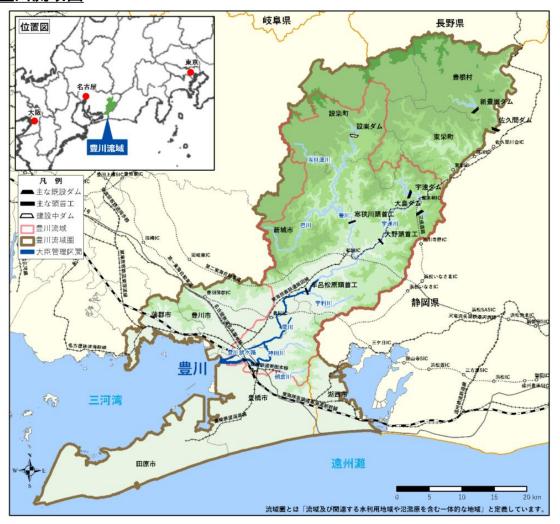
豊川水系における水資源開発基本計画(案) の検討資料(抜粋版)

令和7年11月19日

国土交通省 水管理・国土保全局 水資源部

目次

〇豊川水系の概要・・・・・・・・・・・・・・・・・・・・・	•		•	•	•	• 2
〇現行「豊川水系における水資源開発基本計画」の総括評価・・・・・	•	•				- 10
〇豊川水系における水需給バランスの点検ー需要想定及び供給可能量ー・	•	•	•	•	•	- 27
〇豊川水系における水需給バランスの点検ー渇水リスクの分析・評価ー・	•	•	•	•	•	- 42
〇豊川水系における水資源開発基本計画(案)における ハード対策及びソフト対策について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•	•		•	•	- 49


本資料は、分科会資料を抜粋したものであり、各ページのタイトル番号等は抜粋元の資料からは変えずに、そのまま添付している。

豊川水系の概要

豊川流域の概要 ~ 概要 ~

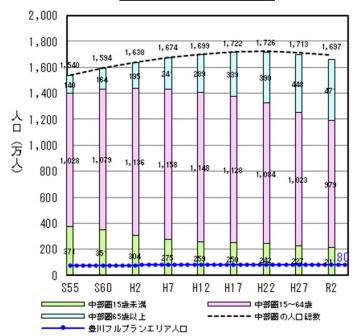
- ▶ 豊川は、その源を愛知県北設楽郡設楽町の鷹ノ巣山(たかのすやま(段戸山))に発し、山間渓谷を流れて当貝津(とうかいづ)川、巴(ともえ)川等の支川を合わせて南下し、愛知県新城市長篠(ながしの)地先で宇連(うれ)川と合流し、その後、豊橋平野で宇利(うり)川、間(あいだ)川等の支川を合わせ、豊川市行明(ぎょうめい)で豊川放水路を分派し、豊橋市内を流れ神田(かんだ)川、朝倉(あさくら)川等の支川を集めた後、三河湾に注ぐ幹川流路延長 77km、流域面積 724km²の一級河川である。
- 流域内人口は約58万人であり、東三河地域における産業・経済・社会・文化の発展の基盤となっている地域である。

豊川流域図

流域概要

流域面積	724km²
幹川流路延長	77km
流域市町	3市1町
流域市町村人口※	約58万人

※ 出典 令和2(2020)年国勢調査人口等基本集計 設楽町(旧設楽町)、新城市(旧新城市、旧鳳来町、旧作手村) 豊川市(旧豊川市、旧一宮町、旧小坂井町)、豊橋市

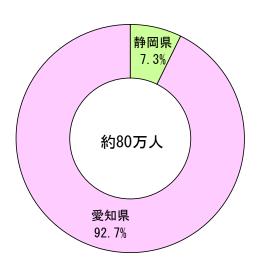

豊川下流域

人口の状況

- ▶ 中部圏の人口は、平成22(2010)年頃をピークに減少傾向にあり、令和2(2020)年度の人口は約1,697万人である。
- ▶ 豊川水系のフルプランエリアにおける人口はピークを迎え減少傾向にあり、令和4(2022)年度のフルプランエリア人口は約80万人となっている。県別割合では静岡県7.3%、愛知県92.7%となっている。
- ▶ 中部圏における将来人口は、2030年以降も減少する予測になっており、フルプランエリアにおける将来人口も中部圏と同様に減少する予測となっている。

中部圏・豊川水系のフルプランエリア における人口の推移

出典:

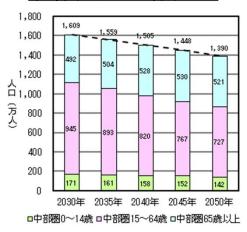

圏域の人口:

政府統計の総合窓口ウェブサイト(第6表 年齢(3区分), 男女別人口及び年齢別割合)を基に水資源部で作成(各年の人口は、10月1日時点)、合計値(破線)には年齢不詳のデータを含むため合計が合わない場合がある。

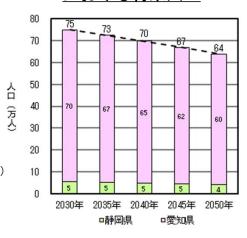
豊川水系のフルプランエリアの人口:

住民基本台帳に基づく人口、人口動態及び世帯数 令和5年1月1日 総務省 を基に国土交通省水資源部が作成

<u>豊川水系のフルプランエリア</u> における人口の割合

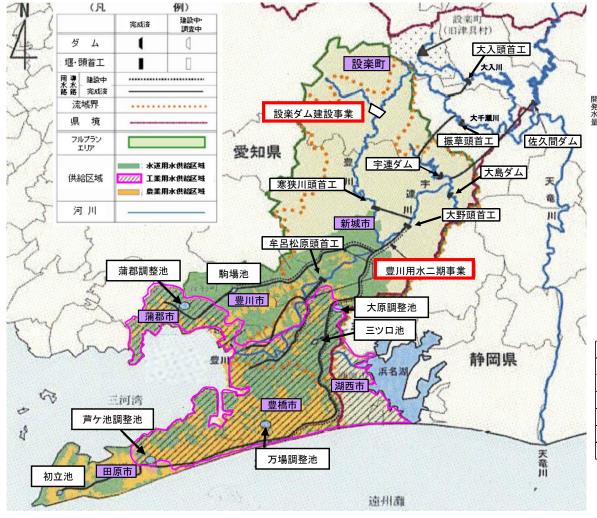

出典:

住民基本台帳に基づく人口、人口動態及び世帯数 令和5年1月1日総務省 を基に国土交通省水資 源部が作成

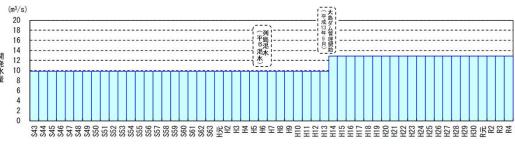

出典:

日本の地域別将来推計人口[※](令和5(2023)年推計) (令和5年12月、国立社会保障・人口問題研究所) を基に国土交通省水資源部が作成 ※将来人口は、出生中位、死亡中位仮定の値

中部圏における将来人口


<u>豊川水系のフルプランエリア</u> における将来人口

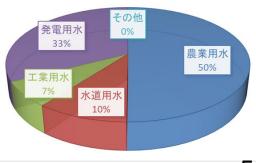
豊川水系の特徴 ~水利用の現状~


- ▶ 豊川では、昭和43(1968)年に完成した豊川用水を通じて、農業用水だけでなく、水道用水や工業用水で利用されるようになった。 農業用水及び工業用水は、愛知県の他、静岡県湖西市にも供給され、流域面積の2倍近い地域の水需要を支えている。
- ▶ 平成2(1990)年5月に水資源開発基本計画を決定し、平成6(1994)年の列島渇水以降も水資源開発施設の整備を進め、平成13(2001)年から大島ダムの運用を開始し水需要の増大に対応して水源を確保してきた。
- ▶ 現在の水利用は、最大取水量で比較すると農業用水の割合が最も多く、全体の約5割を占める。

豊川用水水供給区域

水資源開発の状況

【都市用水及び農業用水の合計】


水利用状況(許可水利権)令和4年3月時点

【用途別最大取水量】

【用途別の最大取水量(割合)】

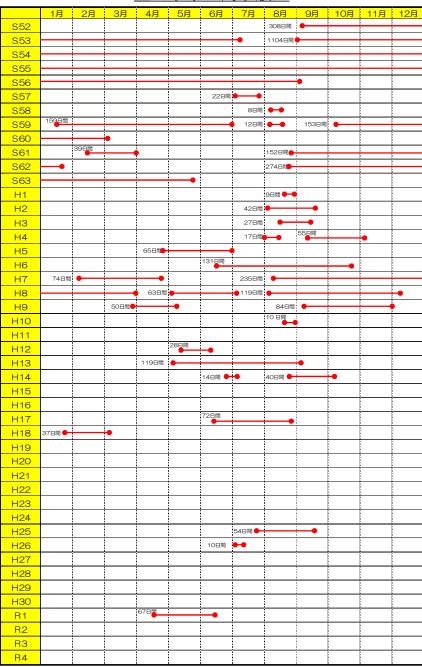
※ここでは完成年度ごとに開発水量を計上している。

種別	件数	最大取水量(m ³ /s)
農業用水	82	22.824
水道用水	9	4.665
工業用水	3	3.161
発電用水	3	14.817
その他	4	0.044
合計	101	45.511

豊川水系の特徴 ~渇水の状況~

- ▶ これまで豊川水系フルプランエリアでは、平成6(1994) 年及び平成17(2005)年等に大きな渇水被害が発生した。
- ▶ また、高い頻度で取水制限が行われ、平成19(2007)年 以降は取水制限の頻度は減少したものの、令和元(2019) 年には宇連ダムが枯渇するなど、近年も渇水が発生して いる。

平成6年渇水時の宇連ダム


里芋の枯れ込み(豊川市内)

平成6年渇水と平成17年渇水の比較

項目	平成6年渇水(愛知県の状況)	平成17年渇水(愛知県の状況)
流域平均年降水量	1,830mm	1,500mm
最大取水制限率	水道用水35% 工業用水60% 農業用水60%	水道用水20% 工業用水30% 農業用水30%
上水道給水人口	約703,000人	約733,000人
工業用水供給事業所	60事業所	59事業所
かんがい面積	約19, 500ha	約17, 600ha
水道の被害	・一時断水 約1,400戸 ・水質障害 約3,500戸 ・減圧給水	・減圧給水
工業の被害	・冷却水の回収、再利用の強化 ・一部生産ラインの停止・操業時間の 短縮による減産 ・渇水対策費	・冷却水の回収、再利用の強化
農業、水産業の被害	・番水の実施 ・稲の枯れ込み 約460ha ・果樹の生育不良 約120ha ・家畜の熱死、鮎・養殖魚・アサリの 斃死など	・番水の実施

出典:第5回豊川部会資料(平成24年3月)

豊川水系の渇水履歴

出典: 渇水報告書

豊川水系の課題 ~大規模地震~

- ▶ 静岡県、愛知県等に被害をもたらした地震は、濃尾地震、東南海地震、三河地震、南海地震の記録が残される。
- ▶また、今後の地震想定「今後30年間に震度6弱以上の揺れに見舞われる確率」では、東三河地域を含む東海地域の太平洋側などで発生確率が高い。
- ▶ 南海トラフ巨大地震による被害想定では、管路、浄水場等の被災や運転停止により、揺れの強いエリア及び津波浸水エリアを中心に断水が発生し、東海3県(静岡、愛知、三重)で約6~8割の需要家で断水想定される。(日本水道協会資料より)

静岡県、愛知県等に被害をもたらした過去の地震

地震	発生年月日	震源地	地震の規模 (マグニチュード)	地震の概要
濃尾地震	明治24年(1891年) 10月28日6時38分	岐阜県美濃中西部(北緯35.6度 東経136.6度)	М 8.0	仙台以北を除き、日本中で揺れを感じた。濃 尾平野・美濃北西部から越前平野にかけ最 も激しく、東海・北陸地方・近畿地方、特に 美濃西部から尾張北西部にかけては記録 的な大被害を被った。
東南海地震	昭和19年(1944年) 12月7日13時35分	三重県南東沖 (北緯33.6度 東 経136.2度)	М 7.9	九州から関東地方、東北・北海道の一部で 揺れを感じ、紀伊半島東部・伊勢湾周辺・熊 野灘沿岸で特に揺れが激しかった。静岡・ 愛知・三重の各県で被害が大きく、岐阜・奈 良・滋賀の各県でも被害があった。
三河地震	昭和20年(1945年) 1月13日3時38分	三河湾(北緯 34.7度 東経 137.1度)	M 6.8	東北地方から九州地方まで揺れを感じ、規模の割に大きな被害となった。愛知県下の 矢作川下流域に位置する幡豆・碧海郡を中心に大被害が集中した。
南海地震	昭和21年(1946年) 12月21日4時19分	和歌山県南方沖 (北緯32.9度 東 経135.8度)	M 8.0	北海道から九州地方にかけ、揺れを感じる ほどの極めて大規模な地震で、広範囲にわ たり甚大な被害を生じた。特に、高知・和歌 山・徳島の各県で被害が大きく、九州から中 部地方の諸県に被害を及ぼした。

出典:「地震災害の記録(名古屋地方気象台)」より

今後の地震想定(今後30年間に震度6弱以上の揺れに見舞われる確率)

出典:「全国地震動予測地図2020年版(地震調査研究推進本部地震調査委員会)」より

豊川水系の課題 ~洪水~

- ▶ 豊川では、これまで幾度も洪水による被害を受けており、戦後最大の洪水として記録された昭和44(1969)年8月の洪水では、 旧一宮町(現豊川市)などで甚大な被害が発生した。
- ▶ 豊川放水路の整備(昭和13(1938)~40(1965)年)や豊橋市内の狭窄部の改修(昭和46(1971)~62(1987)年)、平成13 (2001)年以降は整備計画に基づく河川改修を実施してきたが、近年でも平成23(2011)年9月洪水(台風第15号)や平成30 (2018)年9月洪水(台風第24号)、令和5(2023)年6月洪水(台風第2号)では一部地域で浸水被害が発生している。

