「DHSシステムを用いた水量変動追従型水処理技術 導入ガイドライン(案)」の概要

本編(1/2)

国十交诵省国十技術政策総合研究所

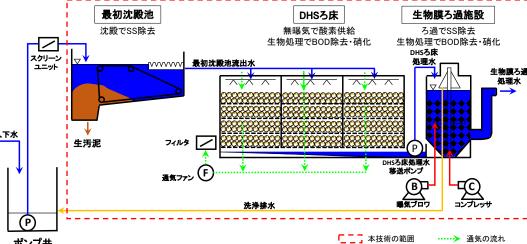
第1章 総則

- ●目的
- ●ガイドラインの適用範囲
- ●ガイドラインの構成
- ●用語の定義

〇下水道事業における大幅なコスト縮減や省エネルギー・創エネルギー効果の増大に寄与するため、下水道革新的技術実証事業(B-DASH プロジェクト)の革新的技術の1つである「DHSシステムを用いた水量変動追従型水処理技術」(以下、本技術とする)について、実証研究の成 果を踏まえて、技術の概要、導入検討、計画・設計および維持管理などに関する技術的事項について明らかにし、導入を促進に資することを 目的とする。

○下水道施設の新・増設あるいは既存施設の更新に際して、本システムの導入を促進することを目的として、本技術の導入検討、計画・設計・ 維持管理の参考となるようにとりまとめたものである。

第2章 技術の概要と評価


- ●技術の概要と特徴
- 技術の適用条件
- ●実証研究に基づく評価の概要

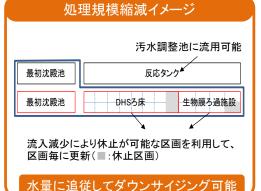
□システム全体の概要と特徴

本技術は、最初沈殿池流出水をDHS[※]**** ろ床にて無曝気で生物学的処理を行 い、その後段に固液分離と生物学的処 理が可能な生物膜ろ過施設を組合せ た標準活性汚泥法代替の、水量に追 従してダウンサイジング可能な水処理

ポンプ井 技術である。

●既存水処理施設に設置することを基本とする。(地上の場合は別途検討) ※DHS: Down-flow Hanging Sponge (下降流スポンジ状担体)

スポンジ状担体を充填したDHSろ床


~無曝気・省エネルギーで生物処理~

DHSろ床担体設置状況

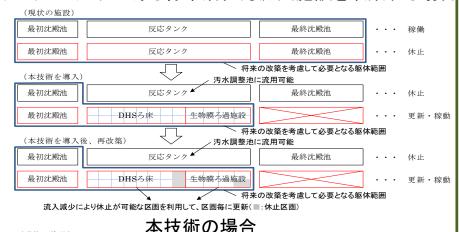
汚泥減容化・維持管理容易

移動床式の生物膜ろ過施設 ~生物処理とろ過で仕上処理~ DHCお床流出水 DHC3床流出水 連続処理で省スペース

□技術の評価項目と評価結果

評価項目	評価結果
(1)処理水質の安定性	1年間を通してBOD15mg/L以下
(2)使用電力量	計画日平均汚水量における消費電力量が0.14 kWh/m³以下
(3)汚泥発生率	0.4(=(脱水ケーキDS+生物膜ろ過処理水DS)/(流入汚水DS))
(4)維持管理の容易性	週2日の巡回監視が可能
(5)ダウンサイジング性能	流入水量減少に応じてLCC縮減可能
(6)既設改造の可否	標準活性汚泥法の既存土木施設に設置可能

□技術の適用条件


- 標準活性汚泥法で、高度処理を対象にしない処理場。
- 既存水処理施設の更新が基本。ただし、新築・増設にも 適用可能。
- 流入水質:一般的な都市下水
- 改造の場合、反応タンクの 有効水深が3m以上

適用時留意事項

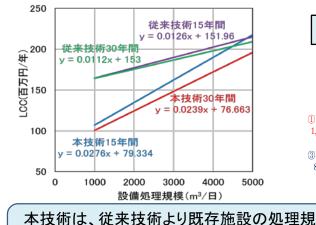
流入水温:15℃以下の場合は個別検討が必要。 土木躯体の耐荷重の確認が必要。

□導入シナリオ例

流入水量の減少などにより反応タンクの稼動池数が1池で 流入率が低く、今後も流入水量の減少が見込まれる反応 タンクが2池以上ある標準活性汚泥法施設を改築する場合

本技術の場合 最終沈殿池 反応タンク 最終沈殿池 将来の改築を考慮して必要となる躯体範囲 (標準活性汚泥法で更新) 最初沈殿池 反応タンク 最終沖歐洲 反応タンク 最初沈殿洲 最終沈殿洲 将来の改築を考慮して必要となる躯体範囲 最初沈殿池 反応タンク 将来の改築を考慮して必要となる躯体範囲

