

農林水産省・農林水産技術会議事務局委託プロジェクト研究

「脱炭素・環境対応プロジェクト」

「みどりの食料システム戦略実現技術開発・実証事業」

課題名:「ブルーカーボンの評価手法及び効率的藻場形成・拡大技術の開発(R2-R6)」

海草・海藻藻場のCO2貯留量算定ガイドブックの公開

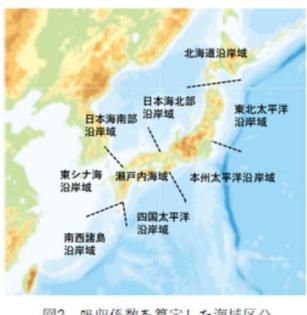


図2 吸収係数を算定した海域区分

表2 吸収係数を算定した藻場タイプ

	藻場タイプ	各藻場タイプに含まれる主要な海草・海藻種
海草類	1. アマモ型	アマモ, スゲアマモ, コアマモなど
	2. タチアマモ型	タチアマモ
	3. スガモ型	スガモ、エピアマモなど
	4. 亜熱帯性海草小型	ウミヒルモ類、マツパウミジグサ、コアマモ(亜熱帯型)など
	5. 亜熱帯性海草中型	リュウキュウスガモ、ベニアマモリュウキュウアマモなど
	6. 亜熱帯性海草大型	ウミショウブ
海藻類	7. マコンブ型	マコンプ、ホソメコンブ、ガゴメコンプなど
	8. ナガコンプ型	ナガコンプ、スジメ、アイヌワカメなど
	9. アラメ型	アラメ、サガラメなど
	10. カジメ型	カジメ、クロメなど
	11. ワカメ型	ワカメ、ヒロメなど
	12. 温帯性ホンダワラ型	アカモク、ホンダワラ、ノコギリモクなど
	13. 亜熱帯性ホンダワラ型	ヒイラギモク、ヒメハモク、ヤバネモクなど
	14. 小型緑藻型	ヒトエグサ、アナアオサ、ミルなど
	15. 小型紅藻型	マクサ、ツノマタ、スサビノリなど
	16. 小型褐藻型	アミジグサ、ヒバマタ、ヤハズグサなど
	17. 石灰藻類	無節石灰藻類、有節石灰藻類など石灰化する藻類
菱殖	18. コンプ類養殖型	マコンプはえ縄方式など
	19. ワカメ型	ワカメはえ縄方式など
	20. ノリ類養殖型	ノリ網浮き流し式、支柱式など
	21. ホンダワラ類養殖型	アカモクはえ縄式など

農林水産省・農林水産技術会議事務局委託プロジェクト研究

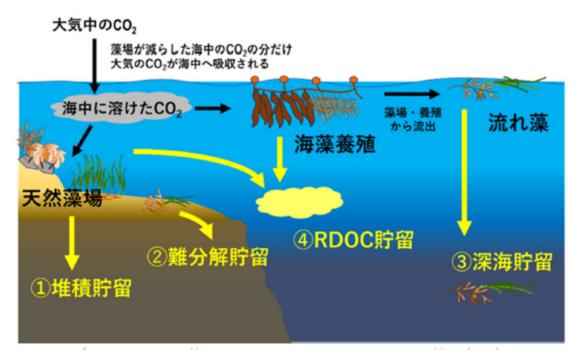
「脱炭素・環境対応プロジェクト」

「みどりの食料システム戦略実現技術開発・実証事業」

課題名:「ブルーカーボンの評価手法及び効率的藻場形成・拡大技術の開発(R2-R6)」

海草・海藻藻場のCO2貯留量算定ガイドブックの公開

式1:藻場のco,貯留量の算定式


co,貯留量(トンco,/年) = 面積(活動量)×吸収係数(トンco,/面積/年)

吸収係数 = <u>co₂隔離量</u>(トンco₂/面積/年) 残存率

> 海草・海藻が有機炭素化した 量をco,として算定した値)

