

2021年 2月5日 一般社団法人 日本自動車工業会 自動運転部会 部会長 横山 利夫

1. 自工会 自動運転ビジョン

自動車工業会の活動

環境への取り組み

協調・標準化への取り組み

自動運転への取り組み

1. 自工会 自動運転ビジョン

自動車工業会 自動運転ビジョン

世界で最も安全、効率的で、自由なモビリティー社会の実現

1. 自工会 自動運転ビジョン

自動運転の展開シナリオ

自動運転技術

★都市交通システムに組み込まれた 次世代モビリティーの活用

社会を支える クルマの進化

★V2Xの普及(ITS) 限定的な自動運転

☆高齢/過疎化に対応する

社会的負荷を ゼロへ

- ★運転支援システムによる 高齢運転者のサポート拡充
- ☆市街地 及び 一般路 限定的な自動運転普及
- ☆都前肉 限定的な自動運転起験運用

☆大型車の高速道路での自動運転の普及

☆高速道路でのトラック自動運転(レベル4)の実現 ☆高速道路及び自動車専用道

☆予防安全/運転支援 システムの普及

☆自動魔車の普及

次世代交通環境整備

自動走行レーン/速度緩和

限定的农自動運転導入

高度化/エリア拡大

都市内道路の高層化

通信/データ提供インフラ

システム本格稼働

カバーエリアの拡大

サービス内容の進化

法的整備 条件付き自動

高度な自動

完全自動

年代と展開

2020

2030

普及拡大-展開期

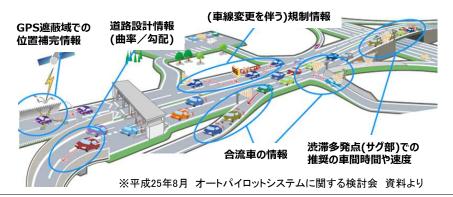
社会に定着 - 成熟期

2050

(C) Copyright Japan Automobile Manufacturers Association, Inc., All rights reserved.

2. 通信インフラ連携

Tagman Automobile Manufacturers Association, Inc. Japan Automobile Manufacturers Association, Inc. Japan Automobile Manufacturers Association


自動運転での ITS電波活用(例)

※当面は高速道路を想定

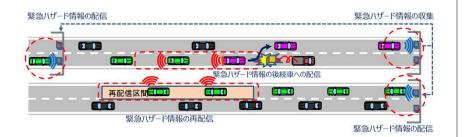
道路からの先読み情報

路車間

自立センサでは検知できない先の情報を 道路より取得することで円滑な自動走行を実現

合流•車線変更支援情報

路車間 車車間


合流時の周辺車両走行情報を取得したり、 合流に関係する車両間で制御意思を交換する ことで、安全かつ円滑な自動合流を実現

緊急ハザード情報

車車間 路車間

自動運転車で路上障害物などのハザード情報を収集し、後続車に配信

トラック自動走行化

路車間

事故・渋滞・天候の急変及び分合流時等の際のETC2.0等による周辺及び後方走行自動車への安全支援のための情報提供・システム連携トラックとのデータ連携による運行管理システムの構築

2. 通信インフラ要望

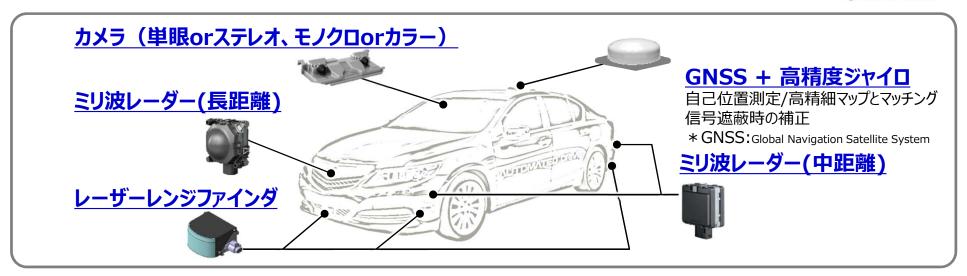
高速道路における高度な自動走行実現に向けた情報について(乗用車、トラック共通)