主要洪水

発生年月日 気象要因 石田地点流量 被害の内容 明治37年7月 台風 約6,000m³/sec 死者・行方不明29人、負傷者10人、全壊流失218棟、半床上浸水4,514人、床下浸水3,144棟 昭和34年9月 台風第15号(伊勢湾台風) 約3,200m³/sec 死者11人、負傷者255人、全壊流失904棟、半壊2,550粒床下浸水241棟、床下浸水801棟 昭和40年9月 台風第24号 約3,000m³/sec 負傷者5人、全壊流失1棟、半壊2棟、床上浸水179棟、床下浸水3,121棟 昭和43年8月 台風第10号 約3,400m³/sec 死者6人、負傷者10人、全壊流失28棟、半壊21棟、床上水下浸水1,602棟 昭和44年8月 台風第7号 約4,600m³/sec 全壊流失7棟、半壊・床上浸水919棟、床下浸水838棟 昭和49年7月 台風第8号 約3,800m³/sec 死者1人、負傷者8人、全壊流失8棟、半壊41棟、床上浸水81棟、床下浸水156 昭和54年10月 台風第20号 約4,400m³/sec 全壊流失4棟、半壊4棟、床上浸水34棟、床下浸水156 昭和57年8月 台風第9号 約2,900m³/sec 負傷者5人、半壊1棟、床上浸水118棟、床上浸水118棟、床下浸水1.158	
新6,000m ³ /sec 床上浸水4,514人、床下浸水3,144棟 新3,200m ³ /sec 床上浸水4,514人、床下浸水3,144棟 新3,200m ³ /sec 來者11人、負傷者255人、全壊流失904棟、半壊2,550札 床下浸水241棟、床下浸水801棟 台風第24号 新3,000m ³ /sec 長藤子5人、全壊流失1棟、半壊2棟、床上浸水179棟、床下浸水3,121棟 新3,400m ³ /sec 死者6人、負傷者10人、全壊流失28棟、半壊21棟、床上 床下浸水1,602棟 日本14年8月 台風第7号 新4,600m ³ /sec 全壊流失7棟、半壊・床上浸水919棟、床下浸水838棟 日本14年8月 台風第8号 新3,800m ³ /sec 死者1人、負傷者8人、全壊流失8棟、半壊41棟、床上浸床下浸水6,705棟 新3,400m ³ /sec 全壊流失4棟、半壊4棟、床上浸水34棟、床下浸水156	
RR RR RR RR RR RR RR R	É壊329棟、
お3,000m ³ /sec 床下浸水3,121棟	東、
田和44年8月 台風第7号 約4,600m³/sec 床下浸水1,602棟 日本 日本 日本 日本 日本 日本 日本 日	
昭和49年7月 台風第8号 約3,800m³/sec 死者1人、負傷者8人、全壊流失8棟、半壊41棟、床上涉床下浸水6,705棟 昭和54年10月 台風第20号 約4,400m³/sec 全壊流失4棟、半壊4棟、床上浸水34棟、床下浸水156	上浸水247棟
昭和54年10月 台風第8号 約3.800m ³ /sec 床下浸水6.705棟 昭和54年10月 台風第20号 約4.400m ³ /sec 全壊流失4棟、半壊4棟、床上浸水34棟、床下浸水156	
	曼水1,073棟、
切を157年9日	棟
前相3/平6月 音風第9号 約2,900m / sec 貝勝有5人、干壊1傑、床上浸水116傑、床下浸水1,136	棟
平成3年9月 台風第18号 約2,700m³/sec 床上浸水1棟、床下浸水17棟	
平成6年9月 台風第26号 約3,000m³/sec 負傷者19人、全壊流失6棟、半壊84棟、床下浸水1棟	
平成12年9月 前線 約2,700m³/sec 一部損壊3棟、床上浸水4棟、床下浸水22棟	
平成15年8月 台風第10号 約3,400m³/sec 一部損壞2棟、床下浸水5棟	
平成16年6月 台風第6号 約3,000m ³ /sec 一部損壞3棟、床上浸水1棟	
平成16年10月 台風第23号 約2,400m³/sec 床下浸水2棟	
平成23年9月 台風第15号 約4,000m³/sec 床上浸水22棟、床下浸水45棟	
平成30年9月 台風第24号 約3,600m³/sec 床下浸水1棟	

昭和44年8月洪水(豊川市江島町)

昭和44年8月洪水(新城市八名井)

昭和54年10月洪水 (江鳥樓)

平成23年9月洪水(豊橋市下条地区

『令和5年6月の台風第2号及びそれに伴う前線の活発化による大雨』による浸水

- 令和5年6月2日~6月3日の降雨では、豊川水系の流域において線状降水帯が 発生するなど、激しい雨が長時間降り続いた。(石田雨量観測所においては総雨 量439mmを記録)
- 今回の降雨で、当古水位観測所及び放水路第一水位観測所では、最高水位が観測史上最高となり、4つの霞堤地区内に浸水し、農地や道路等の浸水と家屋への浸水も発生
- ※被害の内容は「愛知県災害誌」、「災害の記録」(愛知県)による豊川沿川市郡町村 単位の合計値。
- ただし、平成23年9月洪水、平成30年9月洪水は「水害統計」による水系全体の数値。 ※被害の内容は集計上、支川被害、内水被害を含む。

既設ダムの有効活用 ~洪水調節機能強化~

- ▶ 豊川における水害の発生防止等を図るため、運用されている既存の3ダム(総有効貯水量は約4,060万m³)について、一時的に 洪水を調節することができるよう治水協定を締結している。
- ▶ 現時点では豊川水系に洪水調節容量はなく、この協定により洪水調節可能容量が最大約490万m³確保されることとなり、総有効貯水容量の約12%に強化される。

〇現在の豊川水系の状況

〇今回の取組後の状況 (最大)

現行「豊川水系における水資源開発基本計画」の総括評価

現行「豊川水系における水資源開発基本計画」の概要

平成18(2006)年2月 全部変更

1. 水の用途別の需要の見通しと供給の目標

(1) 目標年度 平成27 (2015) 年度目途

(2) 供給地域

豊川水系に水道用水、工業用水及び農業用水を依存している静岡県、 愛知県の諸地域

(3) 水の用途別の需要の見通し

◆ 水道用水 : 約 4.5 m³/s ◆ 工業用水 : 約 1.6 m³/s

◆ 農業用水 : 約 0.3 m³/s (新規需要)

(4) 供給の目標

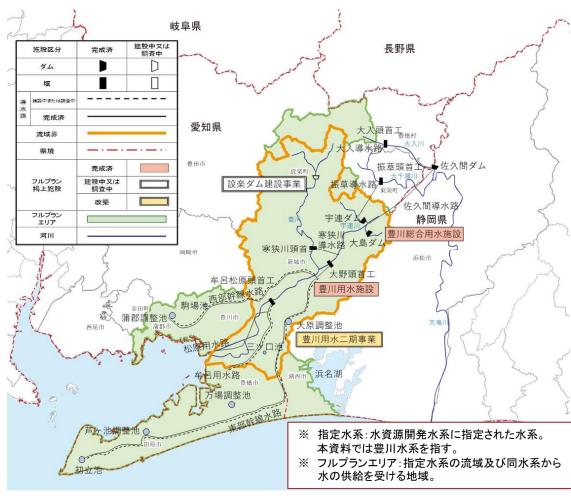
近年の降雨状況等による流況の変化を踏まえた上で、地域の実状に即して安定的な水の利用を可能にする。

- ◆供給可能量
 - ・近年の20年に2番目の渇水年の流況:約6.5m³/s
 - ・計画当時の流況 : 約7.9m³/s

2. 供給の目標を達成するため必要な施設の建設に関する基本的な事項

(1) 設楽ダム建設事業

洪水調節及び流水の正常な機能の維持を図るとともに、愛知県にて必要となる農業用水及び水道用水を確保するもの。


(2) 豊川用水二期事業

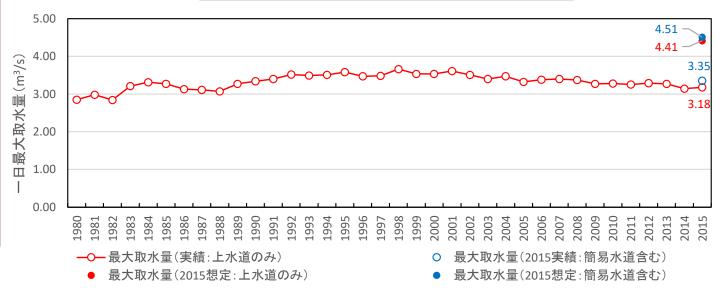
豊川用水施設の幹線水路等の老朽化、大規模地震等に対処するため、 改築を行うもの。

3. その他水資源の総合的な開発及び利用の合理化に関する重要事項

- 水源地域の活性化
- 健全な水循環の重視(河川環境の保全等)
- 地下水の適切な保全と利用
- 水利用の合理化 (漏水の防止、回収率の向上、再生利用等)
- ・ 渇水に対する安全性の確保
- 水質及び自然環境の保全への配慮

豊川水系における水資源開発施設とフルプランエリア

4. 変更の経緯


- H 2. 2. 9 水系指定
- H 2. 5.17 基本計画策定(水需給計画決定、設楽ダム、豊川総合用水、 豊川用水施設緊急改築)
- H11. 4. 7 一部変更 (豊川用水二期の追加、豊川総合用水の事業主体変更等)
- H18. 2.17 全部変更(水需給計画変更)
- H20. 6. 3 一部変更(豊川用水二期の工期変更)
- H27.12.18 一部変更(豊川用水二期の工期変更)
- R 5. 1.31 一部変更(設楽ダムの工期変更等)

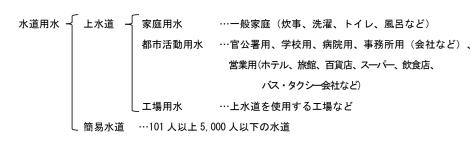
水道用水 ~ 一日最大取水量の想定と実績 ~

- ▶水道用水が指定水系に依存する水量(一日最大取水量:簡易水道含む)は、平成27(2015)年度の想定値4.51m³/s」に対し、平成27(2015)年度の実績値は3.35m³/sと、想定値を1.16m³/s下回り
- ▶ 想定値に対する実績値の比率は 74.3%

▶指定水系以外(他水系)の水源に 依存する水量は、平成27(2015) 年度の想定値0.02m³/sに対し、平 成27(2015)年度の実績値は 0.01m³/s

指定水系に依存する水道用水の需要量の推移

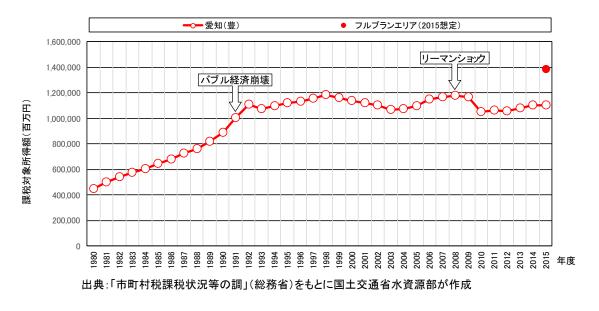
水道用水一日最大取水量の需要想定と実績の比較

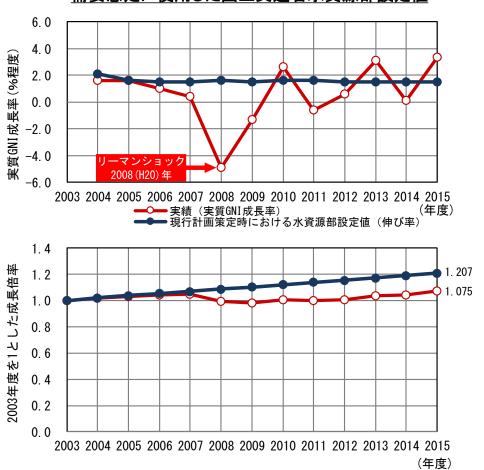

		1	
		単位	愛知
指	2015年実績水量(a)	m^3/s	3.35
定	2015年想定水量(b)	m^3/s	4.51
水	差 :b-a	m^3/s	1.16
系	比率∶a÷b	%	74.3
そ	2015年実績水量(a)	m^3/s	0.01
の他	2015年想定水量(b)	m^3/s	0.02
水	差 :b-a	m^3/s	0.01
系	比率∶a÷b	%	_
	2015年実績水量(a)	m^3/s	3.36
合	2015年想定水量(b)	m^3/s	4.53
計	差 :b-a	m^3/s	1.17
	比率∶a÷b	%	74.2

- ➤「16-日最大取水量」の平成27 (2015)年度の実績値と平成27 (2015)年度の想定値の差の主な 要因は「6都市活動用水有収水 量」「⑦工場用水有収水量」「12 負荷率」及び「4利用量率」。
- ▶「⑥都市活動用水有収水量」の実績値は想定値の73%、「⑦工場用水有収水量」の実績値は想定値の45%であり、近年の経済社会情勢が反映されたと考えられる。
- ▶「⑪負荷率」は、実績値が想定値 を6.7ポイント上回っている。
- ▶「⑭利用量率」は、実績値が想定値を7.0ポイント上回っている。
- ▶指定水系に依存する「⑯ー日最大取水量」の実績値は、想定値の72%となった。

上水道* 現行計画の需要想定と実績の比較(フルプランエリアのうち愛知県のみ)

項目	単位/年度	2003年度 (実績)	2015年度 (実績)	2015年度 (想定)	<u>(2015実績)</u> (2015想定)
① 行政区域内人口	千人	734	750	738	102%
② 上水道普及率	%	99.4	97.5	100.0	98%
③ 上水道給水人口 ①×②	千人	730	732	738	99%
④ 家庭用水有収水量原単位	L/人·日	223.6	223.5	232.8	96%
⑤ 家庭用水有収水量 ③×④÷1000	千m ³ /日	163.2	163.6	171.9	95%
⑥ 都市活動用水有収水量	千m³/日	48.1	39.1	53.4	73%
⑦ 工場用水有収水量	千m³/日	14.4	11.1	24.5	45%
8 一日平均有収水量 5+6+7	千m³/日	225.7	213.8	249.8	86%
9 有収率	%	91.7	92.3	93.2	99%
⑩ 一日平均給水量 8÷9	千m ³ /日	246.0	231.7	268.1	86%
① 一人一日平均給水量 ①÷③×1000		337.2	316.6	363.1	87%
① 負荷率	%	85.5	85.8	79.1	108%
① 一日最大給水量 ① ÷ ①	于m ³ /日	287.8	270.0	339.0	80%
① 利用量率	%	95.6	95.9	88.9	108%
① 一日平均取水量(a) ⑩÷⑭÷86.4	m³∕s	2.88	2.70	3.36	80%
一日平均取水量(b)	m ³ /s	2.98	2.80	3.49	80%
16 一日最大取水量(a) (5÷①	m³/s	3.30	3.08	4.25	72%
一日最大取水量(b)	m ³ /s	3.41	3.19	4.42	72%
I指定水系への依存量	m ³ /s	3.40	3.18	4.41	72%
(指定水系への依存割合)		(100%)	(100%)	(100%)	
Ⅱ 他水系への依存量	m³/s	0.01	0.01	0.01	100%
(他水系への依存割合)		(0%)	(0%)	(0%)	


- ※四捨五入の関係で端数が合わない場合がある。
- ※ここでは、水道用水の約95%を占める上水道の想定値と実績値を比較する。
- ※「⑭利用量率」は、河川取水口地点の取水量に対する値である。
- ※一日平均取水量(a)と一日最大取水量(a)は豊川水系からの取水分について、用水路からの取水口地点での流量であり、一日平均取水量(b)と一日最大取水量(b)は河川取水口地点に換算した水量である。


都市活動用水有収水量について

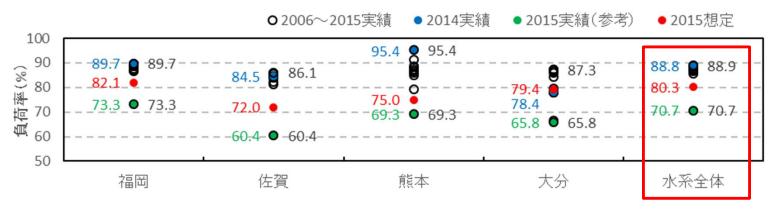
▶ 都市活動用水有収水量(想定53.4千m³/日、実績39.1千m³/日、実績/想定73%)は、バブル経済崩壊(平成初期)以降の経済成長率の緩やかな推移が継続したことや、リーマンショックによる景気の落ち込みにより、伸びることなく推移したと考えられる。

フルプランエリアにおける課税対象所得額の経年変化(愛知県)

「実質GNI(国民総所得)成長率」(実績値)と 需要想定に使用した国土交通省水資源部設定値

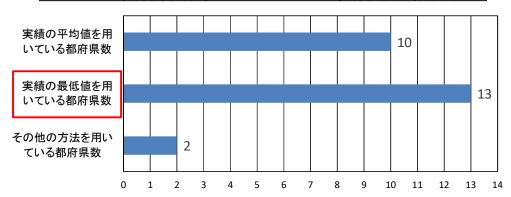
出典

実績:経済財政諮問会議(令和6年第1回)資料をもとに国土交通省水資源部が作成現行:第6回水資源開発分科会(平成18年2月3日)資料をもとに国土交通省水資源部が作成


