側引張
変動荷重による	軸圧縮力(変動)	N' _r	kN/m	42.23	5.99	19.82	42.23	68.03
設計断面力	構造解析係数	γ _a	-	1.00	1.00	1.00	1.00	1.00
	設計曲げモーメント(変動)	M_{rd}	kN/m•m	41.65	51.23	26.35	2.59	35.93
	設計軸圧縮力 (変動)	N' _{rd}	kN/m	42.23	5.99	19.82	42.23	68.03
	部材幅	b	mm	1000	1000	1,000	1000	1000
断面諸元	部材高	h	mm	350	350	350	350	350
阿田明儿	主鉄筋中心から表面までの距離	c 0	mm	70	70	70	100	100
	有効高	d	mm	280	280	280	250	250
	引張鉄筋量	1	-	D13@125	D13@125	D13@125	D16@250	D16@250
設計配筋	対象外加里	A_s	mm ²	1,013.6	1,013.6	1,013.6	794.4	794.4
	引張鉄筋比	p	%	0.36	0.36	0.36	0.32	0.32
	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000	25,000
変動荷重による 応力度の算定	鉄筋の弾性係数	E_s	N/mm ²	200,000	200,000	200,000	200,000	200,000
	中立軸位置 (変動)	x_r	mm	67.2	60.6	65.2	261.1	62.1
727022 13172	コンクリートの圧縮縁の応力(変動)	σ_{crd}	N/mm ²	5.3	6.6	3.4	0.2	5.8
3.1.10.00.00.00.00.00	鉄筋の引張応力 (変動)	σ_{srd}	N/mm ²	134.8	191.0	89.1 309.9	-0.1 109.0	139.6 109.0
永久荷重による 応力度の算定	中立軸位置(永久) コンクリートの圧縮応力(永久)	x _p	mm	114.5 0.6	114.5 0.6	309.9 0.0	0.2	0.2
ルグラス (交番の場合0)	鉄筋の引張応力(永久)	σ'_{cnd}	N/mm ²	6.8	6.8	0.0	2.6	2.6
	疲労寿命	σ_{spd} N	N/mm ²	160,000	160,000	160,000	160,000	160,000
	コンクリートの圧縮強度の特性値	f'ck	N/mm ²	24.0	24.0	24.0	24.0	24.0
	材料係数(コンクリート)		IN/mm	1.3	1.3	1.3	1.3	1.3
コンクリートの 設計疲労強度		γ _c	NI 2	18.5	18.5	18.5	18.5	18.5
取前級カ畑及 の算定	コンクリートの設計圧縮強度	f' _{cd}	N/mm ²					
3,70	強度低下を考慮する係数(圧縮)	k _{1f}	-	0.85	0.85	0.85	0.85	0.85
	コンクリートの状態を考慮する係数	K	- 2	17	17	17	17	17
	コンクリートの設計疲労強度	f' crd	N/mm ²	10.6	10.6	10.9	10.8	10.8
	鉄筋の引張強度の特性値	f_{uk}	N/mm ²	490	490	490	490	490
	材料係数(鉄筋)	γ _s	-	1.05	1.05	1.05	1.05	1.05
	鉄筋の設計引張強度	f_{ud}	N/mm ²	467	467	467	467	467
鉄筋の設計疲労	係数	k	-	0.12	0.12	0.12	0.12	0.12
強度の算定	係数	а	-	0.77	0.77	0.77	0.76	0.76
	鉄筋の設計疲労強度	f_{srd}	N/mm ²	249.3	249.3	253.0	245.9	245.9
	構造物係数	γ,	-	1.1	1.1	1.1	1.1	1.1
	部材係数	γь	-	1.1	1.1	1.1	1.1	1.1
₩ \ / A)	0.61	0.75	0.37	0.03	0.65
コンクリ	コンクリートの疲労に対する照査結果 $(\gamma_i \sigma_{crd}/(f_{crd}/\gamma_b) \le 1.0)$			OK	OK	OK	OK	OK
*** **	対数の転送に対すて関本体用(1/6 /) ≤10)			0.65	0.93	0.43	0.00	0.69
鉄角	鉄筋の疲労に対する照査結果($\gamma_i \sigma_{srd} / (f_{srd} / \gamma_b) \leq 1.0$)			OK	OK	OK	OK	OK
	ぶ力度は、引張側鉄筋のみを考慮したRC構造計算に		J 515		- IN	L	J. 1	

[※]中立軸位置及び応力度は、引張側鉄筋のみを考慮したRC構造計算により算定した。 ※中立軸位置は圧縮側縁からの距離を示す。

(3) ひび割れの照査 (使用限界状態)

1) 設計断面力の算定

設計断面力は、ひび割れ幅が鋼材の腐食に及ぼす影響を考慮した係数 k_r を用いて次式で算定した.

$$S_d = \gamma_a \left\{ S(F_{pd}) + k_r S(F_{rd}) \right\}$$

ここで、 S_d : 設計断面力

γ_a: 構造解析係数

 $S(F_{pd})$, $S(F_{rd})$: 永久荷重 F_{pd} , 変動荷重 F_{rd} による断面力

 k_r : 永久荷重によるひび割れ幅が鋼材の腐食に及ぼす影響度と変動荷重による ひび割れ幅が鋼材の腐食に及ぼす影響度の差を考慮するための係数(標準0.5)

2) コンクリートの引張応力度

設計断面力により作用するコンクリートの引張応力度は次式で算定した.

$$\sigma_{ct} = \frac{N_d'}{A_e} + \frac{M_d}{I_e} y$$

$$A_e = bh + \frac{E_s}{E_c} \sum A_s , \qquad I_e = \frac{bh^3}{12} + \frac{E_s}{E_c} \sum y^2 A_s$$

ここで、 σ_{ct} : 引張縁のコンクリート引張応力度 (N/mm²)

Ae: 鋼材を考慮した等価換算断面積 (mm²)

 I_e : 鋼材を考慮した等価換算断面二次モーメント (mm^4)

 A_s : 引張鉄筋の断面積(mm^2)

 E_c , E_s : コンクリート、引張鋼材の弾性係数 (N/mm²)

b: 部材幅 (mm)

h: 断面の高さ (mm)

v: 断面図心から着目点までの距離 (mm)

3) コンクリートの曲げひび割れ強度

コンクリートの曲げひび割れ強度は、引張軟化特性を考慮して次式で算定した.

$$f_{bck} = k_{0b} \cdot k_{1b} \cdot f_{tk}$$

$$k_{0b} = 1 + \frac{1}{0.85 + 4.5 \times (h/l_{ch})}, \qquad k_{1b} = \frac{0.55}{\sqrt[4]{h}}, \qquad f_{tk} = 0.23 f_{ck}'^{2/3}$$

$$l_{ch} = G_F \cdot E_c / f_{tk^2}$$
, $G_F = 10(d_{\text{max}})^{1/3} \cdot f_{ck}^{\prime}^{1/3}$

ここで、 f_{bck} : コンクリートの曲げひび割れ強度 (N/mm^2)

 f_{tk} : コンクリートの引張強度の特性値 (N/mm²)

 f_{ck} : コンクリートの圧縮強度の特性値(N/mm²)

lch: 特性長さ (m)

 G_F : コンクリートの破壊エネルギー (N/m)

 $E_c: コンクリートの弾性係数 (N/mm²)$

dmax:粗骨材の最大粒径 (mm)

4) 曲げひび割れ幅

設計断面力による曲げひび割れ幅は、次式により算定した.

$$w = 1.1k_1 \cdot k_2 \cdot k_3 \{4c + 0.7(c_s - \phi)\} \left(\frac{\sigma_{se}}{E_s} + \varepsilon'_{csd}\right)$$

ここで, w: ひび割れ幅 (mm)

 k_1 :鋼材の表面形状がひび割れに及ぼす影響を表す係数 (=1.0:異形鉄筋)

k2:コンクリートの品質がひび割れに及ぼす影響を表す係数

 $=15/(f_{cd}+20)+0.7$

 f_{cd} : コンクリートの設計圧縮強度(N/mm²)= f'_{ck}/γ_c

k3:引張鉄筋の段数の影響がひび割れに及ぼす影響を表す係数

=5(N+2)/(7N+8) N:引張鉄筋の段数

c:かぶり (mm)

 c_s : 鉄筋の中心線間隔 (mm)

 φ : 鉄筋径 (mm)

 ε'_{csd} : コンクリートの収縮及びクリープ等によるひび割れ幅の増加を考慮する ための値= 150×10^{-6}

5) 許容ひび割れ幅

鉄筋腐食に対するひび割れ幅の限界値 w_a は0.005c(0.5mm を上限)とした.

6) 曲げモーメント及び軸方向力に対するひび割れの照査結果

既設ボックスカルバートに対する曲げモーメント及び軸方向力によるひび割れの照査結果を**例表-6**. 30~**例表-6**. 32 に示す.

例表-6.30 曲げモーメントと軸方向力によるひび割れ幅の照査結果(STEP-3,頂版)

	0.00 m() C プライ C 和/) [1					頂版	, , , , , , , ,	
	*# F		324 fd.		内側引張		外側	引張
	項目		単位	支間	中央	極大点	端部 (対称)	左側端部
				Case1	Case2	Case3	Casel	Case3
	曲げモーメント (永久+0.5×変動)	М	kN/m⋅m	20.85	24.48	3.27	6.33	10.31
	軸圧縮力(永久+0.5×変動)	N'	kN/m	45.38	14.59	26.99	45.38	26.99
設計断面力	構造解析係数	γ _a	-	1.00	1.00	1.00	1.00	1.00
	設計曲げモーメント	M_d	kN/m∙m	20.85	24.48	3.27	6.33	10.31
	設計軸圧縮力	N'_d	kN/m	45.38	14.59	26.99	45.38	26.99
	部材幅	b	mm	1,000	1,000	1,000	1,000	1,000
斯西 敦宗	部材高	h	mm	300	300	300	300	300
四田町	主鉄筋中心から表面までの距離	c_0	mm	70	70	70	70	70
	有効高	d	mm	230	230	230	230	230
	引張鉄筋量	4	-	D13@125	D13@125	D13@125	D13@250	D13@250
設計配筋	7 次欽加里	A_s p_s E_c	mm ²	1,013.6	1,013.6	1,013.6	506.8	506.8
	引張鉄筋比	p_s	%	0.44	0.44	0.44	0.22	0.22
	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000	25,000
	鉄筋の弾性係数	E_s	N/mm ²	200,000	200,000	200,000	200,000	200,000
	弾性係数比	n	-	8.0	8.0	8.0	8.0	8.0
	等価換算断面積	A_e	mm ²	3.08E+05	3.08E+05	3.08.E+05	3.04.E+05	3.04.E+05
計 計 計 計 計 計 計 計 力 力 力 力 力 力 力 力 力 力 力 力 力 力 力 力 力 力 力 力 力 力 力 力 力 力 力 力 力 力 力 力 力 力 カース カース カース<	等価換算断面二次モーメント	I_e	mm ⁴	2.30E+09	2.30E+09	2.30.E+09	2.28.E+09	2.28.E+09
	コンクリートの最大引張応力	σ_{ct}	N/mm ²	1.51	1.64	0.30	0.57	0.77
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0	24.0
	材料係数	γ _c	-	1.0	1.0	1.0	1.0	1.0
	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	24.0	24.0	24.0	24.0	24.0
	コンクリートの引張強度の特性値	f_{tk}	N/mm ²	1.91	1.91	1.91	1.91	1.91
	粗骨材の最大寸法	d_{max}	mm	25	25	25	25	25
	破壊エネルギー	G_F	N/m	84.3	84.3	84.3	84.3	84.3
れ強度の算定	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000	25,000
	特性長さ	l_{ch}	m	0.58	0.58	0.58	0.58	0.58
	引張軟化特性による係数	k_{0b}	-	1.31	1.31	1.31	1.31	1.31
	その他の原因による係数	k_{1b}	-	0.74	0.74	0.74	0.74	0.74
	コンクリートの曲げひび割れ強度	f'_{bck}	N/mm ²	1.85	1.85	1.85	1.85	1.85
曲げてい	曲げひび割れ発生判定($\sigma_{cl}/f_{bck} < 1.0$)※OK→以降の検討省閘		略	0.81	0.89	0.16	0.31	0.41
щ1) Оч	曲けいい割れ発生判定($\sigma_{cl}f_{bck} < 1.0$) $% OK ightarrow 以降の候。$		rµ	OK	OK	OK	OK	OK

例表-6.31 曲げモーメントと軸方向力によるひび割れ幅の照査結果(STEP-3,側壁)

