

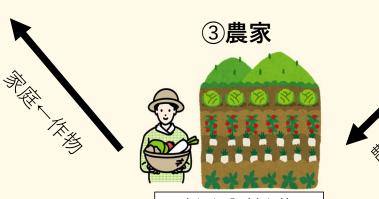
~ 目指世下水道で肥料大国~

下水汚泥資源の肥料利用

下水汚泥の肥料化とは

1各家庭

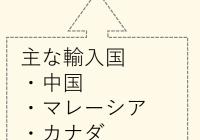
各家庭では、作物を 購入し、消費しなが ら生活しています。 そこから生活雑排水 が発生します。



生活雜排水→下水処理場

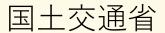
②下水処理場

生活排水を処理します。 そこで発生した汚泥を 脱水し、堆肥化して下 水汚泥肥料を作成しま す。


下水汚泥肥料を使用 して作物を育て、販 売する

下水汚泥資源の肥料利用

現在の日本


肥料原料の大半を輸入に依存している

輸入量を減らすために・・・

外国から輸入

「2030年までに堆肥・下水汚泥資源の利用割合を倍増し、**肥料の使用量** (リンベース)に占める国内資源の利用割合を40%へ」

農林水産省

「2050年までに、輸入原料や化石燃料を原料とした**化学肥料の使用量を 30%低減**」

下水汚泥資源の肥料利用

作物に必要な成分

・・・作物の生育には17成分が必要とされています。

用語名		元素名	備考
必須多量元素 (植物が多く必要とす る元素)	肥料三要素	・窒素(N) ・リン(P) ・カリウム(K)	植物が最も必要とする養分で、 土壌中で不足になりやすい。
	二次要素	・カルシウム(Ca) ・マグネシウム(Mg) ・硫黄(S)	肥料三要素についで植物の要 求度が高い。
	その他	・炭素 (C) ・水素 (H) ・酸素 (O)	大気中の二酸化炭素(CO ₂)、 水(H ₂ O)から供給される。
必須微量元素 (植物が少量必要とする元素)		・鉄(Fe) ・マンガン(Mn) ・ホウ素(B) ・亜鉛(Zn) ・モリブデン(Mo) ・銅(Cu) ・塩素(Cl) ・ニッケル(Ni)	必要量は少ないが、植物の生育には必須のもの。量が多くても少なくてもよくない。 土壌や堆肥にも含まれているため、土づくりが十分行われて入れば肥料は不要。

下水汚泥肥料に含まれる成分

- 窒素
- ・リン
- 鉄
- 銅
- 亜鉛 など

下水汚泥肥料は 肥料として適している!!

下水汚泥肥料化の課題

【イメージ・ニーズ】

- 下水汚泥のイメージが良くない
- 新しい肥料は手が出しにくい
- ・就農者が減少傾向にある

【技術面】

- 都心部は処理量が多いため、下水汚泥肥料を多く作るポテンシャルはあるが、周辺に農家が少ないため、作っても捌きにくい
- 汚泥肥料を作成・保管する用地が不足している
- 汚泥の運搬にコストがかかる

2つの側面から 課題をピックアップ

下水汚泥肥料のイメージ

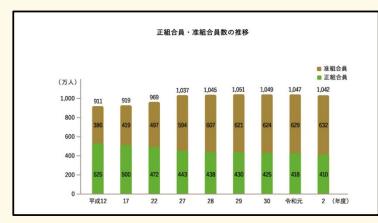
【JAとの連携】

JAの正組合員数は**410万人**

多くの農業従事者がJA組合に参加している。

自治体のみで宣伝をしても肥料が広く浸透するには 時間がかかる…

- ・この肥料を使って本当に効果があるの?
- ・普段使い慣れている肥料なら、失敗がない
- ・危険やデメリットがありそう・・・
- ・農業経験のない人たちが作った肥料だと心配 …etc



JAと連携することで…

農業従事者同士の宣伝により広く浸透しやすい!

- ・JA組合が出しているなら使ってみようかな
- ・実際に使っている人が「良い肥料だ」と言っていた …etc

https://org.ja-group.jp/pdf/jafactbook/jafactbook_2023.pdf JAファクトブック2023 組合員数の推移 正組合員・准組合員数の推移

【SNSの活用】

新規就農者の減少について

新規就農者(農業の継手)が減少傾向にある。

令和3年:52,290人→令和4年:45,840人

若者が農業に触れる機会が少ない

https://www.maff.go.jp/j/tokei/kouhyou/sinki/attach/pdf/index-4.pdf 農林水産省 令和4年新規就農者調査結果 新規就農者数の推移(収納形態別)参照

農業従事者が減少していく中で、肥料の使用量もどんどん減少していく

需要(農業従事者が使用する肥料の量)と供給(自治体の作成する肥料の量)が合わなくなる

【SNSの活用】

情報通信機器の保有状況

現在、日本の大半の人がモバイル端末(スマホやパソコン)を所持している。

若者が目にしやすいSNSを利用することで新規就農者を増やし、下水汚泥肥料の宣伝につながる!

例)・農業系Youtuber、TikTokerの活用

https://farm-connect.org/agricultural-management/youtuber/ 農業系youtuberの魅力とおすすめの農tuber総まとめ ・自治体によるPR動画の作成 など

https://www.youtube.com/watch?v=PJwQUh5UsQQBISTRO下水道 in 鶴岡市 - YouTube

解決策② JA·広域化による肥料の保管

都市部は人口が多いため処理量が多く、下水汚泥肥料を多く作るポテンシャルはあるが、周辺に農家が少ないため、作っても捌きにくい

下水汚泥肥料化が進まない

解決策② JA·広域化による肥料の保管

広域での下水汚泥肥料の保管倉庫を作り、下水汚泥肥料の物流拠点を作る

★メリット

- ・都市部で作った下水汚泥肥料を農村部へ流通させやすくなる。
- ・用地の狭い都市部の下水処理場で、下水汚泥肥料の保管場所の規模を少なくできる。
- ・下水汚泥として運搬するより、嵩も減り(約20%程度になる)、運搬費もかからない!(首都圏間の下水汚泥運搬費:8,000円/t、通常貨物の運搬費:4,000円/t)