負荷率について

- ▶負荷率(水系全体)は、平成27年度(2015年度)の想定値80.3%に対し、平成26年度(2014年度)の実績値は88.8%。
- ▶近10年間(平成18年度(2006年度)~平成26年度(2014年度))において、負荷率の実績値と想定値を比較すると、 想定より水供給の安全度が低くなるような実績値があった。

(次期計画では、需要推計において不確定要素を考慮する。負荷率については、値の妥当性を精査した上で基本的に近 10年間の最高値と最低値を変動幅として設定する。)


※平成27年度(2015年度)は寒波の影響により、一日最大取水量が増加しており、異常値と判断したため、平成26年度(2014年度)の実績値と平成27年度(2015年度)の想定値とを比較。

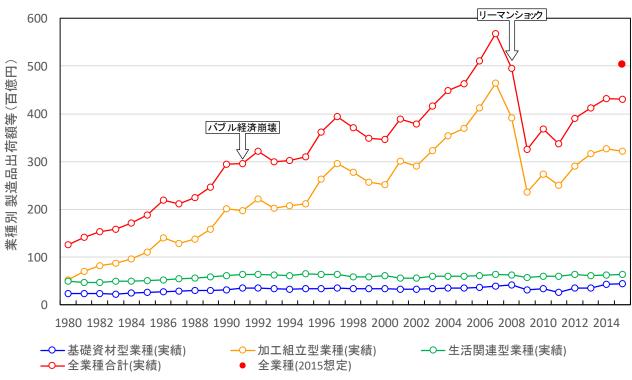
上水道における負荷率の実績と想定の比較

フルプラン関係都府県(水道)における負荷率の設定状況

※水系全体の負荷率は、フルプランエリアを合計した一日平均給水量と一日最大給水量より算定

〇 負荷率

負荷率は、給水量の変動の大きさを示すものであり、都市 の規模によって変化するほか、都市の性格、気象条件等に よっても左右される。一日最大給水量は、曜日・天候によ る水使用状況によって大きく影響を受け、時系列的傾向を 有するものとは言えない。このため、負荷率の設定に当 たっては、過去の実績値や、気象、渇水等による変動条件 にも十分留意して、各々の都市の実情に応じて検討する。


出典:水道施設設計指針(2012年 厚生労働省)

15

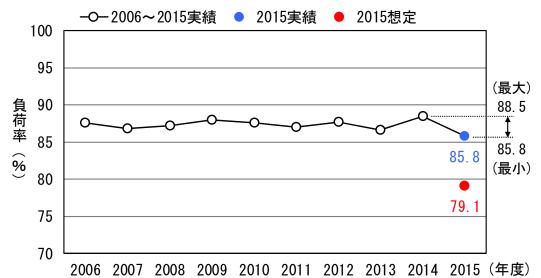
工場用水有収水量について

▶ 工場用水有収水量(想定24.5千m³/日、実績11.1千m³/日、実績/想定45%)は、バブル崩壊以降(平成初期以降)の製造品出荷額等の伸びの鈍化や平成20(2008)年のリーマンショックによる大幅な減少など、景気の落ち込みを一つの要因として、伸びることなく推移したと考えられる。

業種別の製造品出荷額等の推移(愛知県)

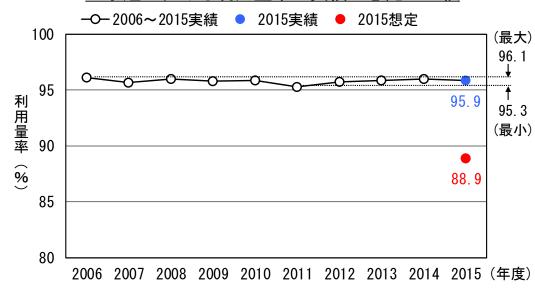
製造品出荷額等:製造品出荷額、加工賃及びその他収入額の合計(工業統計をもとに算定)

※業種については、以下の3つに分類


- •基礎資材型業種:化学,石油•石炭製品,窯業•土石製品,鉄鋼,非鉄金属,金属製品等
- ・加工組立型業種:一般機械器具,電気機械器具,情報通信機器機械器具,電子部品・デバイス,輸送用機械器具,精密機械器具
- ・生活関連型業種:食料品,飲料・たばこ・飼料,繊維,衣服,家具,パルプ・紙・紙加工品,出版印刷等

負荷率及び利用量率について

- ▶ 負荷率は、平成27 (2015) 年度の想定値79.1%に対し、平成27 (2015) 年度の実績値は85.8%。
- ▶ 利用量率は、平成27(2015)年度の想定値88.9%に対し、平成27(2015)年度の実績値は95.9%。
- ▶ 負荷率、利用量率ともに、近10年間(平成18(2006)年度~平成27(2015)年度)において、想定値を下回る実績値はなかった。


(次期計画では、需要推計において不確定要素を考慮する。負荷率等については、値の妥当性を精査した上で基本的に近10年間(平成23(2011)年度~令和2(2020)年度)の最高値と最低値を変動幅として設定する。)

上水道における負荷率の実績と想定の比較

○ 負荷率(=1日平均給水量 / 1日最大給水量) 負荷率は、給水量の変動の大きさを示すものであり、都市の規模に よって変化するほか、都市の性格、気象条件等によっても左右される。 一日最大給水量は、曜日・天候による水使用状況によって大きく影響 を受け、時系列的傾向を有するものとは言えない。このため、負荷率 の設定に当たっては、過去の実績値や、気象、渇水等による変動条件 にも十分留意して、各々の都市の実情に応じて検討する。

上水道における利用量率の実績と想定の比較

○ 利用量率 (=1日最大給水量 / 1日最大取水量) 利用量率は、河川等からの取水量と浄水場からの給水量の割合を示す ものであり、取水地点から浄水場までの間の漏水量等によって左右さ れる。

出典:水道施設設計指針(2012年 厚生労働省)

【現行計画における水道用水の需要想定値と実績値に対する考察】

- 〇平成27 (2015) 年度の一日最大取水量の想定と実績の相違は、都市活動用水有収水量、工場用水有収水量、負荷率及び利用量率の相違が主たる要因であった。
- 〇都市活動用水有収水量及び工場用水有収水量については、近年の経済社会 情勢が反映され、経済活動の影響を受けている。
- 〇負荷率及び利用量率については、想定値と近10年間(平成18(2006)年度 ~平成27(2015)年度)の実績値を比較すると、想定を下回る実績はなく、 負荷率にあっては想定内の日変動、利用量率にあっては想定内のロス等で あった。

工業用水 ~ 一日最大取水量の想定と実績 ~

- ▶工業用水道が指定水系に依存する水量(一日最大取水量)は、 平成27(2015)年度の<u>想定値</u> 1.63m³/s に対し、実績値は 0.73m³/sと、0.90m³/s下回り
- ▶ 想定値に対する実績値の比率 は44.8%
- →供給エリアにおいて、指定水系 以外(他水系)の水源への依存 はない。

指定水系に依存する工業用水道の需要量の推移

工業用水(工業用水道) 一日最大取水量の需要想定と実績の比較

		単位	静岡	愛知	合計
指	2015年実績水量(a)	m^3/s	0.16	0.57	0.73
定	2015年想定水量(b)	m^3/s	0.25	1.38	1.63
水系	差 :b-a	m^3/s	0.09	0.81	0.90
系	比率:a÷b	%	64.0	41.3	44.8
そ	2015年実績水量(a)	m^3/s	0.00	0.00	0.00
の他	2015年想定水量(b)	${\sf m}^3/{\sf s}$	0.00	0.00	0.00
水	差 :b-a	m^3/s	0.00	0.00	0.00
系	比率∶a÷b	%	_	_	_
	2015年実績水量(a)	m^3/s	0.16	0.57	0.73
合	2015年想定水量(b)	m^3/s	0.25	1.38	1.63
計	差 :b-a	m^3/s	0.09	0.81	0.90
	比率∶a÷b	%	64.0	41.3	44.8

※四捨五入の関係で端数が合わない場合がある。

工業用水 ~ 項目毎の想定と実績 ~

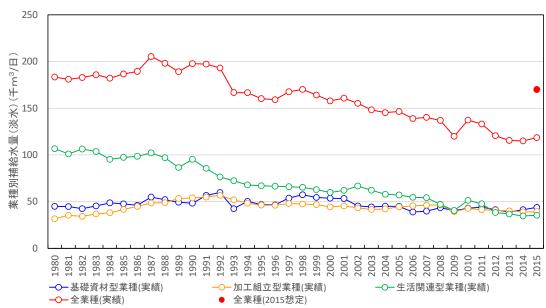
- >「①製造品出荷額等」の実績値は 想定値の94%、「⑥工業用水補給 水量(淡水)」の実績値は想定値 の70%であり、近年の経済社会情 勢や水利用の効率化が反映された と考えられる。
- >「⑪負荷率」は、実績値が想定値 を6.4ポイント上回っている。
- ▶ 指定水系に依存する「⑩ー日最大取 水量」の実績値は、想定値の45%と なった。

現行計画の需要想定と実績の比較 (フルプランエリアの静岡県と愛知県の合計)

項目	単位/年度	2003年度 (実績)	2015年度 (実績)	2015年度 (想定)	(2015実績) (2015想定)
① 製造品出荷額等(2000年価格)	億円	54,872	62,485	66,234	94%
② 製造品出荷額等(名目値)	億円	53,095	60,047	-	_
③ 工業用水使用水量(淡水)	千m³/日	2,486	1,768	2,693	66%
④ 回収率 (③-⑥)÷③	%	94.0	93.3	93.7	100%
⑤ 補給水量原単位 ⑥/①×10000	0 m³/日/億円	2.7	1.9	2.6	74%
⑥ 工業用水補給水量(淡水)	千m³/日	148	119	170	70%
⑦ うち 工業用水道	千m³/日	50	53	57	93%
(工業用水道が補給水量に占める割合)		(34%)	(44%)	(33%)	
⑧ 工業用水道給水量	m ³ /s	0.46	0.47	0.93	51%
9 利用量率8÷10	%	88.6	91.7	88.7	103%
⑩ 工業用水道一日平均取水量	m³/s	0.52	0.51	1.05	49%
① 負荷率 ① ÷①	%	69.9	70.9	64.5	110%
⑫ 工業用水道一日最大取水量	m³/s	0.74	0.73	1.63	45%
I指定水系への依存量	m ³ /s	0.74	0.73	1.63	45%
(指定水系への依存割合)		(100%)	(100%)	(100%)	
Ⅱ 他水系への依存量	m ³ /s	0.00	0.00	0.00	_
(他水系への依存割合)		(0%)	(0%)	(0%)	

- ※四捨五入の関係で端数が合わない場合がある。
- ※①~⑦については、実績値、想定値ともに従業者数30人以上の事業所の数値である。 ※2015年度想定は、企業進出に伴う必要水量として⑧工業用水道給水量に見込み加算しており、⑫工業用水 道一日最大取水量において、0.59m³/s(静岡県0.04m³/s、愛知県0.55m³/s)が見込み加算となっている。

工業用水 ~ 項目毎の想定と実績 ~


製造品出荷額等及び工業用水補給水量について

- ▶製造品出荷額等は、バブル崩壊以降(平成初期以降)伸びが鈍化しており、さらに平成20(2008)年のリーマンショックの影響を受け、平成21(2009)年)は一時的に大きく減少している。その後、回復傾向にあるものの、想定値を下回る94%にとどまったことが、工業用水補給水量の減少要因の一つと考えられる。
- ▶加えて、工業用水補給水量の減少は、近年の回収率に大きな変動がなく、かつ製造品出荷額等が増加時にも補給水量が減少傾向(単位金額当たりの補給水量が減少)にあることから、水利用の効率化(節水等)が進展したことも要因と考えられる。
- ▶製造品出荷額等が想定値を下回ったことや水利用の効率化の進展等により、工業用水補給水量が想定値170千m³/日に対し実績値119千m³/日の70%となった。

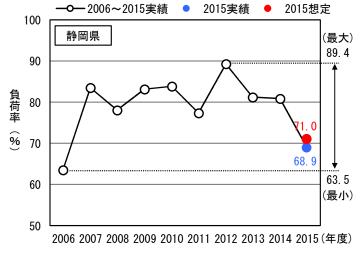
<u>業種別の製造品出荷額等の推移</u> (フルプランエリアの静岡県と愛知県の合計)

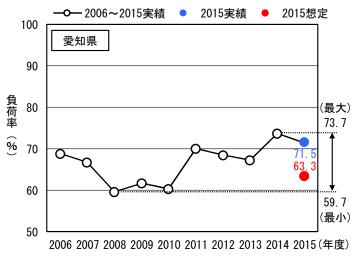
<u>業種別工業用水補給水量の推移</u> (フルプランエリアの静岡県と愛知県の合計)

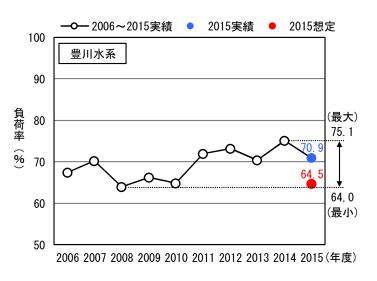
製造品出荷額等:製造品出荷額、加工賃及びその他収入額の合計(工業統計をもとに算定)

※業種については、以下の3つに分類

- •基礎資材型業種:化学,石油•石炭製品,窯業•土石製品,鉄鋼,非鉄金属,金属製品等
- ・加工組立型業種:一般機械器具,電気機械器具,情報通信機器機械器具,電子部品・デバイス,輸送用機械器具,精密機械器具
- ・生活関連型業種:食料品,飲料・たばこ・飼料,繊維,衣服,家具,パルプ・紙・紙加工品,出版印刷等


工業用水 ~ 項目毎の想定と実績 ~


負荷率について


- ▶水系全体の負荷率は、平成27(2015)年度の想定値64.5%に対し、実績値は70.9%。
- ▶水系全体、静岡県及び愛知県のいずれにおいても、近10年間(平成18(2006)年度~平成27(2015)年度)で想定値を下回る実績値が見られた。
- ▶ (次期計画では、需要推計において不確定要素を考慮する。負荷率等については、値の妥当性を精査した上で基本的に近10年間(平成23(2011)年度~令和2(2020)年度)の最高値と最低値を変動幅として設定する。)

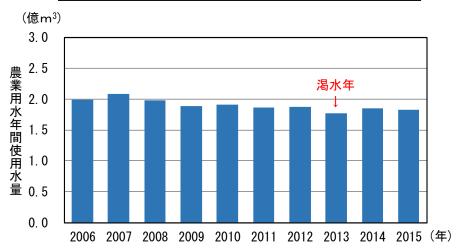
<u>工業用水道における負荷率の実績と想定の比較</u>

(フルプランエリアの静岡県及び愛知県の2県の合計)

※水系全体の負荷率は、指定水系を合計した 一日平均給水量と一日最大給水量より算定

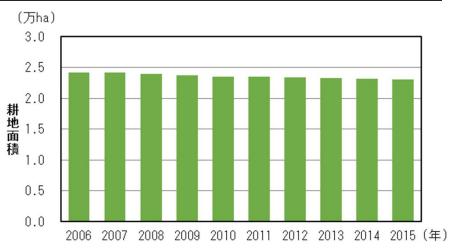
※ 負荷率(=1日平均取水量 / 1日最大取水量)