17111	0.01 曲けて アンドと軸方向			<u> </u>	* ////	側壁	, ,,,,_	
			324 /da	内側引	引張	外側引張		
	項目		単位	右側極大点 左側極大点		上端部	下端部	(右側)
				Case3	Case3	Case2	Case1	Case3
	曲げモーメント (永久+0.5×変動)	М	kN/m⋅m	1.56	3.42	15.93	13.86	14.50
	軸圧縮力(永久+0.5×変動)	N'	kN/m	16.38	39.01	114.31	122.95	19.51
設計断面力	構造解析係数	γ _a	-	1.00	1.00	1.00	1.00	1.00
	設計曲げモーメント	M_d	kN/m⋅m	1.56	3.42	15.93	13.86	14.50
	設計軸圧縮力	N'_d	kN/m	16.38	39.01	114.31	122.95	19.51
	部材幅	b	mm	1,000	1,000	1,000	1,000	1,000
断面諸元	部材高	h	mm	300	300	300	300	300
例 囲 舶 兀	主鉄筋中心から表面までの距離	c 0	mm	70	70	70	70	70
	有効高	d	mm	230	230	230	230	230
	引張鉄筋量	4	-	D13@250	D13@250	D16@250	D16@250	D16@250
設計配筋	为	A_s	mm ²	506.8	506.8	794.4	794.4	794.4
	引張鉄筋比	p_s	%	0.22	0.22	0.35	0.35	0.35
	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000	25,000
	鉄筋の弾性係数	E_s	N/mm ²	200,000	200,000	200,000	200,000	200,000
コンクリート の引張応力度	弾性係数比	n	-	8.0	8.0	8.0	8.0	8.0
の別版応力度	等価換算断面積	A_e	mm ²	3.04.E+05	3.04.E+05	3.06.E+05	3.06.E+05	3.06.E+05
♥2 弁 戊	等価換算断面二次モーメント	I_e	mm^4	2.28.E+09	2.28.E+09	2.29.E+09	2.29.E+09	2.29.E+09
	コンクリートの最大引張応力	σ_{ct}	N/mm ²	0.16	0.35	1.42	1.31	1.01
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0	24.0
	材料係数	γc	-	1.0	1.0	1.0	1.0	1.0
	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	24.0	24.0	24.0	24.0	24.0
	コンクリートの引張強度の特性値	f_{tk}	N/mm ²	1.91	1.91	1.91	1.91	1.91
コンクリート	粗骨材の最大寸法	d_{max}	mm	25	25	25	25	25
	破壊エネルギー	G_F	N/m	84.3	84.3	84.3	84.3	84.3
れ強度の算定	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000	25,000
	特性長さ	l_{ch}	m	0.58	0.58	0.58	0.58	0.58
	引張軟化特性による係数	k_{0b}	-	1.31	1.31	1.31	1.31	1.31
	その他の原因による係数	k_{lb}	-	0.74	0.74	0.74	0.74	0.74
	コンクリートの曲げひび割れ強度	f'_{bck}	N/mm ²	1.85	1.85	1.85	1.85	1.85
曲レギアド	曲げひび割れ発生判定 $(\sigma_{cl}/f_{bck} < 1.0)$ ※OK→以降の検討省略		取	0.08	0.19	0.76	0.71	0.55
щ () ().	曲けいい割れ発生判定($\sigma_{cl}f_{bck} < 1.0$) $\%$ O K $ ightarrow$ 以降の検討省略			OK	OK	OK	OK	OK

例表-6.32 曲げモーメントと軸方向力によるひび割れ幅の照査結果 (STEP-3, 底版)

	-				447 M. A. 11	底版		
	75 B		単位		内側引張		外側	引張
	垻日		単 似	支間	中央	極大点	端部 (対称)	右側端部
	設計曲げモーメント 設計軸圧縮力 部材幅 部材高 主鉄筋中心から表面までの距離 有効高 引張鉄筋量 引張鉄筋比 コンクリートの弾性係数 弾性係数比 等価換算断面積 等価換算断面に次モーメント コンクリートの最大引張応力 コンクリートの最大引張応力 コンクリートの民権強度の特性値 材料係数 コンクリートの設計圧縮強度 コンクリートの引張強度の特性値 粗骨材の最大寸法			Casel	Case2	Case3	Case1	Case3
	曲げモーメント (永久+0.5×変動)	M	kN/m⋅m	26.13	30.92	11.15	3.32	20.00
	軸圧縮力(永久+0.5×変動)	N'	kN/m	38.60	14.49	7.58	38.60	51.49
設計断面力	構造解析係数	γa	-	1.00	1.00	1.00	1.00	1.00
	設計曲げモーメント	M_d	kN/m⋅m	26.13	30.92	11.15	3.32	20.00
	設計軸圧縮力	N'_d	kN/m	38.60	14.49	7.58	38.60	51.49
	部材幅	b	mm	1000	1000	1000	1000	1000
断面諸元	部材高	h	mm	350	350	350	350	350
四田田	主鉄筋中心から表面までの距離	c_0	mm	70	70	70	100	100
	有効高	d	mm	280	280	280	250	250
	引连维兹县	A_s	-	D13@125	D13@125	D13@125	D16@250	D16@250
設計配筋	71 次数 加 里	21.5	mm ²	1,013.6	1,013.6	1,013.6	794.4	794.4
	引張鉄筋比	p_s	%	0.36	0.36	0.36	0.32	0.32
	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000	25,000
	鉄筋の弾性係数	E_s	N/mm ²	200,000	200,000	200,000	200,000	200,000
の引張応力度	弾性係数比	n	-	8.0	8.0	8.0	8.0	8.0
の算定	等価換算断面積	A_e	mm ²	3.58.E+05	3.58.E+05	3.58.E+05	3.56.E+05	3.56.E+05
37 /C	等価換算断面二次モーメント	I_e	mm ⁴	3.66.E+09	3.66.E+09	3.66.E+09	3.61.E+09	3.61.E+09
	コンクリートの最大引張応力	σ_{ct}	N/mm ²	1.36	1.52	0.55	0.27	1.11
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0	24.0
	材料係数	γ _c	-	1.0	1.0	1.0	1.0	1.0
		f'_{cd}	N/mm ²	24.0	24.0	24.0	24.0	24.0
	コンクリートの引張強度の特性値	f_{tk}	N/mm ²	1.91	1.91	1.91	1.91	1.91
コンクリート	粗骨材の最大寸法	d _{max}	mm	25	25	25	25	25
		G_F	N/m	84.3	84.3	84.3	84.3	84.3
れ強度の算定	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000	25,000
	特性長さ	l_{ch}	m	0.58	0.58	0.58	0.58	0.58
	引張軟化特性による係数	k_{0b}	-	1.28	1.28	1.28	1.28	1.28
	その他の原因による係数	k_{1b}	-	0.72	0.72	0.72	0.72	0.72
	コンクリートの曲げひび割れ強度	f'_{bck}	N/mm ²	1.76	1.76	1.76	1.76	1.76
曲げてい			ms	0.77	0.86	0.31	0.15	0.63
画() ()·	曲げひび割れ発生判定($\sigma_{cl}/f_{bck} < 1.0$) $\%$ OK \rightarrow 以降の検討省		МΠ	OK	OK	OK	OK	OK

6.6.4 せん断力に対する構造照査

(1) 断面破壊の照査(終局限界状態)

1) 設計断面力の算定

設計断面力(曲げモーメント,軸方向力)は,構造解析により得られた断面力に構造解析係数を乗じて算定した.

$$S_d = \gamma_a \cdot S(F_d)$$

ここで、 S_d :設計断面力

γ_a:構造解析係数

 $S(F_d)$: 設計荷重 F_d による断面力

2) 設計斜め圧縮耐力

設計斜め圧縮破壊耐力は次式で算定した.

$$V_{wcd} = 1.25 \sqrt{f'_{cd}} \cdot b \cdot d/\gamma_b$$

ここで、 V_{wcd} : 設計斜め圧縮破壊耐力(kM/m)

 f'_{cd} : コンクリートの設計圧縮強度(N/mm²)= f'_{ck}/γ_c

 f'_{ck} : コンクリートの圧縮強度 (N/mm²)

b: 部材幅 (mm)

d: 断面の有効高さ (mm)

γ_b:部材係数(一般に 1.3)

3) 設計せん断耐力

設計せん断耐力は次式で算定した.

$$V_{vd} = V_{cd} + V_{sd}$$

ここで、 V_{vd} : 設計せん断耐力 (kM/m)

 V_{cd} : コンクリートにより受持たれる設計せん断耐力 (kM/m)

 V_{sd} : せん断補強鉄筋により受持たれる設計せん断耐力 (kM/m)

コンクリート及びにより受持たれる設計せん断耐力 V_{cd} とせん断補強鉄筋により受持たれるせん断耐力 V_{cd} は、それぞれ次式により算定した。

$$V_{cd} = \beta_d \cdot \beta_p \cdot \beta_n \cdot f_{vcd} \cdot b \cdot d/\gamma_b$$

$$f_{vcd} = 0.20 \sqrt[3]{f_{cd}'} \;, \qquad \beta_d = \sqrt[4]{1/d} \quad \left(\leq 1.5 \right), \label{eq:fvcd}$$

$$\beta_p = \sqrt[3]{100 A_s / (b \cdot d)}$$
 (\leq 1.5), $\beta_n = 1 + M_0 / M_{ud}$ (\leq 2.0)

ここで、fvcd: コンクリートの設計せん断耐力(kM/m)

As: 引張鉄筋の断面積 (mm²)

 M_0 : 引張縁において、軸方向力により発生する応力を打消すのに必要な曲

げモーメント

 $=N'd\cdot H/6$

 M_{ud} : 軸方向力を考慮しない純曲げ耐力 (x=H/2) に対する曲げ耐力)

γ_b: 部材係数 (一般に 1.3)

$$V_{sd} = \left\{ A_w \cdot f_{wyd} \cdot z(\sin \alpha_s + \cos \alpha_s) / s_s \right\} / \gamma_b$$

ここで、 A_w : せん断補強鉄筋の断面積 (mm^2)

fwyd: せん断補強鉄筋の降伏強度 (N/mm²)

z: 圧縮応力の合力の作用位置から引張鉄筋図心までの距離,

一般に *z*=*d*/1.15

αs: せん断補強鉄筋が部材軸となす角度(°)

 s_s : せん断補強鉄筋の配置間隔 (mm)

γ_b:部材係数(一般に 1.1)

4) せん断力に対する断面破壊の照査結果

既設ボックスカルバートに対するせん断力による断面破壊の照査結果を**例表-6**. 33~**例表** -6. 35 に示す.

例表-6.33 せん断力による断面破壊の照査結果(STEP-3,頂版)

					頂		
	項目		単位	端部(対称)	右端部	左端部
	世ん断力 軸圧縮力 構造解析係数 設計軸応力 部材幅 部材高 主鉄筋中心から表面までの距離 有効高 コンクリートの圧縮強度の特性値 材料係数 コンクリートの設計圧縮強度 部材係数 (せん断・コンクリート) 設計斜め圧縮破壊耐力 構造物係数 斜め圧縮破壊の照査結果 (y,Vd/Vud≦1. 引張鉄筋量 コンクリートの設計せん断強度 係数 引張鉄筋量 コンクリートの設計せん断強度 係数 引張鉄筋量 コンクリートの設計せん断強度 係数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			Case1	Case2	Case3	Case3
	せん断力	V	kN/m	124.14	124.14	10.92	34.34
		N'	kN/m	81.43	16.24	44.56	44.56
設計断面力	構造解析係数	γ _a	-	1.00	1.00	1.00	1.00
の算定		V_d	kN/m	124.14	124.14	10.92	34.34
	設計軸応力	N'_d	kN/m	81.43	16.24	44.56	44.56
		b	mm	1,000	1,000	1,000	1,000
		h	mm	300	300	300	300
断面諸元		c 0	mm	70	70	70	70
		d	mm	230	230	230	230
		f'ck	N/mm ²	24.0	24.0	24.0	24.0
		γ _c	-	1.3	1.3	1.3	1.3
		f'_{cd}	N/mm ²	18.5	18.5	18.5	18.5
コンクリートの設計 斜め圧縮破壊耐力		f_{wcd}	N/mm ²	5.38	5.38	5.38	5.38
の算定		1		1.3	1.3	1.3	1.3
		γ _b V	kN/m	951.2	951.2	951.2	951.2
		1	K1 V/ 111	1.2	1.2	1.2	1.2
		1 Yi	_	0.16	0.16	0.01	0.04
新	斗め圧縮破壊の照査結果($\gamma_i V_d / V_{ud} \le 1.0$)			OK	OK	OK	OK
		V_{wca} kN/m γ_i -	D13@250	D13@125	D13@125	D13@250	
	引張鉄筋量		-	(内側)	(内側)	(内側)	(外側)
			mm ²	506.8	1,013.6	1,013.6	506.8
	コンクリートの設計せん断強度	f_{vcd}	N/mm ²	0.529	0.529	0.529	0.529
コンクリートが受持	係数	·	_	1.444	1.444	1.444	1.444
つ設計せん断耐力の算定	係数	·	_	0.604	0.761	0.761	0.604
V/ 并 化	引張縁で軸力による応力を打ち消すのに必要なモーメント	M_0	kN/m∙m	4.072	0.812	2.228	2.228
	設計曲げ耐力(純曲げ耐力)	M_{ud}	kN/m∙m	167.10	179.83	179.83	167.10
	係数	β_n	-	1.024	1.005	1.012	1.013
	補強鉄筋を用いない設計せん断耐力	V_{cd}	kN/m	83.6	103.3	104.1	82.7
) br += 34 M /r 0 br 7 ft		-	2-D13	2-D13	2-D13	2-D13
	せん断無独鉄筋の断面積	A_w	mm ²	253.4	253.4	253.4	253.4
設計配筋	せん断補強鉄筋の配置間隔	S _S	mm	125	125	125	125
	せん断補強鉄筋が部材軸となす角	α_s	mm	90	90	90	90
	せん断補強鉄筋比	p_{w}	%	0.20	0.20	0.20	0.20
计 / 斯油油鉄笠		f_{wyd}	N/mm ²	345	345	345	345
せん断補強鉄筋 が受持つ設計せ	***************************************	z	mm	200.0	200.0	200.0	200.0
ん断耐力の算定		γ _b		1.1	1.1	1.1	1.1
	せん断補強鉄筋が受持つ設計せん断耐力	V_{sd}	kN/m	127.2	127.2	127.2	127.2
設計せん断耐力		V_{yd}	kN/m	210.8	230.5	231.3	209.9
	構造物係数	γ_i	-	1.2	1.2	1.2	1.2
	せん断破壊の照査結果($\gamma_i V_d/V_{ud}$ \leq 1.0)			0.71 OK	0.65 OK	0.06 OK	0.20 OK
				UK.	UK	UK	UK