標準活性汚泥法の場合


第3章 導入検討

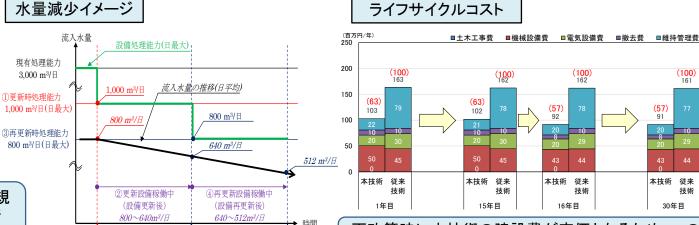
- ●導入検討方法
- 導入効果の検討例

□導入効果の検討方法

- ①基礎調査(§15)
- 下水道経営状況の確認
- •関連下水道計画の整理
- ・施設情報の確認
- ・流入条件の現状把握と将来予測
- ②設置可否の検討(§16)
- ・反応タンク内への設置可否を検討
- ・否の場合は生物膜ろ過施設の 地上設置を検討
- ③導入効果の検討(§17)
- ・費用関数を用いて検討

LCCの費用関数

模による費用関数の変化が大きく、本技術


の方がダウンサイジング効果が大きい

※エネルギー消費量・GHG排出量削減効果も確認する。

30年間処理水量が減少し続けた最大場合の再改築も含めた導入効果

③16年目

(設備再更新時)

30年目

・補機類:DHSろ床蓋、フィルタ(ろ床バエ捕捉)、通気ファンなど

再改築時に本技術の建設費が安価となるためLCCの 削減効果大

第4章 計画·設計

- ●導入計画
- ●施設設計
- DHS3床
- ●生物膜ろ過施設
- ●その他付帯施設

□導入計画

①基本事項の把握

流入条件、既存施設構造、将来 水量、汚泥処理設備

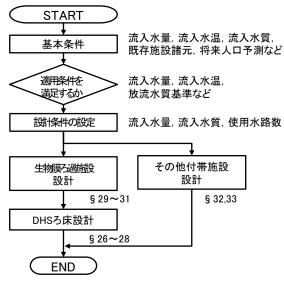
②設計条件の設定

水量、水質、水路数、汚泥処理設備の運転条件

③施設計画の検討

DHSろ床、生物膜ろ過施設など

④施設配置の検討


水位高低、平面配置

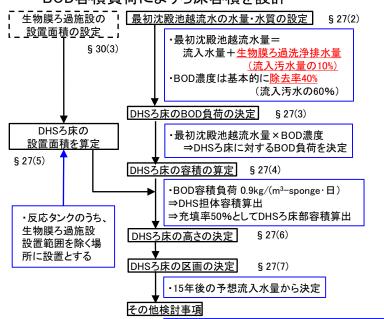
5導入効果の検証

事業性に対する導入効果

□施設設計

設計手順フローを下図に示す

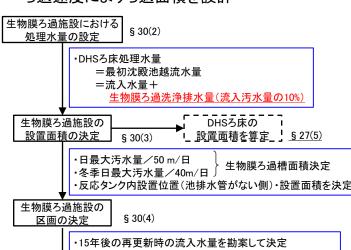
※施設配置検討の都合上、生物膜ろ 過施設→DHSろ床の順に行う。


□ DHS3床

BOD容積負荷によりろ床容積を設計

①1年目

(設備更新時)


□導入効果の検討例

□生物膜ろ過施設

日汚水量3,000m³/日→1,000m³/日にダウンサイジングして設備を改築、さらに

ろ過速度によりろ過面積を設計

・複数区画とする

その他検討事項 § 30(5)

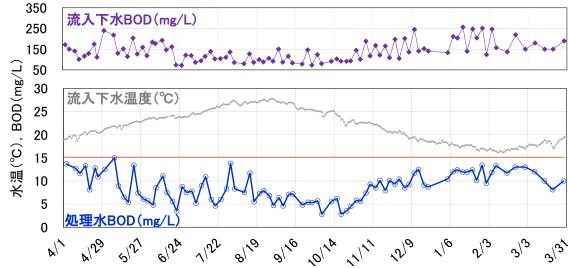
・補機類:生物膜ろ過施設覆蓋、曝気ブロワ、コンプレッサなど

第5章 維持管理

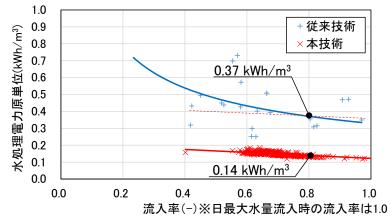
- ●システム全体としての管理
- ●運転管理
- ●保守点検
- ●異常時の対応と対策