工業用水 ~まとめ~


【現行計画における工業用水の需要想定値と実績値に対する考察】

- 工業用水の想定値と実績値が相違した要因としては、製造品出荷額等が近年の経済社会情勢の影響を受けて想定値を下回ったことや水利用の効率化(節水等)の進展など、様々な要因により工業用水補給水量が減少したことが考えられる。これらにより、工業用水道の一日最大取水量の実績値が想定値を下回ったものと考えられる。
- 負荷率については、想定値と近10年間(平成18 (2006) 年度~平成27 (2015) 年度)の実績値を比較すると、想定を下回る実績が見られ、想定 を上回る日変動となる年もあった。

農業用水 ~水利用実績と耕地面積の推移~


- ▶農業用水の使用状況については、築造年代が古い小規模な施設が未だ多く、正確な計測には多大なコストと労力を要するため、全使用量を把握することが難しい。そのため、把握が可能な独立行政法人水資源機構が管理する豊川用水における使用水量実績及びフルプランエリアの市町村における耕地面積を整理した。
- ▶近10年間の傾向をみると、指定水系に依存する農業用水の使用水量は、年毎に増減しているものの大きな変動は見られない。また、耕地面積についても、大きな変動はなく推移している。

豊川用水の農業用水年間使用水量の推移

出典:令和4年水資源開発施設等管理年報(水資源機構)を基に国土交通省水資源部が作成

フルプランエリアの市町村における耕地面積の推移

出典:農林水産省「耕地及び作付面積統計」を基に国土交通省水資源部が作成

総括評価のまとめ

総括評価のまとめ

現行計画の総括評価、リスク管理型フルプランの策定指針(平成29年答申)及び部会審議に係るご意見を踏まえ、 次期計画で対応すべき事項を併せて下記のとおり評価。

分 類	事 項	現行計画の総括評価
現行 計画	1. 水の用途別 の需要の見 通し	水道用水(人□、経済成長、漏水、日変動等の不確定要素) ⇒需要(日最大取水量)の実績は、想定値の範囲内 工業用水(経済成長、補給水量、日変動等の不確定要素) ⇒需要(日最大取水量)の実績は、想定値の範囲内
	2. 供給の目標 と必要な施 設の建設等	供給の目標 (降雨状況の変化等、地域特性に応じた安定的な水利用) ⇒施設整備による供給(予定)は、想定需要を確保
	3. その他水資 源の総合的 な開発及び 利用の合理 化に関する 重要事項	水源地域の活性化(設楽ダム等) 健全な水循環の重視(宇連川の流況改善、魚道設置等) 地下水の適切な保全と利用(地下水用水量は減少傾向) 水利用の合理化(漏水対策、回収率の向上、節水普及等) 渇水に対する安全性の確保(協議会設置、流域外導水、調整池) 水質及び自然環境の保全への配慮(設楽ダム等)

リスク管理型フルプラ ンの策定指針 (H2**9**答申)

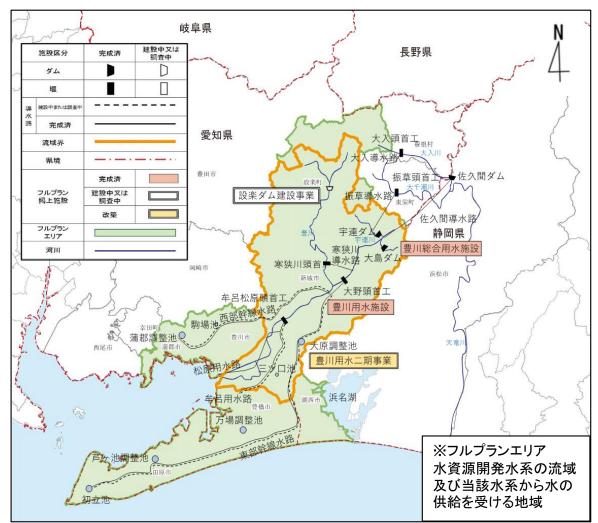
発生頻度は低いものの影響が大きい水供給リスクを追加 ⇒能登半島地震、南海トラフ地震想定を踏まえた対応の必要性 不確定要素を踏まえた水需給バランスの点検 ⇒社会情勢の変化を踏まえた需要想定の設定 供給目標の達成に必要な対策としてソフト対策を掲上 PDCAサイクルの導入

次期計画での対応

- ▶水需給バランスの総合評価、定期的な点検
 - ・ 社会経済情勢、水供給の過程等で生じうる「予測の変動 幅」(高位値と低位値)をあらかじめ考慮
 - 生活習慣の変化(節水機器の普及・高性能化など)、製造品出荷額と補給水量の連動性を考慮し、予測精度を向上
- ▶ 発生頻度は低いものの水供給に影響が大きいリスクを追加(大規模自然災害、老朽化・劣化に伴う大規模な事故、気候変動(危機的な渇水))
 - ・ 起こりうる渇水のリスクを幅広に想定
- ▶これまでの重要事項に加えて、供給の目標等を達成する ための必要な対策としてソフト対策を追加
 - 水循環基本計画、気候変動適応計画など<u>関連す</u> る各種計画との整合
 - 危機時において必要な水を確保するためのソフト 対策を計上。ソフト・ハード相互の取組で相乗効果
 - 水供給の安全度を確保するための対策、危機時において必要な水を確保するための対策に区分
 - ストックマネジメントに基づく長寿命化、耐震化等

豊川水系における水需給バランスの点検 - 需要想定及び供給可能量 -

計画の対象地域と需要想定年度

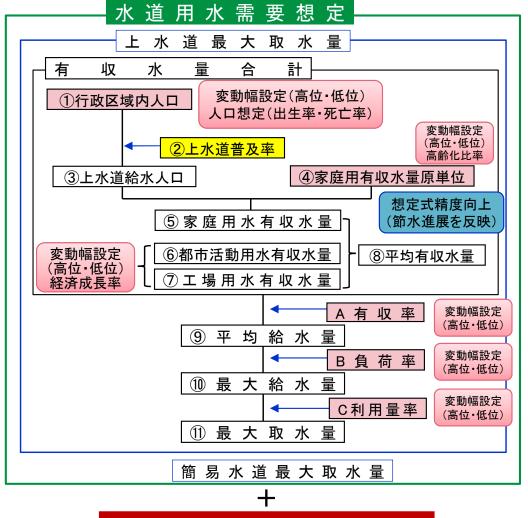

1. 計画の対象地域

水資源開発基本計画において将来の<u>水需給バランスを検討する対象地域(フルプランエリア)は</u>、指定水系である<u>豊川水系から水の供給を受ける地域</u>であり、<u>豊川水系の流域は原則として全て対象</u>とする。また、<u>流域外であっても導水施設等により豊川水系から水の供給を受ける地域は対象とする。</u>

2. 需要想定年度

計画期間は、おおむね10箇年とし、将来人口が 想定※されていることも考慮し、2035年度(令和 17年度)を需要想定年度として設定する。

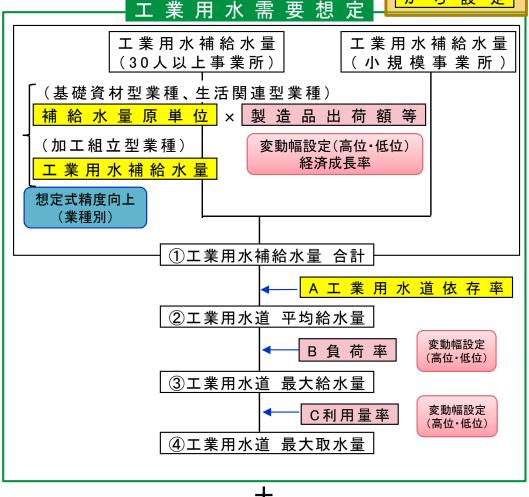
※「日本の地域別将来推計人口(平成30(2018)年想定)」 (H30.3 国立社会保障・人口問題研究所)では、2015年以降、2045年まで30年間について5年ごとに人口を想定。



都市用水(水道用水・工業用水)の需要推計方法の概要

国 想 定 値:フルプランエリア全域で一律の考え方に基づき、不確定要素の「変動幅」を考慮し算定

県の個別施策:企業誘致や新規都市開発など、「国想定値」に含まれない、フルプラン期間内に県等が行う個別施策による増減


(凡 例) 高位・低位 設定項目 回帰分析等により実績値 から。設定

玉

定

値

県の個別施策による増減

(企業誘致、新規都市開発等)

需要想定值

需要想定值

県の個別施策による増減

(企業誘致、新規都市開発等)

水道用水の需要推計方法の概要(1/8)

答申※での提言及び総括評価を踏まえ、需要推計手法を改善

- 各種の変動要因によって生じうる「予測の変動幅」(高位値と低位値)を予め考慮
- 生活習慣の変化を考慮し、
 予測精度を向上

※「リスク管理型の水の安定供給に向けた水資源開発基本計画のあり方について 答申 平成29年5月 国土審議会」

不確定要素(変動幅)の導入

1) 社会経済情勢等(人口、経済成長率)の不確定要素

家庭用水有収水量に影響する「人口」及び、都市活動用水有収水量に影響する「経済成長ケース」の設定

【現行計画】 人口想定及び経済成長(全国ベース)とも1ケース

【次期計画】人口想定:国立社会保障・人口問題研究所の将来想定人口に基づいた高位と低位の2ケースを設定 経済成長:以下の3ケースの結果より、高位及び低位を設定

- ①成長実現ケース
- ①、②は、「中長期の経済財政に関する試算(R6.1.22 経済財政諮問会議提出 ②ベースラインケース 内閣府) で示された全国一律の経済成長率
- ③地域経済傾向ケース
- ③は、近年20ヵ年(H13~R2)の愛知県の課税対象所得額(世帯当たり)の実績値を 基に時系列傾向分析により予測

2) 水供給の過程で生じる不確定要素

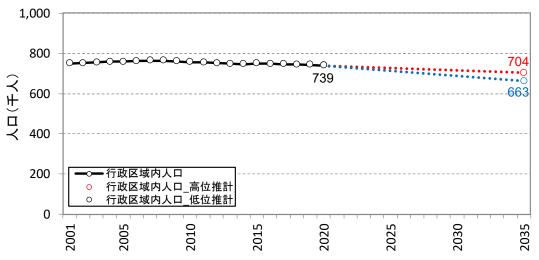
- 漏水量に影響する不確定要素: 利用量率※1(河川取水口~浄水場), 有収率※2(浄水場~家庭等)
- ・日変動に影響する不確定要素:負荷率※3(日平均と日最大の割合)

【現行計画】 利用量率及び有収率は最新年実績値と同値。負荷率は近年10筒年実績の下位3か年平均値 【次期計画】 利用量率、有収率及び負荷率の算定は近年10箇年実績の最高値及び最低値の各2ケース

※1 一日最大給水量÷一日最大取水量

※2 一日平均有収水量÷一日平均給水量

※3 一日平均給水量:一日最大給水量


水道用水の需要推計方法の概要(2/8)

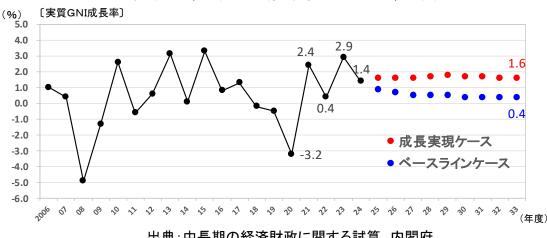
不確定要素(変動幅)の導入

1)社会経済情勢等の不確定要素

家庭用水有収水量に影響する「人口」及び、都市活動用水有収水量に影響する「経済成長」を設定

行政区域内人口の実績値・想定値 (豊川水系フルプランエリア)

※「日本の地域別将来推計人口(平成30(2018)年推計)」及び 「日本の将来推計人口(平成29(2017)年推計)」 (どちらも国立社会保障・人口問題研究所)を基に作成


人口が最も多い高位ケース

⇒ 出生率(高位)・死亡率(低位)の組合せ

人口が最も少ない低位ケース

⇒ 出生率(低位)・死亡率(高位)の組合せ

経済成長率 〔実質GNI成長率〕

出典:中長期の経済財政に関する試算 内閣府 (令和6年1月22日 経済財政諮問会議提出)を基に作成

成長実現ケース:

政策効果が過去の実績も踏まえたペースで発現する姿令和3(2021)年~令和17(2035)年の<u>年平均成長率約1.7%</u>ベースラインケース:

経済が足元の潜在成長率並みで将来にわたって推移する姿令和3(2021)年~令和17(2035)年の<u>年平均成長率約0.8%</u>令和16(2034)年~令和17(2035)年は、令和15(2033)年の成長率が継続するものとして算定上記2ケースに、

地域経済傾向ケース: 各県の課税対象所得額(世帯当たり)の 実績値を基に時系列傾向分析による予測 を加えた、3ケースを設定

水道用水の需要推計方法の概要(8/8)

想定の精度向上「節水化指標」の導入

節水化指標(水道用水に係る需要予測)

▶ 節水機器のスペックや普及状況を基に、節水状況を表現する指標を設定した。

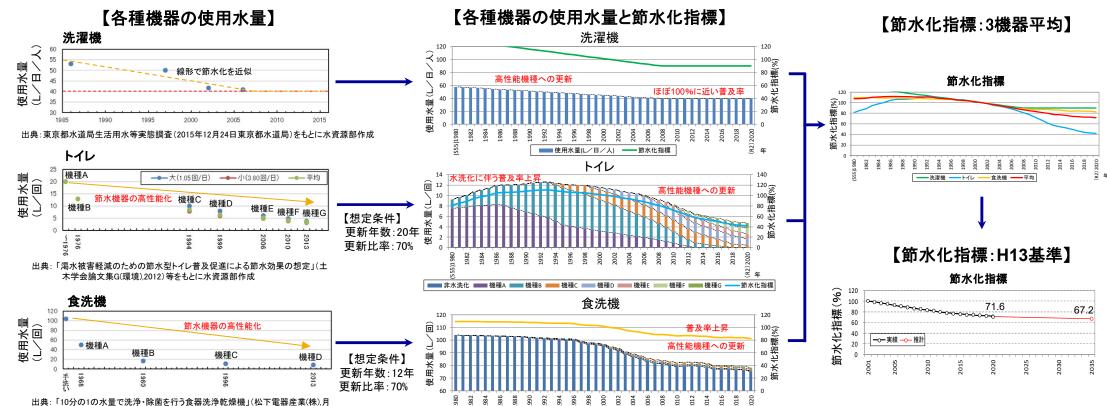
洗溜・その他 6% 洗濯 16% 風呂 43% トイレ 20%

出典:東京都水道局調べ(令和3年度) をもとに水資源部作成

出典:「第4回横浜市水道料金等在り方審 議会 資料3」(横浜市水道局)(平成 31年1月11日)をもとに水資源部作成

◆節水化指標の算定

- ・対象機器は、家庭での使用水量のそれぞれ約2割を占める洗濯、トイレ、炊事(食器洗い)に用いる「洗濯機」「トイレ」「食洗機」の3機器
- ・機種別に、基準年(2001年度(平成13年度))における使用水量を「100」として指標化し合成


節水化指標 = (洗濯機節水化指標 + 水洗トイレ節水化指標 + 食洗機節水化指標)/3

※洗濯、トイレ、炊事は、家庭での水使用において、 ほぼ同等の割合を占めていると仮定

家庭での水の使用割合(東京都、横浜市)

◆節水化指標の算定結果

刊下水道Vol.31 No.1)等をもとに水資源部作成

注)上図は愛知県(豊川水系)の例を示す。ただし、洗濯機及び食洗機は全国一律の傾向を適用。

工業用水の需要推計方法の概要(1/6)