例表-6.34 せん断力による断面破壊の照査結果(STEP-3,側壁)

				X-3X-7/11.		側	,以 <u>工</u> / 壁		
	項目		単位		上端部			下端部	
				Case1	Case2	Case3	Case 1	Case2	Case3
	せん断力	V	kN/m	46.75	12.63	9.88	38.00	2.55	74.87
	軸圧縮力	N'	kN/m	209.10	209.10	0.90	215.53	215.53	5.54
設計断面力	構造解析係数	γ _a	-	1.00	1.00	1.00	1.00	1.00	1.00
の算定	設計せん断力	V_d	kN/m	46.75	12.63	9.88	38.00	2.55	74.87
	設計軸応力	N'_d	kN/m	209.10	209.10	0.90	215.53	215.53	5.54
	部材幅	b	mm	1,000	1,000	1,000	1,000	1,000	1,000
	部材高	h	mm	300	300	300	300	300	300
断面諸元	主鉄筋中心から表面までの距離	c 0	mm	70	70	70	70	70	70
	有効高	d	mm	230	230	230	230	230	230
	コンクリートの圧縮強度の特性値	f'ck	N/mm ²	24.0	24.0	24.0	24.0	24.0	24.0
	材料係数	γ _c	-	1.3	1.3	1.3	1.3	1.3	1.3
コンクリートの設計	コンクリートの設計圧縮強度	f'cd	N/mm ²	18.5	18.5	18.5	18.5	18.5	18.5
斜め圧縮破壊耐力	コンクリートの設計斜め圧縮強度	f_{wcd}	N/mm ²	5.38	5.38	5.38	5.38	5.38	5.38
の算定	部材係数(せん断・コンクリート)	γь	-	1.3	1.3	1.3	1.3	1.3	1.3
	設計斜め圧縮破壊耐力	V_{wca}	kN/m	951.2	951.2	951.2	951.2	951.2	951.2
	構造物係数	γ,	-	1.2	1.2	1.2	1.2	1.2	1.2
4	斜め圧縮破壊の照査結果($\gamma_i V_d/V_{ud} \leq 1.0$)			0.06	0.02	0.01	0.05	0.00	0.09
/lv	fの圧相収象の無重相木(yiv div ud = 1.0)	,		OK	OK	OK	OK	OK	OK
			_	D16@250	D16@250	D13@250	D16@250	D16@250	D16@250
	引張鉄筋量	A_s		(外側)	(外側)	(内側)	(外側)	(外側)	(外側)
			mm ²	506.8	506.8	506.8	506.8	794.4	506.8
-> bu 1.2554	コンクリートの設計せん断強度	f_{vcd}	N/mm ²	0.529	0.529	0.529	0.529	0.529	0.529
コンクリートが受持つ設計せん断耐力	係数	β_d	-	1.444	1.444	1.444	1.444	1.444	1.444
の算定	係数	β_p	-	0.604	0.604	0.604	0.604	0.702	0.604
	引張縁で軸力による応力を打ち消すのに必要なモーメント	M_0	kN/m∙m	10.455	10.455	0.045	10.777	10.777	0.277
	設計曲げ耐力(純曲げ耐力)	M_{ud}	kN/m⋅m	167.10	167.10	167.10	167.10	174.33	167.10
	係数	β_n	-	1.063	1.063	1.000	1.064	1.062	1.002
	補強鉄筋を用いない設計せん断耐力	V_{cd}	kN/m	86.7	86.7	81.7	86.9	100.7	81.8
	せん断補強鉄筋の断面積	A_w	-	2-D13	2-D13	2-D13	2-D13	2-D13	2-D13
		ļ	mm ²	253.4	253.4	253.4	253.4	253.4	253.4
設計配筋	せん断補強鉄筋の配置間隔	Ss	mm	125	125	125	125	125	125
	せん断補強鉄筋が部材軸となす角	α_s	mm	90	90	90	90	90	90
	せん断補強鉄筋比	p_w	% N/ 2	0.20	0.20 345	0.20 345	0.20 345	0.20 345	0.20 345
せん断補強鉄筋	せん断補強鉄筋の設計降伏強度 圧縮応力の作用位置から鋼材までの距離	f_{wyd}	N/mm ² mm	345 200.0	200.0	200.0	200.0	200.0	200.0
が受持つ設計せ	部材係数(せん断補強鉄筋)	<i>z</i> γ _b	111111	1.1	1.1	200.0	1.1	1.1	200.0
ん断耐力の算定	せん断補強鉄筋が受持つ設計せん断耐力	V_{sd}	kN/m	127.2	127.2	127.2	127.2	127.2	127.2
anal o parti	設計せん断耐力	V _{vd}	kN/m	213.9	213.9	208.9	214.1	227.9	209.0
設計せん断耐力	構造物係数	γi	-	1.2	1.2	1.2	1.2	1.2	1.2
	せん断破壊の照査結果($\gamma_i V_d/V_{ud} \le 1.0$)			0.26	0.07	0.06	0.21	0.01	0.43
	C / U P P P P P P P P P P			OK	OK	OK	OK	OK	OK

例表-6.35 せん断力による断面破壊の照査結果(STEP-3,底版)

	万弘 0:00 と70日/71/こ 8	<u> </u>			* (01E1	底版		
	項目		単位	端部(対称)	左端部	右端部	極大点
				Case1	Case2	Case3	Case3	Case3
	せん断力	V	kN/m	123.49	123.49	24.36	58.98	74.45
	軸圧縮力	N'	kN/m	63.25	9.93	14.12	76.34	56.21
設計断面力 の算定	構造解析係数	γ _a	-	1.00	1.00	1.00	1.00	1.00
の昇足	設計せん断力	V_d	kN/m	123.49	123.49	24.36	58.98	74.45
	設計軸応力	N'_d	kN/m	63.25	9.93	14.12	76.34	56.21
	部材幅	b	mm	1,000	1,000	1,000	1,000	1,000
W - 1	部材高	h	mm	350	350	350	350	350
断面諸元	主鉄筋中心から表面までの距離	c 0	mm	70	70	70	100	100
	有効高	d	mm	280	280	280	250	250
	コンクリートの圧縮強度の特性値	f'ck	N/mm ²	24.0	24.0	24.0	24.0	24.0
	材料係数	γc	-	1.3	1.3	1.3	1.3	1.3
コンクリートの設計	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	18.5	18.5	18.5	18.5	18.5
斜め圧縮破壊耐力	コンクリートの設計斜め圧縮強度	f_{wcd}	N/mm ²	5.38	5.38	5.38	5.38	5.38
の算定	部材係数(せん断・コンクリート)	γ _b	-	1.3	1.3	1.3	1.3	1.3
	設計斜め圧縮破壊耐力	V_{wca}	kN/m	1158.0	1158.0	1158.0	1033.9	1033.9
	構造物係数	γi	-	1.2	1.2	1.2	1.2	1.2
余	斜め圧縮破壊の照査結果 $(\gamma_i V_d/V_{ud} \leq 1.0)$			0.13	0.13	0.03	0.07	0.09
	, , , , , , , , , , , , , , , , , , ,	1		OK	OK	OK	OK	OK
Ē	71.7P AI 46 B		-	D16@250	D13@125	D13@125	D13@125	D13@125
	引張鉄筋量	A_s	2	(内側)	(内側)	(内側)	(外側)	(外側)
	A STATE OF THE STA	-	mm ²	506.8	506.8	794.4	794.4	794.4
コンクリートが受持	コンクリートの設計せん断強度	f_{vcd}	N/mm ²	0.529	0.529	0.529	0.529	0.529
つ設計せん断耐力	係数	β_d	-	1.375	1.375	1.375	1.414	1.414
の算定	係数	β_p	-	0.566	0.566	0.657	0.682	0.682
	引張縁で軸力による応力を打ち消すのに必要なモーメント	M_0	kN/m·m	3.690	0.579	0.824	4.453	3.279
	設計曲げ耐力(純曲げ耐力)	M_{ud}	kN/m·m	172.82	172.82	180.05	172.57	172.57
	係数	β_n	-	1.021	1.003	1.005	1.026	1.019
	補強鉄筋を用いない設計せん断耐力	V_{cd}	kN/m	90.5	88.9	103.4	100.7	100.0
	せん断補強鉄筋の断面積	A_{w}	mm ²	2-D13 253.4	2-D13 253.4	2-D13 253.4	2-D13 253.4	2-D13 253.4
設計配筋	せん断補強鉄筋の配置間隔	SS	mm mm	125	125	125	125	125
以口口口刀刀	せん断補強鉄筋が部材軸となす角	α_s	mm	90	90	90	90	90
	せん断補強鉄筋比	p_w	%	0.20	0.20	0.20	0.20	0.20
	せん断補強鉄筋の設計降伏強度	f_{wvd}	N/mm ²	345	345	345	345	345
せん断補強鉄筋	圧縮応力の作用位置から鋼材までの距離	Z	mm	243.5	243.5	243.5	217.4	217.4
が受持つ設計せ ん断耐力の算定	部材係数(せん断補強鉄筋)	γ _b		1.1	1.1	1.1	1.1	1.1
, o to 1 mil / 2 -> 54.VC	せん断補強鉄筋が受持つ設計せん断耐力	V_{sd}	kN/m	154.8	154.8	154.8	138.2	138.2
設計せん断耐力	設計せん断耐力	V_{yd}	kN/m	245.3	243.7	258.2	238.9	238.2
BY HI C 10 FI IMI / J	構造物係数	γ i	-	1.2	1.2	1.2	1.2	1.2
	せん断破壊の照査結果($\gamma_i V_d/V_{ud} \le 1.0$)			0.60	0.61	0.11	0.30	0.37
	で70可収象♡無重相木 (/i r d/ r ud = 1.0)			OK	OK	OK	OK	OK

(2) 疲労破壊の照査 (疲労限界状態)

1) 永久荷重・変動荷重に対する応力度

永久荷重・変動荷重に対するせん断補強鉄筋の応力度は,通常の使用時の応力状態として次式で与えられる.

$$\sigma_{wpd} = \frac{\left(V_{pd} + V_{rd} - k_2 V_{cd}\right) s_s}{A_w \cdot z \left(\sin \alpha_s + \cos \alpha_s\right)} \cdot \frac{V_{pd} + V_{cd}}{V_{pd} + V_{rd} + V_{cd}},$$

$$\sigma_{wrd} = \frac{\left(V_{pd} + V_{rd} - k_2 V_{cd}\right) s_s}{A_w \cdot z \left(\sin \alpha_s + \cos \alpha_s\right)} \cdot \frac{V_{rd}}{V_{pd} + V_{rd} + V_{cd}},$$

ここで、 σ_{wnd} :永久荷重によるせん断補強鉄筋の設計応力度 (N/mm^2)

σwrd:変動荷重によるせん断補強鉄筋の設計応力度 (N/mm²)

 V_{pd} : 永久荷重による設計せん断力 (kM/m)

 V_{rd} :変動荷重による設計せん断力 (kM/m)

 V_{cd} : コンクリートが負担する設計せん断力 (kM/m)

kr:変動荷重の頻度の影響を考慮するための係数,一般に 0.5

Aw: せん断補強鉄筋の断面積 (mm²)

z: 圧縮応力の合力の作用位置から引張鉄筋図心までの距離,

一般にz=d/1.15

αs: せん断補強鉄筋が部材軸となす角度(°)

ss: せん断補強鉄筋の配置間隔 (mm)

コンクリートが負担する設計せん断力 V_{cd} は次式により算定する.

$$V_{cd} = \beta_d \cdot \beta_p \cdot \beta_n \cdot f_{vcd} \cdot b \cdot d / \gamma_b$$

$$f_{vcd} = 0.20 \sqrt[3]{f'_{cd}}, \qquad \beta_d = \sqrt[4]{1/d} \qquad (\le 1.5),$$

$$\beta_p = \sqrt[3]{100 A_s / (b \cdot d)} \qquad (\le 1.5), \qquad \beta_n = 1 + 2 M_0 / M_d \qquad (\le 2.0)$$

ここで、 V_{cd} : コンクリートと主鉄筋により受持たれる設計せん断耐力 (kM/m)

 f_{vcd} : コンクリートの設計せん断耐力 (kM/m)

b: 部材幅 (mm)

d: 断面の有効高さ (mm)

γ_b: 部材係数(疲労破壊に関する照査では 1.3)

 f'_{cd} : コンクリートの設計圧縮強度 (N/mm²) = f'_{cd}/y_c

 f'_{ck} : コンクリートの圧縮強度 (N/mm²)

As: 引張鉄筋の断面積 (mm²)

 M_0 : 引張縁において、軸方向力により発生する応力を打消すのに必要な曲げ

モーメント $=N'_d\cdot H/6$

 M_{ud} : 軸方向力を考慮しない純曲げ耐力 (x=H/2) に対する曲げ耐力)

2) 設計せん断疲労強度

せん断補強鉄筋の引張に対する設計疲労強度は次式で算定する.

$$f_{wrd} = 190 \frac{10^a}{N^k} (1 - \sigma_{wpd} / f_{ud}) / \gamma_s$$

$$a = k_0 (0.81 - 0.003\phi), \quad k = 0.12$$

ここで、 f_{wrd} : 鉄筋の設計疲労強度 (N/mm²)

 f_{ud} : 鉄筋の設計引張強度 (N/mm²) = f_{uk}/γ_s

γ_s: 鉄筋の材料係数 (=1.05)

 φ : 鉄筋直径 (mm)

 k_0 : 鉄筋のふしの形状に関する係数. 一般に 1.0 として良い.