本技術の運転管理は週2日 の巡回監視で対応可能

施設名称	操作項目	操作内容	
	通気量	6倍(対日平均汚水量)	自動
DHSろ床	集水部洗浄	定期的に実施 1日当り1回10分	自動
ロロるつは	散水装置フラッシング	定期的に実施 1日当り2回各1分	自動
	フィルタ洗浄	定期的に実施 1週間当り1回1分	自動
生物膜ろ過	送気量	2.0~3.0倍(対流入水量) 水温帯により調整	自動※
施設	洗浄時間	30~120分/(槽·日) 水温帯により調整	自動※


水温	15℃以上 20℃未満	20℃以上
送気倍率	流入水量の 2.5~3.0倍	流入水量の 2倍
洗浄時間	槽当り 90~120分/日	槽当り 30~60分/日

※生物膜ろ過施設の送気量、洗浄時間は、水温帯により設定値 の変更が必要。


【施設(須崎市終末処理場)概要】 処理場位置 高知県須崎市潮田町3-15 下水道事業種別 公共下水道 供用開始年月 平成7年10月 敷地面積 37,520m² 計画処理面積(事業計画) 57 ha 計画処理人口(事業計画) 2,350 人 (H25年度末) 1.761 人 計画処理能力(事業計画) 1,540 m³/日 1.800 m³/日 (現有) 現状の流入水量 400 m3/日(日平均) 500 m³/日(日最大:日平均×1.25) 600 m³/日(時間最大:日平均×1.5) 水処理方法 標準活性汚泥法 1系列 水処理系列(事業計画・現有) 排除方式 分流 汚泥処理フロー(現有) 濃縮-脱水 須崎港·海域B 放流先 【実証場所】 既存水処理設備 スクリーンユニッ 最初沈殿池 既存 既存 生物膜ろ過施設 DHSろ床 マンホールポンプ。井 管理棟 実証設備 汚泥脱水棟 (ユニットタイプ - DHSろ床 ※既存反応タンクの耐震性の都合上, DHSろ床および -生物膜ろ過施設 生物膜ろ過施設は特別に地上設置とした。 【実証フロー】 マンホールポンプ室 最初沈殿池 DHSろ床 生物膜ろ過施設 52 m³/(m²·日) 最初沈殿池越流水 DHSろ床 洗浄排水 処理水 🅍 🕠 スクリーン『 流入 1100|010000 001|010000 DHSろ床 生物膜ろ渦施設 最初沈殿池 250 m³/日×2ユニット 水処理 50 m³/日×10ユニット 引抜汚泥 汚泥処理 ф. ● 重力濃縮槽 脱水汚泥 引抜汚泥 汚泥ろ液 重力濃縮槽 汚泥貯留槽 汚泥脱水機 貯留槽 重力濃縮槽 脱水ろ液 越流水

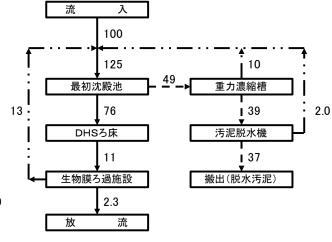
【各技術の評価項目、評価指標及び結果】

□流入下水および処理水BODの推移

□水処理電力原単位

※3,000m³/日規模躯体に,日最大3,000m³/日(日平均2,400m³/日)の汚水流入を想定流入率0.8:日平均/日最大想定比

------従来技術: 下水道統計(H25)より,濃縮は重力濃縮槽のみ,消化設備なし


処理水量2,000~4,000m3/日抽出

全ての汚泥処理方式・処理水量における平均※は0.2kWh/m3

※[標準法水処理使用電力量合計]/[標準法処理水量合計]

本技術:日毎の水処理電力原単位(平成29年4月1日~平成30年2月9日)

□須崎市終末処理場における物質収支

(平成29年7月~平成30年1月)

□須崎市終末処理場における導入効果

□浜町川杉木処理物に切りる等入刈木								
項目		本技術		従来技術				
		使用量	費用	使用量	費用			
ユーティリティ	電力	65,408kWh/年	1,047千円/年	212,754kWh/年	3,405千円/年			
	水道	40m³/年	5千円/年	83m³/年	11千円/年			
	固形塩素	146kg/年	88千円/年	146kg/年	88千円/年			
	高分子凝集剤	79kg/年	72千円/年	252kg/年	228千円/年			
		36t/年	468千円/年	85t/年	1,105千円/年			
運転管理費※		_	10,500千円/年	_	28,000千円/年			
合計		_	12,180千円/年	_	32,837千円/年			
比率		_	<u>37</u>	_	<u>100</u>			

※本技術は「下水道施設維持管理積算要領-終末処理場・ポンプ場施設編-2011 年版」(公益社団法人日本下水道協会)の終末処理場編(オキシデーションディッチ法)に基づき、週2日の巡回管理、労務単価を18,000円/人として算出