答申※での提言及び総括評価を踏まえ、需要推計手法を改善

- 各種の変動要因によって生じうる「<u>予測の変動幅</u>」(高位値と低位値)を予め考慮
- 工業出荷額と補給水量の連動性を考慮し、

 予測精度を向上

※「リスク管理型の水の安定供給に向けた水資源開発基本計画のあり方について 答申 平成29年5月 国土審議会」

不確定要素(変動幅)の導入

1) 社会経済情勢等(経済成長率)の不確定要素

工業用水に影響する「経済成長ケース」の設定

【現行計画】経済成長(全国ベース)1ケース

【次期計画】 <u>経済成長:以下の3ケースの結果より、高位及び低位を設定</u>

- ①成長実現ケース
- ②ベースラインケース
- ③地域経済傾向ケース
- ①、②は、「中長期の経済財政に関する試算(R6.1.22 経済財政諮問会議提出内閣府)」で示された全国一律の経済成長率
- ③は、近年20ヵ年(H13~R2)の各県別かつ業種別の製造品出荷額等の実績値を基に

時系列傾向分析により予測

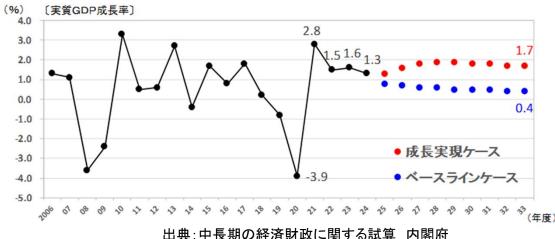
2) 水供給の過程で生じる不確定要素

- -漏水量に影響する不確定要素:利用量率※1(河川取水口~浄水場)
- ・日変動に影響する不確定要素:負荷率※2(日平均と日最大の割合)

【現行計画】 利用量率は最新年実績値と同値。負荷率は近年10箇年実績の下位3か年平均値

【次期計画】 利用量率及び負荷率の算定は近年10箇年実績の最高値及び最低値の各2ケース

※1 一日最大給水量:一日最大取水量 ※2 一日平均給水量:一日最大給水量


工業用水の需要推計方法の概要(2/6)

不確定要素(変動幅)の導入

1)社会経済情勢等の不確定要素

製造品出荷額等を指標として、工業用水に影響する「<u>経済成長(①成長実現ケース、②ベースラインケース、③地域経済</u> <u>傾向ケース)</u>」を設定

経済成長率 〔実質GDP成長率〕

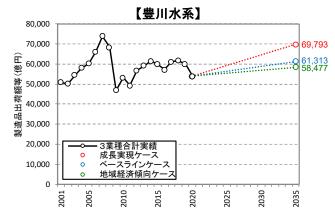
出典:中長期の経済財政に関する試算 内閣府 (令和6年1月22日 経済財政諮問会議提出)を基に作成

成長実現ケース:

政策効果が過去の実績も踏まえたペースで発現する姿令和3(2021)年~令和17(2035)年の<u>年平均成長率約1.7%</u>ベースラインケース:

経済が足元の潜在成長率並みで将来にわたって推移する姿 令和3(2021)年~令和17(2035)年の<u>年平均成長率約0.9%</u>

令和16(2034)年~令和17(2035)年は、令和15(2033)年の成長率が継続するものとして算定

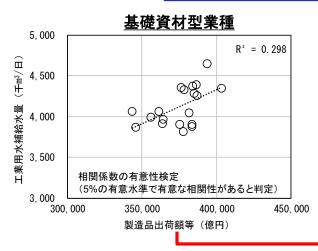

上記2ケースに、

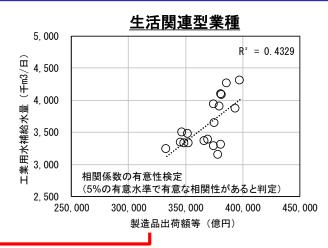
地域経済傾向ケース:

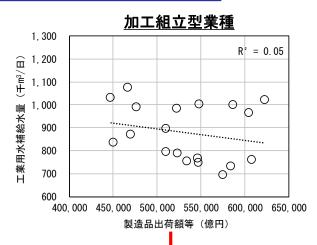
各県の製造品出荷額の実績値を基に時系列傾向分析※による 予測を加えた、3ケースより高位、低位を設定

※: 時系列傾向分析の相関が低い場合は、近10ヵ年実績の最低値を採用。

製造品出荷額等(2020年価格)の実績値・想定値 (豊川水系及び各県)

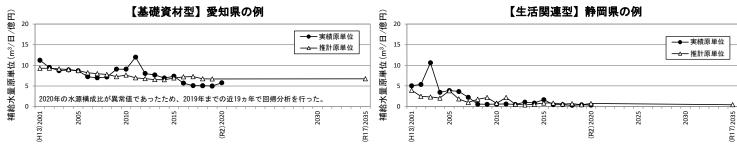



工業用水の需要推計方法の概要(6/6)

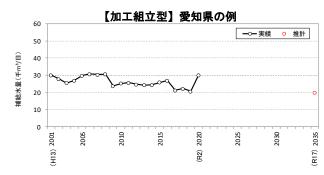

想定の精度向上

- ▶ 製造品出荷額等と補給水量に相関が見られる<u>「基礎資材型業種」及び「生活関連型業種」については、近年の傾向を踏まえ補</u> 給水量原単位を想定し、製造品出荷額をフレームとして工業用水補給水量を想定。
- ▶ 製造品出荷額等と工業用水補給水量の相関がみられない「加工組立型業種」については、近年の変動傾向を反映した時系列傾向分析により工業用水補給水量を想定。

製造品出荷額等(2020年価格)と工業用水補給水量の相関 ~ 全指定水系(H13~R1)~



補給水量原単位を水源構成比(補給水量に占める 地下水・地表水・伏流水の占める割合)を説明変数 として県別に想定し、製造品出荷額等をフレームと して工業用水補給水量を想定 製造品出荷額等と補給水量に相関がみられる


製造品出荷額等と補給水量 に相関がみられない 県ごとに、工業用水補給水量を時系列傾向分析により 想定

補給水量原単位の実績値・想定値

工業用水補給水量 = 補給水量原単位 × 製造品出荷額等

加工組立型業種補給水量の実績値・想定値

都市用水(水道用水・工業用水)の需要想定に用いた要因と変動幅

需要想定に用いた不確定要素(変動幅)要因一覧

【水道用水】

変動要因	高位の推計し	こ用いた想定	低位の推計に用いた想定		備考
// P-1-4-1-	約70万人		約66万人		
行政区域内	静岡	愛知	静岡	愛知	日本の地域別将来推計人口(H30.3)
, ,	_	約70万人	_	約66万人	一日本の将来推計人口(H29.4) - 国立社会保障・人口問題研究所
高齢化比率・	静岡	愛知	静岡	愛知	国立LAMP 八日间应引加力
同断化比学	_	31.7%	_	31.7%	
	GNI(国民総所得) 年	『成長実現ケース』 『平均成長率:約1.7% 『平均成長率:約1.7%	マクロ経済シナリオ『ベースラインケース』 GNI(国民総所得) 年平均成長率:約0.8% GDP(国内総生産) 年平均成長率:約0.9%		中長期の経済財政に関する試算 (R6.1.22 経済財政諮問会議提出)
経済成長率	地域経済傾向ケース(近年の地域経済実績の傾向より時系列傾向分析によって将来推計するケース)				※経済成長率(成長実現ケース、ベースラインケース)及び地域経済実績の傾向による推計ケースより、高位と低位を想定。 ※水道用水のうち、需要推計に経済成長率を用いる部分の推計に使用。 ※年平均成長率:2021年度から2035年度までの経済成長率を平均。
	近年10年間に	おける最小値	近年10年間に	おける最大値)
	静岡	愛知	静岡	愛知	□※検討期間20年間(2001年度から2020年度)のうち近年10年間□ (2011年度から2020年度)の最大値及び最小値を採用。
有収率		91.4%	—		
負荷率		85.8%	– 88.6%		5500
利用量率	<u> </u>	95.2%	_	95.9%	

【工業用水】

変動要因	高位の推計に	こ用いた想定	低位の推計に用いた想定		備考		
		『成長実現ケース』 E平均成長率:約1.7%		『ベースラインケース』 F平均成長率:約0.9%	中長期の経済財政に関する試算 (R6.1.22 経済財政諮問会議提出)		
経済成長率	地域経済傾向ケース	近年の地域経済実績の傾向	「将来推計するケース)	※経済成長率(成長実現ケース、ベースラインケース)及び地域経済実績の傾向による推計ケースより、高位と低位を想定。 ※工業用水のうち、需要推計に経済成長率を用いる業種の推計に使用。 ※年平均成長率:2021年度から2035年度までの経済成長率を平均。			
	近年10年間における最小値 近年10年間における最大値			おける最大値			
	静岡	愛知	静岡愛知				
利用量率	70.9%	89.0%	100.0%	92.9%	(2011 十)文// う2020 十)文 / (
負荷率	68.9%	66.4%	89.4%	74.5%			

- 注1. 2035年度における需要の見通しの推計に際して用いた指標は、行政区域内人口、高齢化比率、経済成長率、有収率、負荷率、利用量率とした。
- 注2. 社会経済情勢等の不確定要素として人口、高齢化比率及び経済成長率を設定し、水供給の過程で生じる漏水等や時期変動として、有収率、負荷率、利用量率を設定した。
- 注3. 行政区域内人口とは豊川水系に水道用水を依存している地域全域の市町村の人口の合計値である。四捨五入の関係で合計があわない場合がある。

都市用水(水道用水・工業用水)の需要想定(指定水系)

まとめ

○ 現況と比較した需要想定(国想定値+地域の個別施策の値)におけるの見通しの傾向 実績年度(2020年度)から想定年度(2035年度)までの増減の年平均率について、 水道用水は、高位がやや増加(0.8%/年)、低位がおおむね横ばい(-0.4%/年)。 工業用水は、高位、低位ともに増加(高位7.6%/年、低位4.2%/年)。

水道用水では、高位の推計は「都市活動用水有収水量」、低位の推計は「人口」の影響が大きい。工業用水では、高位の推計、低位の推計ともに「製造品出荷額等」の影響が大きい。

需要想定(国想定値+地域の個別施策の値)における 実績年度(2020年度)から想定年度(2035年度)までの増減の年平均率

単位:%/年

		水道用水	
	静岡県	愛知県	合 計
· ·		0.8	0.8
高型	高位 一	やや増加	やや増加 🕡
压止		-0.4	-0.4
低位	_	おおむね横ばい 📫	おおむね横ばい 中

增加	: 2%/年以上
やや増加 おおむね構ばい	: 0.5~2%/年 : -0.5~0.5%/年
やや減少	: -0.5~-2%/年
減少	: -2%/年以下

		工業用水	
	静岡県	愛知県	合 計
高位	10.7 增加	7.0 增加	7.6 增加
低位	4. 4 増加	4. 4 増加	4. 2 増加

供給可能量(水道用水・工業用水)の想定

豊川水系内に位置する水資源開発施設からの供給可能量

供給可能量は、「**10箇年第1位相当の渇水年**」及び「**既往最大級の渇水年**」について、<u>供給施設からの補給</u> により年間を通じ供給可能な水量(供給可能量)を算出

国土審議会答申「リスク管理型の水の安定供給に向けた水資源開発基本計画のあり方について」(抜粋)

(リスク管理の観点による評価の考え方)

・<u>供給可能量</u>については「10箇年第1位相当の渇水年」に加えて「既往最大級の渇水年」についても点検するなど、起こり得る 渇水リスクを幅広に想定して水需給バランスを評価する必要がある。

<利水計算対象施設>

設楽ダム、豊川総合用水施設、豊川用水施設

<計算期間>

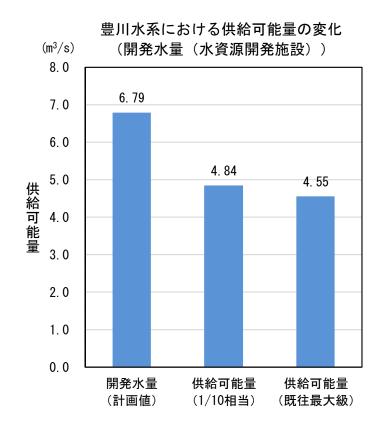
現行フルプランと同じ河川流況で評価※1(昭和55年度から平成11年度(20年間))

- ・10箇年第1位相当の渇水: 平成7(1995)年度
- ・既往最大級の渇水※2 : 平成8(1996)年度

- ※1「リスク管理型の水の安定供給に向けた水資源開発基本計画のあり方 について 答申」(平成29年5月国土審議会)P16に記載
- ※2一定の条件下でのシミュレーション(利水計算モデルによる水運用計算)に おけるダム運用に基づき設定。

<計算の前提条件>

- ・利水計算は、各ダムを一体的に運用(プール方式)する。
- ・年間を通じて供給(取水)可能かどうかの判断は、貯水容量が無くなった時を供給(取水)できないと判断し、それ以外であれば供給(取水)可能と判断している。
- ・供給可能量とは、一定の前提条件下でのシミュレーションをもとにしたものであり、ダム等の水資源開発施設の容量を最大限活用できるとした場合において、河川に対してダム等の水資源開発施設による補給を行うことにより、年間を通じて供給が可能となる水量である。そのため、実際の運用による供給量とは異なる。
- ・実際の渇水時の対応では<u>渇水調整が行われるが、今回の計算では考慮していない</u>。


供給可能量(水道用水・工業用水)の想定

豊川水系からの供給可能量

- 〇「供給可能量(10箇年第1位相当渇水時)」とは、一定の前提条件下でのシミュレーションをもとにした供給可能量※であり、平成7(1995)年度を想定して計算している。
- 〇「供給可能量(既往最大級渇水時)」とは、一定の前提条件下でのシミュレーションをもとにした供給可能量※であり、平成8 (1996)年度を想定して計算している。
 - ※供給可能量とは、一定の前提条件下でのシミュレーションをもとにしたものであり、ダム等の水資源開発施設の容量を最大限活用できるとした場合において、河川に対して ダム等の水資源開発施設による補給を行うことにより、年間を通じて供給が可能となる水量である。そのため、実際の運用による供給量とは異なる。

水資源開発施設による開発水量

流況区分	用水区分	開発水量(m ³ /s)	備考
	都市用水	6. 79	
計画値	水道用水	4. 36	
	工業用水	2. 43	
ᄱᄵᆿᄮᄝ	都市用水	4. 84	
供給可能量 (10箇年 1 位相当渇水時)	水道用水	2. 92	
	工業用水	1. 92	
ᄱᄵᆿᄽᄝ	都市用水	4. 55	
供給可能量 (既往最大級渇水時)	水道用水	2. 75	
(以近日上月又ノト州又たり八十日)	工業用水	1.80	

農業用水の新規需要想定

- 農業用水については、フルプランの期間内に新たに必要となる需要量を算出することとしている。
- 〇 「豊川水系における水資源開発基本計画」の新規需要想定調査の結果から、現行計画と同様に農業用水需要量0.34m³/sを 見込むこととする。

1. 基本的な考え方

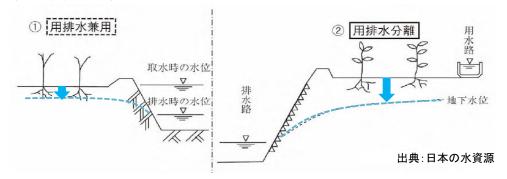
農業用水については、農業農村整備事業による基盤整備の実施状況、関係県及び市町村の総合計画及び農業振興計画等を参考に、計画期間内に新たに必要となる需要量を算定している。

具体的には、新規需要が見込まれる事業地区ごとに、営農計画及び用水計画(かんがい面積及びかんがい期間等)を 踏まえた上で、計画用水量を求め、それを基に新規需要量を算出する。