3) せん断力に対する疲労破壊の照査結果

既設ボックスカルバートに対するせん断力による疲労破壊の照査結果を**例表-6.36~例表-6.38** に示す.

例表-6.36 せん断力による疲労破壊の照査結果 (STEP-3,頂版)

	列投 0.00 と70時 万にある版	25 1124 124 1					
	項目		単位	端部(右端部	左端部
	- K L		4-17	Case1	Case2	Case3	Case3
	せん断力	V_p	kN/m	12.65	12.65	-12.65	12.65
	軸圧縮力	N' _p	kN/m	11.60	11.60	11.60	11.60
永久荷重による	構造解析係数		KI V/III	1.0	1.0	1.0	1.00
設計断面力	設計せん断力	γ _a V	kN/m	12.65	12.65	-12.65	12.65
	設計軸応力	V_{pd}	kN/m	11.60	11.60	11.60	11.60
		N' _{pd}	kN/m	110.56	110.56	22.63	22.63
	せん断力	V_r					
変動荷重による	軸圧縮力	N'_r	kN/m	67.57	5.99	30.80	30.80
設計断面力	構造解析係数	<u>γ</u> _a	- 137/	1.0	1.0	1.0	1.0
	設計せん断力	V_{rd}	kN/m	110.56	110.56	22.63	22.63
	設計軸応力	N' _{rd}	kN/m	67.57	5.99	30.80	30.80
	部材幅	b	mm	1,000	1,000	1,000	1,000
断面諸元	部材高	h	mm	300	300	300	300
171 111 111 71	主鉄筋中心から表面までの距離	c_0	mm	70	70	70	70
	有効高	d	mm	230	230	230	230
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0
	材料係数	γ _c	-	1.3	1.3	1.3	1.3
	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	18.5	18.5	18.5	18.5
	3 3 E 3 3 E 64 69:		_	D13@250	D13@125	D13@125	D13@250
	引張引張鉄筋 (曲げ・軸力に対する設定配筋)	A_s	_	(内側)	(内側)	(内側)	(外側)
	(四7) 軸力(に対する放足配別)		mm ²	506.8	1,013.6	1,013.6	506.8
	コンクリートの設計せん断強度	f_{vcd}	N/mm ²	0.529	0.529	0.529	0.529
コンクリートが	係数	β_d	-	1.444	1.444	1.444	1.444
受持つ設計せん 断力の算定	係数	β_p	-	0.604	0.761	0.761	0.604
別力の発化	設計軸圧縮応力(永久+変動)	N'_d	kN/m	79.17	17.59	42.40	42.40
	引張縁で軸力による応力を打ち消すのに必要なモーメント	M_{0}	kN/m∙m	3.959	0.880	2.120	2.120
	設計曲げ耐力(純曲げ耐力)	M_{ud}	kN/m∙m	166.50	178.62	178.62	166.50
	係数	β_n	-	1.024	1.005	1.012	1.013
	部材係数(せん断・コンクリート)	γь	-	1.3	1.3	1.3	1.3
	補強鉄筋を用いない設計せん断耐力	V_{cd}	kN/m	83.6	103.4	104.1	82.7
	変動荷重の頻度の影響を考慮する係数	k ,	-	0.5	0.5	0.5	0.5
			_	2-D13	2-D13	2-D13	2-D13
	せん断補強鉄筋	A_w	mm ²	253.4	253.4	253.4	253.4
設計配筋	せん断補強鉄筋の配置間隔	S _S	mm	125	125	125	125
B (F) F = 7.77	せん断補強鉄筋が部材軸となす角	α_s	mm	90	90	90	90
	せん断補強鉄筋比	p_w	%	0.20	0.20	0.20	0.20
	圧縮応力の作用位置から鋼材までの距離	z z	mm	200.0	200.0	200.0	200.0
せん断補強鉄筋	永久荷重によるせん断補強鉄筋の応力度**	ļ	N/mm ²	93.45	90.34	0.00	0.00
の応力度の算定	次人何里によるせん断補強鉄筋の応力度 変動荷重によるせん断補強鉄筋の応力度 [※]	σ_{wpd}		107.38	86.10	0.00	0.00
	変動何単によるせん例開独鉄肋の応力度 疲労寿命	σ_{wrd} N	N/mm ²	160,000	160,000	160,000	160,000
	鉄筋の引張強度の特性値		2	490	490	490	490
	軟筋の引張強度の特性値 材料係数(鉄筋)	f _{uk}	N/mm ²	1.05	1.05	1.05	1.05
		γ _s	2				
鉄筋の設計疲労	鉄筋の設計引張強度	f_{ud}	N/mm ²	467	467	467	467
強度の算定	係数 [67.84]	k	-	0.12	0.12	0.12	0.12
	係数	a	-	0.77	0.77	0.77	0.77
	鉄筋の設計疲労強度	f_{wrd}	N/mm ²	202.3	204.0	253.0	253.0
	構造物係数	γ,	-	1.1	1.1	1.1	1.1
	部材係数(せん断・鉄筋)	γ _b	-	1.1	1.1	1.1	1.1
ģ	鉄筋の疲労に対する照査結果($\gamma_i \sigma_{wrd}/(f_{wrd}/\gamma_b)$ ≦	1.0)		0.64	0.51	0.00	0.00
				OK OK	OK	OK ON	OK

[%] 作用する設計せん断力に対して、コンクリートが受持つ設計せん断力が大きく、算定されるせん断補強鉄筋の応力度が0以下となる場合は、 σ_{wnd} , $\sigma_{wrd}=0$ N/mm 2 とした.

例表-6.37 せん断力による疲労破壊の照査結果(STEP-3,側壁)

				側壁					
	項目		単位		上端部			下端部	·
				Case1	Case2	Case3	Case1	Case2	Case3
	せん断力	V_p	kN/m	7.58	7.58	7.58	-9.28	-9.28	-9.28
永久荷重による	軸圧縮力	N'p	kN/m	23.28	23.28	23.28	29.72	29.72	29.72
ポス何里による 設計断面力	構造解析係数	γ _a	-	1.0	1.0	1.0	1.0	1.0	1.0
BX B1 P1 IM 23	設計せん断力	V_{pd}	kN/m	7.58	7.58	7.58	-9.28	-9.28	-9.28
	設計軸応力	N'_{pd}	kN/m	23.28	23.28	23.28	29.72	29.72	29.72
	せん断力	V_r	kN/m	37.71	5.99	0.93	-26.83	5.99	-63.60
変動荷重による	軸圧縮力	N'r	kN/m	184.26	184.26	22.63	184.26	184.26	22.63
設計断面力	構造解析係数	γ _a	-	1.0	1.0	1.0	1.0	1.0	1.0
got pri i yi pan y s	設計せん断力	V_{rd}	kN/m	37.71	5.99	0.93	-26.83	5.99	-63.60
	設計軸応力	N' _{rd}	kN/m	184.26	184.26	22.63	184.26	184.26	22.63
	部材幅	b	mm	1,000	1,000	1,000	1,000	1,000	1,000
断面諸元	部材高	h	mm	300	300	300	300	300	300
н н н н	主鉄筋中心から表面までの距離	c 0	mm	70	70	70	70	70	70
	有効高	d	mm	230	230	230	230	230	230
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0	24.0	24.0
	材料係数	γc	-	1.3	1.3	1.3	1.3	1.3	1.3
	コンクリートの設計圧縮強度	f'cd	N/mm ²	18.5	18.5	18.5	18.5	18.5	18.5
	引張引張鉄筋		_	D16@250	D16@250	D13@250	D16@250	D16@250	D16@250
	(曲げ・軸力に対する設定配筋)	A_s		(外側)	(外側)	(内側)	(外側)	(外側)	(外側)
			mm ²	794.4	794.4	506.8	794.4	794.4	794.4
コンクリートが	コンクリートの設計せん断強度	f_{vcd}	N/mm ²	0.529	0.529	0.529	0.529	0.529	0.529
受持つ設計せん	係数	β_d	-	1.444	1.444	1.444	1.444	1.444	1.444
断力の算定	係数	β_p	-	0.702	0.702	0.604	0.702	0.702	0.702
	設計軸圧縮応力(永久+変動)	N'_d	kN/m	207.54	207.54	45.91	213.98	213.98	52.35
	引張緑で軸力による応力を打ち消すのに必要なモーメント	M_0	kN/m∙m	10.377	10.377	2.296	10.699	10.699	2.618
	設計曲げ耐力(純曲げ耐力)	M _{ud}	kN/m⋅m	173.37	173.37	166.50	173.37	173.37	173.37
	係数	β_n	-	1.060	1.060	1.014	1.062	1.062	1.015
	部材係数(せん断・コンクリート)	7 ь	-	1.3	1.3	1.3	1.3	1.3	1.3
	補強鉄筋を用いない設計せん断耐力	V _{cd}	kN/m	100.5	100.5	82.8	100.7	100.7	96.3
	変動荷重の頻度の影響を考慮する係数	k ,		0.5	0.5	0.5	0.5	0.5	0.5
	せん断補強鉄筋	A_{w}	-	2-D13	2-D13	2-D13	2-D13	2-D13	2-D13
AR AL WAR	and the like to be ble and the like and the		mm ²	253.4	253.4	253.4	253.4	253.4	253.4
設計配筋	せん断補強鉄筋の配置間隔	Ss	mm	125 90	125 90	125	125 90	125 90	125 90
	せん断補強鉄筋が部材軸となす角	α_s	mm			90		ļ	
	せん断補強鉄筋比	p_w	%	0.20	0.20	0.20	0.20	0.20	0.20
せん断補強鉄筋	圧縮応力の作用位置から鋼材までの距離	Z	mm	200.0 0.00	200.0 0.00	200.0	200.0	200.0	200.0 38.09
の応力度の算定	永久荷重によるせん断補強鉄筋の応力度**	σ_{wpd}	N/mm ²	0.00	0.00	0.00	0.00	0.00	22.96
	変動荷重によるせん断補強鉄筋の応力度**	σ_{wrd} N	N/mm ²	160,000	160,000	160,000	160,000	160,000	160,000
	疲労寿命 鉄筋の引張強度の特性値	·		490	100,000	490	100,000	100,000	160,000
	対料係数(鉄筋)	f_{uk}	N/mm ²	1.05	1.05	1.05	1.05	1.05	1.05
		γs		467	467	467	467	467	467
鉄筋の設計疲労	鉄筋の設計引張強度 係数	f _{ud}	N/mm ²	0.12	0.12	0.12	0.12	0.12	0.12
強度の算定	係数 係数	a	-	0.12	0.12	0.12	0.12	0.12	0.12
	鉄筋の設計疲労強度	·	37/ ?	253.0	253.0	253.0	253.0	253.0	232.3
	禁助の設計疲労強度 構造物係数	f _{wrd}	N/mm ²	253.0	253.0	253.0	255.0	255.0	232.3
	(特定物係数) 部材係数(せん断・鉄筋)	γ,	-	1.1	1.1	1.1	1.1	1.1	1.1
		γ _b		0.00	0.00	0.00	0.00	0,00	0.12
ģ	鉄筋の疲労に対する照査結果(γ _i σ _{wrd} /(f _{wrd} /γ _b)≦	1.0)		0.00 OK	0.00 OK	0.00 OK	0.00 OK	0.00 OK	0.12 OK
	斯力に対して コンカリニトが巫性へ記む 47 解力が十さ/ 第						UK	I UK	UK

[※] 作用する設計せん断力に対して、コンクリートが受持つ設計せん断力が大きく、算定されるせん断補強鉄筋の応力度が0以下となる場合は、 σ_{wpd} 、 σ_{wrd} =0N/mm² 2 とした。

例表-6.38 せん断力による疲労破壊の照査結果(STEP-3,底版)