海草・海藻によって隔離された 大気中co、量(年間純一次生産 大気中co、のうち、分解されずに 海中に長期間貯留される割合

- ① 堆積貯留:枯れた海草・海藻が藻場内の海底に堆積し、長期間貯留さ れるプロセス
- ②難分解貯留:枯れた海草・海藻, その細分化された破片が流出し, 長 期間COoに戻らない難分解性の細片(粒子状)となり、藻場外の沿岸域 に堆積して長期間貯留されるプロセス
- ③深海貯留:波浪などでちぎれた海草・海藻が流れ藻となって沖合に流 出し、浮力を失って深海へ沈降し長期間貯留されるプロセス
- ④ RDOC貯留:海草・海藻が放出する難分解性の溶存態有機炭素が長期 間にわたり海水中に貯留されるプロセス、難分解性溶存態有機炭素 (Refractory Dissolved Organic Carbon) の頭文字からRDOCと呼ぶ

天然藻場(海草・海藻)の算定式

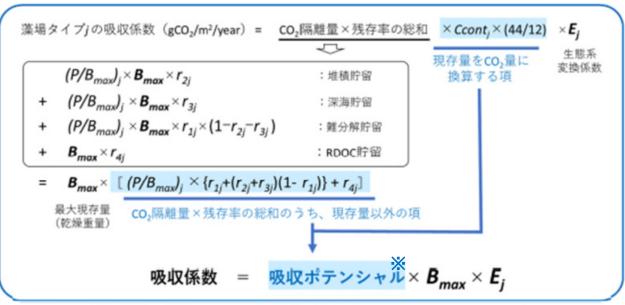
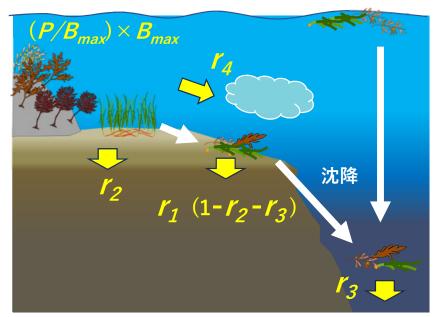



図3 天然藻場を対象とした吸収係数の算定式. r_1 , r_2 , r_3 , r_4 は, それぞれ難分解貯留, 堆積貯留, 深海貯留, RDOC貯留の残存率. ただし, r_4 はRDOC残存量を計算するための係数が含まれている.

※ 吸収ポテンシャル = 対象とする海草・海藻が現存量1gあたりで貯留するCO₂量 (吸収係数は単位面積当たりで貯留するCO₂量)

P/Bmax:現存量当たりの一次生産量(隔離する炭素量)

→ 種ごとに決まっている定数

Bmax:年間で最も繁茂している時期の最大現存量

→ 現場で実測する変数

Ej: 葉上の付着微細藻類や混生する他の海藻の現存量が 無視できない場合, 追加的な補正を行うための係数.

→ 補正がない場合はE=1

海藻養殖の算定式

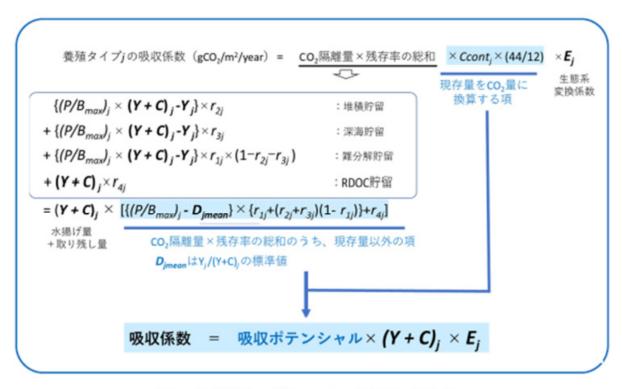



図4 海藻養殖を対象とした吸収係数の算定式

Y:収穫された水揚げ現存量(海中から出される現存量)

c:海中に取り残す現存量(海中に残る現存量)