項目	内容	実現手段	主な用途
道路環境情報	豪雨 降雪 濃霧 路面凍結等	I2V 道路管理センター からの情報提供	余裕を持った運転交代要請を可能とする
走行環境情報	合流支援情報 ETCゲート開閉情報 車線別渋滞末尾 車線別故障車、落下物 車線別工事規制 車線別事故規制 信号情報 緊急車両情報	I2V 道路管理センター からの情報提供 I2V or V2V	事前の情報入手により自動走行パターンを最適化する 余裕を持った車線変更により、該当車線 走行を避ける
規制情報	可変速度規制情報 高速道路出入口閉鎖情報 車線別通行帯規制情報	I2V 道路管理センター からの情報提供	事前の情報入手により 目的地設定時に、適切な経路を設定する

3. 道路インフラ要望

道路インフラに求められる一般的な要望

- ・人の認識性や運転行動に着目した 道路設計、関連設備の開発/整備
- ・高齢運転者、若年層の事故防止の観点
- ・自然環境/景観の保全
- ・老朽化の更新対応



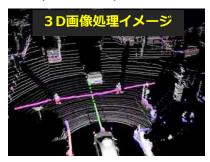
トラック自動走行化に向けた要望

- ・高速道路本線上に自動運転車が退避可能な退避エリア」の設置
- ・トラック専用レーン、優先レーン等の検討と設置・運用
- ・高速道路近傍に「有人⇔無人対応専用エリア」の確保
- ・「隊列形成専用エリア」からの本線合流・離脱のための専用引き込みレーンの設置
- ・ランプメータリング等の合流時安全支援装置・注意喚起情報提供施設の設置
- ・自動運転用精細地図の作成支援と磁気ネールや補助標識等の支援機器の設置

3.道路インフラ要望:路面境界/白線等 センサー検出性能

センサー用途と特徴 ※)現在の技術開発状況による一般論となります

カメラ


白線/路肩認識、表示/標識認識 前方障害物の距離計測

人や自転車など モノの識別に優れる 視界の悪化に弱く、 遠距離の識別がやや苦手

レーザーレンジファインダ

周辺360°の障害物の 位置/速度検出/路肩判定

夜間も使え、距離の測定精度が高い 悪天候にやや弱く、測定距離が短い

ミリ波レーダー

遠方の障害物の速度/距離検出

前方車両検出イメージ

遠距離の検出や 夜間、悪天候に強い 電波反射率の少ない物体(人など)や 小さい物体の検出がやや苦手

3.道路インフラ要望:路面境界/白線等 センサー検出性能

車載センサーによる検出性と道路標示 /構造 等 との連携

No		技術課題	自動運転の対応(現状)
1	白線かすれ(消えかかり、消し残り)	車線認識/精度の悪化 (未検知、誤検知)	センサー性能/認識技術 向上への取り組み <エラー率が高まると> 移行余裕時間を持って 自動走行機能を停止、 → 手動運転へ戻す
2	分岐線ライン 連続線 不連続(隙間あり) 不連続+オフセット	不連続、オフセットの場合 本線と分岐路の検出性悪化 ※)内側からエッジ部の 探索をするので 連続線 の方が検知しやすい	→ 子動建転へ戻り (ハンドオーバー要求)
3	車線数増加部(白線なし区間)	車線認識性/精度の悪化	
4	道路境界部分の遮蔽物 (草木、土砂、汚れ等)	車線/道路境界の検出精度悪 化	

人の認識性とセンサー検出性を両立する 白線 等の標準化や メンテ・ガイドライン化が望まれる

3.道路インフラ要望:路面境界/白線等 センサー検出性能

車載センサーによる検出性と道路標示 /構造 等 との連携

No	項目	技術課題	自動運転の対応(現状)
1	オプティカルドット:速度抑制効果	車線位置検出のばらつき 要因(誤認識)	センサー性能/認識技術 向上への取り組み 〈エラー率が高まると〉 移行余裕時間を持って 自動走行機能を停止、
2	3重線 速度抑制/注意喚起	車線位置検出のばらつき 要因(誤認識)	⇒ 手動運転へ戻す (ハンドオーバー要求)
3	走行レーン内 減速マーク	車線位置検出のばらつき 要因(誤認識)	
4	カラー舗装: 急カーブ等 注意喚起	区画線検出精度の悪化 (コントラスト差減少)	

人への注意喚起とセンサーによる認識性向上 両立のため、新たな規格や標準化が望まれる

infoDRIVE

豊かなクルマ社会の実現に向けて

一般社団法人日本自動車工業会

ご清聴ありがとうございました。