2. 新規需要の見通し

新規需要の見通しについては、関係機関に対し確認を行ったところ、現行計画と同様に農業用水量の必要性に変化はないことから、農業用水需要量0.34m³/sを見込むこととする。

なお、農業用水需要量については、設楽ダムにて確保する。

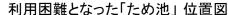

新規需要水量 = $0.34 \text{m}^3/\text{s} = 10,714 + \text{m}^3/(366 + 24 \text{Hero})$

農業用水の新規需要想定

- 豊川水系フルプランエリアにおける農業用水に関する主な状況については、次のとおりである。
 - ①干拓地に位置する水田地帯での排水改良等による減水深の増加
 - ②土砂・生活雑排水の流入等により利用が困難となった「ため池」による地区内利用可能量の減少
 - ③全体の約6~7割を占める畑作において、春夏作主体から秋冬作主体へ営農状況が変化
- これらに対応するため、新規に水源を確保し、かんがい用水の安定供給を図ることとしている。

① 水田地帯での減水深の増加

<排水改良(用排分離>



② 地区内利用可能量の減少

<利用困難となった「ため池」>

「ため池」の状況山田池(田原市)

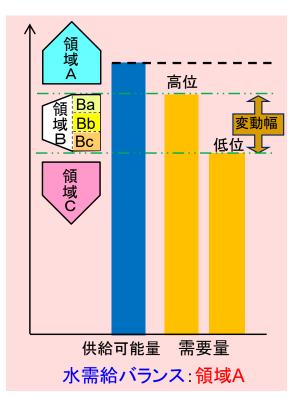
出典:愛知県資料

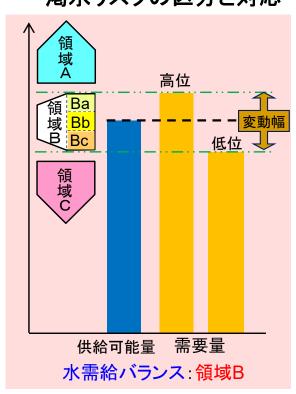
③ 営農状況の変化

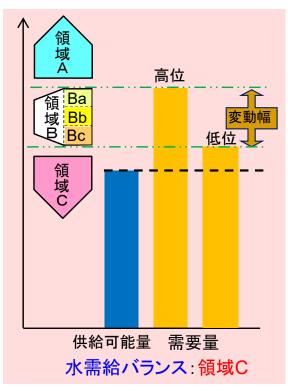
近年は、キャベツやブロッコリーを中心とする露地野菜で、夏季以外の長い期間に収穫が可能な作付け体系や新品種の選択、栽培面積の拡大などが進んでいる。(夏作のメロン・スイカ・スイートコーンは、資材コスト高く労力がかかることから生産減少)

出荷時期 1 2 3 4 5 6 7 8 9 10 11 12

出荷時期 1 2 3 4 5 6 7 8 9 10 11 12

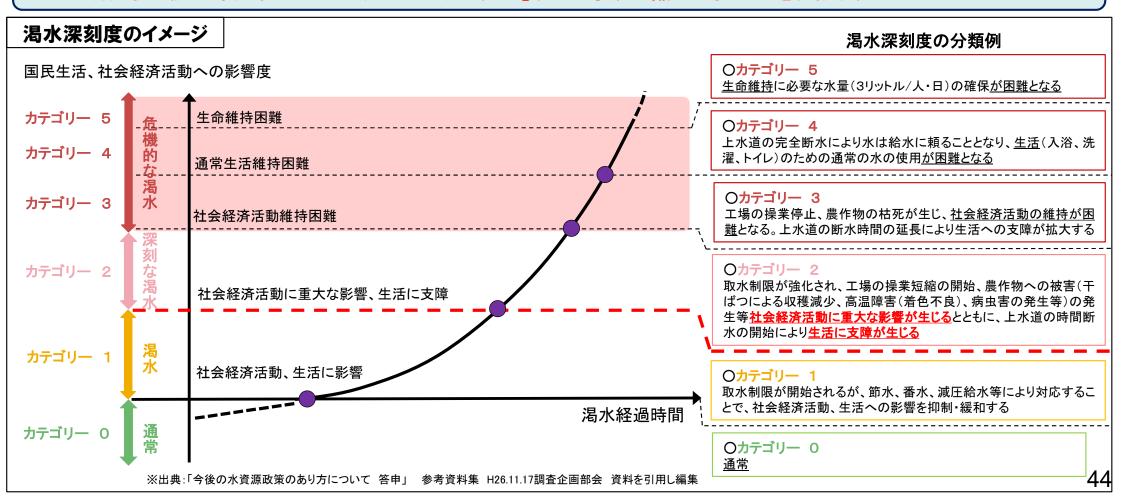

出典:田原市HP**41**


豊川水系における水需給バランスの点検 - 渇水リスクの分析・評価 -


渇水リスクの区分と対応

- 〇<u>渇水リスクを</u>需要量と供給可能量との大小関係に応じ、大きく3つに区分し、区分毎に対応の必要性を設定(下図)。
- 〇水需給バランスは、<u>各県の用途別</u>及び<u>2県合計の用途別に点検</u>。

渇水リスクの区分と対応



	【領域の区分】	【対 応】
領域A	供給可能量が、需要量「高位の推計」を上回る状態	現在のハード・ソフト対策を適切に実施 (必要に応じて、新たなハード・ソフト対策を適時検討)
領域Ba	供給可能量が、需要量「高位の推計」を下回り、「低位の推計」を上	
領域Bb	回る状態	新たなハード・ソフト対策を適時検討
領域Bc	(Ba∶上位1/3、Bb∶中位1/3、Bc∶下位1/3)	
領域C	供給可能量が、需要量「低位の推計」を下回る状態	新たなハード・ソフト対策を要検討(要対策)

生活・経済活動に重大な影響を生じさせないために最低限必要な水量

危機的な渇水時においても、上水道の時間断水や工場の操業短縮など、<u>生活・経済活動に重大な影響を生じさ</u>せないために最低限必要な水量を設定。

- ●供給の目標:10箇年第1位相当の渇水時:安定的な水利用を可能にする =10箇年第1位相当の渇水時においても、下図「カテゴリー0」を維持することを目指す。
- ●供給の目標: 既往最大級の渇水時: 当該地域の生活・経済活動に支障が生じない必要最低限の水を確保
 - =既往最大級の渇水時においても、下図「カテゴリー2」以上の状況に陥らせないことを目指す。

生活・経済活動に重大な影響を生じさせないために最低限必要な水量

需要想定値(高位及び低位)に今回設定した「渇水時における限度率(想定)」を乗じ、生活・経済活動に重大な影響を生じさせない必要最低限の量を算定

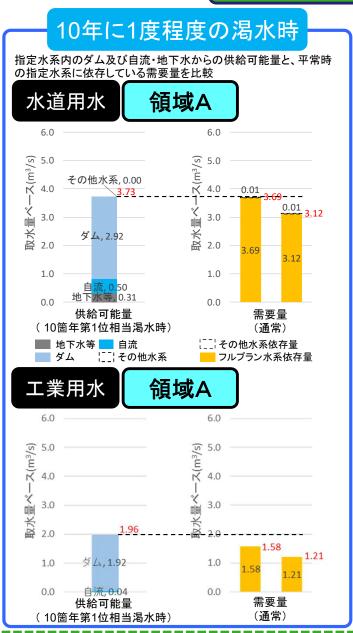
生活・経済活動に重大な影響を生じさせない必要最低限の量(フルプランエリア全域(指定水系+他水系))

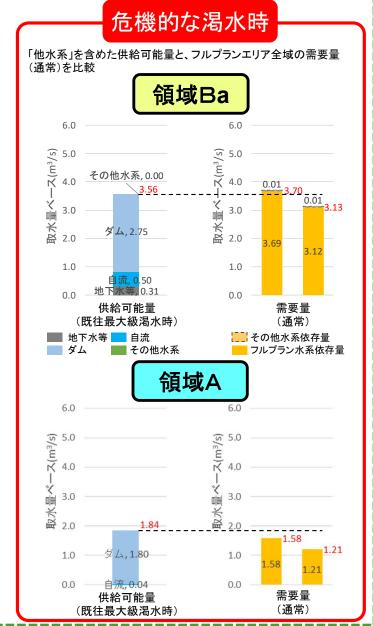
 (m^3/s)

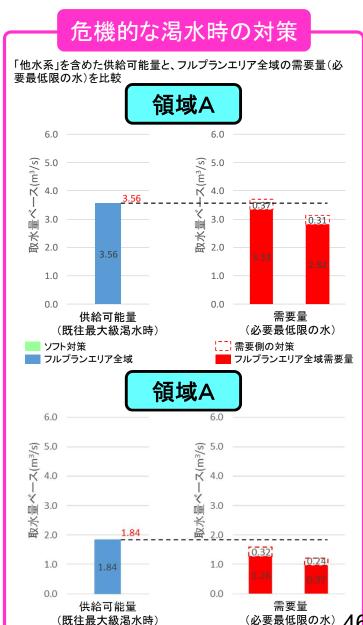
用途		水道用水		工業用水			都市用水 [※]
	県	愛知	小計	静岡	愛知	小計	合計
	高位の推計	3.33	3.33	0.31	0.95	1.26	4.59
必要最低限の量	低位の推計	2.82	2.82	0.20	0.77	0.97	3.79

[※] 都市用水は、水道用水と工業用水を合わせたもの。

「渇水時における限度率(想定)」(総括表)

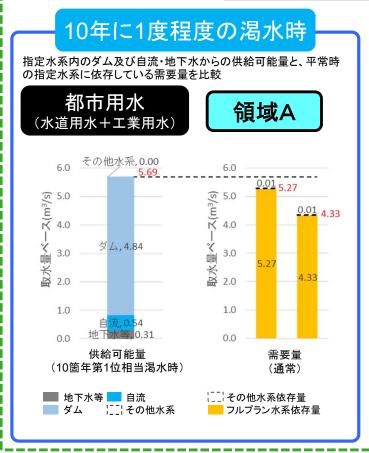

県	静岡	愛知
水道用水		90%
工業用水	80%	

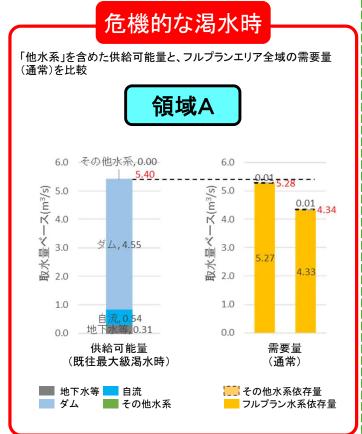

注) 四捨五入の関係で合計が合わない場合がある。

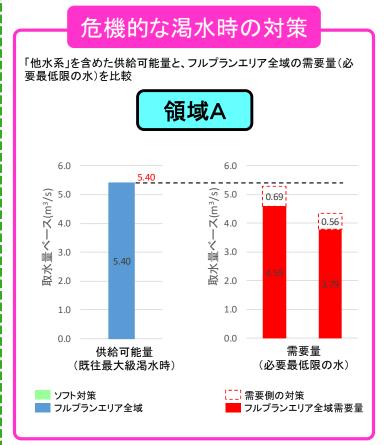

水需給バランスの点検(2県合計)1/2(水道用水、工業用水)

渇水リスクの分析・評価

※供給可能量とは、一定の前提条件下でのシミュレーションをもとにしたものであり、ダム等の水資源開発施設の容量を最大限活用できるとした場合において、河川に対してダム等の水資源開発施設による補給を行うことにより、年間を通じて供給が可能となる水量である。そのため、実際の運用による供給量とは異なる。






水需給バランスの点検(2県合計)2/2(都市用水)

渇水リスクの分析・評価

※供給可能量とは、一定の前提条件下でのシミュレーションをもとにしたものであり、ダム等の水資源開発施設の容量を最大限活用できるとした場合において、河川に対してダム等の水資源開発施設による補給を行うことにより、年間を通じて供給が可能となる水量である。そのため、実際の運用による供給量とは異なる。

※四捨五入の関係で合計が合わない場合がある。

供給可能量が、10年に1度程度の渇水時、危機的な渇水時には、需要の見通しの高位の推計を上回る状況となっている。 ただし、実際の施設運用においては、中長期的な降雨状況が正確に予測できないため、渇水の懸念がある場合には、早め に取水制限等の渇水調整を開始し、段階的に強化する。そのため、実際の供給量は供給可能量を下回ることがある。

水需給バランスの点検結果一覧表

渇水リスクの分析・評価

					- + HD 7K 🕸
水道用水	工業用水	都市用水	水道用水	工業用水	都市用水
_	領域Bb	領域Bb	_	領域Bb	領域Bb
領域A	領域A	領域A	領域Ba	領域A	領域A
				•	
領域A	領域A	領域A	領域Ba	領域A	領域A
	水道用水 一 領域A	水道用水 工業用水 水道用水 項域Bb 領域A 領域A	水道用水 工業用水 都市用水 (水道用水 + 工業用水) 一 領域Bb 領域Bb 領域A 領域A	(水供給の安全度を確保) 指定水系 (危機 水道用水 工業用水 都市用水 (水道用水+工業用水) 水道用水 一 領域Bb 一 領域A 領域A 領域Ba	(水供給の安全度を確保) 指定水系 (危機時に必要な水を確保) 水道用水 工業用水 都市用水 (水道用水+工業用水) 水道用水 工業用水 一 領域Bb 一 領域Bb 領域A 領域A 領域Ba 領域A

危機的な渇水時の対策

危機的な渇水時の対策 指定水系 (危機時に必要な水を確保するための対策※)					
水道用水	工業用水	都市用水			
_	領域Ba	領域Ba			
領域A	領域A	領域A			
領域A	領域A	領域A			

※量的に算定可能な需要側・供給側の対策を考慮した場合

※1(「ゴシック体」表示)

- 各県のフルプランエリア全域での渇水に対するリスクを確認するために点検したもの。
- 「水道用水」及び「工業用水」の各欄は、各用途別の需要量と供給可能量を比較した結果を示したもの。
- バランス点検に用いた供給可能量は、一定の前提条件の下での算定であり、実際の 運用とは異なる点に留意。

※2(「明朝体斜字」表示)

- 「都市用水」の欄は、水道用水と工業用水を合計した都市用水の状況を概観するために、単純に合計して比較した結果を示したもの。
- 「2県合計」の欄は、本計画で対象としている2県のフルプランエリア全体の状況を概観するために、単純に合計して比較した結果を示したもの。

	【領域の区分】					
領域A	供給可能量が、需要量「高位の推計」を上回る状態					
領域Ba						
領域Bb	供給可能量が、需要量「高位の推計」を下回り、「低位の推計」を上回る状態 (Ba:上位1/3、Bb:中位1/3、Bc:下位1/3)					
領域Bc						
領域C	供給可能量が、需要量「低位の推計」を下回る状態					

豊川水系における水資源開発基本計画(案)におけるハード対策及びソフト対策について

(1)水の供給量もしくは供給区域を変更する事業

設楽ダム建設事業

- 設楽ダムは、洪水調節、流水の正常な機能の維持、かんがい用水の補給、水道用水の供給を目的としている。
- 〇 ダム検証において、平成26年4月に国土交通大臣による事業を「継続」とする対応方針が決定され、その後、本体 基礎掘削、付替道路等を進めている。平成27年12月には生活再建者の全124世帯と家屋移転の契約が完了している。

【事業主体】

国土交通省

【諸 元】

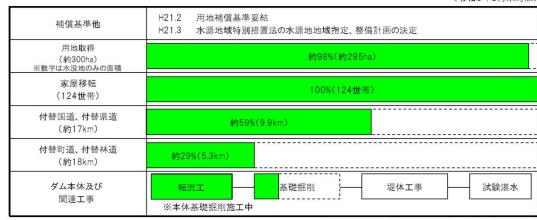
• 位 置: 豊川水系豊川(愛知県北設楽郡設楽町)