吸収ポテンシャル

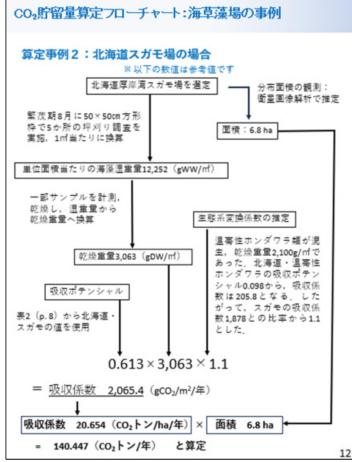
表3 藻場タイプ・海域区分別の吸収ポテンシャル

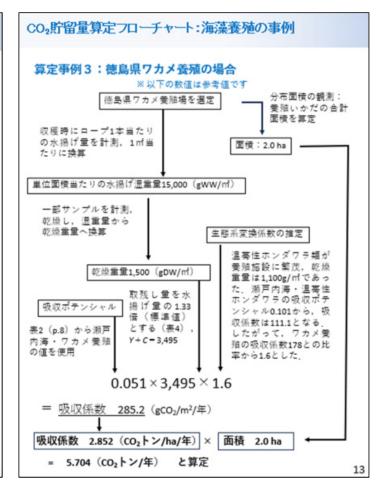
葉嶋タイプ	北海道	東北太平洋	日本海北部	日本海南部	中部太平洋	瀬戸内海	四国太平洋	九州東シナ	南西諸岛
776	0.663	0.715	0.656	0.675	0.656	0.712	0.675	0.695	
タチアマモ	0.591	0.610	0.591	0.591	0.591				
スガモ	0.613	0.613	0.613	0.613	0.613				
重熱等小型									1.164
亚热等中型									0.758
亜熱等大型									0.545
マコンブ	0.068	0.068	0.068						
ナガコンブ	0.078								
アラメ		0.098		0.098	0.129		0.129	0.098	
カジメ		0.124	0.124	0.124	0.100	0.124	0.100	0.112	
フカメ	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	
温等性ホンダワラ	0.098	0.101	0.109	0.099	0.125	0.101	0.131	0.103	
亜熱帯性ホンダワラ							0.093	0.093	0.093
小型線藻	0.126	0.126	0.126	0.126	0.126	0.126	0.126	0.126	0.126
小型褐藻	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063
小型紅藻	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069
サンゴ藻	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
コンプ養殖	0.049	0.049	0.049	0.049	0.049	0.049			
ワカメ養殖	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	
ノリ長殖	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	
ガラモ養殖	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059

[・]この吸収ポテンシャルに最大現存量と生態系変換係数Eを乗じることにより、吸収係数(単位面積当たりの CO_2 貯留量)が求められます.

吸収係数

妻4 藻堤タイプ・海域区分別の吸収係数


葉場タイプ	北海道	東北太平洋	日本海北部	日本海南部	中部太平洋	湖戸内海 [四国太平洋	九州東シナ	用西湖泉
アマモ	490.39	224.11	593.20	381.56	593.20	232.10	381.56	280.52	
タチアマモ	847.77	212.74	847.77	847.77	847.77				
スガモ	2039.74	1780.41	713.21	713.21	535.52				
更熱等小型									108.79
亚热带中型									305.91
重熱帯大型									336.35
マコンブ	164.18	468.66	468.66						
ナガコンブ	110.70								
79×		274.72		127.16	423.02		162.69	127.16	
カジメ		61.55	15.54	151.57	49.39	126.08	25.24	20.28	
ワカメ	58.48	116.28	58.48	25.70	23.71	47.49	12.23	15.83	
温帯性ホンダワラ	312.03	158.86	60.50	219.24	31.56	155.21	27.33	105.50	
亜熱帯性ホンダワラ							128.51	21.31	41.97
小型蜂藻	4.16	9.95	5.54	7.05	6.05	9.70	1.89	4.16	17.76
小型褐藻	112.69	7.91	11.68	63.91	1.19	19.90	30.51	14.88	9.35
小型紅藻	52.38	22.90	56.94	17.57	1.52	30.24	22.76	15.98	4.36
サンゴ藻	15.14	6.76	0.57	6.76	6.76	9.71	2.02	4.58	0.10
コンプ養殖									
ワカメ養殖	養殖は海域	手法・経	営体によっ	て収穫量の	差が大きい	ため、標	準備を示し	していない	
ノリ養殖									
ガラモ番種									


表4 水揚げ量Yに対する取り残し量cの比率(標準値)

海藻美殖タイプ	コンプ美殖	ワカメ美殖	ノリ美殖	ガラモ美殖
この経済技	0.8	1.33	0	0.25