					底	版	
	項目		単位	端部(左端部	右端部
	****			Case1	Case2	Case3	Case3
	せん断力	V_{p}	kN/m	17.31	17.31	-17.31	17.31
	軸圧縮力	N' _p	kN/m	17.48	17.48	17.48	17.48
永久荷重による	構造解析係数	γ _a	_	1.0	1.0	1.0	1.0
設計断面力	設計せん断力	V_{pd}	kN/m	17.31	17.31	-17.31	17.31
	設計軸応力	N'_{pd}	kN/m	17.48	17.48	17.48	17.48
	せん断力	V _r	kN/m	104.42	104.42	41.67	41.67
	軸圧縮力	N' _r	kN/m	42.23	5.99	7.01	55.22
変動荷重による	構造解析係数	1	K1 \/ 111	1.0	1.0	1.0	1.0
設計断面力	設計せん断力	γ _a	kN/m	104.42	104.42	41.67	41.67
	設計軸応力	V_{rd} N'_{rd}	kN/m	42.23	5.99	7.01	55.22
	部材幅	b b		1,000	1,000	1,000	1,000
	部材高	h	mm	350	350	350	350
断面諸元		†	mm	70	70	70	
	主鉄筋中心から表面までの距離	c ₀	mm				100
	有効高	d	mm	280	280	280	250
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0
	材料係数	γ _c	-	1.3	1.3	1.3	1.3
	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	18.5	18.5	18.5	18.5
	引張引張鉄筋		-	D13@125	D13@125	D13@125	D16@250
	(曲げ・軸力に対する設定配筋)	A_s		(内側)	(内側)	(内側)	(外側)
			mm ²	1,013.6	1,013.6	1,013.6	794.4
コンクリートが	コンクリートの設計せん断強度	f_{vcd}	N/mm ²	0.529	0.529	0.529	0.529
受持つ設計せん	係数	β_d	-	1.375	1.375	1.375	1.414
断力の算定	係数	β_p	-	0.713	0.713	0.713	0.682
.,,,,	設計軸圧縮応力 (永久+変動)	N'_d	kN/m	59.71	23.47	24.49	72.70
	引張縁で軸力による応力を打ち消すのに必要なモーメント	M_0	kN/m∙m	3.483	1.369	1.429	4.241
	設計曲げ耐力(純曲げ耐力)	M_{ud}	kN/m∙m	241.94	241.94	241.94	227.94
	係数	β_n	-	1.014	1.006	1.006	1.019
	部材係数(せん断・コンクリート)	γь	-	1.3	1.3	1.3	1.3
	補強鉄筋を用いない設計せん断耐力	V_{cd}	kN/m	113.2	112.3	112.3	100.0
	変動荷重の頻度の影響を考慮する係数	k_r	-	0.5	0.5	0.5	0.5
	せん断補強鉄筋	A_{w}	-	2-D13	2-D13	2-D13	2-D13
	270时间35000	21 _W	mm ²	253.4	253.4	253.4	253.4
設計配筋	せん断補強鉄筋の配置間隔	S _S	mm	125	125	125	125
	せん断補強鉄筋が部材軸となす角	α_s	mm	90	90	90	90
	せん断補強鉄筋比	p_{w}	%	0.20	0.20	0.20	0.20
a a store I beautiful for help	圧縮応力の作用位置から鋼材までの距離	Z	mm	243.5	243.5	243.5	217.4
せん断補強鉄筋	永久荷重によるせん断補強鉄筋の応力度**	σ_{wpd}	N/mm ²	73.29	73.60	0.00	15.03
の応力度の昇止	変動荷重によるせん断補強鉄筋の応力度**	σ_{wrd}	N/mm ²	58.62	59.31	0.00	5.34
	疲労寿命	N	-	160,000	160,000	160,000	160,000
	鉄筋の引張強度の特性値	f_{uk}	N/mm ²	490	490	490	490
	材料係数(鉄筋)	γ _s		1.05	1.05	1.05	1.05
	鉄筋の設計引張強度	f_{ud}	N/mm ²	467	467	467	467
鉄筋の設計疲労	係数	J ud k	- 17/111111	0.12	0.12	0.12	0.12
強度の算定	係数	а	-	0.77	0.77	0.77	0.77
	鉄筋の設計疲労強度	f_{wrd}	N/mm ²	213.3	213.1	253.0	244.8
	構造物係数		IN/INM -	1.1	1.1	1.1	1.1
	部材係数(せん断・鉄筋)	γ,	-	1.1	1.1	1.1	1.1
		γ ,		0.33	0.34	0.00	0.03
9	跌筋の疲労に対する照査結果(γ _ι σ _{wrd} /(f _{wrd} /γ _b)≦	1.0)		OK	0.54 OK	OK	OK
	「断力に対して コンクリートが受持つ設計せん断力が大きく 質	mala (a.) ama a))	Nor Lib 1/2 Art. Art.				mm ² b 1. th

[%] 作用する設計せん断力に対して、コンクリートが受持つ設計せん断力が大きく、算定されるせん断補強鉄筋の応力度が0以下となる場合は、 σ_{wnd} , $\sigma_{wrd}=0$ N/mm 2 とした.

(3) ひび割れの照査 (使用限界状態)

1) 設計断面力の算定

設計断面力は、ひび割れ幅が鋼材の腐食に及ぼす影響を考慮した係数を用いて次式で算 定する。

$$S_d = \gamma_a \left\{ S(F_{pd}) + k_r S(F_{rd}) \right\}$$

ここで、 S_d : 設計断面力

γ_a: 構造解析係数

 $S(F_{pd}): 永久荷重 F_{pd} による断面力$

 $S(F_{rd})$:変動荷重 F_{rd} による断面力

 k_r : 永久荷重によるひび割れ幅が鋼材の腐食に及ぼす影響度と変動荷重による ひび割れ幅が鋼材の腐食に及ぼす影響度の差を考慮するための係数(標準0.5)

2) コンクリートのせん断耐力

コンクリートにより受持たれる設計せん断耐力は次式により算定される.

$$\begin{split} V_{cd} &= \beta_d \cdot \beta_p \cdot \beta_n \cdot f_{vcd} \cdot b \cdot d / \gamma_b \\ f_{vcd} &= 0.20 \sqrt[3]{f'_{cd}}, \qquad \beta_d = \sqrt[4]{1/d} \qquad (\leq 1.5), \\ \beta_p &= \sqrt[3]{100 A_s / (b \cdot d)} \qquad (\leq 1.5), \qquad \beta_n = 1 + 2 M_0 / M_{ud} \qquad (\leq 2.0) \end{split}$$

ここで、 V_{cd} : コンクリートと主鉄筋により受持たれる設計せん断耐力 (kM/m)

 f_{vcd} : コンクリートの設計せん断耐力 (kM/m)

b: 部材幅 (mm)

d:断面の有効高さ(mm)

γ_b: 部材係数(使用性に関する照査では 1.0)

 f'_{cd} : コンクリートの設計圧縮強度 (N/mm²) = f'_{cd}/γ_c

 f'_{ck} : コンクリートの圧縮強度 (N/mm²)

 A_s : 引張鉄筋の断面積 (mm²)

 M_0 : 引張縁において、軸方向力により発生する応力を打消すのに必要な曲げ

モーメント $=N'd\cdot H/6$

 M_{ud} : 軸方向力を考慮しない純曲げ耐力 (x=H/2) に対する曲げ耐力)

3) 永久荷重作用時のせん断補強鉄筋の応力度の算定方法

永久荷重作用時のせん断補強鉄筋の応力度は次式により算定される.

$$\sigma_{wpd} = \frac{\left(V_{pd} + V_{rd} - k_2 V_{cd}\right) s_s}{A_w \cdot z \left(\sin \alpha_s + \cos \alpha_s\right)} \cdot \frac{V_{pd} + V_{cd}}{V_{pd} + V_{rd} + V_{cd}}$$

ここで、 σwpd:永久荷重によるせん断補強鉄筋の設計応力度 (N/mm²)

 V_{pd} : 永久荷重による設計せん断力 (kM/m)

 V_{pd} :変動荷重による設計せん断力 (kM/m)

 k_r : 変動荷重の頻度の影響を考慮するための係数、一般に 0.5

Aw: せん断補強鉄筋の断面積 (mm²)

z: 圧縮応力の合力の作用位置から引張鉄筋図心までの距離,

一般に *z*=*d*/1.15

αs: せん断補強鉄筋が部材軸となす角度(°)

ss: せん断補強鉄筋の配置間隔 (mm)

4) せん断力に対するひび割れの照査結果

既設ボックスカルバートに対するせん断力によるひび割れの照査結果を**例表-6**. 39~**例表** -6. 41 に示す.

例表-6.39 せん断力によるひび割れの照査結果 (STEP-3,頂版)

					頂	版	
	項目		単位	端部(対称)	右端部	左端部
				Case1	Case2	Case3	Case3
	せん断力(永久+0.5×変動)	V	kN/m	67.93	67.93	1.34	23.96
	軸圧縮力 (永久+0.5×変動)	N'	kN/m	45.38	14.59	26.99	26.99
設計断面力	構造解析係数	γa	-	1.00	1.00	1.00	1.00
	設計せん断力	V_d	kN/m	67.93	67.93	1.34	23.96
断面諸元	設計軸応力	N'_d	kN/m	45.38	14.59	26.99	26.99
	部材幅	b	mm	1,000	1,000	1,000	1,000
胀声茅亭	部材高	h	mm	300	300	300	300
四田帕儿	主鉄筋中心から表面までの距離	c_0	mm	70	70	70	70
	有効高	d	mm	230	230	230	230
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0
	材料係数	γ_m	-	1.0	1.0	1.0	1.0
	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	24.0	24.0	24.0	24.0
	引張鉄筋量 (曲げ・軸力に対する設定配筋)	A_s		D13@250	D13@125	D13@125	D13@250
			_	(内側)	(内側)	(内側)	(外側)
			mm ²	506.8	1,013.6	1,013.6	506.8
コンクリートか	コンクリートの設計せん断強度	f_{vcd}	N/mm ²	0.577	0.577	0.577	0.577
V11 - WHI C10	係数	β_d	-	1.444	1.444	1.444	1.444
141 1103 73 47 AC	係数	β_p	-	0.604	0.761	0.761	0.604
	引張縁で軸力による応力を打ち消すのに必要なモーメント	M_{0}	kN/m∙m	2.269	0.730	1.350	1.350
	設計曲げ耐力(純曲げ耐力)	M_{ud}	kN/m·m	234.30	248.30	248.30	234.30
	係数	β_n	-	1.010	1.003	1.005	1.006
	部材係数(せん断・コンクリート)	γь	-	1.0	1.0	1.0	1.0
	補強鉄筋を用いない設計せん断耐力	V_{cd}	kN/m	116.9	146.3	146.6	116.4
コンクリートが	受持つせん断耐力の判定($V_d/0.7V_{cd}$ \leq 1	.0) ※ 0K→	以降の検	0.83	0.66	0.01	0.29
	討省略			OK	OK	OK	OK

例表-6.40 せん断力によるひび割れの照査結果(STEP-3,側壁)

	万元 0. 10 この間の			14 000 MK.		側			
	項目		単位		上端部			下端部	
				Case1	Case2	Case3	Case1	Case2	Case3
	せん断力(永久+0.5×変動)	V	kN/m	26.43	10.57	8.05	22.69	6.29	41.08
	軸圧縮力(永久+0.5×変動)	N'	kN/m	115.41	115.41	11.97	121.85	121.85	18.40
設計断面力	構造解析係数	γ a	-	1.00	1.00	1.00	1.00	1.00	1.00
	設計せん断力	V_d	kN/m	26.43	10.57	8.05	22.69	6.29	41.08
	設計軸応力	N'_d	kN/m	115.41	115.41	11.97	121.85	121.85	18.40
	部材幅	b	mm	1,000	1,000	1,000	1,000	1,000	1,000
断面諸元	部材高	h	mm	300	300	300	300	300	300
四 田 治 儿	主鉄筋中心から表面までの距離	c 0	mm	70	70	70	70	70	70
	有効高	d	mm	230	230	230	230	230	230
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0	24.0	24.0
	材料係数	γ_m	-	1.0	1.0	1.0	1.0	1.0	1.0
	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	24.0	24.0	24.0	24.0	24.0	24.0
	717F 04 777 B			D16@250	D16@250	D13@250	D16@250	D16@250	D16@250
	引張鉄筋量 (曲げ・軸力に対する設定配筋)	A_s	-	(外側)	(外側)	(内側)	(外側)	(外側)	(外側)
			mm ²	794.4	794.4	506.8	794.4	794.4	794.4
コンクリートが 受持つ設計せん	コンクリートの設計せん断強度	f_{vcd}	N/mm ²	0.577	0.577	0.577	0.577	0.577	0.577
断耐力の算定	係数	β_d	-	1.444	1.444	1.444	1.444	1.444	1.444
191110177 V7 94 XC	係数	β_p	-	0.702	0.702	0.604	0.702	0.702	0.702
	引張縁で軸力による応力を打ち消すのに必要なモーメント	M_{0}	kN/m∙m	5.771	5.771	0.599	6.093	6.093	0.920
	設計曲げ耐力(純曲げ耐力)	M_{ud}	kN/m·m	242.25	242.25	234.30	242.25	242.25	242.25
	係数	β_n	-	1.024	1.024	1.003	1.025	1.025	1.004
	部材係数(せん断・コンクリート)	γ _b	-	1.0	1.0	1.0	1.0	1.0	1.0
	補強鉄筋を用いない設計せん断耐力	V_{cd}	kN/m	137.7	137.7	116.0	137.8	137.8	135.0
コンクリートが	受持つせん断耐力の判定 $(V_d/0.7V_{cd} \le 1$.0) <u></u> *0K→	以降の検	0.27	0.11	0.10	0.24	0.07	0.43
	討省略			OK	OK	OK	OK	OK	OK

例表-6.41 せん断力によるひび割れの照査結果 (STEP-3,底版)