・型 式:重力式コンクリートダム

・堤 高:129m ・堤頂長:360m

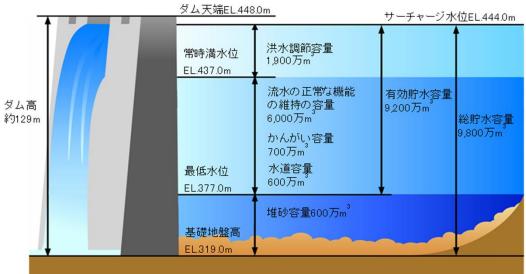
·総貯水量:約 98,000千m³ ·有効貯水量:約 92,000千m³

【事業の概要】


・目 的 洪水調節、流水の正常な機能の維持、 かんがい用水の補給、 水道用水の供給

・エ 期 昭和53年度から令和16年度まで

• 事業費 約 3,200億円


【進捗状況】

(令和6年3月末時点)

※付替道路は道路工事が着手された工事の施工延長進捗率

【容量配分】

(2)水の供給量もしくは供給区域の変更を伴わない事業

豊川用水二期事業

- 豊川用水二期事業は、老朽化が進行している水路等について、安定的な通水と適切な維持管理及び水利用の効率化 を図るものである。
- 〇 既設水路区間(幹線水路、支線水路)における水路改築、大野導水路、東部及び西部幹線水路の水路トンネル等に おける大規模地震対策等を行うものである。

【事業主体】

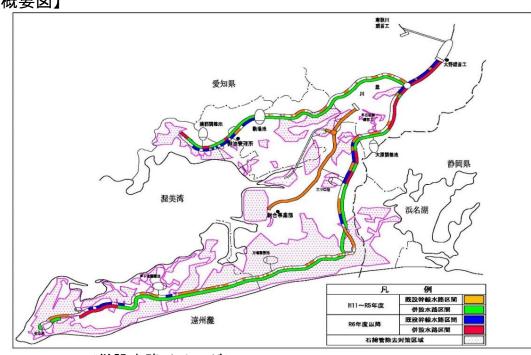
独立行政法人水資源機構

【事業の概要】

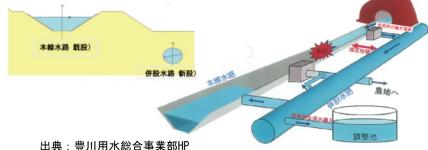
- ・水路改築 幹線水路(改築・補強 44km、併設水路 54km)、 支線水路 (改築 55km)
- ·大規模地震対策 幹線水路(補強 23km、併設水路 63km) 初立池(補強一式)、小塩津池(補強一式)
- ·石綿管除去対策 支線水路(改築 414km)
- ・エ 期 平成11年度から令和12年度まで
- ・事業費 約 2,484億円

<水路改築>

水路底の浮き上がり



開水路のひびわれ



コンクリートライニング打換

【概要図】

<併設水路イメージ>

51

(1) 関連する他計画等との関係

▶ 本計画の運用に当たっては、水循環基本計画、国土強靱化基本計画、気候変動適応計画等との整合を図る ものである。健全な水循環の維持又は回復に向けて、令和6年8月に新たな水循環基本計画を改定している。

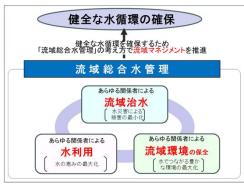
関連する主な計画

計画	根拠法等
水循環基本計画	水循環基本法
国土強靱化基本計画	強くしなやかな国民生活の実現を図る ための防災・減災等に資する国土強靭 化基本法
河川整備計画	河川法
防災基本計画	災害対策基本法
流域水害対策計画	流域治水関連法(特定都市河川浸水被害対策法、河川法、下水道法、水防法、土砂災害警戒区域等における土砂災害防止対策の推進に関する法律、都市計画法、防災のための集団移転促進事業に係る国の財政上の特別措置等に関する法律、都市緑地法、建築基準法)
インフラ長寿命化基本計画	日本再興戦略(閣議決定)
国土形成計画(全国計画、広域地方計画)· 国土利用計画	国土形成計画法 · 国土利用計画法
社会資本整備重点計画	社会資本整備重点計画法
地球温暖化対策計画	地球温暖化対策の推進に関する法律
エネルギー基本計画	エネルギー政策基本法
環境基本計画	環境基本法
気候変動適応計画	気候変動適応法
持続可能な開発目標(SDGs)実施方針	SDGs推進本部
科学技術・イノベーション基本計画	科学技術・イノベーション基本法
雨水の利用の推進に関する基本方針	雨水の利用の推進に関する法律

新たな水循環基本計画の概要

●水循環基本計画は、水循環基本法に基づき、水循環施策の総合的・計画的な推進を図るため策定。情勢の変化を勘案等し、おおむね5年ごとに見直し(水循環施策本部で案文を作成し、閣議決定)

近年の水循環に係る情勢の変化


- ・令和6年能登半島地震では上下水道等のインフラが被災し、生活用水の確保が課題。これにより、水循環を構成する水インフラの耐震化や地下水の活用等による代替性・多重性の確保など、平常時からの備えの重要性が顕在化
- ・最適で持続可能な上下水道への再構築が求められている中、令和6年度から水道行政が国交省等に移管。上下水道−体での施設等再編や官民連携による事業の効率化・高度化・基盤強化の一層の推進が必要
- ●これら水循環をめぐる情勢の変化等を踏まえ、計画変更

重点的に取り組む主な内容

- 1. 代替性・多重性等による安定した水供給の確保
 - ・水インフラの耐震化、早期復旧を実現する災害復旧手法の構築
 - ・非常時における地下水等の代替水源としての有効活用
 - 災害対応上有効と認められる新技術の活用推進
- 2. 施設等再編や官民連携による上下水道一体での<u>最適で持続可能な</u> 上下水道への再構築
 - ・地域の実情を踏まえた、広域化や分散型システムの検討
 - ・上下水道一体のウォーターPPPによる官民連携、DX導入等による事業の効率化・高度化・基盤強化を推進
- 3. 2050年カーボンニュートラル等に向けた地球温暖化対策の推進
 - ・流域一体でのカーボンニュートラルに向けた取組の推進
 - ・官民連携による水力発電の最大化、上下水道施設等施 設配置の最適化による省エネルギー化
 - ・渇水対策や治水対策などの適応策の推進

4. 健全な水循環に向けた<u>流域総合水</u> <u>管理の展開</u>

- あらゆる関係者による、AIやデジタル技術などを活用した流域総合水管理を、各流域の特性を踏まえつつ、全国へ展開
- ・地方公共団体等における流域総合水管理を踏まえた流 域水循環計画策定の推進

「流域総合水管理」の考え方(イメージ)

52

この他、<u>教育・人材育成、普及啓発、技術開発、国際連携・協力</u>などにも注力。

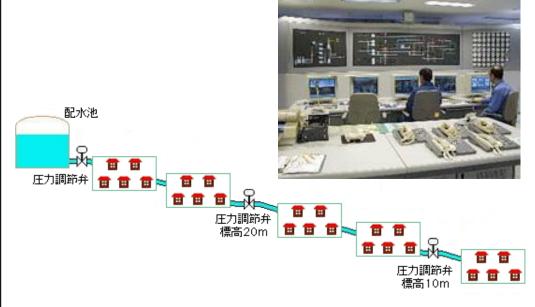
1)水供給の安全度を確保するための対策 (需要面からの対策)

節水型社会の構築

節水機器の普及、水道の漏水防止対策及び雨水・再生水の利用等、社会全体で節水の取組を引き続き推進。 節水の呼びかけ等により節水意識の普及啓発に努める。

(例)節水の呼びかけ、節水意識の普及啓発

夏休み水の教室~水の博士になろう~


水道出前講座(豊川市)

(例)水道の漏水防止対策

標高10m及び20mの位置に圧力制御所を設置し、圧力制御により標高による水圧の変化を抑制することで、適正水圧による給水となり漏水が減少。

漏水防止対策(豊橋市の水圧コントロールシステムの事例)

水利用の合理化

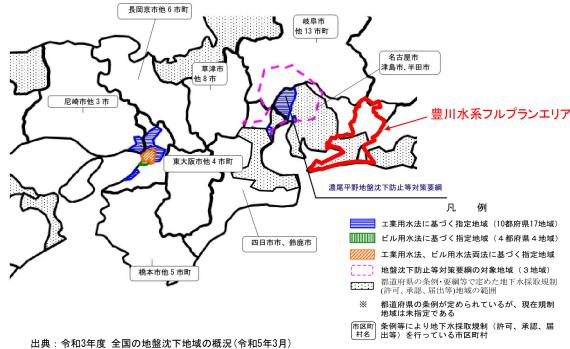
社会経済情勢等の変化等によって用途毎の需給にアンバランスが生じた場合には、地域の実情に応じて、関係者間の相互の理解を得つつ、用途をまたがった水の転用等の取組を推進。

広報誌の配布 53

1)水供給の安全度を確保するための対策 (供給面からの対策)

用水二法の指定地域には、都道府県及び市区町 村条例・要綱等による規制地域が一部含まれる。

地下水の保全と利用


地下水マネジメントの取組と整合を図りながら、過剰採取による地盤沈下及び塩水化等の地下水障害に留意しつつ、適切な地下水の保全と利用を図る。

(例)適切な地下水の保全と利用

環境省 水・大気環境局に水資源部で加筆

フルプランエリアの一部は、県が条例等で定めた地下水採取 規制地域に設定。

県民の生活環境の保全等に関する条例にて一定規模を超える揚水機器の設置には、水量測定を義務付け。

雨水・再生水の利用の促進

健全な水循環の維持又は回復等に資する環境資源として、 更なる利用に向け、技術開発等の推進及びその利用の促進 を図るとともに地域の幅広いニーズ等状況に応じた活用を推 進。

(例)雨水・再生水の利用の取組

する豊橋市資源化センターの雨水・地下水・余熱・太陽光を再利用 雨水利用設備 30 ㎡ (雑用水)

りすぱ豊橋では、隣接

りすぱ豊橋(施設の外観)

豊川浄化センター

豊川浄化センターでは 処理水を無料提供(公 園・街路樹等への灌水、 工場の用水(機械や製 品の洗浄、冷水)、工事 現場の雑用水などに再 利用することが可能)

供給能力0.60(m²/分)

2) 危機時において必要な水を確保するための対策(危機時に備えた事前の対策)

渇水時の用水補給施設等の効果的な運用

異常な渇水に備え、取水制限等の需要側の対策と渇水時の用水補給のために整備した施設、可搬式浄水装置及び調整池等の効果的な運用等の供給側の対策にかかる水利使用の調整について、平時から取り組む。

(例)可搬式浄水装置の配備

(独)水資源機構では、可搬式浄水装置(海水淡水化装置)を配備し、

渇水や災害時 に給水支援で きるよう、体制 を整備。

可搬式浄水装置((独)水資源機構)

(例)7つの調整池の活用

豊川用水には、7つの調整池があり、 洪水時に幹線水路を経由して貯水

し、渇水時等に幹線水路に戻して送水する仕組み。

貯水量500万m3の万場調整池

応急給水体制の整備と地下水等の代替水源の利用

危機時において、質・量ともに必要最低限の水を確保するため、応急給水体制の整備、並びに緊急時に使用する水源としての地下水及び雨水・再生水等の利用の取組を推進。

(例)ボランティアとの連携

「大規模地震時における水道実務 経験者協力制度」に基づく活動とし

て、県企業庁退職者による水道 災害対策の支援。

(例) 防災井戸の推進

災害等の代替水源として、地域 住民に対して「防災井戸」の登録 を推進。

防災井戸ステッカー(豊橋市)

災害時の相互支援に関する協定の締結

全国的な広域連携を含む災害時の相互支援に関する協定の締結及び資機材の備蓄等を推進。

(例)災害協定等

- ・(独)水資源機構では、国土交通省地方整備局、農林水産省農村振興局、 (一社)日本建設業連合会、(公社)日本水道協会、(一社)日本工業用 水協会、関係企業等と災害時等の応急対応等に関する協定等を締結。
- •三遠南信災害時相互応援協定を締結。(平成22年7月、豊橋市等6市より給水車を派遣)

(例)資機材の備蓄

・(独)水資源機構では、災害時に、速やかに復旧 活動が実施できるよう、必要な配管材や補修材 等の資材及び発電機やポンプ等の機材を整備。

補修材等の備蓄状況((独)水資源機構)

(例)災害対策派遣隊の体制整備

・国は、被災自治体が行う、被災状況の把握、被害拡大防止、被災地の早期普及等に対する技術的な支援を円滑かつ迅速に実施できるよう、体制を構築。

-国土交通省:TEC-FORCE(緊急災害対策派遣隊)

-農林水産省:MAFF-SAT(農業農村災害緊急派遣隊)

R5.6山中川の被災状況調査 (愛知県豊橋市)

業務継続計画の策定

危機時における用水確保も含めた業務継続計画の策定を推進。 各企業等及び災害拠点病院等の事業継続計画の策定を促進。

(例)愛知県庁BCP(業務継続計画)

【目標指標・・・南海トラフ地震発生時における目標】

水道用水: 24時間以内の応急給水、2週間以内に平常給水

工業用水: 1か月以内に平常給水

農業用水: 3日以内に当面必要な農業用水を確保

55

愛水ボランティア活動(応急給水訓練)

2) 危機時において必要な水を確保するための対策(危機時に備えた事前の対策)

老朽化対策、耐震対策及び耐水対策等を推進

危機時にも水インフラが機能不全に陥らないよう、長寿命化計画等を策定し、更新時期に合わせた老朽化対策、耐震対策及び 耐水対策等を推進。また、計画及び対策の検討にあたり、サプライチェーン強化及びリダンダンシーの確保を考慮。

(例)水インフラの老朽化・耐震化対策に関する計画の策定

・水インフラにおける老朽化対策、耐震化対策等の計画的な推進に 向けて、ガイドライン等を整備。

【水道】

- 〇水道施設の点検を含む維持・修繕の実施に関するガイドライン(R5.3) 改正水道法(R元10月)を踏まえ、水道事業者等に義務づけられた水道施設の維 持及び修繕の内容について、基本的な考え方を示し、適切な資産管理を推進する ためのガイドラインを策定
- 〇水道の耐震化計画等策定指針(H27.6)

水道事業者等における耐震化計画内容のレベルアップを図るとともに、計画未策 定の事業者を解消するため、中小規模の事業者等による計画の策定を支援する ための指針を策定。

○重要給水施設管路の耐震化計画策定の手引(H29.5)

震災時の給水が特に必要な医療機関、避難所等の重要給水施設に供給する重 要な管路について、水道の耐震化計画等策定指針を踏まえた、水道事業者による 重要給水施設管路の耐震化計画の策定を支援するための指針を策定。

【工業用水】

〇工業用水道施設 更新・耐震・アセットマネジメント指針(H25.3) 経済産業省では、工業用水道における「施設更新」、「耐震対策」および「アセッ トマネジメント」の推進を支援するための指針を策定。

【農業用水】

〇農業水利施設の機能保全の手引き(R5.4)

農家の高齢化・減少、農業水利施設の老朽化が進む中、農業水利施設の機能 が安定的に発揮されるよう、施設の集約・再編・統廃合等による農業水利ストッ クの適正化を推進するとともに、将来の機能保全コストの最小化と平準化を図る ための参考として、本手引きを改定。

総論編、工種別編(パイプライン編, 開水路編, 頭首工編, 頭首工(ゲート施設)編, 頭首工(ゴム堰)編 水路トンネル編, ポンプ場(ポンプ施設)編, 除塵設備編, 電気設備編, 水管理制御設備編)

(例)水供給の安全度を確保するための対策

- 〇水道施設の耐震化など(愛知県)
 - (1)水管橋の耐震補強 基礎補強、落橋防止

支援連絡管

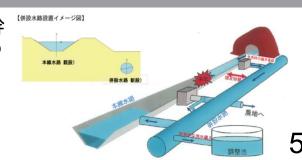
基礎補強

(せん断補強筋)

〇工業用水施設の耐震化など(静岡県) 湖西工業用水道浄水施設の耐震化

浄水施設の耐震化対策

〇農業水利施設の耐震化・老朽化対策 豊川用水幹線水路から分水した先の 支線水路やため池の老朽化・耐震化 対策



農業用水管老朽化対策

(例)豊川用水のリダンダンシーの確保

豊川用水二期事業では、幹 線水路の老朽化・耐震化の 改修に併せて、併設水路を 設置。地震により本線水路 が被災した場合なども通水 確保が可能。

56

3)水源地域対策、教育·普及啓発等

水源地域対策

水源地域との交流等の拡大を図るとともに、水源地域の住民及び企業等の地域づくりの担い手が実施する地域活性化の取組を 推進。

ダム周辺の環境整備、水源の保全・涵養及び土砂流出抑制に資する森林整備等必要な措置を講ずるよう努める。

上下流交流の取組(事例)

- ・豊川の水を使う方々が水源地である設楽町を訪れ、現地の方々との 交流を通して水と自然の大切さを学ぶ催しが実施されている。
- ① 田原市と設楽町豊邦区による「山のまち設楽体験ツアー ~「水の恵み」を体験しよう~」
- ② 蒲郡市と設楽町田峯区による「森林体験と水源地交流会」
- ③ 豊川用水上下流交流事業 (豊川総合用水(土)、(公財)愛知·豊川用水振興協会 共催)

①当貝津川支流での魚つかみ川遊び

②田峯農村環境改善センターでの工作

③万場調整池の施設説明

③水に関するクイズの実施

③農作物の栽培現場見学

水源地域対策_山村都市交流施設(事例)

・設楽ダム建設事業を契機 として、水の受益者である 豊川下流域5市※が設楽 町に「山村都市交流施設」 を整備し、上下流の自治 体で構成される東三河広 域連合が運営主体となり、 山村部と都市部で交流が 図られるよう検討が進め られている。

地域振興実現のための段階イメージ

森林保全に関する取組(事例)

・豊橋市では、豊川の水源 涵 養林の保全を図るため、公益財団法人豊川水 源基金による森林の整備 やNPO法人などが実施する森林保全・啓発事業な どに対する支援が実施されている。

間伐の様子

3)水源地域対策、教育·普及啓発等

教育•普及啓発等

危機時において迅速かつ柔軟な対応ができるよう、平常時から節水型社会の構築に向けた理解促進を図るとともに、水文化や水資源の大切さ、過去の渇水被害や水を巡る地域の歴史及び防災についての教育・普及啓発に努める。

教育・普及啓発等の取組(事例)

『あいちの農業用水展』(愛知県、水土里ネット愛知、(公財)愛知・豊川用水振興協会 共催)

農業用水の歴史や先人の努力の積み重ねにより育まれてきた、「水」の重要性について広く県民に周知し、関心を高めてもらうことを目的に、「水の週間」の関連行事として『あいちの農業用水展』を実施。

<内容·成果>

オリジナルPRグッズとして紙扇子を作成し来場者へ配布

大規模農業用水の水源地と幹線水路を示したラバーマット等を展示

いきものカード釣りやオリジナル缶バッジづくり等の体験型イベントを実施

[令和5年度実績:イオンモール岡崎で開催し、家族連れを中心に述べ6,000点以上のグッズを配布しPR]

PRグッズ

『水の出前教室』

小学生に対して、県職員が水循環や水の大切さを伝える授業を行っている。 水に関する簡単なクイズや簡易的な 水質検査の実験を交えながら説明す ることで、身近な水について興味を持 ち、普段から節水を意識してもらえるよ うに促す。

水の出前教室の様子

『水の週間記念作文コンクール』

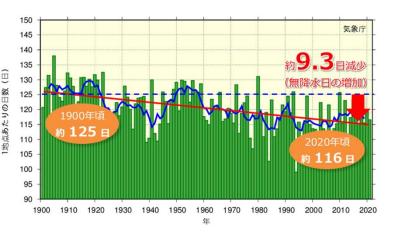
次世代を担う小・中学生を対象に、身近な「水」について考えた作文を募集しています。優秀な作品に選ばれた場合は賞状と 副賞を授与するほか、中学生の作品は全 国コンクールに推薦している。

令和6年度は静岡県が推薦した5作品の中から1作品が優秀賞、3作品が入選に選ばれた。

令和6年度作品募集ポスター

(3) 気候変動へのリスク対応

気候変動リスクへの対応

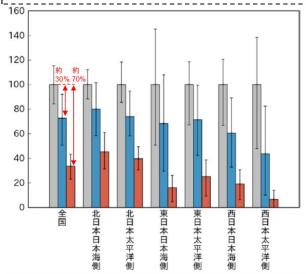

気候変動の影響によって変動する供給可能量及び需要量について、継続的にデータを蓄積・評価し、科学的知見の収集に努め、 気候変動の渇水への影響の予測・評価手法の更なる進展及び将来予測・評価結果並びに適応策に関する知見等を踏まえ、適時、 本計画に反映していくよう努めるものとする。

<調査企画部会提言(R5年10月)>

- 大雨の発生頻度は増加する一方、無降水日も増加して、雨の降り方が極端化。将来においても無降水日の増加や降雪・積雪が減少すると予測
- 気候変動による水資源への影響に係る最新研究では、地域によっては将来における渇水リスクが高まる可能性
- ただし、依然として気候変動の予測は、不確実性が大きく、計画に反映できるような定量的な評価を行うまでの精度には至っていない

■日降水量1.0mm以上の年間日数の変化(全国)

全国で見ると、日降水量1.0mm以上の年間日数は100年間で約9.3日減少。(無降水日の増加)


棒グラフ(緑):各年の日降水量1.0mm以上の年間日数(全国の51地点における平均で1地点あたりの値)

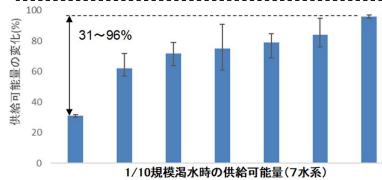
太線(青):5年移動平均値

直線(赤):長期変化傾向(この期間の平均的な変化傾向)

■将来の年最深積雪(%)

全国で見ると、積雪深の年最大値及び降雪量 が2℃上昇で約30%、4℃上昇で約70%減少

現在(灰色、1980~1999年平均)を100%としたときの21世紀末(2076~2095年平均)における年最深積雪量


青: 2°C上昇シナリオ (RCP2.6) 赤: 4°C上昇シナリオ (RCP8.5)

> 出典: 文部科学省 気象庁 「日本の気候変動2020」

■将来気候(4℃上昇時)における7水系の供給可能量

将来気候(4℃上昇時)と現在気候の実験値を比較し、 検討した全ての水系で供給可能量が低減。1/10規模渇 水時においては、供給可能量が31%~96%に低減

※将来気候には不確実性があり、今後の新たな知見を踏まえて更なる検討が必要

※ 青色棒グラフは平均値を示し、実線は海面水温の違いによる幅を示す

検討手法

- アンサンブル気候予測データ(d4PDF)を5kmメッシュに 力学的ダウンスケーリングしバイアス補正を実施
- 各水系毎に現在気候、将来気候(各360年分)の流出 計算と利水計算を実施し供給可能量を算出
- 10箇年に1度相当の渇水年について、将来気候と現在 気候を比較(d4PDFにより現在気候と4℃上昇時の将来 気候の供給可能量を7水系で試算(国土交通省)

出典: 気象庁 資料

(4) 地域の実情に応じた配慮事項

カーボンニュートラルの実現を目指した取組

水資源の開発及び利用に当たっては、流域単位での健全な水循環を重視して、河川整備等の現状を踏まえた治水対策と整合を 図るとともに、水質及び自然環境等の河川環境の保全・再生・創出並びに水力エネルギーの適正利用に努めるものとし、既存水利、 水産資源及び森林の保全等に十分配慮するものとする。また、官民連携で総合的かつ分野横断的にカーボンニュートラルの実現 を目指した取組を進めるものとする。

カーボンニュートラルの取組(事例)

愛知県では矢作川流域、豊川流域をモデルケースとし、"水循環"をキーワードに、再生可能エネルギー等の導入による国土強靱化を始め、森林保 全・治水・水道からエネルギーまでを含めた、官民連携で総合的かつ分野横断的にカーボンニュートラルの実現を目指す矢作川・豊川CN(カーボン ニュートラル)プロジェクトに取り組んでいます。

■矢作川・豊川CN(カーボンニュートラル)プロジェクト

■東三河地域での取組み 設楽ダム(建設中)

> 建設中の設楽ダムでは、供用後の みならず、建設時もCNに配慮

- ダム放流水を利用した水力発電
- ・下流河川の流況の改善による水力 エネルギーのポテンシャル向上
- ・建設時に発生する伐採木のバイオ マス活用

粤橋浄水場再整備

浄水場の大規模更新の先駆けとし てCNに最大限配慮した次世代型 の浄水場を整備

- •小水力発電、太陽光発電、水素活 用などを推進
- •PFIにより民間の技術力を活用
- 豊橋市の小鷹野浄水場と連携推進

ポータルサイト

(4) 地域の実情に応じた配慮事項

効率的な農業用水管理等の次世代農業の推進

食料安全保障に向けた農業生産の増大、農業経営規模の拡大や気候変動の影響等による営農形態の変化に伴い、必要となる農業用水を水量及び水質の両面から確保するため、農業用水の利用実態を把握する。また、農村社会の変容や農業水利施設の老朽化など農業水利を巡る課題に対して豊川用水地域において進められているICTを活用した効率的な農業用水管理等の次世代農業の取組等を引き続き推進するものとする。

豊川用水での次世代農業に向けた取組(事例)

1 スマート農業を見据えた農地基盤ラベル

1 ha以上の集約農地づくり、次世代通信技術 「6G」との連動も考慮した、農地基盤づくりを推進 する。

水資源機構の制度拡充により、支線水路等が末端支配面積に関係なく実施可能となったため、南海トラフ地震や気候変動による風水害の対策を講じた、更新事業を推進する。

(対象施設:約300か所の揚水機場)

3 豊川用水三期事業の 積極的な推進

豊川用水施設を再点検し、耐震対策、老朽化対策 が必要な施設については、事業化を図りつつ、現二 期事業を積極的に推進する。

4 デジタルの積極的な導入

揚水機場・調整池等へICT(情報通信技術)・AI(人 工知能)を導入し、水と電力を効率的に運用する。また、この導入により、働き方改革につなげ、管理労力 の軽減を図るとともに、組合員への広報活動にも別途利用する。

自動給水栓の試験運用

スマートフォンやタブレット 端末で、ほ場の水位設定、確 認等がリアルタイムで管理

5 分一ボンニュートラルへの実験で連川開始

ファームポンド上部や空き地を有効活用し、太陽光発電設備を導入し、その電力で直接、イン バータ内蔵モーターを稼働させ、地産地消エネルギーを供給する。

(対象施設:約300か所の揚水機場・蓄電池併用)

の形炭素・水源地涵養林 対策への取り組み

地域振興を考慮し、揚水機場上屋の更新Bには、三河材(水源地産)を活用する。

7 [0]供給基盤整備計画

施設園芸の生産性向上のため、企業等で発生した二酸化炭素(CO2)を、新たに整備した管網等により、セミクローズド・パイプハウスに供給する「CO2循環型地域社会」の構築に向けて検討する。

8 豊川用水次世代農業推進協議会(仮称)の設置

農林水産省、水資源機構、農研機構、愛知県、関係市、豊橋技術科学大学、愛知大学、豊川総合 用水土地改良区等で構成する本会を立ち上げ、総合的に検討・展望を開くことで、豊川用水地域 の農家に対して奮起を促すとともに、全国からの営農希望者の受け入れを支援する。

※令和6年7月2日の設立総会開催をもって、豊川用水次世代農業推進協議会 が発足

出典:水土里ネット豊川用水 VOL.91 2024WIINTER 令和6年1月発行

■第7回インフラメンテナンス大賞 (優秀賞) メンテナンス実施現場における工夫部門 農業農村分野

豊橋開拓土地改良区

水管理システム導入による維持管理の省力化と組合 員との情報共有

揚水機場の運転状況や断水情報などについて、全ての組合員(農家)に対して、リアルタイムで情報共有することで、安定した配水管理を円滑に行うことができるようになり、さらには、断水情報の連絡など事務の効率化やペーパーレス化を図ることができた。

第7回インフラメンテナンス大賞

ア)メンテナンス実施現場における工夫部門

愛知県

水管理システム導入のよる 維持管理の省力化と組合員との情報共有

豊橋開拓土地改良区

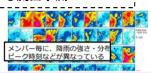
揚水機場の運転状況画面(点灯色で確認) 青:正常、赤:停止、紫:異常

断水情報お知らせ画面

^{遠隔操作PC}61

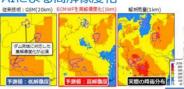
(5) 先端技術の活用による社会課題への対応

先端技術の活用による社会問題への対応

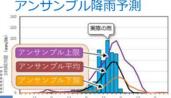

- ▶ デジタル技術を活用することで、効果的かつ効率的な情報の収集及び共有並びに施設等の運用及び維持管理等を推進
- 洪水時の事前放流や渇水時の施設運用等において、従来の技術より長時間を対象とし、降水量等の不確実性を加味した気 象・水文予測技術等の活用を推進
- ▶ ダムや堰等の水インフラについて、最新のデジタル技術を活用した管理の高度化、省力化の推進

(例)デジタル技術等の先端技術の活用

- ■アンサンブル降雨予測・分布型流出予測 システムの構築
 - 51メンバー・15日前より予測・AI技術で1km格子・ 1時間雨量に高解像度化・予測の幅や確率表示
 - 長時間洪水予測システム等による流出予測


アンサンブル予報

ECMWFの51メンバー・15日 先までの予測データ

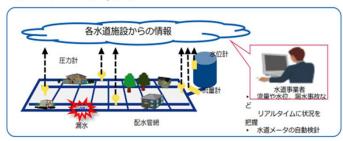


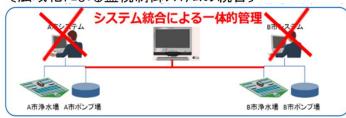
長時間アンサンブル降雨予測システム

AIによる高解像度化

アンサンブル降雨予測

長時間洪水予測システム等による流出予測 (連携)


予測ダム流入量


■水道IoTの推進(スマートメータ、監視制御システム統合)

- IoT等により、検針や漏水発見等の業務の効率化
- ・ビッグデータの収集・解析により配水の最適化や故 障予知診断の効果

[スマートメータの導入]

〔広域化による監視制御システムの統合〕

ビックデータ・AI活用等

[活用事例]


〇高度な運用計画 〇見守りサービス 〇故障予知診断 〇アセットマネジメントへの活用

出典:国土交通省HP(上下水道DX推進事業)

■ICTを活用した農業用水の水管理

- ・スマホ等により、給水・排水を自動制御し、土地改良 区等が管理するポンプ場から圃場までを連携。
- 水利用に応じた効率的な配水を行うことにより、 節水・節電効果が発現。