					底	版	
	項目		単位	端部(対称)	左端部	右端部
				Case1	Case2	Case3	Case3
	せん断力(永久+0.5×変動)	V	kN/m	69.52	69.52	3.53	38.15
	軸圧縮力(永久+0.5×変動)	N'	kN/m	38.60	14.49	13.98	45.09
設計断面力	構造解析係数	γa	-	1.00	1.00	1.00	1.00
	設計せん断力	V_d	kN/m	69.52	69.52	3.53	38.15
断面諸元	設計軸応力	N'_d	kN/m	38.60	14.49	13.98	45.09
	部材幅	b	mm	1,000	1,000	1,000	1,000
胀而茅二	部材高	h	mm	350	350	350	350
时间帕儿	主鉄筋中心から表面までの距離	c_0	mm	70	70	70	100
	有効高	d	mm	280	280	280	250
	コンクリートの圧縮強度の特性値	f'_{ck}	N/mm ²	24.0	24.0	24.0	24.0
	材料係数	γ_m	-	1.0	1.0	1.0	1.0
	コンクリートの設計圧縮強度	f'_{cd}	N/mm ²	24.0	24.0	24.0	24.0
	引張鉄筋量	A_s	_	D13@125	D13@125	D13@125	D16@250
	5 衆欽肋重 (曲げ・軸力に対する設定配筋)			(内側)	(内側)	(内側)	(外側)
-> 2 11 1 25			mm ²	1,013.6	1,013.6	1,013.6	794.4
コンクリートか	コンクリートの設計せん断強度	f_{vcd}	N/mm ²	0.577	0.577	0.577	0.577
V11 - WHI C10	係数	β_d	-	1.375	1.375	1.375	1.414
H1101773 12 31 7C	係数	β_p	-	0.713	0.713	0.713	0.682
	引張縁で軸力による応力を打ち消すのに必要なモーメント	M_{0}	kN/m∙m	2.252	0.845	0.816	2.630
	設計曲げ耐力(純曲げ耐力)	M_{ud}	kN/m∙m	336.60	336.60	336.60	320.44
	係数	β_n	-	1.007	1.003	1.002	1.008
	部材係数(せん断・コンクリート)	γь	-	1.0	1.0	1.0	1.0
	補強鉄筋を用いない設計せん断耐力	V_{cd}	kN/m	159.3	158.7	158.7	140.4
コンクリートが	受持つせん断耐力の判定($V_d/0.7V_{cd}$ \leq 1	.0) ¾0K→	以降の検	0.62	0.63	0.03	0.39
	討省略			OK	OK	OK	OK

6.6.5 STEP-3 による検討結果

以上の照査結果から、曲げモーメントと軸方向力、せん断力に対して、全ての部材で各限界状態の照査結果が OK となった. これにより、As 舗装直下の既設ボックスカルバートについても構造上問題ない結果となる.

例-7 既設エプロン内 U 型側溝の構造照査例

新機材として設計上考慮されていない A350-900 荷重の載荷を想定した既設エプロン内 U型側溝の構造照査例を示す.

7.1 照査概要

7.1.1 照查対象施設

設計対象施設は、エプロン内 U 型側溝とし、部材寸法、設計配筋は以下のとおりとした.

- · 部材寸法: W0.85m×H1.46m
- ・部材厚: (側壁) …0.35m, (底版) …0.40m
- ・引張鉄筋: (側壁内側) …D13@250mm, (側壁外側) …D16@125mm (底版内側) …D13@250mm, (底版外側) …D16@125mm
- ・せん断補強鉄筋: (頂版、側壁、底版) …2-D16
- ・引張鉄筋中心かぶり: (底版外側) …10cm, (その他) …6cm

7.1.2 要求性能及び照査項目

要求性能は安全性,使用性,耐久性とし,許容応力度設計法による照査においては,断面応力が許容応力度以下を満足することを照査することにより,これらの要求性能が満足されるものとした.

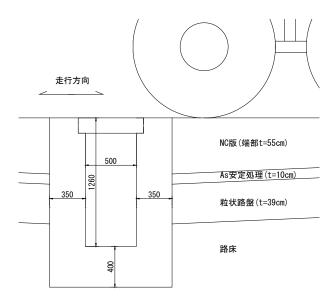
7.2 照査条件

7.2.1 設計供用期間

設計供用期間は50年とした.

7.2.2 走行条件

走行条件は以下のとおりとした.


· 対象機材: A350-900

・荷重区分:W荷重(直角方向に横断)

・設計交通量:160,000 回 (疲労破壊の照査に適用)

7.2.3 断面条件

断面条件は**例図-7.1** に示すとおりとし, 隣接する NC 舗装厚は端部増厚による t=55cm とした.

例図-7.1 走行条件·断面条件

7.2.4 環境条件

環境条件は、腐食性について一般の環境とした.また、対象施設は地下水位以上に設置するため、地下水位は考慮しないこととした.

7.2.5 設計用値

材料の設計用値は例表-7.1 のとおりとした.

例表-7.1 材料の設計用値

	771我		17 イイ 0 7 0 又 0 1 万		T
	T否 口		設定	値	備考
	項目		数值	単位	加石
	圧縮強度	f_{ck}	24.0	N/mm ²	
コンクリート	弾性係数	E_c	25,000	N/mm ²	
	粗骨材の最大寸法	d_{max}	25	mm	
鉄筋(SD345)	引張降伏強度	f_{yk}	345	N/mm ²	
	引張強度	f_{uk}	490	N/mm ²	
	弾性係数	E_s	200,000	N/mm ²	
	鉄筋コンクリート		24.5	kN/m³	
単位体積重量	無筋コンクリート		23.0	kN/m³	NC 舗装版
中似件傾里里	アスファルト舗装		22.5	kN/m ³	
	土砂		20.0	kN/m^3	砂・砂れき相当
静止土圧係数		K_0	0.500	1	
主働土圧係数		Ka	0.333	-	
内部摩擦角		φ	30.0	0	

7.2.6 許容応力度

許容応力度設計法による構造照査におけるコンクリート,鉄筋(SD345)の許容応力度は例表-7.2に示すとおりとした.

例表-7.2 許容応力度

	-				
項目			数値 W荷重	単位	備考
	許容曲げ圧縮応力度	σ_{ca}	9.00	N/mm ²	
コンクリート	許容せん断応力	τ_{a1}	0.45	N/mm ²	せん断補強鉄筋の計算をしない場合
	計谷せん例心力	τ_{a2}	2.00	N/mm ²	せん断補強鉄筋の計算をする場合
鉄筋 (SD345)	許容引張応力度	σ_{sa}	196.0	N/mm ²	

7.2.7 作用荷重の設定

エプロン内 U型側溝に作用する荷重は、以下を考慮した.

- · 土圧 (永久荷重)
- · 躯体自重 (永久荷重)
- 航空機荷重(変動荷重)

(1) 土圧

エプロン内 U 型側溝の側方の地盤(舗装構造)により側壁が受ける土圧は次式で算定した. 土圧の公称値を**例表-7.3** に示す.

 $P_{hd} = K_a \cdot \gamma \cdot h$

ここで, $P_{hd}:$ 水平土圧 (kN/m²)

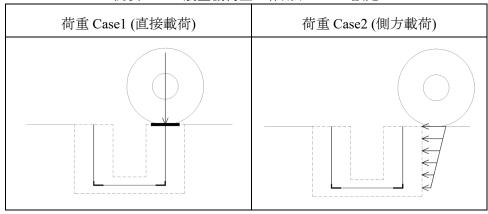
 $K_{\rm a}$: 主動土圧係数= $an \varphi$ φ : 土の内部摩擦角(゜)

例表-7.3 地盤による鉛直・水平土圧

	Nort plan	NC舗装		As安定処	理	路盤・路	末			
作用位置	深度 (m)	単位体積	層厚	単位体積	層厚	単位体積	層厚	土圧 係数	作用土圧 (kN/m²)	備考
	(111)	重量(kN/m³)	(m)	重量(kN/m³)	(m)	重量(kN/m³)	(m)	尔	(KIN/III)	
側壁上端	0.000	23.0	0.000	22.5	0.000	20.0	0.000	0.333	0.00	水平方向
NC版下面	0.550	23.0	0.550	22.5	0.000	20.0	0.000	0.333	4.21	水平方向
側壁下端	1.460	23.0	0.550	22.5	0.100	20.0	0.810	0.333	10.36	水平方向

(2) 躯体自重

U 型側溝の側壁の自重は分布荷重に換算して設定した. 自重による鉛直方向荷重の公称値を **例表-7.4** に示す.


例表-7.4 躯体の自重による鉛直方向荷重

作用位置	単位体積重量 (kN/m³)	部材厚 (m)	換算荷重 (kN/m²)	備考
側壁	24.5	0.35	8.58	鉛直方向

(3) 航空機荷重

航空機荷重は,直接載荷と側方載荷の 2 ケースとし,側方載荷ケース (Case 2) は,側壁全面に水平荷重が作用する条件とした (**例表-7.5**).

例表-7.5 航空機荷重の作用ケースの設定

設定した航空機荷重を例表-7.6, 例表-7.7 に示す.

例表-7.6 直接載荷(Case1)における鉛直方向集中荷重

作用位置	輪荷重 (kN)	車輪幅 (m)	影響 車輪数	1脚車輪影響幅(m)	構造物の面的作用 を考慮した係数 [※]	衝撃係数	作用荷重 (kN/m)
側壁上端	309.00	0.358	2.00	2.10	0.34	0.30	382.94

[※] 構造物の面的支持を考慮した係数=奥行方向作用幅×影響車輪数/1脚車輪影響幅(≦1.0)

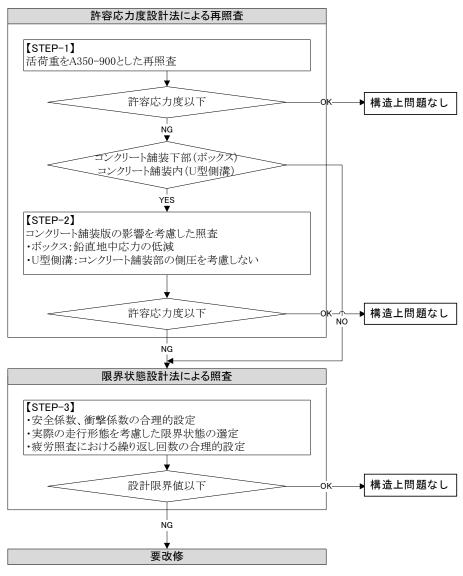
(※設計例作成当時の値)

例表-7.7 側方載荷 (Case2) における水平方向分布荷重

作用位置	深度 (m)	鉛直方向地中 応力(kN/m²)	奥行方向 作用幅(m)	影響 車輪数	1脚車輪影響幅 (m)	構造物の面的作用 を考慮した係数 [※]	主働土 圧係数	衝擊係数	作用荷重 (kN/m²)
側壁上端	0.00	1660.00	0.358	2.00	2.10	0.34	0.333	0.30	245.25
側壁下端	1.46	84.74	3.278	2.00	5.02	1.00	0.333	0.30	36.68

[※] 構造物の面的支持を考慮した係数=奥行方向作用幅×影響車輪数/1脚車輪影響幅(≦1.0)

(※設計例作成当時の値)


[※] 作用荷重=輪荷重×影響輪数/車輪幅×構造物の面的作用を考慮した係数×(1+衝撃係数)

[%]作用荷重=鉛直方向地中応力×構造物の面的作用を考慮した係数×主働土圧係数×(1+衝撃係数)

7.3 既設構造物の検討手順

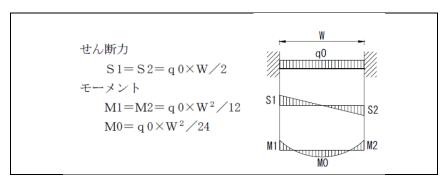
既設コンクリート構造物の新機材荷重に対する構造照査は、**例図-7.2** に示す検討手順に基づいて STEP-1~3 の各段階の構造照査を実施し、STEP-3 までの全ての段階の照査で構造上問題があると判断される場合に改修が必要とした。

- ・STEP-1 は、新機材荷重(A350-900)に対して、許容応力度設計法による再照査を行う.
- ・STEP-2 は、コンクリート舗装下部のボックスカルバート又はコンクリート舗装内の U型 側溝を対象として、コンクリート舗装版の影響を考慮した荷重条件により照査を行う. 具体的には、ボックスカルバートについては舗装版の剛性を考慮した多層弾性解析による鉛直地中応力を適用する. U型側溝については、コンクリート舗装側面から水平荷重が伝達されないことを考慮した荷重条件による照査を実施する.
- ・STEP-3 は、限界状態設計法による照査を実施する. U 型側溝については、コンクリート舗装側面から水平荷重が伝達されないことを考慮した荷重条件による照査を実施する.

例図-7.2 既設コンクリート構造物の検討手順

7.4 STEP-1 の検討: 許容応力度設計法による照査

STEP-1 として, 新機材 A350-900 荷重に対して, 許容応力度設計法による再照査を実施した.


7.4.1 照査手順

許容応力度設計法による照査手順は,例-6(例図-6.3,例図-6.4)と同様とした.

7.4.2 構造解析

(1) 直接載荷条件(荷重 Case1)に対する断面力

エプロン内 U 型側溝の直接載荷に対する断面力の算定は、側壁と底版を個別の部材と考え、 底版を両端固定梁として算定した.

例図-7.3 直接載荷に対する断面力計算方法

直接載荷に対する断面力の算定結果を以下に示す.

· 底面幅:B=0.35+0.50+0.35=1.20m

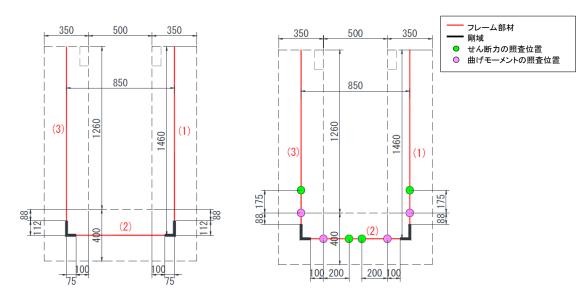
· 航空機荷重: PL=382.94kN/m

・側壁自重: Pp=25.04kN/m

· 底版反力: q0= (382.94+25.04) /1.20=339.98kN/m²

・内空幅:W=0.50m

・せん断力: S1=339.98×0.50/2=85.00kN/m


・曲げモーメント (端部): M1=423.48×0.50²/12=7.08kN/m・m

・曲げモーメント (中央): M0=423.48×0.50²/24=3.54kN/m・m

(2) 側方載荷条件(荷重 Case2)に対する断面力

1) 構造解析モデル (フレーム)

部材に生じる断面力は、フレーム解析により算定した.フレーム解析は隅角部の剛域を考慮することとし、**例図-7.4**に示すとおりモデル化した.

例図-7.4 構造解析モデル (フレーム)

2) 断面力の算定

例図-7.4の構造解析モデルに対して、設計荷重を作用させた構造解析により断面力を算定した。

代表箇所における断面力を例表-7.8に示す.

	712		荷重Case2	
部材	位置	曲げモーメント <i>M</i> (kN/m·m)	せん断力 V (kN/m)	軸力 N(kN/m)
	上端部	0.00	0.00	0.00
側壁	NC版下面	-33.33	-114.35	-4.72
(右側)	下端部②	-115.46	-186.19	-9.31
	下端部①	-149.42	-201.25	-10.81
	右端部①	-168.68	223.52	-171.00
	右端部②	-142.51	293.76	-146.79
底版	支間中央	-94.66	330.51	-110.47
	左端部②	-47.48	284.92	-74.15
	左端部①	-22.49	208.78	-49.94

例表-7.8 荷重 Case2 による断面力の算定結果

[※] 端部①は曲げモーメントに対する照査位置、端部②はせん断力に対する照査位置を示す.

7.4.3 許容応力度設計法による構造照査

例-6 と同様の照査方法により、許容応力度設計法による照査を実施した. 曲げモーメント及 び軸方向力に対する構造照査結果を**例表-7.9** に、せん断力に対する構造照査結果を**例表-7.10** に示す.

例表-7.9 曲げモーメントと軸方向力に対する照査結果 (STEP-1)

				側壁		底版	
	項目		単位	外側引張	内側引張	外側	引張
	切 口		半业	下端部(右)	支間中央	端部(対称)	右端部
				Case2	Case1	Case1	Case2
断面力	曲げモーメント	М	kN/m•m	149.42	7.08	3.54	190.97
関風刀	軸方向圧縮力	N'	kN/m	10.81	18.91	18.91	213.37
	部材幅	b	mm	1,000	1000	1000	1000
断面諸元	部材高	h	mm	350	400	400	400
四田时儿	主鉄筋中心から表面までの距離	c_0	mm	60	60	100	100
	有効高	d	mm	290	340	300	300
	引張鉄筋量	A_{ς}	-	D22@125	D13@250	D22@125	D22@125
設計配筋	刀球外加里	21 S	mm ²	3,096.8	506.8	3,096.8	3,096.8
	鉄筋比	p_s	%	1.07	0.15	1.03	1.03
	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000
	鉄筋の弾性係数		N/mm ²	200,000	200,000	200,000	200,000
応力度の	弾性係数比	n	-	8.0	8.0	8.0	8.0
算定	中立軸位置※	х	mm	98.4	74.6	184.2	112.4
	コンクリートの圧縮応力**	σ'_c	N/mm ²	11.9	0.8	0.2	14.4
	鉄筋の引張応力**	σ_s	N/mm ²	185.7	23.6	1.2	192.2
許容	コンクリートの許容圧縮応力	$\sigma'_{\it ca}$	N/mm ²	9.0	9.0	9.0	9.0
応力度	鉄筋の許容引張応力	σ_{sa}	N/mm ²	196.0	196.0	196.0	196.0
コンカゴ	コンクリートの圧縮応力の照査結果(σ'_c/σ'_{cl}			1.32	0.09	0.03	1.60
				NG	OK	OK	NG
4生 62	「の引張応力の照査結果(σ _s /σ _s ,	< 1	0)	0.95	0.12	0.01	0.98
业人 月刀	(o_s/o_{so})	a == 1.·	0)	OK	OK	OK	OK

[※]中立軸位置及び応力度は引張側の鉄筋のみを考慮した単鉄筋RC構造として算定した.

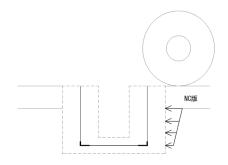
[※] 中立軸位置は圧縮側縁からの距離を示す.

例表-7.10 せん断力に対する照査結果 (STEP-1)

				側壁	底版
	項目		単位	下端部	中央
				Case2	Case2
断面力	せん断力	V	kN/m	186.19	330.51
	部材幅	b	mm	1,000	1,000
账	部材高	h	mm	350	400
断面諸元	主鉄筋中心から表面までの距離	c_0	mm	70	100
	有効高	d	mm	280	300
コンクリートの	平均せん断応力度	τ_m	N/mm ²	0.66	1.10
せん断応力度	許容せん断応力度(補強鉄筋なし)	τ_{a1}	N/mm ²	0.45	0.45
27041/12/3/3	許容せん断応力度(補強鉄筋あり)	τ_{a2}	N/mm ²	2.00	2.00
41- Z	断補強鉄筋栓針の悪不判定(* /* /*		1.47	2.44	
E 7.	せん断補強鉄筋検討の要否判定($\tau_m/\tau_{a1} \le 1.0$)				NG
十 7 1	「補強鉄筋と協働で対応可能か(τ _m /τ	< 1.0)	0.33	0.55
C 70 P		a 1 = 1.0	,	OK	OK
	せん断補強鉄筋	-		2-D16	2-D16
÷n.⇒1	使用鉄筋の断面積	A_w	mm ²	397.2	397.2
設計 配筋	鉄筋の部材軸方向間隔	S	mm	125	125
HUMM	鉄筋が部材軸となす角	θ	0	90	90
	鉄筋比	p_w	%	0.32	0.32
	コンクリートが負担するせん断力	$V_{\rm ca}$	kN/m	126.00	135.00
せん断補強鉄	鉄筋が負担するせん断力の合計	V_h'	kN/m	60.19	195.51
筋の照査	鉄筋の許容引張応力	σ_{sa}	N/mm ²	196.0	196.0
	鉄筋の必要断面積	A_{wa}	mm ²	157.6	478.0
ı					
1	せん断補強鉄筋量の判定($A_{wa}/A_{w} \leq 1$.0)		OK	NG

7.4.4 STEP-1 による検討結果

以上の照査結果から、曲げモーメントと軸方向力に対して、側壁と底版でコンクリートの圧縮応力が許容応力度を超過する結果となったため、STEP-1による照査結果はNGとなる.


これにより、前述の検討手順に基づき、コンクリート版の影響を考慮した STEP-2 の検討へ移行する.

7.5 STEP-2 の検討:舗装版を考慮した荷重条件による照査

STEP-2 として、NC 舗装直下に位置するボックスカルバートに対し、NC 舗装版による航空機荷重の低減効果を考慮して、設計荷重の合理化を図った場合の構造照査を実施した. 照査手順は STEP-1 と同様である.

7.5.1 舗装版を考慮した航空機荷重の設定

U型側溝について、隣接する NC 版側面からの水平荷重が伝達されないことを考慮した荷重条件を設定した(**例図-7.5**). NC 版側面での水平荷重の控除は、土圧及び航空機荷重に対して適用した.

例図-7.5 NC 版側面で水平荷重が伝達されないことを考慮した荷重 Case2 のイメージ

設定した航空機による水平荷重を例表-7.11に示す.

例表-7.11 NC版を考慮したU型側溝の航空機荷重の設定

作用位置	深度 (m)	鉛直方向地中 応力(kN/m²)	奥行方向 作用幅(m)	影響 車輪数	1脚車輪影響幅 (m)	構造物の面的作用 を考慮した係数 [※]	主働土 圧係数	衝擊係数	作用荷重 (kN/m²)
NC版下面	0.55	424.41	1.458	2.00	3.20	0.91	0.333	0.30	167.52
側壁下端	1.46	84.74	3.278	2.00	5.02	1.00	0.333	0.30	36.68

[※] 構造物の面的支持を考慮した係数=奥行方向作用幅×影響車輪数/1脚車輪影響幅(≦1.0)

(※設計例作成当時の値)

7.5.2 構造解析

STEP-1 と同様の解析モデル(フレーム)に対して、舗装版を考慮した設計荷重(Case2)を作用させたフレーム解析により断面力を算定した.

代表箇所における断面力の算定結果を例表-7.12に示す.

[%]作用荷重=鉛直方向地中応力×構造物の面的作用を考慮した係数×主働土圧係数×(1+衝撃係数)

例表-7.12 NC版を考慮した荷重条件による断面力の算定結果

		荷重Case2(NC版側面の荷重を考慮しない場合)					
部材	位置	曲げモーメント <i>M</i> (kN/m·m)	せん断力 V (kN/m)	軸力 N(kN/m)			
	上端部	0.00	0.00	0.00			
側壁	NC版下面	0.00	0.00	-4.72			
(右側)	下端部②	-21.08	-72.27	-9.31			
	下端部①	-35.11	-87.39	-10.81			
	右端部①	-46.53	66.58	-80.41			
	右端部②	-38.93	83.68	-69.48			
底版	支間中央	-25.58	90.53	-53.09			
	左端部②	-12.90	74.83	-36.69			
	左端部①	-6.48	51.84	-25.76			

[※] 端部①は曲げモーメントに対する照査位置、端部②はせん断力に対する照査位置を示す.

7.5.3 舗装版を考慮した U 型側溝の構造照査

STEP-1 と同様の照査手順により、曲げモーメント及び軸方向力に対する断面応力度の照査、せん断力に対する断面応力度の照査を実施した。

照査結果を**例表-7**. 13~**例表-7**. 14 に示す.

例表-7.13 曲げモーメントと軸方向力に対する照査結果 (STEP-2)

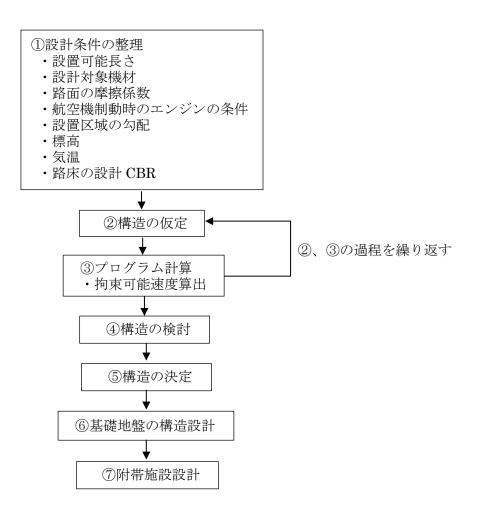
	対象 7.10 皿(7 C) .		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	側壁		底版		
	1百日		単位	外側引張	内側引張	外側	外側引張	
	項目		半仏	下端部(右)	中央	端部(対称)	右端部	
				Case2	Case1	Case1	Case2	
断面力	曲げモーメント	М	kN/m•m	35.11	7.08	3.54	46.53	
四月	軸方向圧縮力	N'	kN/m	10.81	18.91	18.91	80.41	
	部材幅	b	mm	1,000	1000	1000	1000	
断面諸元	部材高	h	mm	350	400	400	400	
的田阳九	主鉄筋中心から表面までの距離	c_0	mm	60	60	100	100	
	有効高	d	mm	290	340	300	300	
	引張鉄筋量	A_s	-	D22@125	D13@250	D22@125	D22@125	
設計配筋	71 灰 虾 肋 里		mm ²	3,096.8	506.8	3,096.8	3,096.8	
	鉄筋比	p_s	%	1.07	0.15	1.03	1.03	
	コンクリートの弾性係数	E_c	N/mm ²	25,000	25,000	25,000	25,000	
	鉄筋の弾性係数		N/mm ²	200,000	200,000	200,000	200,000	
応力度の	弾性係数比	n	-	8.0	8.0	8.0	8.0	
算定	中立軸位置※	х	mm	100.8	74.6	184.2	120.2	
	コンクリートの圧縮応力**	σ'_c	N/mm ²	2.8	0.8	0.2	3.5	
	鉄筋の引張応力※	σ_s	N/mm ²	42.3	23.6	1.2	41.8	
許容	コンクリートの許容圧縮応力	σ'_{ca}	N/mm ²	9.0	9.0	9.0	9.0	
応力度	鉄筋の許容引張応力	σ_{sa}	N/mm ²	196.0	196.0	196.0	196.0	
コンカゴ	コンクリートの圧縮応力の照査結果(σ'_c/σ'_{cc}			0.31	0.09	0.03	0.39	
				OK	OK	OK	OK	
44. 62	- の引張応力の照査結果(σ _s /σ _s ,	< 1	0)	0.22	0.12	0.01	0.21	
业人用刀		ı = 1.0	0)	OK	OK	OK	OK	

[※]中立軸位置及び応力度は引張側の鉄筋のみを考慮した単鉄筋RC構造として算定した.

例表-7.14 せん断力に対する照査結果 (STEP-2)

				側壁	底版
	項目	単位	下端部	中央	
				Case2	Case2
断面力	せん断力	V	kN/m	72.27	90.53
	部材幅	b	mm	1,000	1,000
断面諸元	部材高	h	mm	350	400
四国的儿	主鉄筋中心から表面までの距離	c_0	mm	70	100
	有効高	d	mm	280	300
	平均せん断応力度	τ_m	N/mm ²	0.26	0.30
コングリートの	許容せん断応力度(補強鉄筋なし)	τ_{a1}	N/mm ²	0.45	0.45
	許容せん断応力度(補強鉄筋あり)	τ_{a2}	N/mm ²	2.00	2.00
11- Z	- - - - - - - - - - - - - - - - - - -		0.58	0.67	
E 7.		≟ 1.0)		OK	OK

[※] 中立軸位置は圧縮側縁からの距離を示す.


7.5.4 STEP-2 による検討結果

以上の照査結果から、曲げモーメントと軸方向力、せん断力に対して、全ての部材で断面応力が許容応力度以下となった.これにより、当該条件の既設エプロン内 U 型側溝は構造上問題ない結果となる.

例-8 アレスティングシステムの設計例

FAA において承認された 2 種類のアレスティングシステムの設計例を示す。

8.1 設計手順

【解説】

設計手順① 設計対象機材は、当該空港に現在就航している航空機や就航を予定している航空及 び就航が予想される航空機を考慮し、適切に選定する。

設計手順② アレスティングシステムの長さは、設計対象機材がアレスティングシステム内において減速可能な範囲内で滑走路終端の逸脱速度が最大となる(拘束性能を発揮させる)ように設計する必要があることから、設置可能な範囲で最大限の長さを確保するとともに、システムの勾配、厚さ、強度等の入力条件を変えながら様々な構造を仮定する。

設計手順③ 仮定した構造について、メーカーのプログラムにより、設計対象機材毎に滑走路終端の逸脱速度を算出する。

設計手順④ 算出された逸脱速度をもとに、最適な構造を検討する。この際、設計対象機材全て の逸脱速度が最大とならない場合があり、どの条件の構造を最適の構造とするかは、 各空港の航空機の就航状況等を考慮し適切に設定する。

設計手順⑤ 最適な構造を決定する。

設計手順⑥ アレスティングシステムの基礎地盤となる舗装構造設計を行う。

設計手順⑦ 車両の誤進入を防止する施設及び緊急車両走行通路の設計を行う。

8.2 設計条件

(1) 設置可能長さ

過走帯の先に RESA40m、場周道路用地 10m があり、アレスティングシステムの設置可能 区域は 100m である。

例図-8.1 アレスティングシステム設置可能範囲

(2) 対象機材

対象機材は将来の就航が想定される機材を考慮して設定することとした。

就航が想定される機材については、H空港の現在の就航機材と就航実績から将来の就航機材を想定して選定した。

なお、機材重量は離陸時と着陸時を想定し、最大離陸重量と最大着陸重量の 80%の 2 ケースで計算を実施した。

対象機材: B777-300、B777-200、B767-300、B787-8、B737-800、A320、A321

(3) 路面の摩擦係数

滑走路終端からアレスティングシステムまでの路面の摩擦係数は 0.25 とした。

(4) 航空機制動時のエンジンの条件

滑走路終端を逸脱する航空機のエンジンは逆噴射無しとした。

(5) 設置区域の勾配

アレスティングシステムの設置勾配については経済性や拘束性能とともに脚への影響を考慮する必要がある。H空港では過走帯の勾配は1.0%の下り勾配、RESAの芝地は2.5%の下り勾配となっている。下り勾配の値が大きいと航空機の逸脱時に脚への負担が大きくなることから、RESAについては2%の下り勾配になるように基面を造成することとした。

(6) 標高

327m(滑走路端標高)

(7) 気温

29.9°C (AIP より)

(8) 路床の設計 CBR

14%

8.3 EMAS MAX の設計例

(1) 構造の仮定

設置可能な範囲で逸脱速度が最大となる構造を仮定した。

1) 滑走路終端からの離隔

ブラストによる影響を考慮し、滑走路終端から 35ft(約 10.5m)の離隔を確保した位置にブロックを配置した。

2) 設置長さ

過走帯 60m と RESA40m を合わせた用地において、滑走路上の航空機のブラストの影響を考慮し、滑走路終端から 10.5m の離隔を確保した上で、 $1.22m \times 1.22m$ のブロックを設置すると最大 73 ブロック(長さ約 89m)の設置が可能である。このうち、場周道路用地に隣接する 2 ブロック(2.4m)に対しては、緊急車両のシステム上部へのアクセスと旅客の避難を考慮し、段差の緩和処理を施した。なお、この段差は約 0.15m(5 インチ)程度とした。

3) 設置幅

滑走路幅 60m に相当する 50 ブロック(\Rightarrow 61m)を配置し、側方からの緊急車両のシステム上部へのアクセスと旅客の避難を考慮して、アレスティングシステムの側面に段差の緩和処理 2 列分(2.4m)のブロックを配置し、合計約 66m とした。

4) 縦断斜部

ブロックの厚さは滑走路終端側から徐々に厚くし、定期便が就航する空港で一般的な斜部 形状である1ブロックにつき1インチ(クイックランプ:勾配約2%)を上限とした。

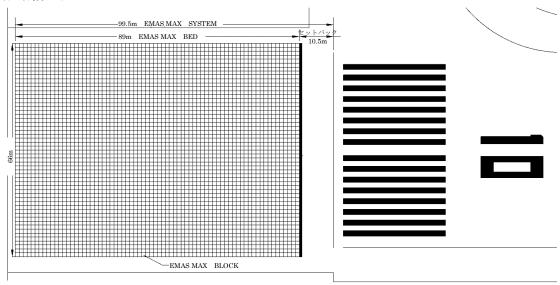
5) ブロック構造

航空機がアレスティングシステム内に突入した際、エンジンとシステムとの接触を避ける 必要がある。ここでは、設計対象機材のうち最大離陸重量時のエンジンと地面の間隔が最も 小さい B737-800 を対象としてブロックの最大厚を 20 インチ (約 0.51m) とした。また、 ブロックの強度は、メーカーが製造する 3 種類の強度とした。

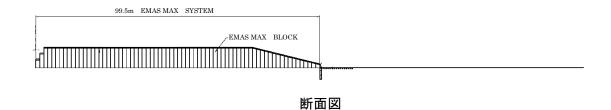
(2) プログラム計算

EMAS MAX の拘束速度と構造を検討するプログラム「WINEMAS 2000」を使い、仮定した構造を条件として設計対象機材の拘束速度を計算した。システムの勾配、厚さ及び強度を変えたパターンについて、拘束速度の算出結果を例表-8.1 に示す。

例表- 8.1 EMAS MAX 拘束速度


w	+4k++	拘束速度(kt)						
離着陸区分	機材	パターン1	パターン 2	• • • • • • •	パターン n			
	CRJ-700	64	62	• • • • • • •	62			
	A320	70	72	• • • • • • •	70			
	B737-800	72	70	• • • • • • •	71			
	A321	67	66	• • • • • •	70			
離陸	B767-300	53	55	• • • • • • •	50			
	B787-8	50	51	• • • • • • •	48			
	B787-9	52	53	• • • • • • •	52			
	B777-200	53	55	• • • • • • •	50			
	B777-300	50	52	• • • • • • •	48			
	CRJ-700	53	52	• • • • • • •	51			
	A320	68	70	• • • • • • •	70			
	B737-800	53	51	• • • • • • •	50			
	A321	70	69	• • • • • • •	70			
着陸	B767-300	51	52	• • • • • • •	49			
	B787-8	51	53	• • • • • • •	49			
	B787-9	51	52	• • • • • • •	47			
	B777-200	50	51	• • • • • • •	46			
	B777-300	48	50	• • • • • •	45			

注)表中の値は例として示したものであり、プログラムで算出されたものではない。


(3) 構造の決定

拘束速度を比較した結果、小型機(CRJ-700、B737-800 等)に対してはパターン 1 が最適であるが、当該空港の主要機材は中型・大型機であり、これら機材に対して最も拘束性能を発揮するパターン 2 を採用することとした。

(4) 概略構造図

平面図

8.4 greenEMAS の設計例

(1) 構造の仮定

設置可能な範囲で逸脱速度が最大となる構造を仮定した。

1) 滑走路終端からの離隔

ブラストによる影響を考慮し、滑走路終端から 35ft (約 10.5m) の離隔を確保した位置に システムを配置した。

2) 設置長さ

過走帯 60m と RESA40m を合わせた用地において、滑走路上の航空機のブラストの影響を考慮し、滑走路終端から 10.5m の離隔を確保した上で設置可能な最大の長さは、89.5m である。このうち、場周道路用地に隣接するシステムの端部は、緊急車両のシステム上部へのアクセスと旅客の避難を考慮した摺り付け(勾配 1:4)を設けた。システム端部の厚さを0.41m と仮定すると、摺り付けを除いた有効長は約 87.9m となる。

3) 設置幅

滑走路幅に合わせて 60m とし、側方からの緊急車両のシステム上部へのアクセスと旅客の避難を考慮して、アレスティングシステムの側面に摺り付け(勾配 1:4)を設けた。

4) 縦断斜部

アレスティングシステムの厚さは滑走路終端側から徐々に厚くし、勾配約 2%を上限とした。

5) 構造

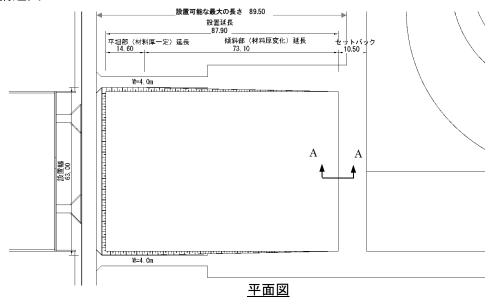
航空機がアレスティングシステム内に突入した際、エンジンとシステムとの接触を避ける必要がある。ここでは、設計対象機材のうち最大離陸重量時のエンジンと地面の離隔が最も小さい B737-800 を対象として材料の最大厚を 0.41m とした。なお、greenEMAS の材料強度は 1 種類である。

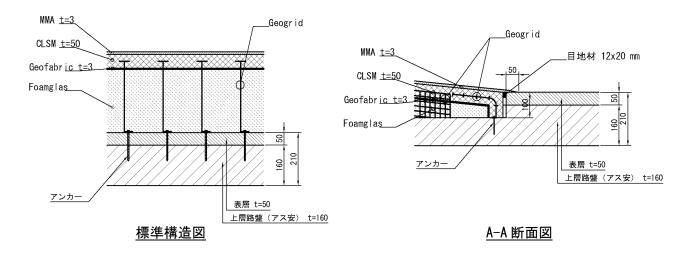
(2) プログラム計算

greenEMAS の拘束速度と構造を検討するプログラム ARRESTOR PREDICTION CODE を使い、仮定した構造を条件として設計対象機材の拘束速度を計算した。システムの勾配及び厚

さを変えたパターンについて、拘束速度の算出結果を例表-8.2に示す。

姚美陆 反八	機材		拘束速度	隻(kt)	
離着陸区分		パターン 1	パターン 2	• • • • • • •	パターン n
	CRJ-700	64	62	• • • • • • •	62
	A320	70	70	• • • • • • •	72
	B737-800	72	71	• • • • • •	70
離陸	A321	67	70	• • • • • • •	66
	B767-300	53	50	• • • • • • •	55
	B787-8	50	48	• • • • • •	51
	B777-200	53	50	• • • • • • •	55
	B777-300	50	48	• • • • • • •	52
	CRJ-700	53	51	• • • • • • •	52
	A320	68	70	• • • • • • •	70
	B737-800	53	50	• • • • • •	51
着陸	A321	70	70	• • • • • •	69
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B767-300	51	49	• • • • • •	52
	B787-8	51	49	•••••	53
	B777-200	50	46	• • • • • •	51
	B777-300	48	45	• • • • • •	50


例表-8.2 greenEMAS 拘束速度


注)表中の値は例として示したものであり、プログラムで算出されたものではない。

(3) 構造の決定

拘束速度を比較した結果、全体的にパターンnが最大となるが、当該空港の主要機材はB737-800(就航の6割相当)であり、当該機材に対して最も拘束性能を発揮するパターン1を採用することとした。

(4) 概略構造図

8.5 基礎地盤の構造設計

路床の設計 CBR と滑走路の設計反復作用回数をもとに、経験的手法により、過走帯と同等の舗装構造を設定する。greenEMAS はアンカーによりアレスティングシステムを基礎地盤に固定する必要があるため、アスファルト混合物層を 20cm 以上確保する必要がある。上層路盤にアスファルト安定処理を用いた以下の構造とする。

(設定舗装構造:EMAS MAX)

- ・表層 t=5cm
- ・上層路盤(粒度調整砕石)t=20cm
- ・下層路盤(切込砕石) t=12cm

(設定舗装構造:greenEMAS)

- · 表層 t=5cm
- ・上層路盤 t=16cm (アスファルト安定処理材)

8.6 附帯施設設計

(1) 誤進入防止策

車両の誤侵入を防止する施設として、道路に用いられる車線分離標をアレスティングシステムの周囲に配置する。空港の気象条件や地形条件を踏まえ、適切な構造や配置を設定する必要がある。

(2) アレスティングシステム周囲舗装

緊急車両が側面からも進入できるように、過走帯の舗装が無い範囲には保安道路相当の幅 (W=4m) に舗装を設置することとする。